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We present proofs of results by sections. Proofs of Theorem 3.1 from Section 3 and Theorem 4.6
from Section 4 are postponed to Appendix A.2, where they can be derived as consequences of
more general results.

A.1  Proofs of Results from Section 4

To begin with, we show Proposition 4.1 and 4.2 on correspondences between tableau rules and
logic programming operators as well as smodels’ propagation.

PROPOSITION 4.1. Let I1 be a normal program and A an assignment.
Then, we have that

(1) Tr(A) = (Dgpray (1L, Dyprpy (IL, A))) i

(2) Nn(A) = (Dyrmy (HaD{FFB}(HvA)))F;

(3) Un (A) = (D{WFN[2"""""<H)]}(H7 D{FFB} (Ha A)))F
PROOF. We separately consider the items of the statement:

(1) We have that p € Ty (A) iff p = head(r) for some r € II such that body(r)" C AT and
body(r)” C AF iff p = head(r) for some r € II such that Tbody(r) € Dyprpy (11, A), so

T
thatp S (D{FTA} (H, D{FTB} (H, A))) .
(2) We have that p € Npp(A) iff p € atom(II) such that head(r) # p or (body(r)* N AF) U
(body(r)” N AT) # () for every r € ITiff p € atom(II) such that FB € D pppy (11, A) for
F
every B € body(p), so that p € (Dyppay(IL, Drppy (I, A))) ™.
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(3) We have that p € U (A) iff p € U for some U C atom(II) such that (B* N AF) U
(B~ NAT) +£ () forevery B € EB(U) iff p € U for some U C atom(I1) such that FB €

F
Dypppy (11, A) for every B € EBp(U), so that p € (D{WFN[gmm(n)]}(H, Diprgy(IL A))) ™
‘We have thus shown that all items of the statement hold. [J

PROPOSITION 4.2. Let I1 be a normal program and A an assignment.
Then, we have that

(1) Dipry(, A) = Dyippay (1L, Diprpy (I, A));
(2) Dyarcy(IL, A) = Dyppay (1L, Dypppy (11, A));
(3) Dycruy(I, A) = Dyprpy(I1, Dypray (IL, Dypppy (I, A) U{Tp | p € AT N atom(I1)}));
4 Dicruy(I, A) = Dypppy (IL, Digpay (1L, A)U{Tp | p € AT Natom(T)} U{Fp | p € AFN
atom(11)});
(5) Diamy (I, A) = D ypyjgaromanyy (IL, Dyprpy (11, A)).
PROOF. We separately consider the items of the statement:

(1) We have that T'p € Dy (11, A) iff p = head(r) for some r € II such that body(r)™ C AT
and body(r)” C AF iff p = head(r) for some r € II such that T'body(r) € Drrpy (11, A),
SO that Tp € D{FTA}(H, D{FTB} (H, A))

(2) We have that Fp € Dyagcy (I, A) iff p € atom(IT) such that (B* NAF)U (B~ NAT) #£0
for every B € body(p) iff p € atom(II) such that FB € Dyppgy (11, A) for every B ¢
body(p), so that F'p € Dyppay(I1, Dyppgy (11, A)).

(3) Wehavethattl € Dicpyy (I A) iff p € ATNatom (1) and | € body(r) for some r € I such
that (BYNAF)U(B~NAT) #£ ( forevery B € body(p)\ {body(r)} iff p € AT Natom(IT)
and I € body(r) for some r € II such that {FB | B € body(p) \ {body(r)}} C
Dypppy (I, A), so that T'body(r) € Dygray (I1, Dpppy (I A)U{Tp | p € ATnatom(10)})
and {tl | | € body(r)} < Dypry(IL, Dipray(IL, Dypppy(ILA) U {Tp | p € AT N
atom(I)})).

(4) We have that fI € Dcppy (I, A) iff [ € body(r) for some r € II such that Fhead(r) € A
and tI' € A for every I € body(r) \ {l} iff Fbody(r) € Digmy(II, A) and {tI" | I' €
body(r)\ {I}} C{Tp|p € AT Nnatom(I)} U{Fp | p € AF Natom(I1)} for some r € II
and ! € body(r), so that fI € Dyprgy (I, Digpay (IL, A)U{Tp | p € ATNatom(I1)} U{Fp |
p € AF natom(1D)}).

(5) We have that Fp € D (IL A) iff p € U for some U C atom(II) such that (B* N AF) U
(B~ NAT) # () for every B € EBy(U) iff p € U for some U C atom(I1) such that FB €
D rrpy (11, A) for every B € EBn(U), so that F'p € D ypyppeonm)y (1L, Dypppy (I1, A)).

‘We have thus shown that all items of the statement hold. [J

In view of Proposition 4.2, we derive the following relationship between tableau calculi using
the deterministic tableau rules in Figure 1 or 3, respectively.

COROLLARY 4.3. Let Il be a normal program and A an assignment.

Then, we have that DYy src cra,crmamy (II,A) C D5 (II,A).

PROOF. This result follows immediately from Proposition 4.2, since any entry deducible by
some of the tableau rules in {FI,ARC,CTH, CFH,AM} can likewise be deduced by iterated ap-
plications of the tableau rules (a)—(h) and WFN|[2 ‘”"m(n)] in Figure 1, which are the deterministic
tableau rules contained in Tyodes. [

smodels
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Next, we show the one-to-one correspondence between models of Comp(II) and non-
contradictory complete branches in tableaux of T.o,p, stated in Theorem 4.4. To this end, we
first provide Lemma A.1, linking models of Comp(II) to non-contradictory complete branches.

LEMMA A.l. Let II be a normal program and X C atom(II) U body (II).

Then, we have that (X N atom(11)) U {pg | B € X N body(I1)} is a model of Comp(II) iff
Dyapmpy(IL,A) C{Tv | v € X}U{Fv | v € (atom(IT) U body(IT)) \ X'} for every assignment
AC{Tv|ve X}U{Fuv|v e (atom(Il) U body(I1)) \ X }.

PROOF. Let M = (X Natom(II)) U {pp | B € X Nbody(Il)} and A’ = {Tv |v € X} U
{Fv | v € (atom(II) U body(IT)) \ X} in the following consideration of the implications of the
statement.

(=) Assume that A C A’ but Dyy) ) (I, A) € A’. Then, some of the following cases
applies:

(1) If Dy prsy(I1, A) € A’, for some B = {p1, ..., pm, n0t pry1,...,not py} € body(Il),
we have that {FB,Tp1,...,Tpm, Foms1,-..,Fpn} C A’, so that pg ¢ M and
{pla s Pmoy Pm41y - - - 7pn} nM = {pla s 7pm} Since Comp(H) includes (PB x4
(PL A AP A—Pmg1 A A ﬁpn)), this shows that M is not a model of Comp(II).

(2) If Dipppprey (I, A) £ A, for some B € body(IT) and | € B, we have that {T'B, fi} C A’,
sothatpp € M and BY ¢ M or B-NM # (). Since Comp(II) includes (pp +> (Apep+PN
/\qu,ﬁq)), this shows that M is not a model of Comp(II).

(3) If Diprapmy(II,A) € A’, for some p € atom(Il) and B € body(p), we have that
{Fp,TB} C A’, sothat p ¢ M and pg € M. Since Comp(Il) includes (p >
(\/Bebody(p)pB))’ this shows that M is not a model of Comp(II).

@ If Dipppray(IL, A) € A/, for some p € atom(II) and body(p) = {B1, ..., B}, we have
that {Tp, FBy,...,FB,,} C A/, sothatp € M and {pp,,...,pB,, } N M = (. Since
Comp(II) includes (p <> (pp, V- --Vpg,,)), this shows that M is not a model of Comp(II).

In each of the above cases, M is not a model of Comp(II), which in turn shows that, if M is a
model of Comp(II), then Dy (4, (11, A) € A’ for every assignment A C A,
(<) Assume that M is not a model of Comp(II). Then, some of the following cases applies:

() If pp ¢ M and {p1,..-,Pm,Pm+1,---,0Pn} N M = {p1,...,pm} for some
B = {p1,...,pm,not pmi1,...,n0t pp} € body(Il), we have that {Tpy,...,Tpp,
Fppy1,...,Fp,} € A/, sothat TB € Dyprp (I, A’). Since TB ¢ A’, this shows
that D{(a)—(h)} (H7 A.I) g A

2 If pp € M and {p1,.-.,PmsPmt1,-+-s0n} N M # {p1,...,pm} for some
B = {p1,...,Dm, 10t Pmi1,...,n0t pp} € body(Il), we have that {Fpi,..., Fpy,,
Tpm+1,---, Tpn} NA" # 0, so that FB € Dyppp(II, A’). Since FB ¢ A’, this shows
that D{(a)—(h)} (1_[7 A/) g A/.

(3) Ifp ¢ M and pp € M for some p € atom(II) and B € body(p), we have that TB € A/, so
that Tp € Dyppay(I1, A’). Since T'p ¢ A’, this shows that Dy, )y (I1, A’) € A’

4) If p € M and {pp,,...,p5,,} N M = 0 for some p € atom(Il) and body(p) =
{Bi,...,Bn}, we have that {F'B1,..., FB,,} C A’, sothat Fp € D (II, A’). Since
Fp ¢ A’, this shows that Dy, 5,y (IT, A') A’

In each of the above cases, Dy(,)-n); (II, A’) € A’, which in turn shows that, if Dy, (IT, A) C
A’ for every assignment A C A’, then M is a model of Comp(II). O
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THEOREM 4.4. Let Il be a normal program.
Then, we have that the following holds for tableau calculus Tcomyp:

(1) Every incomplete tableau for I1 and () can be extended to a complete tableau for 1 and ().

(2) Comp(Il) has a model X iff every complete tableau for 11 and § has a unique non-
contradictory branch (IL, A) such that (AT N atom(I1))U{pp | B € AT Nbody(I1)} = X.

(3) Comp(I1) has no model iff every complete tableau for 11 and ) is a refutation.
PROOF. We separately consider the items of the statement:

(1) By applying Cut[atom(IT) U body(II)], an incomplete branch in a tableau for I and ) can be
extended to a subtableau such that, for every branch (II, A) in it, we have that atom(II) U
body(IT) € AT U AF. Furthermore, if (II, A) is not complete, then Dy, mn (I, A) € A,
so that the application of some of the tableau rules (a)—(h) in T.om, yields a contradictory
and thus complete branch.

(2) (=) Assume that X C atom(II) U {pp | B € body(II)} is a model of Comp(II), and
consider the following assignment:

A ={Tp|pe Xnatom(I)} U{Fp|p € atom(I]) \ X}
U {TB | B € body(Il),pp € X} U{FB | B € body(I1),pp ¢ X}

Then, by Lemma A.1, D))y (I, A’) C A for every assignment A’ C A. Since either
A’U{Tv} C Aor A’ U{Fv} C A for any application of Cut[atom(II) U body(II)] on a
branch (II, A’) such that A’ C A, we have that the assignment in exactly one of the resulting
branches is contained in A. Along with ) C A, it follows that every complete tableau for II
and () has a unique non-contradictory branch (IT, A) such that (AT N atom(I1)) U{pp | B €
AT N body(I)} = X.

(<) Assume that (IT, A) is a non-contradictory complete branch, that is, AT U AF =
atom(II) U body(IT) and Dy (II,A) € A. Then, by Lemma A.1 (along with the
fact that Dy (I1, A') C D{%a),(h)}(l'[, A) for every A’ C A), we have that X =
(AT N atom(I1)) U {pp | B € AT N body(I1)} is a model of Comp(IT).

(3) From the second item, if Comp(II) has a model, then every complete tableau for IT and 1]
has a non-contradictory branch; by the first item, there is some complete tableau for IT and 0,
so that some complete tableau for IT and () is not a refutation. Conversely, if some complete
tableau for IT and {) is not a refutation, it has a non-contradictory branch (II, A), and (AT N
atom(I)) U {pp | B € AT N body(T1)} is a model of Comp(II), as shown in the proof of
the second item.

‘We have thus shown that all items of the statement hold. [

For proving Proposition 4.5, stating that tableau rule WFN [2‘”"’”(“)] is as powerful as the
iterated application of more restrictive tableau rules FFA and WFN[loop(IT)] (along with FFB),
we first show as an auxiliary result that WFN{[loop(II)] is applicable wrt a fixpoint of FFB and
FFA if WFN[2etem(ID] jg,

LEMMA A.2. Let 1l be a normal program and A an assignment.

Then, we have that D{FFB’WFN[QMUM(H)]}(H, A) CA iﬁCD{FFB,FFA,WFN[loop(H)}}(H7 A) CA.

PROOF. (:>) Assume that D{FFB,FFA,WFN[loop(H)]}(H; A) g A. Then, D{FFB} (H, A) g A
or D{FFA,WFN[loop(H)]}(Hv A) g A. If -D{FFB} (H, A) Z A, it is clear that
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D{FFB,WFN[QWMH)]}(H,A) Z A. Otherwise, if Drp wrnioop(m))y (II, A) € A, there is some
p € atom(Il) \ AF such that EB({p}) C body(p) C AF orp € U for an U € loop(II)
satisfying EB(U) € AF. Given that {{p} | p € atom(II)} U loop(IT) C 22t™ID we con-
clude that there is some p € atom(IT) \ A¥ such that Fp € D ypygaonayy (IT, A), so that
D{FFB,WFN[zawm(H)]}(HvA) ZA.

(<) Assume that Dyppg wenppaommyy(ILA) € Ao Then, Dyprpy(ILA) € A
or D{WFN[2a,f,nm,(H)]}(H7A) g A. If D{FFB} (H,A) g A, it is clear that
D rrp pea,weNioopm)y (II, A) € A Otherwise, if D{WFN[Qamm(n)]}(H,A) Z A, there is some
U C atom(II) such that U € AF and EB(U) C AF. Since D rrp rea,weniioopm)y (11, A) €
A if Dippprmy(ILLA) € A, assume that Dypppppy(IILA) € A.  Then, for every
B € EBp(U \ AF)\ EBp(U), the fact that BT N (U N AF) # ) implies B € AF.
Along with EB(U) C AF, we conclude that EBy (U \ AF) C AF. Moreover, since U \ AF
is finite, there is some strongly connected component of the subgraph of the dependency graph
of I induced by U \ AF, given by (U \ AF {(head(r),p) | r € W, head(r) € U\ AF,
p € body(r)" N (U \ AF)}), such that its vertices L do not reach atoms in (U \ AF)\ L.2 The
latter means that BT N ((U \ AF)\ L) = 0 holds for every p € L and B € body(p), so that
EBn(L) C EBu(U \ AF) C AF. Since LN AF =0, forevery p € L, Dipay(ILA) C A
implies body(p) Z AF, while EB(L) C AT yields body(p) N EBr1(L) C AF; that is, there is
some B € body(p) \ AF,and B* N L # ) holds for each B € body(p) \ AF. Along with the fact
that U \ A¥ is non-empty, we conclude that the strongly connected component of L (contained
in the subgraph of the dependency graph of II induced by U \ A¥) includes some edge, so that
L € loop(IT). We have thus shown that EBy;(L) C AT holds for some L € loop(II) such that

Lg AF 50 that D{WFN[loop(H)]}(Hv A)C D{FFB,FFA7WFN[loop(H)}}(H7 A)ZA. O

PROPOSITION 4.5. Let I1 be a normal program and A an assignment.

Then, we have that DIFFB,WFN[Q'”OW(H)]} (I, A) = DfFFB,FFA’WFN[ZOOP(H)]}(H, A).

PROOF. By Lemma A.2, we have that DjEFFB WFN[2G*°W(H>]}(H’A) is closed un-
der {FFB, FFA,WFNl[loop(Il)]} and that D{upp s wenjioop(my (1 A) is  closed  un-
der {FFB,WFN[2¢™(D]}l~ Along with the fact that DfFFB WFN[2awm<H>]}(H’A) and
D3 rrp pra,wingioop(myy (1L A) are the unique smallest branches that extend (II, A) and

are closed under {FFB, WFN[2¢*°(ID]} or {FFB,FFA, WFN[loop(I1)]}, respectively,

we conclude that DEFFB’FFAWFNUOOP(H)]}(H,A) C DzFFB,WFN[Qawm(H)]}(H’A) and that
D?FFB,WFN[Q“‘W"'(H)]}(H’A) < DEFF&FFAWFN[ZOO;)(H)]}(H’A)' O

We have thus proven the formal results presented in Section 4, except for Theorem 4.6, whose
proof is provided at the end of Appendix A.2.

A.2 Proofs of Results from Section 5

For proving the soundness and completeness of our generic tableau method relative to the lan-
guage constructs considered in Section 5, we first provide some lemmas in Appendix A.2.1
and A.2.2. After demonstrating the main soundness and completeness result in Appendix A.2.3,
the correspondences shown in Appendix A.2.4 between generic tableau rules and the basic ones

2Note that the “condensation” of (U \ AF, {(head(r),p) | r € I, head(r) € U\ AT ,p € body(r)T N (U\ AF)}),
obtained by contracting each strongly connected component to a single vertex, is a directed acyclic graph (cf. [Purdom
1970]).

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



App—6 . Martin Gebser and Torsten Schaub

for normal programs, as introduced in Section 3, allow us to derive Theorem 3.1 and 4.6 as con-
sequences of more general results.

A.2.1 Lemmas on Soundness. The first two lemmas provide properties of non-contradictory
complete branches that hold in view of the generic tableau rules in Figure 4.

LEMMA A.3. LetII be a disjunctive program and T a tableau calculus such that {I1,11} N
T 0.

Then, for every non-contradictory complete branch (I1, A) and every (o < () € II, we have
thattB ¢ A or fa & A.

PROOF. Consider any (e <— ) € II and any branch (II, A) such that t3 € A and fo € A.
Then, we have that ta € Dy (I1, A) and f3 € Dy (IL A). Since {I1,11} N'T # 0, this
shows that (I, A) cannot be (extended to) a non-contradictory complete branch. [J

LEMMA A.4. Let Il be a disjunctive program and T a tableau calculus such that U1 € T.

Then, for every non-contradictory complete branch (11, A) and every S C atom(II), we have
that supa (11, S,S) # D or AT NS = .

PROOF. Consider any S C atom(II) and any branch (II, A) such that sup, (II, S, S) = () and
AT NS # 0. Then, there is some p € AT N S such that Fp € Dyy4y(I1, A). Since Ut € T,
this shows that (II, A) cannot be (extended to) a non-contradictory complete branch. []

For non-contradictory complete branches (II, A), the next lemmas show that the truth value
of a variable v € atom(II) U cong(IT) U card(IT) U disj(IT) matches the valuation of 7[v] wrt
AT N atom(II), provided the inclusion of appropriate tableau rules, presented in Figure 5, 7,
and 8, respectively, in a calculus.

LEMMA A.5. Let 1l be a disjunctive program and A a total assignment.
Then, for every p € atom(II), we have that
(1) tp € Aiff AT N atom(IN) = 7[p);
(2) tnotp € Aiff AT N atom(I1) |= 7[not pl;
3) fp e Aiff AT N atom(I) ¥ 7[p);
@ fnotpe Aiff AT N atom(I1) & 7[not pl.
PROOF. We have that 7[p] = p and 7[not p| = —7[p] = —p, and the following holds:
(1) tp e Aiff Tp € Aiff p € AT N atom(IN) iff AT N atom(I1) = p;
(2) tnotp e Aiff Fp e Aiffp ¢ AT N atom(IT) iff AT N atom(I1) | —p;
(3) fpe Aiff Fpc Aiffp ¢ AT N atom(IN) iff AT N atom (I1) & p;
4) fnotpe Aiff Tp € Aiffp e AT N atom(I1) iff AT N atom(I1) = —p.
We have thus shown that all items of the statement hold. [
LEMMA A.6. Let I1 be a disjunctive program and T a tableau calculus such that
{TLU*, FLt, FU1t} C T.

Then, for every non-contradictory complete branch (I1, A) and every v € card(Il), we have
that Tv € A iff AT N atom(I) = 7[v].

PROOF. Consider any v = j{l1,...,l,}k € card(II) and any non-contradictory complete
branch (II, A). For every I € {l1,...,l,}, we have that | € atom(II) or I = not p for some
p € atom(Il). By Lemma A.5, tl € A iff AT N atom(Il) = 7[l], and fl € A iff AT N
atom(IT) B~ 7[l]. We further consider the cases that Tv € A and Fv € A, respectively:
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(1) If Tv € A, then Fv ¢ D{FLT,FUT}(HvA)~ That is, {l € {117. .. ,ln} | fl e A}| <n-—j
and |{l € {l1,...,1,} | tl € A}| < k. Inview of |{I € {l1,..., 1.} | tl € A} +|{l €
{l, ...l | fle A =n, |{l € {ls,....In} | fle A} < n—jyieldsj < |{l €
{li,...,ln} | tL € A}|. We have thus shown that j < [{l € {l1,...,l,} | tl € A}| < k.
Hence, forany L C {ly,...,l,} such that |L| < j, it holds that {{ € {l1,...,l,}\ L |t €
A} # (), sothat AT Natom(IT) |= (Vieq,....,n27[l])- Moreover, forany L C {l1, ..., 1}
such that k < |L|, itholds that {l € L | fl € A} # 0, so that AT N atom(II) & (A, 7[1).
Combining the cases for |L| < j and k < |L| yields that

..........

(2) If Fv € A, then Tv ¢ D{TLUT}(I_LA) That iS, |{l S {ll,...,ln} | tl € A}‘ < j or
Hle{ly,....ln} | fle A} <n—k. Inviewof [{l € {I1,...,l,} | tl € A} + |{l €
{li,...; | fle A} =n, {l € {l1,.... 1} | fl€e A} < n—kyieldsk < [{l €
{li,...,ln} | tl € A}|. For L' = {l € {l1,...,1,} | t| € A}, we have thus shown that
IL'| < jork < |L'|. Since AT N atom(IT) ¥ ((A;er 7H]) — Vieq, '___’ln}\L,T[l])), we
conclude that

AT atom(II) [~ /\Lg{ll,...,ln},|L\<j or k<|L| ((/\leLTm) - (\/le{h,.-.,ln}\LT[lm'

We have thus shown that Tv € A and Fv € A imply AT N atom(I) = 7[v] and AT N
atom(I1) b~ T[v], respectively. That is, Tv € A iff AT N atom(I1) |= r[v]. O

LEMMA A.7. Let II be a disjunctive program and T a tableau calculus such that
{TCt,FCt}y C T.

If card(Il) = @ or {TLUY, FL1, FUT} C T, then for every non-contradictory complete
branch (I1, A) and every v € conj(Il), we have that Tv € A iff AT N atom(Il) |= 7[v).

PROOF. Considerany v = {ly,...,l,} € conj(II) and any non-contradictory complete branch
(I1, A), and assume that card(I1) = § or { TLU*, FLT, FUt} C T. Forevery | € {l1,...,l,},
we have that | € atom(IT) U card(II) or [ = not w and 7[I] = —7[x] for some 7 € atom(II) U
card(IT). By Lemma A.5 and A.6, t/ € A iff AT N atom(Il) = 7[l], and fl € A iff AT N
atom (1) = 7[l]. We further consider the cases that Tv € A and F'v € A, respectively:

(1) If Tv € A, then Fv ¢ Dipoyy(ILA). Thatis, {I € {Iy,...,l,} | fl € A} = 0 and
{tef{ly,....l,} | tle A} ={l1,...,1,},sothat AT N atom(IT) |= (T[l1] A -+ A T[L])-

(2 If Fv € A, thenTv ¢ Dypopy (I, A). Thatis, {l € {l1,..., I} |[tl € A} # {l1,..., I}
and {l € {ly,...,l,} | Fl € A} # 0, so that AT N atom(ID) & (T[] A -+ A T[1n])-

We have thus shown that Tv € A and Fv € A imply AT N atom(I) = 7[v] and AT N
atom(II) }£ T[v], respectively. That is, Tv € A iff AT N atom(I1) |= 7[v]. O

LEMMA A.8. Let Il be a disjunctive program and T a tableau calculus such that
{TDt,FDt} C T.

Then, for every non-contradictory complete branch (I, A) and every v € disj(II), we have
that Tv € A iff AT N atom(I) = 7[v].

PROOF. Consider any v = {l1;...;l,} € disj(II) and any non-contradictory complete branch
(I, A). Foreveryl € {ly,...,l,}, we have that | € atom(II) or I = not p for some p €
atom(II). By Lemma A 5, tl € A iff AT N atom(I1) |= 7[l], and £l € A iff AT N atom(I) =
7[l]. We further consider the cases that Tv € A and F'v € A, respectively:
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(1) f Tv € A, then Fv ¢ Dyppyy(I1, A). Thatis, {l € {l1,...,ln} | fl€ A} # {l1,...,ln}
and {l € {l1,...,l,} |t € A} # 0, so that AT N atom(I1) |= (T[l1] V - - - V 7[ln]).

() If Fv € A, then Tv ¢ Dyppyy(II, A). Thatis, {l € {l;,...,l,} | 1 € A} = 0 and
{tef{ly,....LL,}y | fle Ay ={ly,...,1,}, so that AT N atom(I1) W& (T[l1] V -+ - V 7[ln]).

We have thus shown that Tv € A and Fv € A imply AT N atom(I) = 7[v] and AT N
atom(I1) b~ T[v], respectively. Thatis, Tv € A iff AT N atom(I1) |= r[v]. O

A.2.2 Lemmas on Completeness. In order to abstract from the language constructs admitted
in a program, the following definition formulates conditions under which we call Wp, M, min,
and maz, respectively, well-behaved. We then proceed by showing that these four concepts are
well-behaved for disjunctive programs.

DEFINITION A.9. Let « be a literal.

Then, we define Wp, @, min, and max, respectively, as well-behaved for o if, for every
S C P and every assignment A, we have that
@)} szpA(a, S) holds, then WpA/ (a, S) holds for every A’ C A;
(2) if supa(a, S) holds, then supa:(a, S') holds for every A’ C A and every S’ C S;
3) ift € mina(w, S), then WAU{Z}(a, S) does not hold;
4) ift € maza(a,S), then mAU{Z} (o, S) does not hold.

LEMMA A.10. Let « be a disjunctive literal and 8 a cardinality literal or a possibly negated
conjunction of cardinality literals.

Then, we have that Wp and min are well-behaved for o and that ﬁ and max are well-
behaved for (.

PROOF. Let S C P and A an arbitrary assignment.
We first consider the possible cases such that WpA(a, S) holds:

(1) Ifa € S, we have that $up (v, S) holds for all assignments A’'.

2) fa = j{li,...,l,}k € card(P), then {l1,...,1,} NS # Dand |{l € {l1,...,l,} \ S|
tl € A}| < k. Since forall A’ C A, we have that [{l € {l1,...,l[,}\S|tle A’} <[{l e
{li,...,1,}\ S| tl € A}| < k, we conclude that $upa- (e, S) holds.

3) fa={l;...;l,} € disj(P), then {l1,...,0l,} NS #Pand {l € {l1,..., I} \ S|t
A} = 0. Since for all A’ C A, we have that {l € {l1,...,l,}\ S| tl € A’} C {

{li,...,1,}\ S| tl € A} = ), we conclude that $upa/(cv, S) holds.
We next consider the possible cases such that ¢ € mina («, S):

() Ifa = g{li,...,ln}k € card(P) and £ € mina(a,S) = {fl | I € {l1,...,ln}\ S,
tl ¢ A}, then |{l € {l1,...,l,}\ S| tl € A}| =k — 1. Thatis, ¢ = tl ¢ A for some
Le{ly,...,l,}\S,sothat |{l € {l1,...,l,}\S |tle AU{t}} = |{l € {ls,...,l.}\ 5|
tl € A}| + 1 = k, which means that %AU{Z} (a, S) does not hold.

Q) Ifa={l1;...;l,} € disj(P)and ¢ € mina(a,S) = {fl |l € {l1,...,l,}\S}, then? = I
for some [ € {l1,...,1,} \ S. We conclude that {I € {l1,...,l,}\ S |tl € AU{l}} #0,
which means that prAU (7 (@, S) does not hold.

We now come to the possible cases such that supa (3, S) holds:
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(1) If 8 = not v, where v € P U card(P) U conj(P), we have that supa (3, ") holds for every
assignment A’ and every S’ C P.

(2) If 3 € P\ S, then 3 € P\ S forevery S’ C S, so that supas (8, S’) holds for every
assignment A’ and every S’ C S.

3) If8 = j{la,...,ln}tk € card(P), then |{l € {l1,...,l,}\ S| fl ¢ A}| > j. Since for
every A’ C A andevery S’ C S, wehavethat [{l € {l1,...,l,}\ S | fFI¢ A'}| > [{l €
{li,...,1,}\ S| fl ¢ A}| > j, we conclude that supa (3, 5") holds.

@) 18 = {l1,...,l,} € conj(P), then supa(l,S) holds for every | € {l4,...,l,}. Fur-
thermore, since one of the first three cases applies to each [ € {l1,...,l,}, we have that
supa(1,5") holds for every A’ C A and every S’ C S, so that supa- (8, S') holds as well.

Finally, we consider the possible cases such that ¢ € maza (8, S):

() I3 =j{li,...,ln}tk € card(P) and £ € maza (B,S) = {tl |1 € {l1,...,I.}\S, fl & A},
then |{l € {l1,...,l,}\S | fl ¢ A}| = j. Thatis,{ = fl ¢ Aforsomel € {l1,...,I,}\S5,
sothat|[{l € {l1,.... I, \S | fFl ¢ AU{}} ={l € {ls,.. ., l,}\S | fl ¢ A}|-1=j—1,
which means that WAU @ (8, S) does not hold.

@ It B = {l,...,ln} € conj(P) and £ € maza(B,5) = Ueq,,. 1,ymaza(l,S), then
¢ € maza(l,S) forsomel € {l1,...,l,} N card(P). That is, the previous case applies to [,
so that wAU{Z}(Z’ S) and WAU{Z} (8, S) do not hold.

We have thus, for S C P and an arbitrary assignment A, considered all possible cases and shown
that Wp and min are well-behaved for o and that % and max are well-behaved for 5. O

The concept of well-behavedness allows us to identify the property that sup, (IT, S, T') is anti-
monotone wrt both A and 7'.

LEMMA A.11. Let Il be a disjunctive program, S C P, T C P, and A an assignment.

If $up and sup are well-behaved for all literals in {a | (o < ) € MY and {8 | (a + B) € 11},
respectively, then we have that sups (11, S, T) C supa, (I, S, T") for every A’ C A and every
T CT.

PROOF. Assume that §up and sup are well-behaved for all literals in {« | (o + ) € II}
and {# | (o « pB) € II}, respectively, and consider any (o < ) € supp (I, S,T) =
{(a < B) e T | f8 ¢ A, bupa(a,S),5upa(B,T)}. In view of Definition A.9, for ev-
ery A’ C A and every T" C T, we have that Supa (v, S) and supa (8, T) imply $upa:(c, S)
and supas (8, T"), respectively, and f3 ¢ A’ follows immediately from f3 ¢ A. From this,
we conclude that (o <+ ) € supy, (II,S,T") = {(aw < B) € I | fB ¢ A’ Sup (e, S),
swar(8,T)}. O

We are now ready to prove that, for a total assignment A such that the deterministic tableau
rules in Figure 4 do not yield a contradiction, the entries of A are preserved when applying these
tableau rules wrt any assignment contained in A.

LEMMA A.12. LetII be a disjunctive program and A a total assignment such that t3 ¢ A or
fa ¢ A forevery (a <+ ) € Il and supp (11, S, S) # 0 or ATNS = () for every S C atom(I1).

If $up and min are well-behaved for all literals in {o | (o + ) € 11} and if sup and maz
are well-behaved for all literals in {5 | (o < B) € II}, then for every A’ C A, we have that
Di@-m (L A) € A.
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PROOF. Assume that $up and min are well-behaved for all literals in {o | (o « B) € II}
and that 5up and maz are well-behaved for all literals in {3 | (o + () € II}, and consider any
A’ C A. We show that any entry deducible by I1, I}, N1, N, UT, or Ul in (II, A’) belongs
to A:

(I If ta € Dyrpy(II, A’), we have that t3 € A’ for some (o <+ 3) € II. Since t3 € A, it
holds that fo ¢ A, which yields ta € A because A is total.

(I}) If f8 € Dyryy(I1, A’), we have that fa € A’ for some (o < ) € IL. Since fa € A, it
holds that t8 ¢ A, which yields f € A because A is total.

(N1) If Fp € Dy (I, A’), we have that p € atom(II) and supy,(IL, {p},0) = 0. By
Lemma A.11, we conclude that sups (IT, {p}, {p}) = 0. Thus, it holds that Tp ¢ A, which
yields F'p € A because A is total.

(N)) If £ € Dypyy(I1,A’), we have that £ € {t8} U mina (o, {p}) U maza:(B,0) for some

p € (A" N atom(I1) such that sups, (IT, {p},0) = {o < B}. Since p € AT N atom(I1),
it holds that supa (IL, {p}, {p}) # 0. However, given that min and maz are well-behaved for
o and 3, respectively, we also have that (o <= ) & supy, (7, (IL {p}, (). By Lemma A.11,

we conclude that supy 7, (I1, {p}, {p}) C supy, 7, (I1, {p},0) S supy., (1L, {p},0) \ {o
B} = 0. Thatis, sups 5 (IL, {p}, {p}) = 0 # supa(IL,{p},{p}), which yields ¢ ¢ A.
Finally, since A is total, £ ¢ A implies £ € A.

(UN If Fp € Dyyp(II,A’), we have that p € S for some S C atom(II) such that
supa,(I1,5,8) = 0. By Lemma A.11, we conclude that sup, (I1, S, S) = (. Thus, it holds
that Tp ¢ A, which yields F'p € A because A is total.

(U If £ € Dyyyy(I1, A’), we have that £ € {t3} U mina/(a, S) U maza:(53,S) for some
S C atom(II) such that (A")T NS # 0 and sups. (I, S, S) = {a « B}. Since AT NS # 0,
it holds that sup, (I1, S, S) # 0. However, given that min and maz are well-behaved for o
and 3, respectively, we also have that (o <= ) & supp, (7, (I1, S, S). By Lemma A.11, we
conclude that supy 7, (IL S, 5) C supp, 7, (I1, S, S) € supa,(IL, S, 9) \ {a + B} = 0.
That is, sup,7,(I1, S, 5) = 0 # sups (I, S, S), which yields ¢ ¢ A. Finally, since A is
total, £ ¢ A implies £ € A.

We have thus shown that, in every branch (II, A’) such that A’ C A, any entry deducible by I,
I}, N1, N|, Ut,or Ul belongs to A, so that D 4y (I1, A’) C A. [

Finally, the next two lemmas show that, for a total assignment A such that the truth values
of variables v € atom(II) U conj(II) U card(IT) U disj(IT) match the valuation of 7[v] wrt
AT N atom(I1), the language-specific tableau rules in Figure 5, 7, and 8, respectively, preserve
the entries of A when applied wrt any assignment contained in A.

LEMMA A.13. LetII be a disjunctive program, X C atom(II), and
A = {Tv|v € atom(II) U conj(II) U card (1) U disj (II), X |= 7[v]}
U {Fv | v € atom(II) U cong(IT) U card (IT) U disj (I1), X B~ [v]}.
Then, for every v € atom(IT) U cong (IT) U card (IT) U disj (IT), we have that
() tve Aiff X E r[v);
(2) tnotv e Aiff X = 7[not v);
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3 fve Aiff X |~ 7[v);
(4) fnotv € Aiff X £ Tnot v).

PROOF. By the definition of A, for every v € atom(II) U conj (II) U card(IT) U disj (II):

(D) tve Aiff Tv € Aiff X = 7v];
(2) tnotve Aiff Fv e Aiff X = 7[v] iff X = —7[v] iff X |= 7[not v];
(3) fve Aiff Fv e Aiff X ¥ 1[v];
4) fnotve Aiff Tv e Aiff X |= 7[v] iff X = —7[v] iff X = 7[not v].

We have thus shown that all items of the statement hold. [
LEMMA A.14. LetI1 be a disjunctive program, X C atom(II), and
A = {Tv|v e atom(II) U cong(II) U card (1) U disj (II), X |= 7[v]}
U {Fv | v € atom(II) U cong(IT) U card (I1) U disj (I1), X B~ 7[v]}.
Then, for every A’ C A, we have that D yn) o7 (1T, A’) C A.

PROOF. By Lemma A.13, for every literal [ = v orl = not v, where v € atom (IT)Uconj (IT)U
card(IT) U disj (IT), we have that t/ € A iff X = 7[l], and that fl € A iff X % 7[l]. Hence, we
can treat such conditions as synonyms in the following consideration of some A’ C A and the
tableau rules (h)—(v):

(rem 1t {i, ..., 1y} € conj(Il) such that {¢ly,...,tl,} C A’, we have that X = 7[l1],...,
X | 7[l,). Thatis, X = (T[] A--- AT[ln]), so that T{ly,...,l,} € A.

(TC)) If {ll, vyl Uiyl ey ln} S COTL](H) such that {F{ll, vy licy Uyl ey ln},
tly, ... ,tli_l,tli_H, ce ,tln} C A’, we have that X ): T[ll], e, X ’: T[li_ﬂ,X ': T[li—i-l];
oo X Erllp]but X B (7L A AT AT AT[Lipa ] A AT[L]). Thatis, X - 7],
so that fl; € A.

(FCP) If {ly,...,l;...,ln} € conj(II) such that fl; € A’, we have that X [~ 7[l;]. That is,
X (rlu) A AT A - AT[l,]), sothat F{ly,.... L, ..., [,} € A.

(FCl) If{l1,...,1,} € conj(Il) such that T{l1,...,l,} € A’, we have that X |= (7[l1]A--- A
7[ln]). Thatis, X | 7[l1],..., X |E 7[l,], so that {¢l,...,tl,} C A.

(TLUN I j{l, .. 0, g1, s I bk € card(IT) such that {tly,... ¢,
flis1,.-  fln} € A/, for any L C {ly,...,l,} such that |L|] < j, we have that
{li,.... 5} € L, thatis, X = (Veq,, 4, 71))- Furthermore, for any L C {l,... 15}
such that & < |L|, we have that L N {lpy1,...,l,} # 0, thatis, X = (A, 7[l]). We obtain
that

sothat Tj{l1,...,0;,... . lg+1,...,ln}k € A.

(TLoul) It j{l, ... =1, b, ol g, - L bk € card(II) ~ such  that
{Fj{lla"'vlj—hljv'-'7lkalk+1a"'aln}katlla"'7tlj—17.flk+1a"'afln} - Al, we
have that

X E /\Lg{ll,...,ln},ILKj 0rk<|L\((/\leLT[lD - (\/ze{zl,...,z,,L}\LT[l]))-

However, for any L C {ly,...,l,} such that k < |L|, we have that L N {lxy1,...,0ln} # 0,
that is, X [ (A,c,7[l]). Furthermore, for any L C {l,...,l,} such that [L| < j and
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L#A{l,...,lj—1}, wehave that {ly,...,l;_1} € L, thatis, X = (V,cq, 0 o7(l). We
obtain that

X B Avcinn(ni<jand tegin iy 1 or k<l (NierTl) = Vieqy, o2 7l)-
Thatis, X & (T[] A~ A7[lj1]) = (P[] V -V T le] V Tliga] V- -+ V 7[1,])), so that
XVl X W 7ll) and {£1;,. .., flx} C A.

(TeUD) I {0 G s - et Lot2s - - L bR € card(II)  such  that

{Fj{ll,...,lj,lj+1,...,lk+17lk+2,...Jn}k,tll,...,tlj,flk+2,...,fln} g Al, we
have that

X ¥ /\Lg{ll,...,l"},|L\<j ork<|L\((/\leLT[lD - (\/ze{zl,...,z,,L}\LT[l]))-
However, for any L C {ly,...,l,} such that |L| < j, we have that {l;,...,l;} ¢ L, that
is, X & (Vieq,,. 1,0\ r7l])- Furthermore, for any L C {l1,...,l,} such that k < |L| and

L #{li,... ,lkp1}, we have that L N {lp 4o, ..., 1} # 0, thatis, X [~ (/. 7[l]). We obtain
that

X B Nrciinini<ior te<ip and Lt tnes ) (A ) = Vieqy 2 7HD)-
Thatis, X & (T[] A=  AT[GIA T[] A AT[lega]) = (T[les2] V-V 7[1,])), so that
X ): T[lj+1], . ,X ': T[lk+1] and {tlj+1, e ,tlk+1} g A.

(FLD) If j{l1,...,l;,...,ln}k € card(II) such that {fl;,..., fl,} € A’ for L’ = {l €
{ti,...,ln} | X = 7[l]}, we have that L' C {ly,...,l;_1} and |L'| < j, while X [~ 7[l] for
alll € {l1,...,1n} \ I'. Hence, X [~ ((Aiep7ll) = (Vicqy. 1.2 7)) and

X bé /\Lg{ll,...,l,,},|L\<j or k<|L| ((/\lELT[lD - (\/le{ll,i..,ln}\LT[l]))’
sothat Fij{ly,...,0;,..., I}k € A.
(FL)) If j{ll, S ,lj, lj+1, ey ln}l{? S card(H) such that {Tj{ll, RN lj, lj+1, ey ln}k’,
flit1,..., fln} € A/, we have that

X E Avcunaizi<jork<inf(Ner™l) = Vieg, o 7l)-
In particular, for every 1 < ¢ < jand L; = {l € {l1,.... L.} \ {&} | X E 7[]},
we have that L; C {ly,...,0;} \ {l;} and |L;|] < j, while X (= 7[l] for every | €
{l, s ln b\ (Li U {l;}). Hence, X = ((/\sziT[l]) - (Vle{ll,...,ln}\LiT[l])) but X -

((/\leLiT[lD — (\/le{ll,...,ln}\(Liu{li})Tm))' That is, X | 7[l;] for every 1 < ¢ < j, so that
{tly,...,tl;} C A.

(FUD If j{l1,. .., lgs1,- -, In}k € card(IT) such that {¢l;,... tlx1} C A/, for L' = {l €
{l,...,ln} | X = 7[l]}, we have that {l1,...,lx+1} C L' and k < |L'|, while X [~ 7[I] for
alll € {l1,...,1n} \ I'. Hence, X [~ ((Aiep7ll) = (Vicqy. 1,02 7)) and

X % /\Lg{ll,...,l,,},|L\<j ork<|L\((/\lELT[ZD - (\/le{ll,i..,ln}\LT[l]))’
sothat Fj{ly,...,lky1,...,Intk € A.

(FU)) If j{ll, cos s b1,y - o ,ln}]{) S card(H) such that {Tj{ll, Y VA R T ln}k’,

tly,...,tl} C A’, we have that

X E Avcunaizi<jork<i ol (Ner™l) = Vieg, o 7l)-
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In particular, forevery k < ¢ < mand L; = {l € {l1,...,l,} | X = 7[l]} U {l;}, we have
that {l1,..., 0k} U{l;} C L; and k < |L;|, while X [~ 7[l] for every | € {l1,...,l,} \
Li. Hence, X |= ((/\leLiT[l]) - (\/le{ll,‘..,ln}\LiT[l])) but X [~ ((/\lGLi\{li}T[l]) -
(Vieq. 1o\, 710))- Thatis, X [~ 7[l;] forevery k < i < n,sothat {fly41,..., fln} C A.

(TDP) If {ly;...50;.. .51, } € disj(I) such that tl; € A’, we have that X | 7[l;]. That is,
X E @)V VTV -V Tla]), sothat T{ly; ... 51551, ) € A

(TD)) If {iy;...;1,} € disj(II) such that F{ly;...;1,} € A’, we have that X }~ (7[l1]V -V
T[ln])- Thatis, X (= 7[l1],..., X P& 7[ln], so that { £y, ..., fl,} C A.

(FED1) If {l3;...;1,} € disj(II) such that {fi1,..., fl,} C A’, we have that X [~ 7[l1],...,
X [ 7(l,). Thatis, X & (T[] V -+ V 7[ln]), so that F{ly;...;1,} € A.

(FDJ) If {ly;.. .5 lica; lisligas .- 5 la} € disj(IT) such that {T{l1;...;0L—1;l;liv1; -5 ln ),
fll, .. .7fli_1, fli+1, .. 7fln} - A/, we have that X bé T[lﬂ, X l7é T[li_l],X l;é
T[li+1], N ,X 17& T[ln] but X ': (T[lﬂ VeV T[li_l] \ T[lz] \Y T[li—i-l] VeV T[ln]) That iS,
X = 7[l;], sothat tl; € A.

We have thus shown that, in every branch (II, A’) such that A’ C A, any entry deducible by some
of the tableau rules (h)—(v) belongs to A, so that D¢p))3 (II, A’) C A. O

A.2.3 Proofs of Soundness and Completeness. The following theorem characterizes the an-
swer sets of a disjunctive program in terms of total assignments A such that the generic tableau
rules in Figure 4 do not yield a contradiction and the entries in A match the valuations of propo-
sitional formulas associated with their variables.

THEOREM A.15. Let II be a disjunctive program and X C atom(II).
Then, we have that X is an answer set of 11 iff

A = {Twv|v € atom(II) U cong (II) U card(II) U disj (I1), X |= 7[v]}
U {Fv | v e atom(II) U conj(IT) U card (IT) U disj (I1), X B~ 7[v]}

is such that t3 ¢ A or fo ¢ A for every (o < B) € Il and supp (11, S, S) # D or AT NS =0
forevery S C atom(II).

PROOF. By Lemma A.13, for every literal | = v orl = not v, where v € atom(II)Ucong (I1)U
card(IT) U disj (IT), we have that t/ € A iff X = 7[l], and that fl € A iff X [~ 7[l]. Hence, we
can treat such conditions as synonyms in the following consideration of the implications of the
statement.

(=) Assume that X is an answer set of II. Then, for every (o < ) € II, we have that
X = (7[8] = 7[o]) if & ¢ card(IT), and that X (= (7[8] — (7]e] A Npeatom(a) (P V —p))) if
a € card(II). This implies that X (= 7[f] or X = 7[a], from which we conclude that t5 ¢ A
or fa ¢ A. Furthermore, for any S C atom(II) such that AT NS = X NS # (), we have
that Y = X \ S C X is not a model of (7[IT))X. Thatis, Y [ ¢¥ for some ¢ € 7[II],
where ¢ = (7[8] — 7[a]) if & ¢ card(IT) or ¢ = (7[8] = (7]a] A Npeatom(a) (P V —p))) if
a € card(IT) for some (a < ) € II. In view of X |= ¢ but Y [~ ¢, we conclude that X # 1,
Y E (7[8])%, X & 7[B], and X = 7[a]. Furthermore, from X = 7[3], we immediately obtain
fa¢A

Given Y |= (7[8]), we first show that supa (3, S) holds. The following cases are possible:

(1) B = not v for some v € atom(IT) U conj(IT) U card(IT), so that 5upa (3, S) holds.
(2) BeY =X\ S,sothat 3 € atom(IT) \ S and 5upa (8, S) hold.
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3) p=j{l,...,ln}k € card(II) and

Since Y |= (7[8])%, for any L C {ly,...,l,} such that [L| < j, we have that {I € L |
fle AY£0,LNnS #0,or{l € {ly,...,l,} \L | fl ¢ A} € S. However, regarding
L'={le{ly,....0,}\ S| fl ¢ A},itholdsthat {{ e L' | fle A} =0, L' NS =0, and
{le{ly,....,I,}\L"| fl ¢ A} C S. It follows that |L’| > j, so that 5upa (3, S) holds.

@ B ={l,....ln} € conj(IT) and (7[B)Y = (Nicgy,..0ny 7D = Nicqiy,.0y (TID™
Since Y = (7[8])%, we conclude that Y [= (7[l])* for every [ € {ly,...,l,}. Given this,

one of the first three cases applies to each | € {I,...,l,}, from which we conclude that
ﬁA(l, S) holds, so that WA(,B, S) holds as well.

We have thus shown that 5upa (3, S) holds.
We now turn to proving that $upa (v, S) holds. For this, note that, if o ¢ card(I1), X = 7]a]
but Y [~ (7[a])¥ yield a € atom(IT) U disj(IT). Hence, the following cases are possible:

(1) a € S, so that §upa (v, S) holds.

2) a={l;...;ln} € dissM)and® # {l € {l1,...,ln} | tl € A} C S. Thatis, {l1,...,l,}N
S#Qand {l € {ly,...,1,} \ S| tl € A} =0, so that Supa (e, S) holds.

3) a=j{lh,...,ln}tk € card(l]) and ({l1,...,l,} N X) NS # 0 because X = 7[a] but
Y (7o) A Apeatom(a) @V ﬂp))X.3 Furthermore, X |= 7[a] implies |{I € {l1,...,1,} |
tl € A}| < k. Along with ({l1,...,1,} N X)NS # 0, thatis, {l € {ly,...,[,} NS |tl €
A} # 0, we conclude that |{l € {I1,...,1,}\ S |t € A}| < k, so that $upa (, S) holds.

We have thus shown that WpA(a, S) holds. Along with the previous observations that
B ¢ A and that WA(B,S) holds, we conclude that (o« < ) € supa(IL, S, S), so that
supp (I1, S, S) # 0. Since the choice of S C atom(II) such that AT N S # () was arbitrary,
this establishes that sup, (I1, S, S) # 0 or AT NS = ) for every S C atom(II).

(«<=) Assume that X is not an answer set of II. Then, there is either some (o <— ) € II such
that X |= 7[B] and X £ 7][a] or some Y C X such that Y |= (7[I1])¥. In the former case, we
have that 3 € A and fa € A for some (a <+ ) € II. In the latter case, let S = X \ Y. Then, it
holds that ) # AT NS = S. For the sake of contradiction, assume that sup, (I1, S, S) # 0, that
is, (a < B) € M such that f8 ¢ A, prA(a, S), and mA(ﬁ, S) hold.

In view of WpA(a, S), the following cases are possible:

(1) a€S, (r[a])X = a, and so
Y [ (rla])”.
Q) a = {l1;...;l,} € disj(I), {I € {l1,...,l,} \ S | 1 € A} = 0, (7[a])X =
VIe{ll,...,ln}mST[l] = \/pG{ll,..‘,ln}ﬁSp’ and so
Y (rla))*.
3) a=j{li,....ln}tk € card(I1), {l,...,1,} NS = atom(a) N S # (), and so

Y bé (T[a] A /\pEatom(a) (p v _'p))X'

3Note that all atoms occurring in (7[a] A Npeatom(a)(®PV ﬁp))X belong to {l1,...,ln} N X.
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We have thus shown that ¥ [ (7[a])* if o ¢ card(Il), and that Y (= (7[a] A

X .
/\p€at0m(a)(p Vv —\p)) if « € card(II).

We now turn to 3, for which f3 ¢ A implies 8 € A, thatis, X | 7[f]. Furthermore, we
have that ﬁA(ﬁ ,S) holds, and the following cases are possible:

(1) B = not v for some v € atom(II) U conj(I1) U card(IT), (7[5])* = =L, and so

Y E (r[8)*.
() B € atom(I)\ S, (1[3])X = B €Y, and so

Y | (8D
3) p=j{l,...,ln}k € card(II) and

X X
(r8)* = (/\Lg{ll,...,ln},|L\<jork<\L\((/\ZELT[Z])_>(\/le{ll,...,ln}\LT[Z]))) :

Forany L C {l1,...,l,} such that k < |L|, X |= 7[B] implies (A, 7[l])* = L, so that
Y B (A\jep7I1])™ . Furthermore, since supa (53, S) holds, we have that [{I € {l1,...,1,}\S |
fl ¢ A} > j. Hence, forany L C {ly,...,l,,} such that |L| < j, it holds that {I €
{li,.. ., I, \S | fle A} ={le{ly,...,I,}\S|tle Ay € Land{l € {l1,..., I, }\ L]
tle A} Z S,sothatY = (\/le{ll,...,ln}\LT[l])X- Combining the cases for |L| < j and
k < |L| yields that

Y E (8.

@) B ={l,...,ln} € conj(Il) and (T[ﬁ])X = (/\le{ll,...,ln}T[l])X = /\ze{zl,...,zn}(T[l])X
Foreveryl € {l1,...,l,}, X = 7[f] and MA(@ S) imply X |= 7[l] and MA(Z, S). Given
this, one of the first three cases applies to each [ € {l1,...,l,}, from which we conclude that
Y | (7[1]))%, and so

Y = (78D
We have thus shown that Y = (7[3])%. Along with Y (£ (7[a])¥ if o ¢ card(Il) and Y =
(tla] /\/\pEatom(a)(p\/—'p))X if @ € card(IT), we further conclude that Y [~ (7[3] — T[Q])X if
X . .
a ¢ card(Il) and Y = (78] = (7[a] A Npeatom(a) (P V —p)))" if & € card(Il). Thatis, Y j=
(7[I1])%X, which is a contradiction to our initial assumption. This shows that sup, (II, S, S) # ()

cannot be the case, so that supa (11, .S,.S) = () must hold. In addition, ) # AT N S = S holds by
the choiceof S =X \Y. O

We are now ready to show Theorem 5.1, 5.2, 5.5, and 5.6, stating the soundness and complete-
ness of tableau calculi for unary, conjunctive, cardinality, and disjunctive programs, respectively.
Since disjunctive programs include unary, conjunctive, and cardinality programes, it is sufficient to
prove Theorem 5.6.

THEOREM 5.6. Let I1 be a disjunctive program.
Then, we have that the following holds for the tableau calculus consisting of the tableau rules

(@-v):
(1) Every incomplete tableau for I1 and () can be extended to a complete tableau for 1 and (.

(2) Program 11 has an answer set X iff every complete tableau for 11 and () has a unique non-
contradictory branch (I1, A) such that AT N atom (1) = X.
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(3) Program 11 has no answer set iff every complete tableau for 11 and () is a refutation.
PROOF. We separately consider the items of the statement:

(1) By applying Cut[atom (II)U cong (IT)U card (IT) U disj (IT)], an incomplete branch in a tableau
for IT and () can be extended to a subtableau such that, for every branch (I, A) in it, we have
that atom (II) U conj (I1) U card(IT) U disj (IT) € AT U AF. Furthermore, if (IT, A) is not
complete, then D) g h)-w)3 (1L, A) € A, so that the application of some of the tableau rules
(a)—(f) in Figure 4 or (h)—(v) in Figure 5, 7, and 8 yields a contradictory and thus complete
branch.

(2) By Theorem A.15, for every X C atom(II), we have that X is an answer set of IT iff the
total assignment

A = {Tv|v € atom(II) U cong(IT) U card(IT) U disj (IT), X |= 7[v]}
U {Fv|v € atom(II) U cong(II) U card(I1) U disj (IT), X B~ 7[v]}

is such that t3 ¢ A or fa ¢ A for every (o < ) € II and sup, (11, S,S) # 0 or
AT NS = () forevery S C atom(II). Given this, we separately show the implications of the
second item.

(=) Assume that X is an answer set of II. Then, Lemma A.10, A.12, and A.14 establish
that Dy m-wy (I, A’) C A for every A’ C A. Furthermore, for any application of
Cut[atom(IT) U conj (IT) U card(IT) U disj (IT)] on a branch (IT, A’) such that A’ C A, we
have that the assignment in exactly one of the resulting branches is contained in A. Along
with ) € A, it follows that every complete tableau for II and () has a non-contradictory
branch (I, A) such that AT N atom(II) = X. By Lemma A.6, A.7, and A.8, we also have
that (II, A) is the unique non-contradictory complete branch such that AT N atom (II) = X.
(<) Assume that (II, A) is a non-contradictory complete branch. Then, for every v €
atom(II) U conj (II) U card (IT) U disj (IT), Lemma A.6, A.7, and A.8 establish that Tv € A
iff AT N atom(I1) = 7[v]. Furthermore, Lemma A.3 and A.4 show that t3 ¢ A or fa ¢ A
for every (o < 3) € I and that supy (11, S, S) # 0 or AT NS = () for every S C atom(II).
By Theorem A.15, we conclude that X = AT N atom(II) is an answer set of II.

(3) From the second item, if IT has an answer set, then every complete tableau for IT and () has a
non-contradictory branch; by the first item, there is some complete tableau for IT and (), so that
some complete tableau for I and () is not a refutation. Conversely, if some complete tableau
for IT and () is not a refutation, it has a non-contradictory branch (II, A), and AT N atom (1)
is an answer set of I, as shown in the proof of the second item.

‘We have thus shown that all items of the statement hold. [

A.2.4  Proofs of Correspondences on Normal Programs. We now show the correspondences
stated in Proposition 5.3 and 5.4 between the basic tableau rules in Figure 1 and the (generic)
tableau rules in Figure 4 and 5, respectively, on the common class of normal programs.

PROPOSITION 5.3. Let II be a normal program, A an assignment, and F, G any pair of a
basic tableau rule F and a generic tableau rule G belonging to the same line in Table 1.
Then, we have that

(1) Dypy(IL,A) = Digy(IL A) if F ¢ {BTA, WFJ[2#°™ (D]}
) Dmy(ILA) 2 Dy y(ILA) and, if Diay(ILA) # Dy (ILA), then A U
D¢ny (I, A) is contradictory;
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(&) D{WFJ[Qar,om(n)]}(H,A) ) D{ U\L}(HvA) and, if TB € D{WFJ[Qatom(n)]}(H,A) \
Dy (I, A), then AU D4y (IL, A U {FB}) is contradictory.

PROOF. The correspondences are obvious for the pairs (¢), (a), (d), b), (a), k), (b), (), (e),(j),
and (f), (k). It remains to show the statement for the pairs FFA, N1, BTA, N, WFN|2 a“’m(n)], U,
and WFJ[2etem(ID] U |

(FFA,N1) We have that Fp € Dyppyy(I1, A) iff p € atom(II) s
p € atom(IT) such that supy (IT, {p}, ) = 0 iff Fp € D4y (1T,

suc
A
(BTA,N|) If TB € Dy (I, A), then supy (11, {p},0) = {p < B} for some p € AT N
atom(II), so that & # p or F3 € A for every (o < B) € IT'\ {p < B}. From this,
Dy (I,

ch that body(p) C AF iff
)-

we conclude that body(p) \ AF = {B}, so that TB € A). Furthermore, if
TB' € Digray(IL, A) \ Dy (11, A), then body(p') \ AF C {B’ } for some B’ € body(11)
and p’ € AT N atom(II), which implies that sup, (IL, {p'},0) C {p’ + B’}. However,
TB' ¢ Dy, (II,A) yields that (p' < B’) ¢ sups(IL, {p'},0). Hence, we have that
supa (IL, {p'}, 0) = 0, and A U Dy y+y(IL, A) is contradictory because p’ € AT N atom(II).

(WEN[2¢tom(ID] " T71) We have that Fp € D typnjgaomanyy (IL A) iff p € S for some S C
atom(Il) such that EBp(S) C AF iff p € S for some S C atom(Il) such that
supp (IL, S, S) = 0 iff Fp € Dy (11, A)

(WFJ[2etomI] U ) If TB € Dyy “‘r ), then supy (I1, S, S) = {p < B}, where p € S
for some S C atom(II) such that AT N S 75 (). From this, we conclude that EBp(S) \ AF =
{B}, so that TB € Dyypjpeomanyy (I, A). Furthermore, if TB" € D ypsgaomayy (I, A) \
D¢y (ILA), then EBri(S’) \ A¥ C {B'} for some B’ € body(II) and S’ C atom(II) such
that AT N S” # (), which implies that sup, (11, 5", 5") C {p’ + B’ | p’ € S'}. In view of
Lemma A.10 and A.11, we have that sups ;ppy(IL, S, S") = 0, and A U Dy (I, A U
{FB'}) is contradictory because AT N S’ # 0.

We have thus shown that the stated correspondences according to Table [ hold. [

PROPOSITION 5.4. Let II be a normal program, A an assignment, T a tableau calculus con-
taining any subset of the tableau rules in Figure 1 for Q = 29D and T" the generic image
of T.

IfFFA € T or BTA ¢ T and if WFJ[Q)] € T implies that {FTB, FFB, WFN[Q], Cut[l'|} C T
for T C atom(II) U body(IT) such that atom(I1) C T or body(IT) C T, then we have that the
following holds:

(1) For every complete tableau of T for 11 and A with n branches, there is a complete
tableau of T' for 11 and A with the same non-contradictory branches and at most
(max{|atom(II)|, |body (IT)|} 4+ 1) * n branches overall.

(2) Every (complete) tableau of T" for Il and A is a (complete) tableau of T for Il and A.

PROOF. Assume that FFA € T or BTA ¢ T and that WFJ[Q)] € T implies that {FTB, FFB,
WFEN[Q], Cut[l']} C T for I' C atom(II) U body(II) such that atom(II) C I' or body(II) C T'.
By Proposition 5.3, we immediately conclude that every (complete) tableau of 7' for IT and A is
a (complete) tableau of 7 for IT and A as well. Furthermore, in view of the first two items in the
statement of Proposition 5.3, we have that any application of a tableau rule in 7 other than WFJ[()]
on a branch (II, A’) extending (II, A) leads to the same result, in terms of deduced entries or a
contradiction, respectively, by applying a corresponding tableau rule in 7”. Hence, it is sufficient
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to show that, if there is some T'B € Dygyia)y (I1, A') \ (AU D¢ pey, vy (I1, A')), there is a cor-

responding subtableau of 7" that introduces at most |(B*UB™)\ ((A")T U(A")¥")| contradictory
branches, while a single remaining branch includes T'B (and possibly further entries belonging
to any non-contradictory branch extending (I, A’ U {T'B}) in a complete tableau of T for II
and A). To this end, assume that TB € Dyrya (I, A') \ (A" U Dyrey, vy (11, A')). Then,
EBp(S) \ (A" C {B} for some S C atom(II) such that (A")T NS # 0, sup,, (1L, S, S) C
{p < B |pe S}, and |supy, (IL, S, S)| # 1. Furthermore, one of the following cases applies:

(1) If supy, (11, S,S) = 0, we have that Fp € Dy (II, A’) for every p € S. Given that

(AT NS # 0, we conclude that (I, A’) can be extended to a contradictory branch by an
application of Ut.

(2) If supy (I1,S,S) # 0, in view of Lemma A.10 and A.11, we have that
suparuirpyIL S, 5) = (), so that an application of U1 is sufficient to contradict any ex-
tension of (II, A’) including FB. In particular, if FB € Dipcyy(II, A’), we can ex-
tend (II, A’) to a contradictory branch without cutting. Otherwise, if Cutf[I'] € T such
that body(IT) C T, we can cut on B, contradict the branch for F'B by applying U7,
and proceed with the branch (IT, A’ U {T'B}), also obtained by applying WFJ[}]. Alter-
natively, if Cut[I'] € T such that atom(II) C T, we can successively cut on atoms in
(B* UB)\ (ANT U (A")F) and contradict a branch for fI, where | € B, by ap-
plying FC1 and Ut. Provided that BY N B~ = (), this strategy yields a single branch
(IT, A’ U {¢l | | € B}), which can be further extended to (II, A’ U {¢l | | € B} U{T'B}) by
an application of T'C't. Given that FFB € T, we also have that any non-contradictory branch
extending (II, A’ U {T'B}) in a complete tableau of 7 for IT and A contains ¢/ for all [ € B.

We have thus shown that an entry TB € Dy (I1, A’) \ (A" U Dipeq,uy3 (I, AY)) can
also be generated in the single (if any) non-contradictory branch in a subtableau of 7" extending
(I, A’) and admitting the same non-contradictory extensions as (II, A’ U {T'B}) in a complete
tableau of 7 for IT and A, while introducing at most max{|atom(II)|, |body(II)|} contradictory
branches overall along each branch in a complete tableau of 7 for [Tand A. O

The previous results allow us to derive Theorem 3.1 as a consequence of Theorem 5.2 (i.e.,
Theorem 5.6 restricted to the class of conjunctive programs).

THEOREM 3.1. Let I1 be a normal program.
Then, we have that the following holds for tableau calculi Tonodeiss Tnomore» A1A Tromore++-

(1) Every incomplete tableau for 11 and () can be extended to a complete tableau for 11 and ).

(2) Program II has an answer set X iff every complete tableau for 11 and () has a unique non-
contradictory branch (11, A) such that AT N atom(I1) = X.

(3) Program 11 has no answer set iff every complete tableau for 11 and () is a refutation.
PROOF. By Proposition 5.3, Tgnodeiss Tnomore> a0d Tnomore++ admit the same non-contradictory

complete branches as the tableau calculus consisting of the tableau rules (a)-(k) in Figure 4
and 5; in particular, if TB € Dy (I, A) for a branch (I, A), we have that TB €

41f B* N B~ # (), all branches in a subtableau of 7" obtained by successively cutting on atoms in (BT U B™) \
(AT U (A")F) and contradicting branches for fi, where I € B, are contradictory. Given that FFB € T, any branch
extending (IT, A’ U {T'B}) in a complete tableau of 7 for IT and A is contradictory too.
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D typjjgeommyy (I, A), so that A U D ypyaaommiy (I, A U {F B}) is contradictory (cf. Fig-
ure 1).> Hence, from Theorem 5.2 and the fact that answer sets of 7[II] match answer sets
(as introduced in Section 2) of II (cf. [Lifschitz 2008]), the result follows immediately for
Tromore++. Moreover, for Touoders and Tromore, using Cut[atom (IT)] and Cut][body (I1)], respectively,
in place of Cut[atom(IT) U body(I1)], it is sufficient to show that the first item of the statement
holds. Regarding Tgnoders,» note that, for every B € body(Il), either TB € Dyprpy (11, A) or
FB € Dypppy(I1, A) for any non-contradictory assignment A such that atom (II) C AT U AF,
so that the first item of the statement holds for Tgupqeis- Regarding Toomore, for every p € atom(I1),
either T'p € D{ FTA% (IT, A) or F'p € Dygpay(I1, A) for any non-contradictory assignment A such
that body (11 U AF so that the first item of the statement holds for 7,,ym0r as well. [

Along with Lemma A.2 on different variants of tableau rule WFN, Theorem 3.1 yields Theo-
rem 4.6.

THEOREM 4.6. Let Il be a normal program.
Then, we have that the following holds for tableau calculus Teomp J {WFN[loop(II)]}:

(1) Every incomplete tableau for I1 and () can be extended to a complete tableau for I1 and ().

(2) Program 11 has an answer set X iff every complete tableau for 11 and () has a unique non-
contradictory branch (I1, A) such that AT N atom (1) = X.

(3) Program II has no answer set iff every complete tableau for 11 and () is a refutation.

PROOF. By Lemma A.2, Tuomoret+ and Teomp U {WFN[loop(II)]} admit the same non-
contradictory complete branches. Hence, the result follows immediately from Theorem 3.1. [

We have thus proven the formal results presented in Section 5, and also demonstrated Theo-
rem 3.1 and 4.6.

A.3 Proofs of Results from Section 6

We below consider minimal refutations of tableau calculi Tuomores Tsmodets> Teard, and Teon; for
particular families of logic programs, thus showing exponential separations between 7,,,mor and
Tomodeis as well as between Teqrg and Teon; .

PROPOSITION 6.1. There is an infinite family {II"} of normal programs such that

(1) the size of minimal refutations of Tromore for 11" is asymptotically linear in n;

(2) the size of minimal refutations of Tsmodes for II™ is asymptotically exponential in n.
PROOF. Consider the following family {TI”" U I } of normal programs for n > 1:
I UITY = {z < not 2} U, <;<, {2 < @i, bi5 a; < not bi; b < not a;}

The domain of assignments A is dom(A) = {z,{not 2}} U, <<, {a:, b, {not a;}, {not b;},
{ai, b;} }, and we investigate minimal refutations of 7yomore a0d Tymoders for members of {T17UITT }.
An optimal strategy to construct a refutation of T,pmor for I UII? (cf. Figure 11) is as follows:

5Every non-contradictory complete branch has exactly one occurrence in any complete tableau of the tableau calcu-
lus containing (@)—(k), Tsmodeis> Tnomores OF Tromore++ for I and (. For the former, this is established by Lemma A.3,
A4, A7, A10, A.12, and A.14 (along with the fact that Cur applications preserve non-contradictory complete
branches). For Tguodelss Tnomores and Tppmore++, it follows from the observation that D{(a)i(h)’WFN[Qn,ﬁom(H)]}(H7 A') C

D{(a)—(h),WFN[Q““””(H)]}(H’ A) for every assignment A and every A’ C A.
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(1) Cut on {not x}, complete the branch for T'{not x}, using the deterministic tableau rules
BTB and FTA, and deduce T'z in the branch for F'{not x}, using the deterministic tableau
rule BFB.

(2) Complete the branch containing Tz (and F'{not x}), but none of T'{a;,b;} for 1 <i < n,if
it contains n — 1 entries of the form F'{a;, b; }, using the deterministic tableau rules BTA and
BTB. Otherwise, if there are less than n — 1 entries of the form F'{a;, b;} in the branch, cut
on some unassigned {a;, b;} for 1 < i < n and complete the branch for T{a;, b;}, using the
deterministic tableau rules BTA and BTB.

In a nutshell, a refutation constructed in this way makes use of immediate contradictions obtained
when assigning any of the bodies {a;, b; } to true, so that each application of Cur[body (117" UTI?)]
yields one branch that is completed without cutting any further. Hence, such a refutation of 7,,,more
for II;; UIIY is of size linear in n.

An optimal strategy to construct a refutation of Tgegess for I UIIY (cf. Figure 10) is as follows:

(1) Cut on z, complete the branch for F'z, using the deterministic tableau rules F7B and BFA,
and deduce F'{not z} in the branch for Tz, using the deterministic tableau rule FFB.

(2) Complete any of the branches containing T'xz (and F'{not z}) if the branch contains n — 1
entries of the form F'{a;,b;} for 1 < i < n, using the deterministic tableau rules BTA and
BTB. Otherwise, if there are less than n — 1 entries of the form F'{a;, b;} in a branch, cut on
some unassigned a; for 1 < i < n and deduce F'{a;, b;} in the branch for T'a; as well as in
the branch for F'a;, using the deterministic tableau rules BTA, BTB, and FFB.

As the second step shows, cuts on atoms a; (or b;) for 1 < i < n yield symmetric alternatives,
since F'{a;,b;} is deduced in each of the resulting branches. That is, except for the initial cut
on z, applications of Cut[atom (II?> U II?)] do not admit immediate contradictions and must thus
be cascaded to form a perfect binary tree. Hence, a minimal refutation of 7gyeqes for I U II7 is
of size exponential in n.

We have thus shown that the asymptotic sizes of minimal refutations of T,pmore and Tsnodels
for IT” U I are O(n) and O(2™), respectively. Hence, Thomore is not polynomially simulated by
7;m0dels- |

PROPOSITION 6.2. There is an infinite family {II"} of normal programs such that

(1) the size of minimal refutations of Tguogers for 11" is asymptotically linear in n;

(2) the size of minimal refutations of Thomere for 11" is asymptotically exponential in n.
PROOF. Consider the following family {II} UII?'} of normal programs for n > 1:

Iy UII? = {y < c1,...,¢pn, n0t y}
U Ujcien {6 < not a;; ¢; < not b; a; < not b;; b; < not a;}
The domain of assignments A is dom(A) = {y,{ci,...,cn,n0t y}} U U, <<, {ai bi,ci,
{not a;},{not b;}}, and we investigate minimal refutations of 7,sgers and Tromore TOr members
of {II;) UTIZ}.
An optimal strategy to construct a refutation of Tgyoqers for 11} UILY (cf. Figure 13) is as follows:

(1) Cut on y, complete the branch for T'y, using the deterministic tableau rules BTA and FFB,
and deduce F{cy,...,cp,,not y} in the branch for F'y, using the deterministic tableau rule
BFA.
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(2) Complete the branch containing F'{cy, ..., c,, not y} (and Fy), but none of F¢; for1 <i <
n, if it contains n — 1 entries of the form T'c;, using the deterministic tableau rules BFB, BFA,
and FFA. Otherwise, if there are less than n — 1 entries of the form T'¢; in the branch, cut on
some unassigned c; for 1 < ¢ < n and complete the branch for F'c;, using the deterministic
tableau rules BFB, BFA, and FFA.

In a nutshell, a refutation constructed in this way makes use of immediate contradictions obtained
when assigning any of the atoms ¢; to false, so that each application of Cut[atom (II}} UII)] yields
one branch that is completed without cutting any further. Hence, such a refutation of 7,415 for
IT UIIY is of size linear in n.

An optimal strategy to construct a refutation of T,omer for II}' UIL? (cf. Figure 12) is as follows:

(1) Cuton {ci,...,cpn,not y}, complete the branch for T{cy, ..., c,, not y}, using the deter-
ministic tableau rules FTA and BTB, and deduce F'y in the branch for F{cy, ..., ¢y, not y},
using the deterministic tableau rule FFA.

(2) Complete any of the branches containing F'{ci,..., ¢y, not y} (and Fy) if the branch con-
tains n — 1 entries of the form T'c; for 1 < ¢ < n, using the deterministic tableau rules BFB,
BFA, and FFA. Otherwise, if there are less than n — 1 entries of the form T'¢; in a branch, cut
on some unassigned {not a;} for 1 < i < n and deduce T'¢; in the branch for T{not a;}
as well as in the branch for F'{not a;}, using the deterministic tableau rules FTA, BFB, and
BTA.

As the second step shows, cuts on bodies {not a;} (or {not b;}) for 1 < i < n yield symmetric
alternatives, since T'c; is deduced in each of the resulting branches. That is, except for the initial
cuton {ci,...,cy, not y}, applications of Cut[body(II} U II7)] do not admit immediate contra-
dictions and must thus be cascaded to form a perfect binary tree. Hence, a minimal refutation
of Tuomore for 11 U 117} is of size exponential in n.

We have thus shown that the asymptotic sizes of minimal refutations of Tguoders a0d Tromore
for II}} UII? are O(n) and O(2"), respectively. Hence, Tgmuoders is not polynomially simulated by
771()]7107’6' |

COROLLARY 6.3. Tableau calculi Tonogers and Tpomore are efficiency-incomparable.

PROOF. This result follows immediately from Proposition 6.1 and 6.2, since they show that
neither T,omore i polynomially simulated by Toqeis, NOT vice versa. [

COROLLARY 6.4. Tableau calculus Tyomore++ I exponentially stronger than both Tg,oqe1s and

7:10m0re-

PROOF. This result follows immediately from Corollary 6.3, since Tomore and Tgnoders are both
polynomially simulated by 7:tomore++ (any tableau of Eomore or 7;models is a tableau of 7;lom0re++ as
well), while T,more and Tyoqers are not polynomially simulated by one another. []

PROPOSITION 6.5. Tableau calculus Tcqrq is exponentially stronger than Teon;.
PROOF. Consider the following family {II U II?}} of cardinality programs for n > 1:
M7 UIlg = {2+ Ha1,01}2,..., Han, by }2,not 2} UU, <<, {ai < not bj; b; < not a;}

The domain of assignments A is dom(A) = {z,{1{a1,01}2,...,1{an,bn}2,n0t 2}} U
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Ui<i<niai, bi, {as, b;}2},% and we investigate minimal refutations of 7q,q and Teon; for mem-
bers of {II? UTI}}.
An optimal strategy to construct a refutation of 7Tcqrq for I U II7 is as follows:

(1) Cuton z, complete the branch for T'z, using the deterministic tableau rules N| and FC, and
deduce F'{1{a1,b1}2,...,1{an,b,}2, not z} in the branch for F'z, using the deterministic
tableau rule 7.

(2) Complete the branch containing F'{1{a1,b1}2,...,1{an,b,}2, not z} (and F'z), but none
of F1{a;,b;}2 for 1 <i < n, if it contains n — 1 entries of the form T'1{a;, b; }2, using the
deterministic tableau rules TC'|, TLv/, and I]. Otherwise, if there are less than n — 1 entries
of the form T'1{a;, b;}2 in the branch, cut on some unassigned 1{a;, b;}2 for 1 < i < n and
complete the branch for F'1{a;, b; }2, using the deterministic tableau rules TLv | and I.

In a nutshell, a refutation constructed in this way makes use of immediate contradictions obtained

when assigning any of the cardinality constraints 1{a;, b; }2 to false, so that each application of

Cut[atom (I} U II7}) U conj(II? UII}) U card (117 U II7)] yields one branch that is completed

without cutting any further. Hence, such a refutation of 7,4 for I} U II7} is of size linear in n.
An optimal strategy to construct a refutation of Tc,p; for II7 U II7 is as follows:

(1) Cuton z, complete the branch for Tz, using the deterministic tableau rules N and F'C'1, and
deduce F'{1{a1,b1}2,...,1{an,b,}2, not z} in the branch for F'z, using the deterministic
tableau rule 7.

(2) Complete any of the branches containing F'{1{a1,b1}2,...,1{an,b,}2, not z} (and Fz) if
the branch contains n—1 entries of the form T'1{a;, b; } 2, using the deterministic tableau rules
TC|, TLul, and .. Otherwise, if there are less than n — 1 entries of the form T'1{a;, b;}2
in a branch, cut on some unassigned a; for 1 < ¢ < n and deduce T'1{a;, b; }2 in the branch
for T'a; as well as in the branch for F'a;, using the deterministic tableau rules TLU1 and 1.

As the second step shows, cuts on atoms a; (or b;) for 1 < i < n yield symmetric alternatives,
since T'1{a;, b;}2 is deduced in each of the resulting branches. That is, except for the initial cut
on z, applications of Cut[atom (II? UIL}))U conj (II? UILY )] do not admit immediate contradictions
and must thus be cascaded to form a perfect binary tree. Hence, a minimal refutation of 7.,y for
I UII7 is of size exponential in n.

We have thus shown that the asymptotic sizes of minimal refutations of 7Tcqrq and Teon; for
IT? UIIY are O(n) and O(2™), respectively. Since T.on; is polynomially simulated by 74rq, this
yields that 7,4 is exponentially stronger than T¢opnj. O

Finally, we case by case show that the application of a tableau rule RJ can be simulated by
means of Cut and R, so that the inclusion or exclusion of R| cannot (alone) be responsible for
an exponential separation between tableau calculi.

PROPOSITION 6.6. Let I1 be a disjunctive program, T a tableau calculus containing any sub-
set of the tableau rules (a)—(v), and T’ an approximation of T.

If Cut[l'] € T such that atom(I1) U cong(I1) U card(I1) C T, then we have that T is polyno-
mially simulated by T".

SFor convenience, we take not a; and not b; to be atomic literals, rather than elements of a (singleton) conjunction. The
latter would also be possible and, in view of the deterministic tableau rules in Figure 5, not affect proof complexity.
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PROOF. Assume that Cut[['] € T’ such that atom(II) U conj(II) U card(II) C I'. Then, we
show that deducing an entry ¢ by a tableau rule RJ can be simulated by cutting on the variable
of ¢ and completing the branch for ¢ by an application of Rf. To demonstrate this, we consider
all tableau rules R and show that A U Dy pqy (1T, AU {¢}) is contradictory if £ € Dry(I1, A):

(I}) If f8 € Dyryy(I1, A), we have that fo € A. Since ta € Dyp4y(I1, A U {t3}), it holds
that A U D43 (I1, A U {t3}) is contradictory.

(N)) If £ € Dynyy(II,A), we have that £ € {tf} U mina (o, {p}) U maza (3,0) for some
p € AT N atom(II) such that supy (I, {p},0) = {« + B}. For £ = £3, we get that (o +
8) ¢ supanips) (1L {ph0) = {(a « B) € T | £8' ¢ AU {£8}, Sipaviss) (' 1o,
mAU{ﬂ;}(B’,@)}. For ¢ € mina (o, {p}) or £ € maza(8,0), Lemma A.10 yields that
prAU @ (o {p}) or @Au @ (B, (), respectively, does not hold, which as with £ = ¢/ im-
plies that (o < ) ¢ sups 7 (I1, {p},0). By Lemma A.11, we further conclude that

supps iz (I {9}, 0) C supa (IL {p},0)\ {a + A} = 0. Thatis, Fp € Dy (I A U {7})
for some p € AT N atom(II), so that A U Dy n+ (I1, A U {€}) is contradictory.

(U If £ € Dyyyy(I1, A), we have that £ € {tf} U mina(a,S) U maza(B3,S) for some
S C atom(Il) such that AT NS # 0 and sup, (I1,5,5) = {a «+ B}. For { = t3,
we get that (0 ) ¢ supaoiza(ILS.5) = {0 « &) € 11 | £5 ¢ A U{fB).
WpAU{ﬂ,} (o, 5), WAU{fﬁ}(ﬁQS)}. For ¢ € mina(a, S) or £ € maza (8, S), Lemma A.10
yields that 3up, {Z}(a,S) or Supy (7 (8,5), respectively, does not hold, which as with
¢ = tf implies that (o <= B) ¢ supy (7 (IL, 5, 5). By Lemma A.11, we further conclude
that SUPA (7} (IL, S, S) C supa (I, S, 9) \ {a < B} = 0. Thatis, Fp € Dy (II, AU {ey)
for some p € AT N atom(II), so that A U Dy 43 (I, A U {€}) is contradictory.

(TCl,) If fh € D{TCi} (H, A), we have that {FC, tll, ‘e ,tli_l, tli+1, PN ,tln} g A for C =
{ll, ol li, li+1, ceey ln} € COH](H) Since TC € D{ TC1} (H, AU {tlz}), it holds that
A U D¢pepy (I, AU {tl;}) is contradictory.

(FC|) If tl; € Dypcyy(I1, A), we have that TC' € A for C = {l1,...,l;,..., I} € conj(II).
Since F'C' € Dypcpy (I, AU{fl;}), itholds that AU Dy ey (I1, AU{ f1;}) is contradictory.

(TLul) If flj S D{TLU¢}(H7 A), we have that {F‘B7 thy,... ,tljfl, Flig1, -, fln} C A for
B = j{li,....lj, ..., lky1, . In}k € card(I). Since TB € Dyppyry(IL, A U {tl;}), it
holds that A U Dy rp,y43 (I1, A U {tl;}) is contradictory.

(ToU) I tlyy1 € Dypyyy (I, A), we have that {F' B, tly, ..., tl;, flgi2,..., fln} € A for
B = j{ll, ceey lj, ey lk+1, ey ln}k € card(H). Since T B € D{TLUT}(H; AU {flk+1}), it
holds that A U Dy rp 4y (IL, A U { flj41}) is contradictory.

(FL) If tl; € Dyppy(II,A), we have that {T'B, flj,1,...,fl,} €S A for B =
i{li, by I}k € card(TT). Since FB € Dypy(IL A U {£1;}), it holds that
A U Dgprpy(IT, A U { f1;}) is contradictory.

(FUD If flgyr € Dypyyy(ILA), we have that {T'B,tl,...,tly} C A for B =
Jl, ey, ln bk € card(I). Since FB € Dypyqy (I, A U {tlx41}), it holds that
A U D¢pyyy(IT, A U {tlg 1 }) is contradictory.

(TDY) If fl; € Dyrpyy(I1, A), we have that FD € A for D = {ly;...;1l;;...; 1} € disj(IT).
Since TD € D¢rpyy (I, AU{tl;}), it holds that A U Dy pp4y (IT, A U {#l;}) is contradictory.

(FD]) If tl; € Dyppy(I1, A), we have that {T'D, fly,..., fli—1, fliz1,..., fla} € A for
D = {ll, ey li—l; l“ li+1; ey ln} € dZSj(H) Since F'D € D{FDT}(Ha AU {fll}), it holds
that A U Dyppey(IT, A U { fl;}) is contradictory.
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We have thus shown that deducing ¢ by a tableau rule R| can be simulated by means of applying
Cut and R1. As each such simulation introduces only two additional entries, £ and the complement
of some entry belonging to the branch at hand, every tableau of 7 can be transformed into a tableau
of 7" having approximately similar size, provided that the Cut applications needed for simulations
are admitted by 7. In fact, the variable of an entry deducible by a tableau rule RJ cannot be a
disjunction, so that all simulations are possible if Cut[I'] € T such that atom(II) U cong (II) U
card(Il) CT. O

We have thus proven the formal results presented in Section 6.
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