
Tableau Calculi for Logic Programs under Answer Set Semantics · App–1

THIS DOCUMENT IS THE ONLINE-ONLY APPENDIX TO:

Tableau Calculi for Logic Programs
under Answer Set Semantics
Martin Gebser and Torsten Schaub1

Institut für Informatik
Universität Potsdam
August-Bebel-Str. 89, D-14482 Potsdam
{gebser,torsten}@cs.uni-potsdam.de

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY, Pages 1–40.

We present proofs of results by sections. Proofs of Theorem 3.1 from Section 3 and Theorem 4.6
from Section 4 are postponed to Appendix A.2, where they can be derived as consequences of
more general results.

A.1 Proofs of Results from Section 4

To begin with, we show Proposition 4.1 and 4.2 on correspondences between tableau rules and
logic programming operators as well as smodels’ propagation.

PROPOSITION 4.1. Let Π be a normal program and A an assignment.
Then, we have that

(1) TΠ(A) =
(
D{FTA}(Π, D{FTB}(Π,A))

)T
;

(2) NΠ(A) =
(
D{FFA}(Π, D{FFB}(Π,A))

)F
;

(3) UΠ(A) =
(
D{WFN[2atom(Π)]}(Π, D{FFB}(Π,A))

)F
.

PROOF. We separately consider the items of the statement:

(1) We have that p ∈ TΠ(A) iff p = head(r) for some r ∈ Π such that body(r)
+ ⊆ AT and

body(r)
− ⊆ AF iff p = head(r) for some r ∈ Π such that T body(r) ∈ D{FTB}(Π,A), so

that p ∈
(
D{FTA}(Π, D{FTB}(Π,A))

)T
.

(2) We have that p ∈ NΠ(A) iff p ∈ atom(Π) such that head(r) 6= p or (body(r)
+ ∩ AF) ∪

(body(r)
− ∩AT) 6= ∅ for every r ∈ Π iff p ∈ atom(Π) such that FB ∈ D{FFB}(Π,A) for

every B ∈ body(p), so that p ∈
(
D{FFA}(Π, D{FFB}(Π,A))

)F
.

1Affiliated with the School of Computing Science at Simon Fraser University, Burnaby, Canada, and the Institute for
Integrated and Intelligent Systems at Griffith University, Brisbane, Australia.

Permission to make digital/hard copy of all or part of this material without fee for personal or classroom use provided that
the copies are not made or distributed for profit or commercial advantage, the ACM copyright/server notice, the title of the
publication, and its date appear, and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 1529-3785/20YY/0700-0001 $5.00

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

App–2 · Martin Gebser and Torsten Schaub

(3) We have that p ∈ UΠ(A) iff p ∈ U for some U ⊆ atom(Π) such that (B+ ∩ AF) ∪
(B− ∩AT) 6= ∅ for every B ∈ EBΠ(U) iff p ∈ U for some U ⊆ atom(Π) such that FB ∈
D{FFB}(Π,A) for every B ∈ EBΠ(U), so that p ∈

(
D{WFN[2atom(Π)]}(Π, D{FFB}(Π,A))

)F
.

We have thus shown that all items of the statement hold.

PROPOSITION 4.2. Let Π be a normal program and A an assignment.
Then, we have that

(1) D{FI}(Π,A) = D{FTA}(Π, D{FTB}(Π,A));
(2) D{ARC}(Π,A) = D{FFA}(Π, D{FFB}(Π,A));
(3) D{CTH}(Π,A) = D{BTB}(Π, D{BTA}(Π, D{FFB}(Π,A) ∪ {T p | p ∈ AT ∩ atom(Π)}));
(4) D{CFH}(Π,A) = D{BFB}(Π, D{BFA}(Π,A)∪{T p | p ∈ AT ∩atom(Π)}∪{F p | p ∈ AF ∩

atom(Π)});
(5) D{AM}(Π,A) = D{WFN[2atom(Π)]}(Π, D{FFB}(Π,A)).

PROOF. We separately consider the items of the statement:

(1) We have that T p ∈ D{FI}(Π,A) iff p = head(r) for some r ∈ Π such that body(r)
+ ⊆ AT

and body(r)
− ⊆ AF iff p = head(r) for some r ∈ Π such that T body(r) ∈ D{FTB}(Π,A),

so that T p ∈ D{FTA}(Π, D{FTB}(Π,A)).
(2) We have that F p ∈ D{ARC}(Π,A) iff p ∈ atom(Π) such that (B+ ∩AF)∪ (B− ∩AT) 6= ∅

for every B ∈ body(p) iff p ∈ atom(Π) such that FB ∈ D{FFB}(Π,A) for every B ∈
body(p), so that F p ∈ D{FFA}(Π, D{FFB}(Π,A)).

(3) We have that tl ∈ D{CTH}(Π,A) iff p ∈ AT∩atom(Π) and l ∈ body(r) for some r ∈ Π such
that (B+∩AF)∪(B−∩AT) 6= ∅ for everyB ∈ body(p)\{body(r)} iff p ∈ AT ∩atom(Π)
and l ∈ body(r) for some r ∈ Π such that {FB | B ∈ body(p) \ {body(r)}} ⊆
D{FFB}(Π,A), so that T body(r) ∈ D{BTA}(Π, D{FFB}(Π,A)∪{T p | p ∈ AT ∩atom(Π)})
and {tl | l ∈ body(r)} ⊆ D{BTB}(Π, D{BTA}(Π, D{FFB}(Π,A) ∪ {T p | p ∈ AT ∩
atom(Π)})).

(4) We have that f l ∈ D{CFH}(Π,A) iff l ∈ body(r) for some r ∈ Π such that F head(r) ∈ A
and tl′ ∈ A for every l′ ∈ body(r) \ {l} iff F body(r) ∈ D{BFA}(Π,A) and {tl′ | l′ ∈
body(r) \ {l}} ⊆ {T p | p ∈ AT ∩ atom(Π)}∪ {F p | p ∈ AF ∩ atom(Π)} for some r ∈ Π
and l ∈ body(r), so that f l ∈ D{BFB}(Π, D{BFA}(Π,A)∪{T p | p ∈ AT ∩atom(Π)}∪{F p |
p ∈ AF ∩ atom(Π)}).

(5) We have that F p ∈ D{AM}(Π,A) iff p ∈ U for some U ⊆ atom(Π) such that (B+ ∩AF)∪
(B− ∩AT) 6= ∅ for every B ∈ EBΠ(U) iff p ∈ U for some U ⊆ atom(Π) such that FB ∈
D{FFB}(Π,A) for every B ∈ EBΠ(U), so that F p ∈ D{WFN[2atom(Π)]}(Π, D{FFB}(Π,A)).

We have thus shown that all items of the statement hold.

In view of Proposition 4.2, we derive the following relationship between tableau calculi using
the deterministic tableau rules in Figure 1 or 3, respectively.

COROLLARY 4.3. Let Π be a normal program and A an assignment.
Then, we have that D∗{FI,ARC,CTH,CFH,AM}(Π,A) ⊆ D∗Tsmodels

(Π,A).

PROOF. This result follows immediately from Proposition 4.2, since any entry deducible by
some of the tableau rules in {FI,ARC,CTH,CFH,AM} can likewise be deduced by iterated ap-
plications of the tableau rules (a)–(h) and WFN[2atom(Π)] in Figure 1, which are the deterministic
tableau rules contained in Tsmodels.
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Tableau Calculi for Logic Programs under Answer Set Semantics · App–3

Next, we show the one-to-one correspondence between models of Comp(Π) and non-
contradictory complete branches in tableaux of Tcomp , stated in Theorem 4.4. To this end, we
first provide Lemma A.1, linking models of Comp(Π) to non-contradictory complete branches.

LEMMA A.1. Let Π be a normal program and X ⊆ atom(Π) ∪ body(Π).
Then, we have that (X ∩ atom(Π)) ∪ {pB | B ∈ X ∩ body(Π)} is a model of Comp(Π) iff

D{(a)–(h)}(Π,A) ⊆ {T v | v ∈ X}∪{F v | v ∈ (atom(Π)∪ body(Π)) \X} for every assignment
A ⊆ {T v | v ∈ X} ∪ {F v | v ∈ (atom(Π) ∪ body(Π)) \X}.

PROOF. Let M = (X ∩ atom(Π)) ∪ {pB | B ∈ X ∩ body(Π)} and A′ = {T v | v ∈ X} ∪
{F v | v ∈ (atom(Π) ∪ body(Π)) \X} in the following consideration of the implications of the
statement.

(⇒) Assume that A ⊆ A′ but D{(a)–(h)}(Π,A) 6⊆ A′. Then, some of the following cases
applies:

(1) If D{FTB,BFB}(Π,A) 6⊆ A′, for some B = {p1, . . . , pm,not pm+1, . . . ,not pn} ∈ body(Π),
we have that {FB,T p1, . . . ,T pm,F pm+1, . . . ,F pn} ⊆ A′, so that pB /∈ M and
{p1, . . . , pm, pm+1, . . . , pn} ∩ M = {p1, . . . , pm}. Since Comp(Π) includes

(
pB ↔

(p1 ∧ · · · ∧ pm ∧ ¬pm+1 ∧ · · · ∧ ¬pn)
)
, this shows that M is not a model of Comp(Π).

(2) IfD{FFB,BTB}(Π,A) 6⊆ A′, for someB ∈ body(Π) and l ∈ B, we have that {TB,f l} ⊆ A′,
so that pB ∈M andB+ 6⊆M orB−∩M 6= ∅. Since Comp(Π) includes

(
pB ↔ (

∧
p∈B+p∧∧

q∈B−¬q)
)
, this shows that M is not a model of Comp(Π).

(3) If D{FTA,BFA}(Π,A) 6⊆ A′, for some p ∈ atom(Π) and B ∈ body(p), we have that
{F p,TB} ⊆ A′, so that p /∈ M and pB ∈ M . Since Comp(Π) includes

(
p ↔

(
∨
B∈body(p)pB)

)
, this shows that M is not a model of Comp(Π).

(4) If D{FFA,BTA}(Π,A) 6⊆ A′, for some p ∈ atom(Π) and body(p) = {B1, . . . , Bm}, we have
that {T p,FB1, . . . ,FBm} ⊆ A′, so that p ∈ M and {pB1 , . . . , pBm} ∩M = ∅. Since
Comp(Π) includes

(
p↔ (pB1 ∨· · ·∨pBm)

)
, this shows thatM is not a model of Comp(Π).

In each of the above cases, M is not a model of Comp(Π), which in turn shows that, if M is a
model of Comp(Π), then D{(a)–(h)}(Π,A) ⊆ A′ for every assignment A ⊆ A′.

(⇐) Assume that M is not a model of Comp(Π). Then, some of the following cases applies:

(1) If pB /∈ M and {p1, . . . , pm, pm+1, . . . , pn} ∩ M = {p1, . . . , pm} for some
B = {p1, . . . , pm,not pm+1, . . . ,not pn} ∈ body(Π), we have that {T p1, . . . ,T pm,
F pm+1, . . . ,F pn} ⊆ A′, so that TB ∈ D{FTB}(Π,A

′). Since TB /∈ A′, this shows
that D{(a)–(h)}(Π,A

′) 6⊆ A′.
(2) If pB ∈ M and {p1, . . . , pm, pm+1, . . . , pn} ∩ M 6= {p1, . . . , pm} for some

B = {p1, . . . , pm,not pm+1, . . . ,not pn} ∈ body(Π), we have that {F p1, . . . ,F pm,
T pm+1, . . . ,T pn} ∩ A′ 6= ∅, so that FB ∈ D{FFB}(Π,A

′). Since FB /∈ A′, this shows
that D{(a)–(h)}(Π,A

′) 6⊆ A′.
(3) If p /∈M and pB ∈M for some p ∈ atom(Π) and B ∈ body(p), we have that TB ∈ A′, so

that T p ∈ D{FTA}(Π,A
′). Since T p /∈ A′, this shows that D{(a)–(h)}(Π,A

′) 6⊆ A′.
(4) If p ∈ M and {pB1

, . . . , pBm
} ∩ M = ∅ for some p ∈ atom(Π) and body(p) =

{B1, . . . , Bm}, we have that {FB1, . . . ,FBm} ⊆ A′, so that F p ∈ D{FFA}(Π,A
′). Since

F p /∈ A′, this shows that D{(a)–(h)}(Π,A
′) 6⊆ A′.

In each of the above cases,D{(a)–(h)}(Π,A
′) 6⊆ A′, which in turn shows that, ifD{(a)–(h)}(Π,A) ⊆

A′ for every assignment A ⊆ A′, then M is a model of Comp(Π).
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

App–4 · Martin Gebser and Torsten Schaub

THEOREM 4.4. Let Π be a normal program.
Then, we have that the following holds for tableau calculus Tcomp:

(1) Every incomplete tableau for Π and ∅ can be extended to a complete tableau for Π and ∅.
(2) Comp(Π) has a model X iff every complete tableau for Π and ∅ has a unique non-

contradictory branch (Π,A) such that (AT ∩atom(Π))∪{pB | B ∈ AT ∩body(Π)} = X .
(3) Comp(Π) has no model iff every complete tableau for Π and ∅ is a refutation.

PROOF. We separately consider the items of the statement:

(1) By applying Cut[atom(Π)∪ body(Π)], an incomplete branch in a tableau for Π and ∅ can be
extended to a subtableau such that, for every branch (Π,A) in it, we have that atom(Π) ∪
body(Π) ⊆ AT ∪AF . Furthermore, if (Π,A) is not complete, then D{(a)–(h)}(Π,A) 6⊆ A,
so that the application of some of the tableau rules (a)–(h) in Tcomp yields a contradictory
and thus complete branch.

(2) (⇒) Assume that X ⊆ atom(Π) ∪ {pB | B ∈ body(Π)} is a model of Comp(Π), and
consider the following assignment:

A = {T p | p ∈ X ∩ atom(Π)} ∪ {F p | p ∈ atom(Π) \X}
∪ {TB | B ∈ body(Π), pB ∈ X} ∪ {FB | B ∈ body(Π), pB /∈ X}

Then, by Lemma A.1, D{(a)–(h)}(Π,A
′) ⊆ A for every assignment A′ ⊆ A. Since either

A′ ∪ {T v} ⊆ A or A′ ∪ {F v} ⊆ A for any application of Cut[atom(Π) ∪ body(Π)] on a
branch (Π,A′) such that A′ ⊆ A, we have that the assignment in exactly one of the resulting
branches is contained in A. Along with ∅ ⊆ A, it follows that every complete tableau for Π
and ∅ has a unique non-contradictory branch (Π,A) such that (AT ∩atom(Π))∪{pB | B ∈
AT ∩ body(Π)} = X .
(⇐) Assume that (Π,A) is a non-contradictory complete branch, that is, AT ∪ AF =
atom(Π) ∪ body(Π) and D{(a)–(h)}(Π,A) ⊆ A. Then, by Lemma A.1 (along with the
fact that D{(a)–(h)}(Π,A

′) ⊆ D{(a)–(h)}(Π,A) for every A′ ⊆ A), we have that X =
(AT ∩ atom(Π)) ∪ {pB | B ∈ AT ∩ body(Π)} is a model of Comp(Π).

(3) From the second item, if Comp(Π) has a model, then every complete tableau for Π and ∅
has a non-contradictory branch; by the first item, there is some complete tableau for Π and ∅,
so that some complete tableau for Π and ∅ is not a refutation. Conversely, if some complete
tableau for Π and ∅ is not a refutation, it has a non-contradictory branch (Π,A), and (AT ∩
atom(Π)) ∪ {pB | B ∈ AT ∩ body(Π)} is a model of Comp(Π), as shown in the proof of
the second item.

We have thus shown that all items of the statement hold.

For proving Proposition 4.5, stating that tableau rule WFN[2atom(Π)] is as powerful as the
iterated application of more restrictive tableau rules FFA and WFN[loop(Π)] (along with FFB),
we first show as an auxiliary result that WFN[loop(Π)] is applicable wrt a fixpoint of FFB and
FFA if WFN[2atom(Π)] is.

LEMMA A.2. Let Π be a normal program and A an assignment.
Then, we have that D{FFB,WFN[2atom(Π)]}(Π,A) ⊆ A iff D{FFB,FFA,WFN[loop(Π)]}(Π,A) ⊆ A.

PROOF. (⇒) Assume that D{FFB,FFA,WFN[loop(Π)]}(Π,A) 6⊆ A. Then, D{FFB}(Π,A) 6⊆ A
or D{FFA,WFN[loop(Π)]}(Π,A) 6⊆ A. If D{FFB}(Π,A) 6⊆ A, it is clear that
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Tableau Calculi for Logic Programs under Answer Set Semantics · App–5

D{FFB,WFN[2atom(Π)]}(Π,A) 6⊆ A. Otherwise, if D{FFA,WFN[loop(Π)]}(Π,A) 6⊆ A, there is some
p ∈ atom(Π) \ AF such that EBΠ({p}) ⊆ body(p) ⊆ AF or p ∈ U for an U ∈ loop(Π)
satisfying EBΠ(U) ⊆ AF . Given that {{p} | p ∈ atom(Π)} ∪ loop(Π) ⊆ 2atom(Π), we con-
clude that there is some p ∈ atom(Π) \ AF such that F p ∈ D{WFN[2atom(Π)]}(Π,A), so that
D{FFB,WFN[2atom(Π)]}(Π,A) 6⊆ A.

(⇐) Assume that D{FFB,WFN[2atom(Π)]}(Π,A) 6⊆ A. Then, D{FFB}(Π,A) 6⊆ A
or D{WFN[2atom(Π)]}(Π,A) 6⊆ A. If D{FFB}(Π,A) 6⊆ A, it is clear that
D{FFB,FFA,WFN[loop(Π)]}(Π,A) 6⊆ A. Otherwise, if D{WFN[2atom(Π)]}(Π,A) 6⊆ A, there is some
U ⊆ atom(Π) such that U 6⊆ AF and EBΠ(U) ⊆ AF . Since D{FFB,FFA,WFN[loop(Π)]}(Π,A) 6⊆
A if D{FFB,FFA}(Π,A) 6⊆ A, assume that D{FFB,FFA}(Π,A) ⊆ A. Then, for every
B ∈ EBΠ(U \ AF) \ EBΠ(U), the fact that B+ ∩ (U ∩ AF) 6= ∅ implies B ∈ AF .
Along with EBΠ(U) ⊆ AF , we conclude that EBΠ(U \AF) ⊆ AF . Moreover, since U \AF

is finite, there is some strongly connected component of the subgraph of the dependency graph
of Π induced by U \ AF , given by (U \ AF , {(head(r), p) | r ∈ Π, head(r) ∈ U \ AF ,
p ∈ body(r)

+ ∩ (U \AF)}), such that its vertices L do not reach atoms in (U \AF) \ L.2 The
latter means that B+ ∩ ((U \ AF) \ L) = ∅ holds for every p ∈ L and B ∈ body(p), so that
EBΠ(L) ⊆ EBΠ(U \AF) ⊆ AF . Since L ∩AF = ∅, for every p ∈ L, D{FFA}(Π,A) ⊆ A
implies body(p) 6⊆ AF , while EBΠ(L) ⊆ AF yields body(p) ∩ EBΠ(L) ⊆ AF ; that is, there is
someB ∈ body(p)\AF , andB+∩L 6= ∅ holds for eachB ∈ body(p)\AF . Along with the fact
that U \AF is non-empty, we conclude that the strongly connected component of L (contained
in the subgraph of the dependency graph of Π induced by U \AF) includes some edge, so that
L ∈ loop(Π). We have thus shown that EBΠ(L) ⊆ AF holds for some L ∈ loop(Π) such that
L 6⊆ AF , so that D{WFN[loop(Π)]}(Π,A) ⊆ D{FFB,FFA,WFN[loop(Π)]}(Π,A) 6⊆ A.

PROPOSITION 4.5. Let Π be a normal program and A an assignment.
Then, we have that D∗{FFB,WFN[2atom(Π)]}(Π,A) = D∗{FFB,FFA,WFN[loop(Π)]}(Π,A).

PROOF. By Lemma A.2, we have that D∗{FFB,WFN[2atom(Π)]}(Π,A) is closed un-
der {FFB,FFA,WFN[loop(Π)]} and that D∗{FFB,FFA,WFN[loop(Π)]}(Π,A) is closed un-
der {FFB,WFN[2atom(Π)]}. Along with the fact that D∗{FFB,WFN[2atom(Π)]}(Π,A) and
D∗{FFB,FFA,WFN[loop(Π)]}(Π,A) are the unique smallest branches that extend (Π,A) and
are closed under {FFB,WFN[2atom(Π)]} or {FFB,FFA,WFN[loop(Π)]}, respectively,
we conclude that D∗{FFB,FFA,WFN[loop(Π)]}(Π,A) ⊆ D∗{FFB,WFN[2atom(Π)]}(Π,A) and that
D∗{FFB,WFN[2atom(Π)]}(Π,A) ⊆ D∗{FFB,FFA,WFN[loop(Π)]}(Π,A).

We have thus proven the formal results presented in Section 4, except for Theorem 4.6, whose
proof is provided at the end of Appendix A.2.

A.2 Proofs of Results from Section 5

For proving the soundness and completeness of our generic tableau method relative to the lan-
guage constructs considered in Section 5, we first provide some lemmas in Appendix A.2.1
and A.2.2. After demonstrating the main soundness and completeness result in Appendix A.2.3,
the correspondences shown in Appendix A.2.4 between generic tableau rules and the basic ones

2Note that the “condensation” of (U \AF , {(head(r), p) | r ∈ Π, head(r) ∈ U \AF , p ∈ body(r)+∩ (U \AF)}),
obtained by contracting each strongly connected component to a single vertex, is a directed acyclic graph (cf. [Purdom
1970]).

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

App–6 · Martin Gebser and Torsten Schaub

for normal programs, as introduced in Section 3, allow us to derive Theorem 3.1 and 4.6 as con-
sequences of more general results.

A.2.1 Lemmas on Soundness. The first two lemmas provide properties of non-contradictory
complete branches that hold in view of the generic tableau rules in Figure 4.

LEMMA A.3. Let Π be a disjunctive program and T a tableau calculus such that {I ↑, I ↓} ∩
T 6= ∅.

Then, for every non-contradictory complete branch (Π,A) and every (α ← β) ∈ Π, we have
that tβ /∈ A or fα /∈ A.

PROOF. Consider any (α ← β) ∈ Π and any branch (Π,A) such that tβ ∈ A and fα ∈ A.
Then, we have that tα ∈ D{I↑}(Π,A) and fβ ∈ D{I↓}(Π,A). Since {I ↑, I ↓} ∩ T 6= ∅, this
shows that (Π,A) cannot be (extended to) a non-contradictory complete branch.

LEMMA A.4. Let Π be a disjunctive program and T a tableau calculus such that U ↑ ∈ T .
Then, for every non-contradictory complete branch (Π,A) and every S ⊆ atom(Π), we have

that supA(Π, S, S) 6= ∅ or AT ∩ S = ∅.
PROOF. Consider any S ⊆ atom(Π) and any branch (Π,A) such that supA(Π, S, S) = ∅ and

AT ∩ S 6= ∅. Then, there is some p ∈ AT ∩ S such that F p ∈ D{U↑}(Π,A). Since U ↑ ∈ T ,
this shows that (Π,A) cannot be (extended to) a non-contradictory complete branch.

For non-contradictory complete branches (Π,A), the next lemmas show that the truth value
of a variable v ∈ atom(Π) ∪ conj (Π) ∪ card(Π) ∪ disj (Π) matches the valuation of τ [v] wrt
AT ∩ atom(Π), provided the inclusion of appropriate tableau rules, presented in Figure 5, 7,
and 8, respectively, in a calculus.

LEMMA A.5. Let Π be a disjunctive program and A a total assignment.
Then, for every p ∈ atom(Π), we have that

(1) tp ∈ A iff AT ∩ atom(Π) |= τ [p];
(2) tnot p ∈ A iff AT ∩ atom(Π) |= τ [not p];
(3) fp ∈ A iff AT ∩ atom(Π) 6|= τ [p];
(4) fnot p ∈ A iff AT ∩ atom(Π) 6|= τ [not p].

PROOF. We have that τ [p] = p and τ [not p] = ¬τ [p] = ¬p, and the following holds:

(1) tp ∈ A iff T p ∈ A iff p ∈ AT ∩ atom(Π) iff AT ∩ atom(Π) |= p;
(2) tnot p ∈ A iff F p ∈ A iff p /∈ AT ∩ atom(Π) iff AT ∩ atom(Π) |= ¬p;
(3) fp ∈ A iff F p ∈ A iff p /∈ AT ∩ atom(Π) iff AT ∩ atom(Π) 6|= p;
(4) fnot p ∈ A iff T p ∈ A iff p ∈ AT ∩ atom(Π) iff AT ∩ atom(Π) 6|= ¬p.

We have thus shown that all items of the statement hold.

LEMMA A.6. Let Π be a disjunctive program and T a tableau calculus such that
{TLU ↑,FL↑,FU ↑} ⊆ T .

Then, for every non-contradictory complete branch (Π,A) and every v ∈ card(Π), we have
that T v ∈ A iff AT ∩ atom(Π) |= τ [v].

PROOF. Consider any v = j{l1, . . . , ln}k ∈ card(Π) and any non-contradictory complete
branch (Π,A). For every l ∈ {l1, . . . , ln}, we have that l ∈ atom(Π) or l = not p for some
p ∈ atom(Π). By Lemma A.5, tl ∈ A iff AT ∩ atom(Π) |= τ [l], and f l ∈ A iff AT ∩
atom(Π) 6|= τ [l]. We further consider the cases that T v ∈ A and F v ∈ A, respectively:
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Tableau Calculi for Logic Programs under Answer Set Semantics · App–7

(1) If T v ∈ A, then F v /∈ D{FL↑,FU↑}(Π,A). That is, |{l ∈ {l1, . . . , ln} | f l ∈ A}| ≤ n − j
and |{l ∈ {l1, . . . , ln} | tl ∈ A}| ≤ k. In view of |{l ∈ {l1, . . . , ln} | tl ∈ A}| + |{l ∈
{l1, . . . , ln} | f l ∈ A}| = n, |{l ∈ {l1, . . . , ln} | f l ∈ A}| ≤ n − j yields j ≤ |{l ∈
{l1, . . . , ln} | tl ∈ A}|. We have thus shown that j ≤ |{l ∈ {l1, . . . , ln} | tl ∈ A}| ≤ k.
Hence, for any L ⊆ {l1, . . . , ln} such that |L| < j, it holds that {l ∈ {l1, . . . , ln} \ L | tl ∈
A} 6= ∅, so that AT ∩atom(Π) |= (

∨
l∈{l1,...,ln}\Lτ [l]). Moreover, for any L ⊆ {l1, . . . , ln}

such that k < |L|, it holds that {l ∈ L | f l ∈ A} 6= ∅, so that AT ∩ atom(Π) 6|= (
∧
l∈Lτ [l]).

Combining the cases for |L| < j and k < |L| yields that

AT ∩ atom(Π) |=
∧
L⊆{l1,...,ln},|L|<j or k<|L|

(
(
∧
l∈Lτ [l])→ (

∨
l∈{l1,...,ln}\Lτ [l])

)
.

(2) If F v ∈ A, then T v /∈ D{TLU↑}(Π,A). That is, |{l ∈ {l1, . . . , ln} | tl ∈ A}| < j or
|{l ∈ {l1, . . . , ln} | f l ∈ A}| < n − k. In view of |{l ∈ {l1, . . . , ln} | tl ∈ A}| + |{l ∈
{l1, . . . , ln} | f l ∈ A}| = n, |{l ∈ {l1, . . . , ln} | f l ∈ A}| < n − k yields k < |{l ∈
{l1, . . . , ln} | tl ∈ A}|. For L′ = {l ∈ {l1, . . . , ln} | tl ∈ A}, we have thus shown that
|L′| < j or k < |L′|. Since AT ∩ atom(Π) 6|=

(
(
∧
l∈L′τ [l]) → (

∨
l∈{l1,...,ln}\L′τ [l])

)
, we

conclude that

AT ∩ atom(Π) 6|=
∧
L⊆{l1,...,ln},|L|<j or k<|L|

(
(
∧
l∈Lτ [l])→ (

∨
l∈{l1,...,ln}\Lτ [l])

)
.

We have thus shown that T v ∈ A and F v ∈ A imply AT ∩ atom(Π) |= τ [v] and AT ∩
atom(Π) 6|= τ [v], respectively. That is, T v ∈ A iff AT ∩ atom(Π) |= τ [v].

LEMMA A.7. Let Π be a disjunctive program and T a tableau calculus such that
{TC↑,FC↑} ⊆ T .

If card(Π) = ∅ or {TLU ↑,FL↑,FU ↑} ⊆ T , then for every non-contradictory complete
branch (Π,A) and every v ∈ conj (Π), we have that T v ∈ A iff AT ∩ atom(Π) |= τ [v].

PROOF. Consider any v = {l1, . . . , ln} ∈ conj (Π) and any non-contradictory complete branch
(Π,A), and assume that card(Π) = ∅ or {TLU ↑,FL↑,FU ↑} ⊆ T . For every l ∈ {l1, . . . , ln},
we have that l ∈ atom(Π) ∪ card(Π) or l = not π and τ [l] = ¬τ [π] for some π ∈ atom(Π) ∪
card(Π). By Lemma A.5 and A.6, tl ∈ A iff AT ∩ atom(Π) |= τ [l], and f l ∈ A iff AT ∩
atom(Π) 6|= τ [l]. We further consider the cases that T v ∈ A and F v ∈ A, respectively:

(1) If T v ∈ A, then F v /∈ D{FC↑}(Π,A). That is, {l ∈ {l1, . . . , ln} | f l ∈ A} = ∅ and
{l ∈ {l1, . . . , ln} | tl ∈ A} = {l1, . . . , ln}, so that AT ∩ atom(Π) |= (τ [l1] ∧ · · · ∧ τ [ln]).

(2) If F v ∈ A, then T v /∈ D{TC↑}(Π,A). That is, {l ∈ {l1, . . . , ln} | tl ∈ A} 6= {l1, . . . , ln}
and {l ∈ {l1, . . . , ln} | f l ∈ A} 6= ∅, so that AT ∩ atom(Π) 6|= (τ [l1] ∧ · · · ∧ τ [ln]).

We have thus shown that T v ∈ A and F v ∈ A imply AT ∩ atom(Π) |= τ [v] and AT ∩
atom(Π) 6|= τ [v], respectively. That is, T v ∈ A iff AT ∩ atom(Π) |= τ [v].

LEMMA A.8. Let Π be a disjunctive program and T a tableau calculus such that
{TD↑,FD↑} ⊆ T .

Then, for every non-contradictory complete branch (Π,A) and every v ∈ disj (Π), we have
that T v ∈ A iff AT ∩ atom(Π) |= τ [v].

PROOF. Consider any v = {l1; . . . ; ln} ∈ disj (Π) and any non-contradictory complete branch
(Π,A). For every l ∈ {l1, . . . , ln}, we have that l ∈ atom(Π) or l = not p for some p ∈
atom(Π). By Lemma A.5, tl ∈ A iff AT ∩ atom(Π) |= τ [l], and f l ∈ A iff AT ∩ atom(Π) 6|=
τ [l]. We further consider the cases that T v ∈ A and F v ∈ A, respectively:

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

App–8 · Martin Gebser and Torsten Schaub

(1) If T v ∈ A, then F v /∈ D{FD↑}(Π,A). That is, {l ∈ {l1, . . . , ln} | f l ∈ A} 6= {l1, . . . , ln}
and {l ∈ {l1, . . . , ln} | tl ∈ A} 6= ∅, so that AT ∩ atom(Π) |= (τ [l1] ∨ · · · ∨ τ [ln]).

(2) If F v ∈ A, then T v /∈ D{TD↑}(Π,A). That is, {l ∈ {l1, . . . , ln} | tl ∈ A} = ∅ and
{l ∈ {l1, . . . , ln} | f l ∈ A} = {l1, . . . , ln}, so that AT ∩ atom(Π) 6|= (τ [l1] ∨ · · · ∨ τ [ln]).

We have thus shown that T v ∈ A and F v ∈ A imply AT ∩ atom(Π) |= τ [v] and AT ∩
atom(Π) 6|= τ [v], respectively. That is, T v ∈ A iff AT ∩ atom(Π) |= τ [v].

A.2.2 Lemmas on Completeness. In order to abstract from the language constructs admitted
in a program, the following definition formulates conditions under which we call←−sup, −→sup, min ,
and max , respectively, well-behaved. We then proceed by showing that these four concepts are
well-behaved for disjunctive programs.

DEFINITION A.9. Let α be a literal.
Then, we define ←−sup, −→sup, min , and max , respectively, as well-behaved for α if, for every

S ⊆ P and every assignment A, we have that

(1) if←−supA(α, S) holds, then←−supA′(α, S) holds for every A′ ⊆ A;
(2) if −→supA(α, S) holds, then −→supA′(α, S′) holds for every A′ ⊆ A and every S′ ⊆ S;
(3) if ` ∈ minA(α, S), then←−supA∪{`}(α, S) does not hold;

(4) if ` ∈ maxA(α, S), then −→supA∪{`}(α, S) does not hold.

LEMMA A.10. Let α be a disjunctive literal and β a cardinality literal or a possibly negated
conjunction of cardinality literals.

Then, we have that ←−sup and min are well-behaved for α and that −→sup and max are well-
behaved for β.

PROOF. Let S ⊆ P and A an arbitrary assignment.
We first consider the possible cases such that←−supA(α, S) holds:

(1) If α ∈ S, we have that←−supA′(α, S) holds for all assignments A′.
(2) If α = j{l1, . . . , ln}k ∈ card(P), then {l1, . . . , ln} ∩ S 6= ∅ and |{l ∈ {l1, . . . , ln} \ S |

tl ∈ A}| < k. Since for all A′ ⊆ A, we have that |{l ∈ {l1, . . . , ln} \ S | tl ∈ A′}| ≤ |{l ∈
{l1, . . . , ln} \ S | tl ∈ A}| < k, we conclude that←−supA′(α, S) holds.

(3) If α = {l1; . . . ; ln} ∈ disj (P), then {l1, . . . , ln} ∩ S 6= ∅ and {l ∈ {l1, . . . , ln} \ S | tl ∈
A} = ∅. Since for all A′ ⊆ A, we have that {l ∈ {l1, . . . , ln} \ S | tl ∈ A′} ⊆ {l ∈
{l1, . . . , ln} \ S | tl ∈ A} = ∅, we conclude that←−supA′(α, S) holds.

We next consider the possible cases such that ` ∈ minA(α, S):

(1) If α = j{l1, . . . , ln}k ∈ card(P) and ` ∈ minA(α, S) = {f l | l ∈ {l1, . . . , ln} \ S,
tl /∈ A}, then |{l ∈ {l1, . . . , ln} \ S | tl ∈ A}| = k − 1. That is, ` = tl /∈ A for some
l ∈ {l1, . . . , ln}\S, so that |{l ∈ {l1, . . . , ln}\S | tl ∈ A∪{`}}| = |{l ∈ {l1, . . . , ln}\S |
tl ∈ A}|+ 1 = k, which means that←−supA∪{`}(α, S) does not hold.

(2) If α = {l1; . . . ; ln} ∈ disj (P) and ` ∈ minA(α, S) = {f l | l ∈ {l1, . . . , ln}\S}, then ` = tl
for some l ∈ {l1, . . . , ln} \ S. We conclude that {l ∈ {l1, . . . , ln} \ S | tl ∈ A ∪ {`}} 6= ∅,
which means that←−supA∪{`}(α, S) does not hold.

We now come to the possible cases such that −→supA(β, S) holds:
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Tableau Calculi for Logic Programs under Answer Set Semantics · App–9

(1) If β = not v, where v ∈ P ∪ card(P)∪ conj (P), we have that −→supA′(β, S′) holds for every
assignment A′ and every S′ ⊆ P .

(2) If β ∈ P \ S, then β ∈ P \ S′ for every S′ ⊆ S, so that −→supA′(β, S′) holds for every
assignment A′ and every S′ ⊆ S.

(3) If β = j{l1, . . . , ln}k ∈ card(P), then |{l ∈ {l1, . . . , ln} \ S | f l /∈ A}| ≥ j. Since for
every A′ ⊆ A and every S′ ⊆ S, we have that |{l ∈ {l1, . . . , ln} \ S′ | f l /∈ A′}| ≥ |{l ∈
{l1, . . . , ln} \ S | f l /∈ A}| ≥ j, we conclude that −→supA′(β, S′) holds.

(4) If β = {l1, . . . , ln} ∈ conj (P), then −→supA(l, S) holds for every l ∈ {l1, . . . , ln}. Fur-
thermore, since one of the first three cases applies to each l ∈ {l1, . . . , ln}, we have that
−→supA′(l, S′) holds for every A′ ⊆ A and every S′ ⊆ S, so that −→supA′(β, S′) holds as well.

Finally, we consider the possible cases such that ` ∈ maxA(β, S):

(1) If β = j{l1, . . . , ln}k ∈ card(P) and ` ∈ maxA(β, S) = {tl | l ∈ {l1, . . . , ln}\S,f l /∈ A},
then |{l ∈ {l1, . . . , ln}\S | f l /∈ A}| = j. That is, ` = f l /∈ A for some l ∈ {l1, . . . , ln}\S,
so that |{l ∈ {l1, . . . , ln}\S | f l /∈ A∪{`}}| = |{l ∈ {l1, . . . , ln}\S | f l /∈ A}|−1 = j−1,
which means that −→supA∪{`}(β, S) does not hold.

(2) If β = {l1, . . . , ln} ∈ conj (P) and ` ∈ maxA(β, S) =
⋃
l∈{l1,...,ln}maxA(l, S), then

` ∈ maxA(l, S) for some l ∈ {l1, . . . , ln} ∩ card(P). That is, the previous case applies to l,
so that −→supA∪{`}(l, S) and −→supA∪{`}(β, S) do not hold.

We have thus, for S ⊆ P and an arbitrary assignment A, considered all possible cases and shown
that←−sup and min are well-behaved for α and that −→sup and max are well-behaved for β.

The concept of well-behavedness allows us to identify the property that supA(Π, S, T) is anti-
monotone wrt both A and T .

LEMMA A.11. Let Π be a disjunctive program, S ⊆ P , T ⊆ P , and A an assignment.
If←−sup and−→sup are well-behaved for all literals in {α | (α← β) ∈ Π} and {β | (α← β) ∈ Π},

respectively, then we have that supA(Π, S, T) ⊆ supA′(Π, S, T
′) for every A′ ⊆ A and every

T ′ ⊆ T .

PROOF. Assume that ←−sup and −→sup are well-behaved for all literals in {α | (α ← β) ∈ Π}
and {β | (α ← β) ∈ Π}, respectively, and consider any (α ← β) ∈ supA(Π, S, T) =
{(α ← β) ∈ Π | fβ /∈ A,←−supA(α, S),−→supA(β, T)}. In view of Definition A.9, for ev-
ery A′ ⊆ A and every T ′ ⊆ T , we have that ←−supA(α, S) and −→supA(β, T) imply ←−supA′(α, S)
and −→supA′(β, T ′), respectively, and fβ /∈ A′ follows immediately from fβ /∈ A. From this,
we conclude that (α ← β) ∈ supA′(Π, S, T

′) = {(α ← β) ∈ Π | fβ /∈ A′,←−supA′(α, S),
−→supA′(β, T ′)}.

We are now ready to prove that, for a total assignment A such that the deterministic tableau
rules in Figure 4 do not yield a contradiction, the entries of A are preserved when applying these
tableau rules wrt any assignment contained in A.

LEMMA A.12. Let Π be a disjunctive program and A a total assignment such that tβ /∈ A or
fα /∈ A for every (α← β) ∈ Π and supA(Π, S, S) 6= ∅ or AT ∩S = ∅ for every S ⊆ atom(Π).

If←−sup and min are well-behaved for all literals in {α | (α ← β) ∈ Π} and if −→sup and max
are well-behaved for all literals in {β | (α ← β) ∈ Π}, then for every A′ ⊆ A, we have that
D{(a)–(f)}(Π,A

′) ⊆ A.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

App–10 · Martin Gebser and Torsten Schaub

PROOF. Assume that ←−sup and min are well-behaved for all literals in {α | (α ← β) ∈ Π}
and that −→sup and max are well-behaved for all literals in {β | (α ← β) ∈ Π}, and consider any
A′ ⊆ A. We show that any entry deducible by I ↑, I ↓, N ↑, N ↓, U ↑, or U ↓ in (Π,A′) belongs
to A:

(I ↑) If tα ∈ D{I↑}(Π,A′), we have that tβ ∈ A′ for some (α ← β) ∈ Π. Since tβ ∈ A, it
holds that fα /∈ A, which yields tα ∈ A because A is total.

(I ↓) If fβ ∈ D{I↓}(Π,A′), we have that fα ∈ A′ for some (α ← β) ∈ Π. Since fα ∈ A, it
holds that tβ /∈ A, which yields fβ ∈ A because A is total.

(N ↑) If F p ∈ D{N↑}(Π,A
′), we have that p ∈ atom(Π) and supA′(Π, {p}, ∅) = ∅. By

Lemma A.11, we conclude that supA(Π, {p}, {p}) = ∅. Thus, it holds that T p /∈ A, which
yields F p ∈ A because A is total.

(N ↓) If ` ∈ D{N↓}(Π,A
′), we have that ` ∈ {tβ} ∪ minA′(α, {p}) ∪ maxA′(β, ∅) for some

p ∈ (A′)
T ∩ atom(Π) such that supA′(Π, {p}, ∅) = {α ← β}. Since p ∈ AT ∩ atom(Π),

it holds that supA(Π, {p}, {p}) 6= ∅. However, given that min and max are well-behaved for
α and β, respectively, we also have that (α ← β) /∈ supA′∪{`}(Π, {p}, ∅). By Lemma A.11,
we conclude that supA∪{`}(Π, {p}, {p}) ⊆ supA′∪{`}(Π, {p}, ∅) ⊆ supA′(Π, {p}, ∅) \ {α ←
β} = ∅. That is, supA∪{`}(Π, {p}, {p}) = ∅ 6= supA(Π, {p}, {p}), which yields ` /∈ A.
Finally, since A is total, ` /∈ A implies ` ∈ A.

(U ↑) If F p ∈ D{U↑}(Π,A
′), we have that p ∈ S for some S ⊆ atom(Π) such that

supA′(Π, S, S) = ∅. By Lemma A.11, we conclude that supA(Π, S, S) = ∅. Thus, it holds
that T p /∈ A, which yields F p ∈ A because A is total.

(U ↓) If ` ∈ D{U↓}(Π,A
′), we have that ` ∈ {tβ} ∪ minA′(α, S) ∪ maxA′(β, S) for some

S ⊆ atom(Π) such that (A′)
T ∩ S 6= ∅ and supA′(Π, S, S) = {α← β}. Since AT ∩ S 6= ∅,

it holds that supA(Π, S, S) 6= ∅. However, given that min and max are well-behaved for α
and β, respectively, we also have that (α ← β) /∈ supA′∪{`}(Π, S, S). By Lemma A.11, we
conclude that supA∪{`}(Π, S, S) ⊆ supA′∪{`}(Π, S, S) ⊆ supA′(Π, S, S) \ {α ← β} = ∅.
That is, supA∪{`}(Π, S, S) = ∅ 6= supA(Π, S, S), which yields ` /∈ A. Finally, since A is
total, ` /∈ A implies ` ∈ A.

We have thus shown that, in every branch (Π,A′) such that A′ ⊆ A, any entry deducible by I ↑,
I ↓, N ↑, N ↓, U ↑, or U ↓ belongs to A, so that D{(a)–(f)}(Π,A

′) ⊆ A.

Finally, the next two lemmas show that, for a total assignment A such that the truth values
of variables v ∈ atom(Π) ∪ conj (Π) ∪ card(Π) ∪ disj (Π) match the valuation of τ [v] wrt
AT ∩ atom(Π), the language-specific tableau rules in Figure 5, 7, and 8, respectively, preserve
the entries of A when applied wrt any assignment contained in A.

LEMMA A.13. Let Π be a disjunctive program, X ⊆ atom(Π), and

A = {T v | v ∈ atom(Π) ∪ conj (Π) ∪ card(Π) ∪ disj (Π), X |= τ [v]}
∪ {F v | v ∈ atom(Π) ∪ conj (Π) ∪ card(Π) ∪ disj (Π), X 6|= τ [v]}.

Then, for every v ∈ atom(Π) ∪ conj (Π) ∪ card(Π) ∪ disj (Π), we have that

(1) tv ∈ A iff X |= τ [v];
(2) tnot v ∈ A iff X |= τ [not v];

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Tableau Calculi for Logic Programs under Answer Set Semantics · App–11

(3) fv ∈ A iff X 6|= τ [v];
(4) fnot v ∈ A iff X 6|= τ [not v].

PROOF. By the definition of A, for every v ∈ atom(Π) ∪ conj (Π) ∪ card(Π) ∪ disj (Π):

(1) tv ∈ A iff T v ∈ A iff X |= τ [v];
(2) tnot v ∈ A iff F v ∈ A iff X 6|= τ [v] iff X |= ¬τ [v] iff X |= τ [not v];
(3) fv ∈ A iff F v ∈ A iff X 6|= τ [v];
(4) fnot v ∈ A iff T v ∈ A iff X |= τ [v] iff X 6|= ¬τ [v] iff X 6|= τ [not v].

We have thus shown that all items of the statement hold.

LEMMA A.14. Let Π be a disjunctive program, X ⊆ atom(Π), and

A = {T v | v ∈ atom(Π) ∪ conj (Π) ∪ card(Π) ∪ disj (Π), X |= τ [v]}
∪ {F v | v ∈ atom(Π) ∪ conj (Π) ∪ card(Π) ∪ disj (Π), X 6|= τ [v]}.

Then, for every A′ ⊆ A, we have that D{(h)–(v)}(Π,A
′) ⊆ A.

PROOF. By Lemma A.13, for every literal l = v or l = not v, where v ∈ atom(Π)∪conj (Π)∪
card(Π) ∪ disj (Π), we have that tl ∈ A iff X |= τ [l], and that f l ∈ A iff X 6|= τ [l]. Hence, we
can treat such conditions as synonyms in the following consideration of some A′ ⊆ A and the
tableau rules (h)–(v):

(TC↑) If {l1, . . . , ln} ∈ conj (Π) such that {tl1, . . . , tln} ⊆ A′, we have that X |= τ [l1], . . . ,
X |= τ [ln]. That is, X |= (τ [l1] ∧ · · · ∧ τ [ln]), so that T {l1, . . . , ln} ∈ A.

(TC↓) If {l1, . . . , li−1, li, li+1, . . . , ln} ∈ conj (Π) such that {F {l1, . . . , li−1, li, li+1, . . . , ln},
tl1, . . . , tli−1, tli+1, . . . , tln} ⊆ A′, we have that X |= τ [l1], . . . , X |= τ [li−1], X |= τ [li+1],
. . . , X |= τ [ln] butX 6|= (τ [l1]∧· · ·∧τ [li−1]∧τ [li]∧τ [li+1]∧· · ·∧τ [ln]). That is, X 6|= τ [li],
so that f li ∈ A.

(FC↑) If {l1, . . . , li, . . . , ln} ∈ conj (Π) such that f li ∈ A′, we have that X 6|= τ [li]. That is,
X 6|= (τ [l1] ∧ · · · ∧ τ [li] ∧ · · · ∧ τ [ln]), so that F {l1, . . . , li, . . . , ln} ∈ A.

(FC↓) If {l1, . . . , ln} ∈ conj (Π) such that T {l1, . . . , ln} ∈ A′, we have that X |= (τ [l1]∧ · · · ∧
τ [ln]). That is, X |= τ [l1], . . . , X |= τ [ln], so that {tl1, . . . , tln} ⊆ A.

(TLU ↑) If j{l1, . . . , lj , . . . , lk+1, . . . , ln}k ∈ card(Π) such that {tl1, . . . , tlj ,
f lk+1, . . . ,f ln} ⊆ A′, for any L ⊆ {l1, . . . , ln} such that |L| < j, we have that
{l1, . . . , lj} 6⊆ L, that is, X |= (

∨
l∈{l1,...,ln}\Lτ [l]). Furthermore, for any L ⊆ {l1, . . . , ln}

such that k < |L|, we have that L ∩ {lk+1, . . . , ln} 6= ∅, that is, X 6|= (
∧
l∈Lτ [l]). We obtain

that

X |=
∧
L⊆{l1,...,ln},|L|<j or k<|L|

(
(
∧
l∈Lτ [l])→ (

∨
l∈{l1,...,ln}\Lτ [l])

)
,

so that T j{l1, . . . , lj , . . . , lk+1, . . . , ln}k ∈ A.
(TLU↓) If j{l1, . . . , lj−1, lj , . . . , lk, lk+1, . . . , ln}k ∈ card(Π) such that
{F j{l1, . . . , lj−1, lj , . . . , lk, lk+1, . . . , ln}k, tl1, . . . , tlj−1,f lk+1, . . . ,f ln} ⊆ A′, we
have that

X 6|=
∧
L⊆{l1,...,ln},|L|<j or k<|L|

(
(
∧
l∈Lτ [l])→ (

∨
l∈{l1,...,ln}\Lτ [l])

)
.

However, for any L ⊆ {l1, . . . , ln} such that k < |L|, we have that L ∩ {lk+1, . . . , ln} 6= ∅,
that is, X 6|= (

∧
l∈Lτ [l]). Furthermore, for any L ⊆ {l1, . . . , ln} such that |L| < j and

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

App–12 · Martin Gebser and Torsten Schaub

L 6= {l1, . . . , lj−1}, we have that {l1, . . . , lj−1} 6⊆ L, that is, X |= (
∨
l∈{l1,...,ln}\Lτ [l]). We

obtain that

X |=
∧
L⊆{l1,...,ln},(|L|<j and L6={l1,...,lj−1}) or k<|L|

(
(
∧
l∈Lτ [l])→ (

∨
l∈{l1,...,ln}\Lτ [l])

)
.

That is, X 6|=
(
(τ [l1] ∧ · · · ∧ τ [lj−1]) → (τ [lj] ∨ · · · ∨ τ [lk] ∨ τ [lk+1] ∨ · · · ∨ τ [ln])

)
, so that

X 6|= τ [lj], . . . , X 6|= τ [lk] and {f lj , . . . ,f lk} ⊆ A.
(TLU ↓) If j{l1, . . . , lj , lj+1, . . . , lk+1, lk+2, . . . , ln}k ∈ card(Π) such that
{F j{l1, . . . , lj , lj+1, . . . , lk+1, lk+2, . . . , ln}k, tl1, . . . , tlj ,f lk+2, . . . ,f ln} ⊆ A′, we
have that

X 6|=
∧
L⊆{l1,...,ln},|L|<j or k<|L|

(
(
∧
l∈Lτ [l])→ (

∨
l∈{l1,...,ln}\Lτ [l])

)
.

However, for any L ⊆ {l1, . . . , ln} such that |L| < j, we have that {l1, . . . , lj} 6⊆ L, that
is, X |= (

∨
l∈{l1,...,ln}\Lτ [l]). Furthermore, for any L ⊆ {l1, . . . , ln} such that k < |L| and

L 6= {l1, . . . , lk+1}, we have that L ∩ {lk+2, . . . , ln} 6= ∅, that is, X 6|= (
∧
l∈Lτ [l]). We obtain

that

X |=
∧
L⊆{l1,...,ln},|L|<j or (k<|L| and L 6={l1,...,lk+1})

(
(
∧
l∈Lτ [l])→ (

∨
l∈{l1,...,ln}\Lτ [l])

)
.

That is, X 6|=
(
(τ [l1]∧ · · · ∧ τ [lj]∧ τ [lj+1]∧ · · · ∧ τ [lk+1])→ (τ [lk+2]∨ · · · ∨ τ [ln])

)
, so that

X |= τ [lj+1], . . . , X |= τ [lk+1] and {tlj+1, . . . , tlk+1} ⊆ A.
(FL↑) If j{l1, . . . , lj , . . . , ln}k ∈ card(Π) such that {f lj , . . . ,f ln} ⊆ A′, for L′ = {l ∈
{l1, . . . , ln} | X |= τ [l]}, we have that L′ ⊆ {l1, . . . , lj−1} and |L′| < j, while X 6|= τ [l] for
all l ∈ {l1, . . . , ln} \ L′. Hence, X 6|=

(
(
∧
l∈L′τ [l])→ (

∨
l∈{l1,...,ln}\L′τ [l])

)
and

X 6|=
∧
L⊆{l1,...,ln},|L|<j or k<|L|

(
(
∧
l∈Lτ [l])→ (

∨
l∈{l1,...,ln}\Lτ [l])

)
,

so that F j{l1, . . . , lj , . . . , ln}k ∈ A.
(FL↓) If j{l1, . . . , lj , lj+1, . . . , ln}k ∈ card(Π) such that {T j{l1, . . . , lj , lj+1, . . . , ln}k,
f lj+1, . . . ,f ln} ⊆ A′, we have that

X |=
∧
L⊆{l1,...,ln},|L|<j or k<|L|

(
(
∧
l∈Lτ [l])→ (

∨
l∈{l1,...,ln}\Lτ [l])

)
.

In particular, for every 1 ≤ i ≤ j and Li = {l ∈ {l1, . . . , ln} \ {li} | X |= τ [l]},
we have that Li ⊆ {l1, . . . , lj} \ {li} and |Li| < j, while X 6|= τ [l] for every l ∈
{l1, . . . , ln} \ (Li ∪ {li}). Hence, X |=

(
(
∧
l∈Li

τ [l]) → (
∨
l∈{l1,...,ln}\Li

τ [l])
)

but X 6|=(
(
∧
l∈Li

τ [l]) → (
∨
l∈{l1,...,ln}\(Li∪{li})τ [l])

)
. That is, X |= τ [li] for every 1 ≤ i ≤ j, so that

{tl1, . . . , tlj} ⊆ A.
(FU ↑) If j{l1, . . . , lk+1, . . . , ln}k ∈ card(Π) such that {tl1, . . . , tlk+1} ⊆ A′, for L′ = {l ∈
{l1, . . . , ln} | X |= τ [l]}, we have that {l1, . . . , lk+1} ⊆ L′ and k < |L′|, while X 6|= τ [l] for
all l ∈ {l1, . . . , ln} \ L′. Hence, X 6|=

(
(
∧
l∈L′τ [l])→ (

∨
l∈{l1,...,ln}\L′τ [l])

)
and

X 6|=
∧
L⊆{l1,...,ln},|L|<j or k<|L|

(
(
∧
l∈Lτ [l])→ (

∨
l∈{l1,...,ln}\Lτ [l])

)
,

so that F j{l1, . . . , lk+1, . . . , ln}k ∈ A.
(FU ↓) If j{l1, . . . , lk, lk+1, . . . , ln}k ∈ card(Π) such that {T j{l1, . . . , lk, lk+1, . . . , ln}k,
tl1, . . . , tlk} ⊆ A′, we have that

X |=
∧
L⊆{l1,...,ln},|L|<j or k<|L|

(
(
∧
l∈Lτ [l])→ (

∨
l∈{l1,...,ln}\Lτ [l])

)
.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Tableau Calculi for Logic Programs under Answer Set Semantics · App–13

In particular, for every k < i ≤ n and Li = {l ∈ {l1, . . . , ln} | X |= τ [l]} ∪ {li}, we have
that {l1, . . . , lk} ∪ {li} ⊆ Li and k < |Li|, while X 6|= τ [l] for every l ∈ {l1, . . . , ln} \
Li. Hence, X |=

(
(
∧
l∈Li

τ [l]) → (
∨
l∈{l1,...,ln}\Li

τ [l])
)

but X 6|=
(
(
∧
l∈Li\{li}τ [l]) →

(
∨
l∈{l1,...,ln}\Li

τ [l])
)
. That is,X 6|= τ [li] for every k < i ≤ n, so that {f lk+1, . . . ,f ln} ⊆ A.

(TD↑) If {l1; . . . ; li; . . . ; ln} ∈ disj (Π) such that tli ∈ A′, we have that X |= τ [li]. That is,
X |= (τ [l1] ∨ · · · ∨ τ [li] ∨ · · · ∨ τ [ln]), so that T {l1; . . . ; li; . . . ; ln} ∈ A.

(TD↓) If {l1; . . . ; ln} ∈ disj (Π) such that F {l1; . . . ; ln} ∈ A′, we have that X 6|= (τ [l1]∨ · · · ∨
τ [ln]). That is, X 6|= τ [l1], . . . , X 6|= τ [ln], so that {f l1, . . . ,f ln} ⊆ A.

(FD↑) If {l1; . . . ; ln} ∈ disj (Π) such that {f l1, . . . ,f ln} ⊆ A′, we have that X 6|= τ [l1], . . . ,
X 6|= τ [ln]. That is, X 6|= (τ [l1] ∨ · · · ∨ τ [ln]), so that F {l1; . . . ; ln} ∈ A.

(FD↓) If {l1; . . . ; li−1; li; li+1; . . . ; ln} ∈ disj (Π) such that {T {l1; . . . ; li−1; li; li+1; . . . ; ln},
f l1, . . . ,f li−1,f li+1, . . . ,f ln} ⊆ A′, we have that X 6|= τ [l1], . . . , X 6|= τ [li−1], X 6|=
τ [li+1], . . . , X 6|= τ [ln] but X |= (τ [l1] ∨ · · · ∨ τ [li−1] ∨ τ [li] ∨ τ [li+1] ∨ · · · ∨ τ [ln]). That is,
X |= τ [li], so that tli ∈ A.

We have thus shown that, in every branch (Π,A′) such that A′ ⊆ A, any entry deducible by some
of the tableau rules (h)–(v) belongs to A, so that D{(h)–(v)}(Π,A

′) ⊆ A.

A.2.3 Proofs of Soundness and Completeness. The following theorem characterizes the an-
swer sets of a disjunctive program in terms of total assignments A such that the generic tableau
rules in Figure 4 do not yield a contradiction and the entries in A match the valuations of propo-
sitional formulas associated with their variables.

THEOREM A.15. Let Π be a disjunctive program and X ⊆ atom(Π).
Then, we have that X is an answer set of Π iff

A = {T v | v ∈ atom(Π) ∪ conj (Π) ∪ card(Π) ∪ disj (Π), X |= τ [v]}
∪ {F v | v ∈ atom(Π) ∪ conj (Π) ∪ card(Π) ∪ disj (Π), X 6|= τ [v]}

is such that tβ /∈ A or fα /∈ A for every (α← β) ∈ Π and supA(Π, S, S) 6= ∅ or AT ∩ S = ∅
for every S ⊆ atom(Π).

PROOF. By Lemma A.13, for every literal l = v or l = not v, where v ∈ atom(Π)∪conj (Π)∪
card(Π) ∪ disj (Π), we have that tl ∈ A iff X |= τ [l], and that f l ∈ A iff X 6|= τ [l]. Hence, we
can treat such conditions as synonyms in the following consideration of the implications of the
statement.

(⇒) Assume that X is an answer set of Π. Then, for every (α ← β) ∈ Π, we have that
X |=

(
τ [β] → τ [α]

)
if α /∈ card(Π), and that X |=

(
τ [β] →

(
τ [α] ∧

∧
p∈atom(α)(p ∨ ¬p)

))
if

α ∈ card(Π). This implies that X 6|= τ [β] or X |= τ [α], from which we conclude that tβ /∈ A
or fα /∈ A. Furthermore, for any S ⊆ atom(Π) such that AT ∩ S = X ∩ S 6= ∅, we have
that Y = X \ S ⊂ X is not a model of (τ [Π])X . That is, Y 6|= φX for some φ ∈ τ [Π],
where φ =

(
τ [β] → τ [α]

)
if α /∈ card(Π) or φ =

(
τ [β] →

(
τ [α] ∧

∧
p∈atom(α)(p ∨ ¬p)

))
if

α ∈ card(Π) for some (α← β) ∈ Π. In view ofX |= φ but Y 6|= φX , we conclude that φX 6= ⊥,
Y |= (τ [β])X , X |= τ [β], and X |= τ [α]. Furthermore, from X |= τ [β], we immediately obtain
fβ /∈ A.

Given Y |= (τ [β])X , we first show that −→supA(β, S) holds. The following cases are possible:

(1) β = not v for some v ∈ atom(Π) ∪ conj (Π) ∪ card(Π), so that −→supA(β, S) holds.
(2) β ∈ Y = X \ S, so that β ∈ atom(Π) \ S and −→supA(β, S) hold.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

App–14 · Martin Gebser and Torsten Schaub

(3) β = j{l1, . . . , ln}k ∈ card(Π) and

(τ [β])X =
(∧

L⊆{l1,...,ln},|L|<j or k<|L|
(
(
∧
l∈Lτ [l])→ (

∨
l∈{l1,...,ln}\Lτ [l])

))X
.

Since Y |= (τ [β])X , for any L ⊆ {l1, . . . , ln} such that |L| < j, we have that {l ∈ L |
f l ∈ A} 6= ∅, L ∩ S 6= ∅, or {l ∈ {l1, . . . , ln} \ L | f l /∈ A} 6⊆ S. However, regarding
L′ = {l ∈ {l1, . . . , ln} \ S | f l /∈ A}, it holds that {l ∈ L′ | f l ∈ A} = ∅, L′ ∩ S = ∅, and
{l ∈ {l1, . . . , ln} \ L′ | f l /∈ A} ⊆ S. It follows that |L′| ≥ j, so that −→supA(β, S) holds.

(4) β = {l1, . . . , ln} ∈ conj (Π) and (τ [β])X = (
∧
l∈{l1,...,ln}τ [l])X =

∧
l∈{l1,...,ln}(τ [l])X .

Since Y |= (τ [β])X , we conclude that Y |= (τ [l])X for every l ∈ {l1, . . . , ln}. Given this,
one of the first three cases applies to each l ∈ {l1, . . . , ln}, from which we conclude that
−→supA(l, S) holds, so that −→supA(β, S) holds as well.

We have thus shown that −→supA(β, S) holds.
We now turn to proving that←−supA(α, S) holds. For this, note that, if α /∈ card(Π), X |= τ [α]

but Y 6|= (τ [α])X yield α ∈ atom(Π) ∪ disj (Π). Hence, the following cases are possible:

(1) α ∈ S, so that←−supA(α, S) holds.
(2) α = {l1; . . . ; ln} ∈ disj (Π) and ∅ 6= {l ∈ {l1, . . . , ln} | tl ∈ A} ⊆ S. That is, {l1, . . . , ln}∩

S 6= ∅ and {l ∈ {l1, . . . , ln} \ S | tl ∈ A} = ∅, so that←−supA(α, S) holds.
(3) α = j{l1, . . . , ln}k ∈ card(Π) and ({l1, . . . , ln} ∩ X) ∩ S 6= ∅ because X |= τ [α] but

Y 6|=
(
τ [α] ∧

∧
p∈atom(α)(p ∨ ¬p)

)X
.3 Furthermore, X |= τ [α] implies |{l ∈ {l1, . . . , ln} |

tl ∈ A}| ≤ k. Along with ({l1, . . . , ln} ∩X) ∩ S 6= ∅, that is, {l ∈ {l1, . . . , ln} ∩ S | tl ∈
A} 6= ∅, we conclude that |{l ∈ {l1, . . . , ln} \ S | tl ∈ A}| < k, so that←−supA(α, S) holds.

We have thus shown that ←−supA(α, S) holds. Along with the previous observations that
fβ /∈ A and that −→supA(β, S) holds, we conclude that (α ← β) ∈ supA(Π, S, S), so that
supA(Π, S, S) 6= ∅. Since the choice of S ⊆ atom(Π) such that AT ∩ S 6= ∅ was arbitrary,
this establishes that supA(Π, S, S) 6= ∅ or AT ∩ S = ∅ for every S ⊆ atom(Π).

(⇐) Assume that X is not an answer set of Π. Then, there is either some (α ← β) ∈ Π such
that X |= τ [β] and X 6|= τ [α] or some Y ⊂ X such that Y |= (τ [Π])X . In the former case, we
have that tβ ∈ A and fα ∈ A for some (α← β) ∈ Π. In the latter case, let S = X \Y . Then, it
holds that ∅ 6= AT ∩ S = S. For the sake of contradiction, assume that supA(Π, S, S) 6= ∅, that
is, (α← β) ∈ Π such that fβ /∈ A,←−supA(α, S), and −→supA(β, S) hold.

In view of←−supA(α, S), the following cases are possible:

(1) α ∈ S, (τ [α])X = α, and so

Y 6|= (τ [α])X .

(2) α = {l1; . . . ; ln} ∈ disj (Π), {l ∈ {l1, . . . , ln} \ S | tl ∈ A} = ∅, (τ [α])X ≡∨
l∈{l1,...,ln}∩Sτ [l] =

∨
p∈{l1,...,ln}∩Sp, and so

Y 6|= (τ [α])X .

(3) α = j{l1, . . . , ln}k ∈ card(Π), {l1, . . . , ln} ∩ S = atom(α) ∩ S 6= ∅, and so

Y 6|=
(
τ [α] ∧

∧
p∈atom(α)(p ∨ ¬p)

)X
.

3Note that all atoms occurring in
(
τ [α] ∧

∧
p∈atom(α)(p ∨ ¬p)

)X belong to {l1, . . . , ln} ∩X .

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Tableau Calculi for Logic Programs under Answer Set Semantics · App–15

We have thus shown that Y 6|= (τ [α])X if α /∈ card(Π), and that Y 6|=
(
τ [α] ∧∧

p∈atom(α)(p ∨ ¬p)
)X

if α ∈ card(Π).
We now turn to β, for which fβ /∈ A implies tβ ∈ A, that is, X |= τ [β]. Furthermore, we

have that −→supA(β, S) holds, and the following cases are possible:

(1) β = not v for some v ∈ atom(Π) ∪ conj (Π) ∪ card(Π), (τ [β])X = ¬⊥, and so

Y |= (τ [β])X .

(2) β ∈ atom(Π) \ S, (τ [β])X = β ∈ Y , and so

Y |= (τ [β])X .

(3) β = j{l1, . . . , ln}k ∈ card(Π) and

(τ [β])X =
(∧

L⊆{l1,...,ln},|L|<j or k<|L|
(
(
∧
l∈Lτ [l])→ (

∨
l∈{l1,...,ln}\Lτ [l])

))X
.

For any L ⊆ {l1, . . . , ln} such that k < |L|, X |= τ [β] implies (
∧
l∈Lτ [l])X = ⊥, so that

Y 6|= (
∧
l∈Lτ [l])X . Furthermore, since−→supA(β, S) holds, we have that |{l ∈ {l1, . . . , ln}\S |

f l /∈ A}| ≥ j. Hence, for any L ⊆ {l1, . . . , ln} such that |L| < j, it holds that {l ∈
{l1, . . . , ln}\S | f l /∈ A} = {l ∈ {l1, . . . , ln}\S | tl ∈ A} 6⊆ L and {l ∈ {l1, . . . , ln}\L |
tl ∈ A} 6⊆ S, so that Y |= (

∨
l∈{l1,...,ln}\Lτ [l])X . Combining the cases for |L| < j and

k < |L| yields that

Y |= (τ [β])X .

(4) β = {l1, . . . , ln} ∈ conj (Π) and (τ [β])X = (
∧
l∈{l1,...,ln}τ [l])X =

∧
l∈{l1,...,ln}(τ [l])X .

For every l ∈ {l1, . . . , ln},X |= τ [β] and−→supA(β, S) implyX |= τ [l] and−→supA(l, S). Given
this, one of the first three cases applies to each l ∈ {l1, . . . , ln}, from which we conclude that
Y |= (τ [l])X , and so

Y |= (τ [β])X .

We have thus shown that Y |= (τ [β])X . Along with Y 6|= (τ [α])X if α /∈ card(Π) and Y 6|=(
τ [α]∧

∧
p∈atom(α)(p∨¬p)

)X
if α ∈ card(Π), we further conclude that Y 6|=

(
τ [β]→ τ [α]

)X
if

α /∈ card(Π) and Y 6|=
(
τ [β]→

(
τ [α] ∧

∧
p∈atom(α)(p ∨ ¬p)

))X
if α ∈ card(Π). That is, Y 6|=

(τ [Π])X , which is a contradiction to our initial assumption. This shows that supA(Π, S, S) 6= ∅
cannot be the case, so that supA(Π, S, S) = ∅ must hold. In addition, ∅ 6= AT ∩ S = S holds by
the choice of S = X \ Y .

We are now ready to show Theorem 5.1, 5.2, 5.5, and 5.6, stating the soundness and complete-
ness of tableau calculi for unary, conjunctive, cardinality, and disjunctive programs, respectively.
Since disjunctive programs include unary, conjunctive, and cardinality programs, it is sufficient to
prove Theorem 5.6.

THEOREM 5.6. Let Π be a disjunctive program.
Then, we have that the following holds for the tableau calculus consisting of the tableau rules

(a)–(v):

(1) Every incomplete tableau for Π and ∅ can be extended to a complete tableau for Π and ∅.
(2) Program Π has an answer set X iff every complete tableau for Π and ∅ has a unique non-

contradictory branch (Π,A) such that AT ∩ atom(Π) = X .

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

App–16 · Martin Gebser and Torsten Schaub

(3) Program Π has no answer set iff every complete tableau for Π and ∅ is a refutation.

PROOF. We separately consider the items of the statement:

(1) By applying Cut[atom(Π)∪conj (Π)∪card(Π)∪disj (Π)], an incomplete branch in a tableau
for Π and ∅ can be extended to a subtableau such that, for every branch (Π,A) in it, we have
that atom(Π) ∪ conj (Π) ∪ card(Π) ∪ disj (Π) ⊆ AT ∪AF . Furthermore, if (Π,A) is not
complete, then D{(a)–(f),(h)–(v)}(Π,A) 6⊆ A, so that the application of some of the tableau rules
(a)–(f) in Figure 4 or (h)–(v) in Figure 5, 7, and 8 yields a contradictory and thus complete
branch.

(2) By Theorem A.15, for every X ⊆ atom(Π), we have that X is an answer set of Π iff the
total assignment

A = {T v | v ∈ atom(Π) ∪ conj (Π) ∪ card(Π) ∪ disj (Π), X |= τ [v]}
∪ {F v | v ∈ atom(Π) ∪ conj (Π) ∪ card(Π) ∪ disj (Π), X 6|= τ [v]}

is such that tβ /∈ A or fα /∈ A for every (α ← β) ∈ Π and supA(Π, S, S) 6= ∅ or
AT ∩ S = ∅ for every S ⊆ atom(Π). Given this, we separately show the implications of the
second item.
(⇒) Assume that X is an answer set of Π. Then, Lemma A.10, A.12, and A.14 establish
that D{(a)–(f),(h)–(v)}(Π,A

′) ⊆ A for every A′ ⊆ A. Furthermore, for any application of
Cut[atom(Π) ∪ conj (Π) ∪ card(Π) ∪ disj (Π)] on a branch (Π,A′) such that A′ ⊆ A, we
have that the assignment in exactly one of the resulting branches is contained in A. Along
with ∅ ⊆ A, it follows that every complete tableau for Π and ∅ has a non-contradictory
branch (Π,A) such that AT ∩ atom(Π) = X . By Lemma A.6, A.7, and A.8, we also have
that (Π,A) is the unique non-contradictory complete branch such that AT ∩ atom(Π) = X .
(⇐) Assume that (Π,A) is a non-contradictory complete branch. Then, for every v ∈
atom(Π)∪ conj (Π)∪ card(Π)∪ disj (Π), Lemma A.6, A.7, and A.8 establish that T v ∈ A
iff AT ∩ atom(Π) |= τ [v]. Furthermore, Lemma A.3 and A.4 show that tβ /∈ A or fα /∈ A
for every (α← β) ∈ Π and that supA(Π, S, S) 6= ∅ or AT ∩S = ∅ for every S ⊆ atom(Π).
By Theorem A.15, we conclude that X = AT ∩ atom(Π) is an answer set of Π.

(3) From the second item, if Π has an answer set, then every complete tableau for Π and ∅ has a
non-contradictory branch; by the first item, there is some complete tableau for Π and ∅, so that
some complete tableau for Π and ∅ is not a refutation. Conversely, if some complete tableau
for Π and ∅ is not a refutation, it has a non-contradictory branch (Π,A), and AT ∩ atom(Π)
is an answer set of Π, as shown in the proof of the second item.

We have thus shown that all items of the statement hold.

A.2.4 Proofs of Correspondences on Normal Programs. We now show the correspondences
stated in Proposition 5.3 and 5.4 between the basic tableau rules in Figure 1 and the (generic)
tableau rules in Figure 4 and 5, respectively, on the common class of normal programs.

PROPOSITION 5.3. Let Π be a normal program, A an assignment, and F,G any pair of a
basic tableau rule F and a generic tableau rule G belonging to the same line in Table I.

Then, we have that

(1) D{F}(Π,A) = D{G}(Π,A) if F /∈ {BTA,WFJ[2atom(Π)]};
(2) D{BTA}(Π,A) ⊇ D{N↓}(Π,A) and, if D{BTA}(Π,A) 6= D{N↓}(Π,A), then A ∪

D{N↑}(Π,A) is contradictory;

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Tableau Calculi for Logic Programs under Answer Set Semantics · App–17

(3) D{WFJ[2atom(Π)]}(Π,A) ⊇ D{U↓}(Π,A) and, if TB ∈ D{WFJ[2atom(Π)]}(Π,A) \
D{U↓}(Π,A), then A ∪D{U↑}(Π,A ∪ {FB}) is contradictory.

PROOF. The correspondences are obvious for the pairs (c), (a), (d), (b), (a), (h), (b), (i), (e), (j),
and (f), (k). It remains to show the statement for the pairs FFA,N ↑, BTA,N ↓, WFN[2atom(Π)],U ↑,
and WFJ[2atom(Π)],U ↓:

(FFA,N ↑) We have that F p ∈ D{FFA}(Π,A) iff p ∈ atom(Π) such that body(p) ⊆ AF iff
p ∈ atom(Π) such that supA(Π, {p}, ∅) = ∅ iff F p ∈ D{N↑}(Π,A).

(BTA,N ↓) If TB ∈ D{N↓}(Π,A), then supA(Π, {p}, ∅) = {p ← B} for some p ∈ AT ∩
atom(Π), so that α 6= p or Fβ ∈ A for every (α ← β) ∈ Π \ {p ← B}. From this,
we conclude that body(p) \ AF = {B}, so that TB ∈ D{BTA}(Π,A). Furthermore, if
TB′ ∈ D{BTA}(Π,A) \D{N↓}(Π,A), then body(p′) \AF ⊆ {B′} for some B′ ∈ body(Π)
and p′ ∈ AT ∩ atom(Π), which implies that supA(Π, {p′}, ∅) ⊆ {p′ ← B′}. However,
TB′ /∈ D{N↓}(Π,A) yields that (p′ ← B′) /∈ supA(Π, {p′}, ∅). Hence, we have that
supA(Π, {p′}, ∅) = ∅, and A ∪D{N↑}(Π,A) is contradictory because p′ ∈ AT ∩ atom(Π).

(WFN[2atom(Π)],U ↑) We have that F p ∈ D{WFN[2atom(Π)]}(Π,A) iff p ∈ S for some S ⊆
atom(Π) such that EBΠ(S) ⊆ AF iff p ∈ S for some S ⊆ atom(Π) such that
supA(Π, S, S) = ∅ iff F p ∈ D{U↑}(Π,A).

(WFJ[2atom(Π)],U ↓) If TB ∈ D{U↓}(Π,A), then supA(Π, S, S) = {p ← B}, where p ∈ S
for some S ⊆ atom(Π) such that AT ∩ S 6= ∅. From this, we conclude that EBΠ(S) \AF =
{B}, so that TB ∈ D{WFJ[2atom(Π)]}(Π,A). Furthermore, if TB′ ∈ D{WFJ[2atom(Π)]}(Π,A) \
D{U↓}(Π,A), then EBΠ(S′) \AF ⊆ {B′} for some B′ ∈ body(Π) and S′ ⊆ atom(Π) such
that AT ∩ S′ 6= ∅, which implies that supA(Π, S′, S′) ⊆ {p′ ← B′ | p′ ∈ S′}. In view of
Lemma A.10 and A.11, we have that supA∪{FB′}(Π, S

′, S′) = ∅, and A ∪ D{U↑}(Π,A ∪
{FB′}) is contradictory because AT ∩ S′ 6= ∅.

We have thus shown that the stated correspondences according to Table I hold.

PROPOSITION 5.4. Let Π be a normal program, A an assignment, T a tableau calculus con-
taining any subset of the tableau rules in Figure 1 for Ω = 2atom(Π), and T ′ the generic image
of T .

If FFA ∈ T or BTA /∈ T and if WFJ[Ω] ∈ T implies that {FTB,FFB,WFN[Ω],Cut[Γ]} ⊆ T
for Γ ⊆ atom(Π) ∪ body(Π) such that atom(Π) ⊆ Γ or body(Π) ⊆ Γ, then we have that the
following holds:

(1) For every complete tableau of T for Π and A with n branches, there is a complete
tableau of T ′ for Π and A with the same non-contradictory branches and at most
(max{|atom(Π)|, |body(Π)|}+ 1) ∗ n branches overall.

(2) Every (complete) tableau of T ′ for Π and A is a (complete) tableau of T for Π and A.

PROOF. Assume that FFA ∈ T or BTA /∈ T and that WFJ[Ω] ∈ T implies that {FTB,FFB,
WFN[Ω],Cut[Γ]} ⊆ T for Γ ⊆ atom(Π) ∪ body(Π) such that atom(Π) ⊆ Γ or body(Π) ⊆ Γ.
By Proposition 5.3, we immediately conclude that every (complete) tableau of T ′ for Π and A is
a (complete) tableau of T for Π and A as well. Furthermore, in view of the first two items in the
statement of Proposition 5.3, we have that any application of a tableau rule in T other than WFJ[Ω]
on a branch (Π,A′) extending (Π,A) leads to the same result, in terms of deduced entries or a
contradiction, respectively, by applying a corresponding tableau rule in T ′. Hence, it is sufficient

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

App–18 · Martin Gebser and Torsten Schaub

to show that, if there is some TB ∈ D{WFJ[Ω]}(Π,A
′)\ (A′∪D{TC↑,U↓}(Π,A

′)), there is a cor-
responding subtableau of T ′ that introduces at most |(B+∪B−)\((A′)T ∪(A′)

F
)| contradictory

branches, while a single remaining branch includes TB (and possibly further entries belonging
to any non-contradictory branch extending (Π,A′ ∪ {TB}) in a complete tableau of T for Π
and A). To this end, assume that TB ∈ D{WFJ[Ω]}(Π,A

′) \ (A′ ∪ D{TC↑,U↓}(Π,A
′)). Then,

EBΠ(S) \ (A′)
F ⊆ {B} for some S ⊆ atom(Π) such that (A′)

T ∩ S 6= ∅, supA′(Π, S, S) ⊆
{p← B | p ∈ S}, and |supA′(Π, S, S)| 6= 1. Furthermore, one of the following cases applies:

(1) If supA′(Π, S, S) = ∅, we have that F p ∈ D{U↑}(Π,A
′) for every p ∈ S. Given that

(A′)
T ∩ S 6= ∅, we conclude that (Π,A′) can be extended to a contradictory branch by an

application of U ↑.
(2) If supA′(Π, S, S) 6= ∅, in view of Lemma A.10 and A.11, we have that

supA′∪{FB}(Π, S, S) = ∅, so that an application of U ↑ is sufficient to contradict any ex-
tension of (Π,A′) including FB. In particular, if FB ∈ D{FC↑}(Π,A

′), we can ex-
tend (Π,A′) to a contradictory branch without cutting. Otherwise, if Cut[Γ] ∈ T such
that body(Π) ⊆ Γ, we can cut on B, contradict the branch for FB by applying U ↑,
and proceed with the branch (Π,A′ ∪ {TB}), also obtained by applying WFJ[Ω]. Alter-
natively, if Cut[Γ] ∈ T such that atom(Π) ⊆ Γ, we can successively cut on atoms in
(B+ ∪ B−) \ ((A′)

T ∪ (A′)
F

) and contradict a branch for f l, where l ∈ B, by ap-
plying FC↑ and U ↑. Provided that B+ ∩ B− = ∅,4 this strategy yields a single branch
(Π,A′ ∪ {tl | l ∈ B}), which can be further extended to (Π,A′ ∪ {tl | l ∈ B} ∪ {TB}) by
an application of TC↑. Given that FFB ∈ T , we also have that any non-contradictory branch
extending (Π,A′ ∪ {TB}) in a complete tableau of T for Π and A contains tl for all l ∈ B.

We have thus shown that an entry TB ∈ D{WFJ[Ω]}(Π,A
′) \ (A′ ∪ D{TC↑,U↓}(Π,A

′)) can
also be generated in the single (if any) non-contradictory branch in a subtableau of T ′ extending
(Π,A′) and admitting the same non-contradictory extensions as (Π,A′ ∪ {TB}) in a complete
tableau of T for Π and A, while introducing at most max{|atom(Π)|, |body(Π)|} contradictory
branches overall along each branch in a complete tableau of T for Π and A.

The previous results allow us to derive Theorem 3.1 as a consequence of Theorem 5.2 (i.e.,
Theorem 5.6 restricted to the class of conjunctive programs).

THEOREM 3.1. Let Π be a normal program.
Then, we have that the following holds for tableau calculi Tsmodels, Tnomore, and Tnomore++:

(1) Every incomplete tableau for Π and ∅ can be extended to a complete tableau for Π and ∅.
(2) Program Π has an answer set X iff every complete tableau for Π and ∅ has a unique non-

contradictory branch (Π,A) such that AT ∩ atom(Π) = X .

(3) Program Π has no answer set iff every complete tableau for Π and ∅ is a refutation.

PROOF. By Proposition 5.3, Tsmodels, Tnomore, and Tnomore++ admit the same non-contradictory
complete branches as the tableau calculus consisting of the tableau rules (a)–(k) in Figure 4
and 5; in particular, if TB ∈ D{U↓}(Π,A) for a branch (Π,A), we have that TB ∈

4If B+ ∩ B− 6= ∅, all branches in a subtableau of T ′ obtained by successively cutting on atoms in (B+ ∪ B−) \
((A′)T ∪ (A′)F) and contradicting branches for f l, where l ∈ B, are contradictory. Given that FFB ∈ T , any branch
extending (Π,A′ ∪ {TB}) in a complete tableau of T for Π and A is contradictory too.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Tableau Calculi for Logic Programs under Answer Set Semantics · App–19

D{WFJ[2atom(Π)]}(Π,A), so that A ∪ D{WFN[2atom(Π)]}(Π,A ∪ {FB}) is contradictory (cf. Fig-
ure 1).5 Hence, from Theorem 5.2 and the fact that answer sets of τ [Π] match answer sets
(as introduced in Section 2) of Π (cf. [Lifschitz 2008]), the result follows immediately for
Tnomore++. Moreover, for Tsmodels and Tnomore, using Cut[atom(Π)] and Cut[body(Π)], respectively,
in place of Cut[atom(Π) ∪ body(Π)], it is sufficient to show that the first item of the statement
holds. Regarding Tsmodels, note that, for every B ∈ body(Π), either TB ∈ D{FTB}(Π,A) or
FB ∈ D{FFB}(Π,A) for any non-contradictory assignment A such that atom(Π) ⊆ AT ∪AF ,
so that the first item of the statement holds for Tsmodels. Regarding Tnomore, for every p ∈ atom(Π),
either T p ∈ D{FTA}(Π,A) or F p ∈ D{FFA}(Π,A) for any non-contradictory assignment A such
that body(Π) ⊆ AT ∪AF , so that the first item of the statement holds for Tnomore as well.

Along with Lemma A.2 on different variants of tableau rule WFN, Theorem 3.1 yields Theo-
rem 4.6.

THEOREM 4.6. Let Π be a normal program.
Then, we have that the following holds for tableau calculus Tcomp ∪ {WFN[loop(Π)]}:

(1) Every incomplete tableau for Π and ∅ can be extended to a complete tableau for Π and ∅.
(2) Program Π has an answer set X iff every complete tableau for Π and ∅ has a unique non-

contradictory branch (Π,A) such that AT ∩ atom(Π) = X .
(3) Program Π has no answer set iff every complete tableau for Π and ∅ is a refutation.

PROOF. By Lemma A.2, Tnomore++ and Tcomp ∪ {WFN[loop(Π)]} admit the same non-
contradictory complete branches. Hence, the result follows immediately from Theorem 3.1.

We have thus proven the formal results presented in Section 5, and also demonstrated Theo-
rem 3.1 and 4.6.

A.3 Proofs of Results from Section 6

We below consider minimal refutations of tableau calculi Tnomore, Tsmodels, Tcard , and Tconj for
particular families of logic programs, thus showing exponential separations between Tnomore and
Tsmodels as well as between Tcard and Tconj .

PROPOSITION 6.1. There is an infinite family {Πn} of normal programs such that

(1) the size of minimal refutations of Tnomore for Πn is asymptotically linear in n;
(2) the size of minimal refutations of Tsmodels for Πn is asymptotically exponential in n.

PROOF. Consider the following family {Πn
a ∪Πn

c } of normal programs for n ≥ 1:

Πn
a ∪Πn

c = {x← not x} ∪
⋃

1≤i≤n {x← ai, bi; ai ← not bi; bi ← not ai}

The domain of assignments A is dom(A) = {x, {not x}} ∪
⋃

1≤i≤n{ai, bi, {not ai}, {not bi},
{ai, bi}}, and we investigate minimal refutations of Tnomore and Tsmodels for members of {Πn

a∪Πn
c }.

An optimal strategy to construct a refutation of Tnomore for Πn
a ∪Πn

c (cf. Figure 11) is as follows:

5Every non-contradictory complete branch has exactly one occurrence in any complete tableau of the tableau calcu-
lus containing (a)–(k), Tsmodels, Tnomore, or Tnomore++ for Π and ∅. For the former, this is established by Lemma A.3,
A.4, A.7, A.10, A.12, and A.14 (along with the fact that Cut applications preserve non-contradictory complete
branches). For Tsmodels, Tnomore, and Tnomore++, it follows from the observation that D{(a)–(h),WFN[2atom(Π)]}(Π,A

′) ⊆
D{(a)–(h),WFN[2atom(Π)]}(Π,A) for every assignment A and every A′ ⊆ A.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

App–20 · Martin Gebser and Torsten Schaub

(1) Cut on {not x}, complete the branch for T {not x}, using the deterministic tableau rules
BTB and FTA, and deduce Tx in the branch for F {not x}, using the deterministic tableau
rule BFB.

(2) Complete the branch containing Tx (and F {not x}), but none of T {ai, bi} for 1 ≤ i ≤ n, if
it contains n− 1 entries of the form F {ai, bi}, using the deterministic tableau rules BTA and
BTB. Otherwise, if there are less than n − 1 entries of the form F {ai, bi} in the branch, cut
on some unassigned {ai, bi} for 1 ≤ i ≤ n and complete the branch for T {ai, bi}, using the
deterministic tableau rules BTA and BTB.

In a nutshell, a refutation constructed in this way makes use of immediate contradictions obtained
when assigning any of the bodies {ai, bi} to true, so that each application of Cut[body(Πn

a ∪Πn
c)]

yields one branch that is completed without cutting any further. Hence, such a refutation of Tnomore

for Πn
a ∪Πn

c is of size linear in n.
An optimal strategy to construct a refutation of Tsmodels for Πn

a∪Πn
c (cf. Figure 10) is as follows:

(1) Cut on x, complete the branch for Fx, using the deterministic tableau rules FTB and BFA,
and deduce F {not x} in the branch for Tx, using the deterministic tableau rule FFB.

(2) Complete any of the branches containing Tx (and F {not x}) if the branch contains n − 1
entries of the form F {ai, bi} for 1 ≤ i ≤ n, using the deterministic tableau rules BTA and
BTB. Otherwise, if there are less than n− 1 entries of the form F {ai, bi} in a branch, cut on
some unassigned ai for 1 ≤ i ≤ n and deduce F {ai, bi} in the branch for T ai as well as in
the branch for F ai, using the deterministic tableau rules BTA, BTB, and FFB.

As the second step shows, cuts on atoms ai (or bi) for 1 ≤ i ≤ n yield symmetric alternatives,
since F {ai, bi} is deduced in each of the resulting branches. That is, except for the initial cut
on x, applications of Cut[atom(Πn

a ∪ Πn
c)] do not admit immediate contradictions and must thus

be cascaded to form a perfect binary tree. Hence, a minimal refutation of Tsmodels for Πn
a ∪ Πn

c is
of size exponential in n.

We have thus shown that the asymptotic sizes of minimal refutations of Tnomore and Tsmodels

for Πn
a ∪ Πn

c are O(n) and O(2n), respectively. Hence, Tnomore is not polynomially simulated by
Tsmodels.

PROPOSITION 6.2. There is an infinite family {Πn} of normal programs such that

(1) the size of minimal refutations of Tsmodels for Πn is asymptotically linear in n;
(2) the size of minimal refutations of Tnomore for Πn is asymptotically exponential in n.

PROOF. Consider the following family {Πn
b ∪Πn

c } of normal programs for n ≥ 1:

Πn
b ∪Πn

c = {y ← c1, . . . , cn,not y}
∪
⋃

1≤i≤n {ci ← not ai; ci ← not bi; ai ← not bi; bi ← not ai}

The domain of assignments A is dom(A) = {y, {c1, . . . , cn,not y}} ∪
⋃

1≤i≤n{ai, bi, ci,
{not ai}, {not bi}}, and we investigate minimal refutations of Tsmodels and Tnomore for members
of {Πn

b ∪Πn
c }.

An optimal strategy to construct a refutation of Tsmodels for Πn
b ∪Πn

c (cf. Figure 13) is as follows:

(1) Cut on y, complete the branch for T y, using the deterministic tableau rules BTA and FFB,
and deduce F {c1, . . . , cn,not y} in the branch for F y, using the deterministic tableau rule
BFA.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Tableau Calculi for Logic Programs under Answer Set Semantics · App–21

(2) Complete the branch containing F {c1, . . . , cn,not y} (and F y), but none of F ci for 1 ≤ i ≤
n, if it contains n−1 entries of the form T ci, using the deterministic tableau rules BFB, BFA,
and FFA. Otherwise, if there are less than n− 1 entries of the form T ci in the branch, cut on
some unassigned ci for 1 ≤ i ≤ n and complete the branch for F ci, using the deterministic
tableau rules BFB, BFA, and FFA.

In a nutshell, a refutation constructed in this way makes use of immediate contradictions obtained
when assigning any of the atoms ci to false, so that each application of Cut[atom(Πn

b ∪Πn
c)] yields

one branch that is completed without cutting any further. Hence, such a refutation of Tsmodels for
Πn
b ∪Πn

c is of size linear in n.
An optimal strategy to construct a refutation of Tnomore for Πn

b ∪Πn
c (cf. Figure 12) is as follows:

(1) Cut on {c1, . . . , cn,not y}, complete the branch for T {c1, . . . , cn,not y}, using the deter-
ministic tableau rules FTA and BTB, and deduce F y in the branch for F {c1, . . . , cn,not y},
using the deterministic tableau rule FFA.

(2) Complete any of the branches containing F {c1, . . . , cn,not y} (and F y) if the branch con-
tains n− 1 entries of the form T ci for 1 ≤ i ≤ n, using the deterministic tableau rules BFB,
BFA, and FFA. Otherwise, if there are less than n− 1 entries of the form T ci in a branch, cut
on some unassigned {not ai} for 1 ≤ i ≤ n and deduce T ci in the branch for T {not ai}
as well as in the branch for F {not ai}, using the deterministic tableau rules FTA, BFB, and
BTA.

As the second step shows, cuts on bodies {not ai} (or {not bi}) for 1 ≤ i ≤ n yield symmetric
alternatives, since T ci is deduced in each of the resulting branches. That is, except for the initial
cut on {c1, . . . , cn,not y}, applications of Cut[body(Πn

b ∪ Πn
c)] do not admit immediate contra-

dictions and must thus be cascaded to form a perfect binary tree. Hence, a minimal refutation
of Tnomore for Πn

b ∪Πn
c is of size exponential in n.

We have thus shown that the asymptotic sizes of minimal refutations of Tsmodels and Tnomore

for Πn
b ∪ Πn

c are O(n) and O(2n), respectively. Hence, Tsmodels is not polynomially simulated by
Tnomore.

COROLLARY 6.3. Tableau calculi Tsmodels and Tnomore are efficiency-incomparable.

PROOF. This result follows immediately from Proposition 6.1 and 6.2, since they show that
neither Tnomore is polynomially simulated by Tsmodels, nor vice versa.

COROLLARY 6.4. Tableau calculus Tnomore++ is exponentially stronger than both Tsmodels and
Tnomore.

PROOF. This result follows immediately from Corollary 6.3, since Tnomore and Tsmodels are both
polynomially simulated by Tnomore++ (any tableau of Tnomore or Tsmodels is a tableau of Tnomore++ as
well), while Tnomore and Tsmodels are not polynomially simulated by one another.

PROPOSITION 6.5. Tableau calculus Tcard is exponentially stronger than Tconj .

PROOF. Consider the following family {Πn
c ∪Πn

d} of cardinality programs for n ≥ 1:

Πn
c ∪Πn

d = {z ← 1{a1, b1}2, . . . , 1{an, bn}2,not z} ∪
⋃

1≤i≤n {ai ← not bi; bi ← not ai}

The domain of assignments A is dom(A) = {z, {1{a1, b1}2, . . . , 1{an, bn}2,not z}} ∪
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

App–22 · Martin Gebser and Torsten Schaub⋃
1≤i≤n{ai, bi, 1{ai, bi}2},6 and we investigate minimal refutations of Tcard and Tconj for mem-

bers of {Πn
c ∪Πn

d}.
An optimal strategy to construct a refutation of Tcard for Πn

c ∪Πn
d is as follows:

(1) Cut on z, complete the branch for T z, using the deterministic tableau rules N ↓ and FC↑, and
deduce F {1{a1, b1}2, . . . , 1{an, bn}2,not z} in the branch for F z, using the deterministic
tableau rule I ↓.

(2) Complete the branch containing F {1{a1, b1}2, . . . , 1{an, bn}2,not z} (and F z), but none
of F 1{ai, bi}2 for 1 ≤ i ≤ n, if it contains n− 1 entries of the form T 1{ai, bi}2, using the
deterministic tableau rules TC↓, TLU↓, and I ↓. Otherwise, if there are less than n−1 entries
of the form T 1{ai, bi}2 in the branch, cut on some unassigned 1{ai, bi}2 for 1 ≤ i ≤ n and
complete the branch for F 1{ai, bi}2, using the deterministic tableau rules TLU↓ and I ↓.

In a nutshell, a refutation constructed in this way makes use of immediate contradictions obtained
when assigning any of the cardinality constraints 1{ai, bi}2 to false, so that each application of
Cut[atom(Πn

c ∪ Πn
d) ∪ conj (Πn

c ∪ Πn
d) ∪ card(Πn

c ∪ Πn
d)] yields one branch that is completed

without cutting any further. Hence, such a refutation of Tcard for Πn
c ∪Πn

d is of size linear in n.
An optimal strategy to construct a refutation of Tconj for Πn

c ∪Πn
d is as follows:

(1) Cut on z, complete the branch for T z, using the deterministic tableau rules N ↓ and FC↑, and
deduce F {1{a1, b1}2, . . . , 1{an, bn}2,not z} in the branch for F z, using the deterministic
tableau rule I ↓.

(2) Complete any of the branches containing F {1{a1, b1}2, . . . , 1{an, bn}2,not z} (and F z) if
the branch contains n−1 entries of the form T 1{ai, bi}2, using the deterministic tableau rules
TC↓, TLU↓, and I ↓. Otherwise, if there are less than n− 1 entries of the form T 1{ai, bi}2
in a branch, cut on some unassigned ai for 1 ≤ i ≤ n and deduce T 1{ai, bi}2 in the branch
for T ai as well as in the branch for F ai, using the deterministic tableau rules TLU ↑ and I ↓.

As the second step shows, cuts on atoms ai (or bi) for 1 ≤ i ≤ n yield symmetric alternatives,
since T 1{ai, bi}2 is deduced in each of the resulting branches. That is, except for the initial cut
on z, applications of Cut[atom(Πn

c ∪Πn
d)∪conj (Πn

c ∪Πn
d)] do not admit immediate contradictions

and must thus be cascaded to form a perfect binary tree. Hence, a minimal refutation of Tconj for
Πn
c ∪Πn

d is of size exponential in n.
We have thus shown that the asymptotic sizes of minimal refutations of Tcard and Tconj for

Πn
c ∪Πn

d are O(n) and O(2n), respectively. Since Tconj is polynomially simulated by Tcard , this
yields that Tcard is exponentially stronger than Tconj .

Finally, we case by case show that the application of a tableau rule R↓ can be simulated by
means of Cut and R↑, so that the inclusion or exclusion of R↓ cannot (alone) be responsible for
an exponential separation between tableau calculi.

PROPOSITION 6.6. Let Π be a disjunctive program, T a tableau calculus containing any sub-
set of the tableau rules (a)–(v), and T ′ an approximation of T .

If Cut[Γ] ∈ T ′ such that atom(Π) ∪ conj (Π) ∪ card(Π) ⊆ Γ, then we have that T is polyno-
mially simulated by T ′.

6For convenience, we take not ai and not bi to be atomic literals, rather than elements of a (singleton) conjunction. The
latter would also be possible and, in view of the deterministic tableau rules in Figure 5, not affect proof complexity.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Tableau Calculi for Logic Programs under Answer Set Semantics · App–23

PROOF. Assume that Cut[Γ] ∈ T ′ such that atom(Π) ∪ conj (Π) ∪ card(Π) ⊆ Γ. Then, we
show that deducing an entry ` by a tableau rule R↓ can be simulated by cutting on the variable
of ` and completing the branch for ` by an application of R↑. To demonstrate this, we consider
all tableau rules R↓ and show that A∪D{R↑}(Π,A∪ {`}) is contradictory if ` ∈ D{R↓}(Π,A):

(I ↓) If fβ ∈ D{I↓}(Π,A), we have that fα ∈ A. Since tα ∈ D{I↑}(Π,A ∪ {tβ}), it holds
that A ∪D{I↑}(Π,A ∪ {tβ}) is contradictory.

(N ↓) If ` ∈ D{N↓}(Π,A), we have that ` ∈ {tβ} ∪ minA(α, {p}) ∪ maxA(β, ∅) for some
p ∈ AT ∩ atom(Π) such that supA(Π, {p}, ∅) = {α ← β}. For ` = tβ, we get that (α ←
β) /∈ supA∪{fβ}(Π, {p}, ∅) = {(α′ ← β′) ∈ Π | fβ′ /∈ A ∪ {fβ},←−supA∪{fβ}(α′, {p}),
−→supA∪{fβ}(β′, ∅)}. For ` ∈ minA(α, {p}) or ` ∈ maxA(β, ∅), Lemma A.10 yields that
←−supA∪{`}(α, {p}) or −→supA∪{`}(β, ∅), respectively, does not hold, which as with ` = tβ im-
plies that (α ← β) /∈ supA∪{`}(Π, {p}, ∅). By Lemma A.11, we further conclude that
supA∪{`}(Π, {p}, ∅) ⊆ supA(Π, {p}, ∅) \ {α ← β} = ∅. That is, F p ∈ D{N↑}(Π,A ∪ {`})
for some p ∈ AT ∩ atom(Π), so that A ∪D{N↑}(Π,A ∪ {`}) is contradictory.

(U ↓) If ` ∈ D{U↓}(Π,A), we have that ` ∈ {tβ} ∪ minA(α, S) ∪ maxA(β, S) for some
S ⊆ atom(Π) such that AT ∩ S 6= ∅ and supA(Π, S, S) = {α ← β}. For ` = tβ,
we get that (α ← β) /∈ supA∪{fβ}(Π, S, S) = {(α′ ← β′) ∈ Π | fβ′ /∈ A ∪ {fβ},
←−supA∪{fβ}(α′, S),−→supA∪{fβ}(β′, S)}. For ` ∈ minA(α, S) or ` ∈ maxA(β, S), Lemma A.10
yields that ←−supA∪{`}(α, S) or −→supA∪{`}(β, S), respectively, does not hold, which as with
` = tβ implies that (α ← β) /∈ supA∪{`}(Π, S, S). By Lemma A.11, we further conclude
that supA∪{`}(Π, S, S) ⊆ supA(Π, S, S) \ {α ← β} = ∅. That is, F p ∈ D{U↑}(Π,A ∪ {`})
for some p ∈ AT ∩ atom(Π), so that A ∪D{U↑}(Π,A ∪ {`}) is contradictory.

(TC↓) If f li ∈ D{TC↓}(Π,A), we have that {FC, tl1, . . . , tli−1, tli+1, . . . , tln} ⊆ A for C =
{l1, . . . , li−1, li, li+1, . . . , ln} ∈ conj (Π). Since TC ∈ D{TC↑}(Π,A ∪ {tli}), it holds that
A ∪D{TC↑}(Π,A ∪ {tli}) is contradictory.

(FC↓) If tli ∈ D{FC↓}(Π,A), we have that TC ∈ A for C = {l1, . . . , li, . . . , ln} ∈ conj (Π).
Since FC ∈ D{FC↑}(Π,A∪{f li}), it holds that A∪D{FC↑}(Π,A∪{f li}) is contradictory.

(TLU↓) If f lj ∈ D{TLU↓}(Π,A), we have that {FB, tl1, . . . , tlj−1,f lk+1, . . . ,f ln} ⊆ A for
B = j{l1, . . . , lj , . . . , lk+1, . . . , ln}k ∈ card(Π). Since TB ∈ D{TLU↑}(Π,A ∪ {tlj}), it
holds that A ∪D{TLU↑}(Π,A ∪ {tlj}) is contradictory.

(TLU ↓) If tlk+1 ∈ D{TLU↓}(Π,A), we have that {FB, tl1, . . . , tlj ,f lk+2, . . . ,f ln} ⊆ A for
B = j{l1, . . . , lj , . . . , lk+1, . . . , ln}k ∈ card(Π). Since TB ∈ D{TLU↑}(Π,A ∪ {f lk+1}), it
holds that A ∪D{TLU↑}(Π,A ∪ {f lk+1}) is contradictory.

(FL↓) If tlj ∈ D{FL↓}(Π,A), we have that {TB,f lj+1, . . . ,f ln} ⊆ A for B =
j{l1, . . . , lj , . . . , ln}k ∈ card(Π). Since FB ∈ D{FL↑}(Π,A ∪ {f lj}), it holds that
A ∪D{FL↑}(Π,A ∪ {f lj}) is contradictory.

(FU ↓) If f lk+1 ∈ D{FU↓}(Π,A), we have that {TB, tl1, . . . , tlk} ⊆ A for B =
j{l1, . . . , lk+1, . . . , ln}k ∈ card(Π). Since FB ∈ D{FU↑}(Π,A ∪ {tlk+1}), it holds that
A ∪D{FU↑}(Π,A ∪ {tlk+1}) is contradictory.

(TD↓) If f li ∈ D{TD↓}(Π,A), we have that FD ∈ A for D = {l1; . . . ; li; . . . ; ln} ∈ disj (Π).
Since TD ∈ D{TD↑}(Π,A∪{tli}), it holds that A∪D{TD↑}(Π,A∪{tli}) is contradictory.

(FD↓) If tli ∈ D{FD↓}(Π,A), we have that {TD,f l1, . . . ,f li−1,f li+1, . . . ,f ln} ⊆ A for
D = {l1; . . . ; li−1; li; li+1; . . . ; ln} ∈ disj (Π). Since FD ∈ D{FD↑}(Π,A ∪ {f li}), it holds
that A ∪D{FD↑}(Π,A ∪ {f li}) is contradictory.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

App–24 · Martin Gebser and Torsten Schaub

We have thus shown that deducing ` by a tableau rule R↓ can be simulated by means of applying
Cut and R↑. As each such simulation introduces only two additional entries, ` and the complement
of some entry belonging to the branch at hand, every tableau of T can be transformed into a tableau
of T ′ having approximately similar size, provided that the Cut applications needed for simulations
are admitted by T ′. In fact, the variable of an entry deducible by a tableau rule R↓ cannot be a
disjunction, so that all simulations are possible if Cut[Γ] ∈ T ′ such that atom(Π) ∪ conj (Π) ∪
card(Π) ⊆ Γ.

We have thus proven the formal results presented in Section 6.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

