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1. INTRODUCTION

In 1933, Godel [9] proposed a translation 7 of intuitionistic propositional formulas into
a modal language. Formula 7(F') is obtained from formula F by placing the modality
O in front of each subformula of formula F. He proved that if F is a theorem in intu-
itionistic propositional calculus IPL [12], then 7(F') is provable in modal logic S4. The
converse of this statement was later shown by McKinsey and Tarski [19]. In light of
these results, intuitionistic logic can be viewed as a calculus of “boxed” formulas or
formulas that make claims in some stronger, modal, sense.

In this article we introduce a certain class of games and a logical calculus for rea-
soning about outcomes of these games. We later apply this calculus to verify privacy
properties of multiparty computation protocols. Existing formal systems for reasoning
about games, such as game logic [21; 24], coalition logic [23], cooperation logic [26],
and alternating-time temporal logic [1], are variations of the labeled modal logic and
are rich enough to be able to reason not only about outcomes of games, but also about
intermediate states of games. As we will show in the second part of this article, at
least for the purposes of the verification of privacy properties of multiparty computa-
tion protocols, one only needs to be able to reason about outcomes of the games. Our
proposed logical calculus does just that and, thus, it provides a more succinct logical
framework for such arguments. To achieve this goal, we base our logical system not
on modal logic, but on intuitionistic propositional calculus. If the systems above add
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labels to modality, we add labels to the intuitionistic implication. Although Gédel’s
translation can not be used in order to formally embed our calculus into any existing
modal logic of games, our work shows that a connection between label modality and
labeled intuitionistic logic exists, but on a less formal level than in the results of Godel,
McKinsey, and Tarski.

At the center of our formal logical system is a new propositional connective ) —¢ ¢
that we call coalition-controlled implication or controlled implication, for short. In-
formally, v —¢ ¢ means that a coalition of players c has a strategy to achieve ¢ if
condition ¢ is guaranteed to be true by the end of the game. Unlike, say, in Hoare
Logic [13], statements ¢ and ) in controlled implication are both “postconditions” in
the sense that they both make claims about the outcome of the game.

Note that ¢ —7 1) means that ¢ implies ) without any parties having to follow a spe-
cific strategy. Thus, this is just the standard logical implication ¢ — . For simplicity,
we will normally use the notation ¢ — v rather than ¢ —< .

We will show the calculus of cooperation to be a sound and complete logical system
(with respect to the game semantics defined later) that describes logical properties
of controlled implication. An example of such a property, provable in the calculus of
cooperation, is the formula

(0 =) = (¥ =7 x) = (0 = x)),

where ¢ and d are two disjoint coalitions and ¢, d denotes the union of these coalitions.

Another distinctive feature of the calculus of cooperation is its underlying assump-
tion that each player makes no more than one move. This, on one hand, makes our
game similar to strategic games, where each moves consists in choosing a strategy for
the whole game. On the other hand, a player in our game can be viewed as a resource
owned by a coalition. This view connects the calculus with linear logic [8]. However,
these two logical systems differ in that resources in linear logic are identified with
propositions, not implication labels. The same feature is also present in progressing
collaborative systems [14].

Finally, note that although the calculus of cooperation is based on intuitionistic logic,
its game semantics is considerably different from the game semantics for intuitionistic
logic [17]. The latter is restricted only to very specialized two-party dialog-type games.

The paper consists of two distinct parts: Sections 2 and 3.1, in which we describe the
class of game, introduce the logical system, and prove its completeness, and Section 4,
where we illustrate use of the calculus for reasoning about privacy in multiparty com-
putation protocols on several examples.

2. CALCULUS OF COOPERATION
2.1. Game Definition

Throughout this article, we will assume a fixed infinite set of player names p,q, 7, ....
As syntactical objects, these player names (or, for short, “players”) are similar to the
atomic proposition names A, B, C,.... An arbitrary finite set of players will be called
a coalition. The set of all coalitions is denoted by C. We will use letters c,d,e,... to
denote coalitions.

Definition 2.1. A quadruple F = (S, <, A, {~“}.cc) is called a game frame if

(1) S is a set of “states” of the game.

(2) =<is a transitive and reflexive “accessibility” relation between the states.

(3) A(s) is a set of players called the set of “active” players in state s. The following
monotonicity condition will be assumed: if s < s/, then A(s") C A(s).

(4) For any coalition ¢, relation ~+° is a binary relation between states such that
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Fig. 1. A Game Frame

(a) if p € A(s) then there is s’ such that s ~? ¢,
(b) if s ~¢ &', then s < ¢/,

(c) if s~ ¢, then ¢ = A(s)\A(s'),

(d) if s~ s', then s = 5’

In the above definition, as well as through the rest of this article, we write s ~ s
instead of s ~+? s’. Informally, s ~+¢ s’ means that coalition of players c can move the
game from state s to state s’. Later in this article we will use notations s < s’ and s’ = s
interchangeably.

An example game frame is given in Figure 1. In this frame, S = {1,2,3,4,5,6,7} and
the accessibility relation < is specified by the arrows on the diagram. Relation ~¢ is
defined by the arrows labeled with coalition c. Thus, for example, player p can on its
own move the game from state 1 to state 2. However, it takes a coalition of players p
and ¢ to move from state 1 to state 5. Note that although state 7 is formally “accessible”
from state 3, there is no coalition powerful enough to make this transition. Player p
is active in states 1 and 3. Player ¢ is active in states 1 and 2. The notion of “active”
player is introduced in order to guarantee that each player will make exactly one move
in the game. This appears to be a severe restriction on the type of games we consider.
However, when we later consider protocol-based games, we will interpret moves as
commitments of a player to a particular strategy, thus making our results applicable
to a much wider class of games.

There are different claims that can be made during the game. However, we will
only be interested in statements about outcomes of the game. Such statements are
monotonic in the sense that once they become true they will remain true through the
end of the game.

Definition 2.2. A game frame is finite if the set of states is finite and the set of
active players at each state is finite.

Definition 2.3. A game is a pair G = (F,IF), where F is a game frame and I+ is a
relation between states of the game frame and propositional variables that satisfies
the following monotonicity property: if u IF A and v < v, then v I A.

Figure 2 specifies a game based on the game frame from Figure 1. The propositional
letter A next to state 2 means that 2 I+ A.

Definition 2.4. A game (F,IF) is finite if frame F is finite.

Definition 2.5. For any two states v and v of a game frame and any coalition ¢, we
use the notation u ~§ v to state that there is a chain of states u = vy ~ v ~
<ot oy, =vsuchthatn >0andc; U---Ue, =c.

We will write u ~+, v to denote u ~»2 v.
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Fig. 2. A Game

LEMMA 2.6. Ifu~», vthen u=n.
PROOF. See Definition 2.1, part 4d. O

2.2. Syntax and Semantics

The language of the calculus of cooperation consists of atomic propositions A, B,C, ...,
player names p, q,r,..., the constant | denoting falsity, the disjunction symbol Vv, the
conjunction symbol A, the implication symbol —, and parentheses.

The set of formulas in the calculus of cooperation is defined as the smallest set such
that

— any atomic proposition is a formula,

— 1 is a formula,

—if ¢, ¢ are formulas, then (¢ V ¢) and (¢ A ¢)) are formulas,

—if ¢, are formulas and c is a finite set of players (“coalition”), then (¢ —¢ ¥) is a
formula.

As is customary when writing a formula, we will normally not show the outer-most
pair of parentheses.

Definition 2.7. For any game, the forcing relation |- between game states and for-
mulas is defined as the following extension of the relation I between game states and
atomic propositions:

(1) s ¥ L for any state s,

(2) slF¢p Ay ifand onlyif s |- ¢ and s I+ ),

3) slF¢pvyifand onlyif sk ¢ or s - 1,

(4) s - ¢ —¢ ¢ iff for any state u = s, if u IF ¢ and ¢ C A(u), then there is v such that
u~< vand vl .

For example, in the game from Figure 2, 1 |- B —? C and 1 I A —? C. The latter is
true because player p is not active in any state where A is forced.

THEOREM 2.8 (MONOTONICITY). If sl ¢ then s' I+ ¢ for any s < s'.
PROOF. Induction on the structural complexity of formula ¢ . O

Definition 2.9. We say that sequent I' F¢ A is true at state s of a game iff s I+
AT =€ VA.

In addition to the primitive symbols of the calculus of cooperation, we will also use
several abbreviations. First of all, as is common in logic, by T we mean the implication
1 — 1. Second, for any player p, by [p] we mean the formula T —? L. From Defini-
tion 2.7, it is easy to see that s IF [p] if and only if player p is “committed” at state s (that
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is, p ¢ A(s)). Finally, for any coalition of players ¢, by [¢] we mean the set of formulas
{lp] | p€c}.

2.3. Axioms and Rules

The calculus of cooperation (CC) can be viewed as an extension of the intuitionistic
propositional logic (IPL). We will present an axiomatization of the calculus which is
a variation of multi-succedent Gentzen-style axiomatization of IPL (see, for example,
[20D).

The two axioms of the calculus are

O o Lpe

The first axiom says that if ¢ is true at some state, it will be true after any c-move.
The soundness of this axiom follows from Theorem 2.8. The validity of the second
axiom follows from the fact that, by Definition 2.7, formula | is false at any state of
the game.

Below we list the inference rules of our system. The soundness of several of them
may not be obvious; we prove soundness below in Theorem 2.10.

The structural rules are standard contraction and weakening rules with an added
coalition parameter:

O, T ¢ A, A A

rrrean ©
T A
rrred a W

The rules for disjunction are also standard rules with an added coalition parameter:

¢ TH A TV e A
OV, I T A A

(Lv)

A9
TH A ¢V

The three rules for conjunction are:

(Rv)

Lo A

Torgrea &)

TH A T [d ALY
T, Fd AN A

RL)

P A T AL
LIV F AN oA

where in rules (R}) and (R?), coalitions c and d are assumed to be disjoint. Informally,
the first of these rules says that if coalition ¢ has a strategy for achieving ¢ and coali-
tion d has a strategy for achieving v (which might rely on knowledge of the move by
coalition ¢), then, working together, these two coalitions can achieve ¢ A 1. The rules
for coalition-controlled implication are

2
R2)
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Lo  TLyldFA
DT, ¢ 5 ¢ ¢ A
U [d ey

T g =

The next two rules resemble the IPL “cut” rule. We call the first rule a “cooperation”
rule because it shows how strategies of two disjoint teams can be combined together.

(L)

(R-)

e Ao I, ¢,[c] F¢ A’

DI Eed AN

where coalitions ¢ and d are disjoint. The name “cut” is reserved for the second rule:

(cp)

oA fpl T pl e A
[T+ A A

where p ¢ c. Our final rule is the self-determination rule:

(cuT)

T ke [d]
TF[cd|

where coalitions c and d are disjoint. Informally, this rule says that a player can not be
become inactive through a move by a coalition that does not include this player.

(sD)

2.4. Soundness

THEOREM 2.10 (SOUNDNESS). Every sequent provable in the calculus of coopera-
tion is true in every state of every game.

PROOF. Induction on the size of the derivation.

Let us start with the two axioms. First, to show that s IF ¢ —¢ ¢, assume that u I ¢
for some u > s such that ¢ C A(u). Let ¢ = {p1,...,pn}. By Definition 2.1, there is a
chain u ~»Pt v; ~»P2 ... ~Pn g, Thus, u ~¢ v,. By Theorem 2.8, v,, IF ¢. Therefore,
s Ik ¢ —¢ ¢. To justify the second axiom, we need to show that s I 1 —¢ 1. This,
however, is true by Definition 2.7, since u ¥ L for any state u. Next, we consider the
inference rules.

Rule (W).. To prove the soundness of the weakening rule, assume that u IF ATAATY,
for some u > s such that ¢ Ud C A(u). By the rule’s hypothesis, there is a state v
such that u ~¢ v and v I \/A. Let d = {p1,...,pn}. By Definition 2.1, there is a
chain v ~»Pt vy ~»P2 ... ~sPr g Thus, u S By Theorem 2.8, v, IF \/ A. Hence,
v IF VAV \/ A Therefore, s IF AT A AT’ =% \/ A v \/A’. The soundness of the
contraction rule (C) can be established similarly.

Rule (Ly/).. Assume that u IF (¢ Vo) AAT A AT for some u = s, such that ¢ C A(u).
Thus, either u IF ¢ A AT or u Ik A AT'. Without loss of generality, assume the former.
By the first hypothesis of the rule, there is a node v such that v ~¢ v and v I+ \/ A.
Hence, v I+ \/ Av\/ A’. Therefore, s IF (¢ VO)AATAAT —¢\/ Av\/ A’. The soundness
of rules (Ry) and (L) can be established similarly.

Rule (R}).. Suppose that u I AT A AT’ for some u = s such that cUd C A(u). By
the rule’s first hypothesis, there is a state v such that v ~¢ v and v IF \/ A V ¢. By
Theorem 2.8, v I AT". Notice that v I+ A[c] because u ~§ v implies that each member
of ¢ is not active in v. Thus, by the second hypothesis of the rule, there is a state w

such that v ~% w and w IF \/ A’ v 1. Note that u ~%% . By Theorem 2.8, w I+ VAV .
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Therefore, w I \/ AV \/ A’ V (¢ A ¢). The soundness of rules (R%2) and (CP) can be
established similarly.

Rule (L_,).. Consider any state u = s such that ¢ C A(u) v IF AT, v I AT, and
u Il ¢ —¢ 9. By the rule’s first hypothesis, u I+ ¢. Taking into account v > v and u IF ¢,
we can conclude that there is a state v such that v ~¢ v and v I+ 4. By Theorem 2.8,
vIF AT and v IF AT". Therefore, by the rule’s second hypothesis, v IF \/ A.

Rule (R_,).. Assume that u I AT for some u > s such that d C A(u). Let d =
{p1,...,pn}. By Definition 2.1, there is a chain u ~»P* vy ~+P2 ... ~sPn g, Thus, u ~2 v,,.
We will show that v,, IF ¢ —¢ 1. Indeed, let w > v,, be any node such that w I ¢ and
¢ C A(w). Note that u ~? v,, implies that no members of coalition d are active at w.
Thus, w I+ [d]. By Theorem 2.8, w I+ AT. Hence, by the rule’s hypothesis, there is a

state ¢ such that w ~¢ ¢t and ¢ I ¢. Therefore, v, IF ¢ —¢ 1.

Rule (cUT).. Consider any state v = s such that ¢ C A(u) and u IF AT A AT’. By
the rule’s first hypothesis, there is a state v such that v ~§ v and either v I \/ A or
v Ik [p]. In the first case, the desired result is already established. Assume that v I [p].
Thus, p ¢ A(v). Taking into account that ¢ = A(u)\A(v) and p ¢ ¢, we can conclude that
p ¢ A(u). Hence, u I [p]. Thus, by the rule’s second hypothesis, there is a state v’ such
that u ~¢ v and v’ IF \/ A’. Therefore, v' IF \/ A’ v/ A’.

Rule(SD).. Consider any u >~ s such that u I AT. If there is at least one p € ¢ such
that p ¢ A(u), then u I- \/[c, d]. Assume that ¢ C A(u). By the rule’s hypothesis, there is
a state v such that u ~¢ and v I \/[d]. Thus, there is p € d such that p ¢ A(v). Hence,
p ¢ A(u), because A(u) = A(v) Uc and ¢cNd = @. Therefore, u IF \/[c,d]. O

3. COMPLETENESS AND DECIDABILITY

THEOREM 3.1 (COMPLETENESS). If a sequent is true in every state of every finite
game, then it is provable in the calculus of cooperation.

The rest of this section is almost entirely dedicated to the proof of the above theorem.
Suppose that " #¢ A. Let ® be a finite set of formulas that contains I' U A and is closed
with respect to subformulas and IT be the finite set of all player names that occur in ®
and c.

3.1. Consistent Triples

Definition 3.2. For any X,Y C ® and any ¢ C II, triple (X, ¢,Y) is called consistent
if X Fey.

Note that the notation [¢] introduced earlier can be viewed as a “square bracket”
function that maps a coalition ¢ into the set of formulas Z = [¢]. We will use the nota-

tion v/Z for what, essentially, is the inverse “unsquare” function:

Definition 3.3. VZ ={p|[p| € Z}.

LEMMA 3.4. For any consistent triple (X,c,Y), sets VX, ¢, and VY are pairwise
disjoint.

PROOF. To show that three sets are pairwise disjoint, we need to prove that any two
of them have no common elements. Assume the opposite and consider three possible
cases.

(1) If p € VX N¢, then consider derivation
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1k L LF
Fiol &) e W
(L— L) =P LIP (L)
Xy )

This contradicts the assumption that triple (X, ¢,Y) is consistent.
(2) If p € VX NVY, then consider derivation

[p] - [p]
ey W
Again, this contradicts the assumption that triple (X, ¢, Y) is consistent.

(3) If p € cNVY, then consider derivation

I
1l lrFl—o1 [p], LF L

(Lo 1) =P 1L, L —1FP L
[p], L — LFP L
FP (L — 1) =P L
XFy
Once again, this contradicts the assumption that triple (X, ¢, Y') is consistent.

(W)
(L)
(DEF)

(R-)
(W)

O

3.2. Saturated Triples

Definition 3.5. Triple (X,c,Y) is semi-saturated if union v X U cU /Y contains all
players p € II.

LEMMA 3.6. Iftriple (X,c,Y) is consistent and semi-saturated, then 11 is equal to
disjoint union VX UcU VY.

PROOF. See Lemma 3.4 and Definition 3.5. O

LEMMA 3.7 (SEMI-SATURATION). For any consistent triple (X,c,Y) there are sets
X' 2 X andY’' DY such that triple (X', ¢,Y’) is consistent and semi-saturated.

ProOOF. It will be sufficient to show that if (X,¢,Y) is a consistent triple, then for
any player p ¢ c either triple (X U {[p]},¢,Y) or triple (X,¢,Y U {[p]}) is consistent.
Indeed, assume the opposite: [p], X F°Y and X F° Y, [p] and consider the derivation

X K, [p] b, X FeY
XFey
This contradicts the assumption that triple (X, ¢,Y) is consistent. O

Definition 3.8. Triple (X,¢,Y) is saturated if it is semi-saturated and X + ¢ V ¢
implies that ¢ € X or ¢ € X for any formula ¢ vV ¢ € .

(cuT)

LEMMA 3.9 (SATURATION). For any consistent semi-saturated triple (X,c,Y') there
isaset X' O X such that triple (X', ¢,Y) is consistent and saturated.

PROOF. It will be sufficient to show that for any consistent semi-saturated triple
(X,¢,Y) and any formula ¢V, if X F ¢V 1), then either (X U{¢},¢,Y) or (XU{v},¢,Y)
is consistent. Indeed, assume the opposite and consider derivation

X, pF°Y X, pFeY
XFovay X,V ey
XF°Y

(Lv)
(cp)
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This contradicts the assumption that triple (X, ¢,Y) is consistent. O

3.3. Accessibility Relation > on Triples
Definition 3.10. We say that (X, co, Y2) = (X1, ¢1,Y7) if X5 D X;.

LEMMA 3.11. Relation = is transitive and reflexive.

PROOF. This lemma follows from Definition 3.10 and the transitivity and reflexivity
of the subset relation. O

LEMMA 3.12. If(XQ’CQ’Yé) b (Xl,Cl,le), then /X5 O v/ X1.

PRrROOF. If p € v/ X7, then [p] € X;. Hence, by Definition 3.10, [p] € X». Therefore,
peEVXe. O

LEMMA 3.13. For any triple (X,c,Y) and any formula ¢ —% 1) € @, if X ¥ ¢ =7 ),
there is a consistent saturated triple (X',d,Y') = (X,¢,Y) such that ¢ € X' and ¢ € Y.

PROOF. Consider triple (X U {¢},d, {¢'}). Let us first show that this triple is consis-
tent. Assume the opposite and consider the derivation

X, ¢t
XkFo¢—=dy
This contradicts the assumption that X ¥ ¢ —% v. Thus, (XU{¢},d, {¢}) is a consistent
triple. By Lemma 3.7, there is a semi-saturated consistent triple (X1, ¢, Y1) such that

X1 2 XU {¢} and Y1 D {¢}. By Lemma 3.9, there is a saturated consistent triple
(X',c,Y')suchthat X’ D X; D X U{¢}and Y’ =Y; D {¢}. O

(R-)

3.4. Move Relation ~:¢ on Triples

Definition 3.14. We say that (X1,c1,Y1) ~¢ (Xa,co,Ys) if the following properties
are satisfied

(1) X3 2 X,

@) d= VX2\vX1,

(3) if d C C, then Cy = Cl\d and Yl - 1/2,
(4) lfd = Qa then (X17017Y1) = (X2a6253/é)-

LEMMA 3.15. Relation > satisfies the following properties

(1) if u~° v, then v = u,
@ u~viffu=no.

PROOF. Both properties follow immediately from Definition 3.14. O

LEMMA 3.16. For any consistent saturated triple v = (X,,c,,Y,) and any set of
players d such that VX, Nd = @, X, - ¢, and X, - ¢ —? 1), there is a consistent
saturated triple v = (X,, ¢y, Y,) such that u~? v and X, - .

PRrROOF. We will consider three cases separately.
Case 1: d = @. Take v = u. By Lemma 3.15, u ~ v. So, we only need to show that
X, F 1. Indeed, consider derivation

Yy
Xuté Kb r v Ezv))
XuF o= Xu, o > - P -

Xu b
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Case 2: d # @ and d C ¢,. We first will show that triple (X, U {¢} U [d], c,\d, Y4) is
consistent. Assume the opposite. Let derivation D be

GF
Xut ¢ w,[dlwr))
Xuyd =49 F g T Xup, [d] e\ Y,

(cP)
Xu,p =3 Fou Y,

Consider derivation
D
Xu b ¢ Xu, ¢ =% eu Yy,
Xu Feu Yy

This contradicts the consistency of triple u. Therefore, (X, U {¢} U [d], ¢, \d,Y,,) is con-
sistent. We will show that this triple is semi-saturated. Indeed,

X, U{YtUldlU (c,\d) UVY, 2 (vVX,Ud) U (c,\d) UVY, =
=X, Uc, UVY,.
Finally, X, U ¢, U Y, D II, because triple u is saturated. By Lemma 3.9, there
exists a set X’ D X, U {¢} U [d] such that triple v = (X’,¢,\d,Y,,) is consistent and
saturated. To show that u ~+? v, we only need to establish that d = v/X’\v/X. Indeed,

by Lemma 3.6, v X Lic, U\/Y, = ITand vX'Li(c,\d)U\/Y, = II. Therefore, d = vVX'\VX.
Finally, X' F ¢ can be established through the derivation

(cp)

Yy
X'k

Case 3: d ¢ c,. First, we will show that the triple (X, U {¢} U [d], @, [II\(vVX, Ud)]) is
consistent. Assume the opposite. Let D be the derivation:

(w)

Xulk ¢ Xu, 9, [d] - [M\(VXu U d)]
Xy ¢ =4 o 4 [I\(VXy U d)]

(L)

and D; be the derivation

D
Xu k¢ —dqp Xy ¢ =4 9 = [T\ (V Xy U d)]
Xu H I\ (vVXu U d)]

Xy F [M\VXy
X+ [VY4 Ucy)
Xu = [VYul, Vyee, 2]

Note that the above derivation takes into account that d U IT\ (v X, U d) = TI\vX,,,
which is true because, by an assumption of the lemma we are proving, vX, Nd = &.
Let us also assume that D, is the derivation

(cp)

(sp)
(LEMMA 3.6)
(Rv)

1FL 1k
Fiol B e ((W))
Lo
1 1 P 1 FP)V, ”
(Lo D)o L) vpeen

([Pl FP) Vp € cu
(Ip o) Vp € cu
Vpee, [Pl Fo+

(W)
(Lv)
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Consider the derivation

D1 Dy
Xk V¥ Vpee Wl Voo T
Xy o [\/Yy]
Xorev W

This contradicts the consistency of triple w. Therefore, triple (X, U {¢} U
[d], @, [TT\(v/X, U d)]) is consistent. We will show that it is semi-saturated. Indeed,

X, Uy} UlduguV[I\(VX,Ud) 2
2 VX, UdU((I\(vVX,Ud) =1L

By Lemma 3.9, there is X' O X, U {¢} U [d] such that triple v = (X', &, [II\(vX, U
d)]) is consistent and saturated. To show that v ~+? v, we only need to establish that
d = vVX'\vX. Indeed, by Lemma 3.6, VX' LI @ U \/[IT\(v/X, Ud)] = II. Hence, v X' LI
(II\(vX, Ud)) =1II. Thus, VX’ = /X, Ud. Recall, however, that by the assumption of

the lemma that we are proving, /X, Nd = @. Therefore, d = v/X'\vX. Finally, X' - ¢
can be established through the derivation

YEY
X'

(W)

LEMMA 3.17. Forany ¢ € ®, any n > 1, and any chain of consistent triples:
(X1,¢1,Y7) ~N (X3, 00, Y2) ~%2 L
comsdn—z (anlv Cn—1, Ynfl) ~dn—1 (Xru Cn, Yn)
ifcp =diU---Ud,_1 and X, b ¢, then ¢ ¢ Y1.

PROOF. Induction on n. If n = 1 and X; F ¢, then we need to show that ¢ ¢ Y;. Proof
by contradiction. Let ¢ € Y;. Then consider the derivation

X1 ¢

Xy, W

This contradicts the consistency of triple (X, ¢q,Y7).
Let n > 1. By Definition 3.14, d; = ¢;\c2. Hence, ¢ = da U --- U d,,—;1. Thus, by the
induction hypothesis, ¢ ¢ Y>. We are left to notice that, by Definition 3.14,Y; CY,. O

3.5. Canonical Frame
Definition 3.18. For any triple u = (X, ¢, Y), let A(u) = cUVY.
LEMMA 3.19. For any two consistent semi-saturated triples u and v,

(1) if v = u, then A(v) C A(u),
(2) if u~°vthen c = A(u)\A(v).

PROOF. See Lemma 3.6. O

Definition 3.20. Let F = (S, A, =,~), where S is the set of all consistent and satu-
rated triples and A, > and ~ are the function and two relations defined above.

LEMMA 3.21. Fisa frame.
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PROOF. See Lemma 3.11, Lemma 3.15, and Lemma 3.19. In addition, we need to
show that for any consistent saturated triple « = (X,¢,Y) and any player p € A(u)
there is a saturated consistent triple v such that v ~? v. We will use Lemma 3.16 to
construct this v.

Note that /X N {p} = & by Lemma 3.6 and Definition 3.18. We only need to present
formulas ¢ and ¢ such that X - ¢ and X P ¢ — 1. Take ¢ = ¢ = (L — 1) and notice
that X I ¢ follows from

1F L
X, LF L
XFLo L

(W)
(R-)

and X F?P ¢ — ¢ follows from

P
X,[pl,¢F @
XFP ¢ — ¢

(W)
(R-)

O

3.6. Canonical Game

Definition 3.22. For any propositional variable A, we say that (X,c,Y) IF A if and
only if X + A.

LEMMA 3.23 (MAIN). For any formula 7 € ® and any consistent saturated triple
(Xa C, Y))

(X,¢,Y) Ik rifand only if X + 7.
PROOF. Induction on structural complexity of formula 7.

(1) Assume that = = L. It will be sufficient to show that X ¥ L. Indeed, assume the
opposite and consider the derivation

XFL 1 F
_Xk
XFeY
This contradicts the consistency of triple (X, ¢,Y)
(2) For any propositional variable A, by Definition 3.22, (X,¢,Y) IF A if and only if
X+ A.
(3) Let 7 be a conjunction of the form ¢ A . If (X,¢,Y) IF ¢ A9, then (X,¢,Y) IF ¢ and
(X,c,Y) I- 9. Hence, by the induction hypothesis, X I ¢ and X F ¢. By rule (R}),
X koA
On the other hand, suppose that X - ¢ A 9. First we will show that X - ¢. Indeed,

(cP)
(W)

N0}
X. 6N b XFoAy X oF o
XFory g &) Xornvoore &)
XF o (cp)

Similarly, one can show that X | ¢. Hence, by the induction hypothesis, (X,c,Y) I+
¢ and (X, ¢,Y) Ik 4. Therefore, (X,c,Y) IF ¢ A.

(4) Let 7 be a disjunction of the form ¢ v ¢. If (X,¢,Y) I ¢ V ¢, then (X,¢,Y) IF ¢ or
(X,¢,Y) I 9. Without loss of generality, assume that (X, ¢,Y) IF ¢. By the induction
hypothesis, X + ¢. Hence, by rule (Ry), X b ¢ V 1.
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Next, assume that X + ¢ V 9. Since set X is saturated, either ¢ € X or ¢ € X.
Without loss of generality, assume the former. Consider the derivation

¢ro
X k¢

Thus, X + ¢. Hence, by the induction hypothesis, (X,c,Y) I+ ¢. Therefore,
(X,c,Y) Ik ¢V 1.

(5) Let formula 7 be an implication of the form ¢ —¢ . First, assume that X - ¢ —% 4.

We will show that (X, c,Y) IF ¢ —¢ 1. Consider any node u = (X, c,, Y,,) such that
u > (X,6,Y), ul- ¢, and d C A(u). By the induction hypothesis, u IF ¢ implies
that X, + ¢. By Lemma 3.4, d C A(u) implies that d N /X, = @. Therefore, by
Lemma 3.16, there is a triple v = (X, ¢,, Y,) € S such that v ~+¢ v and X, - 9. By
the induction hypothesis, v I 1.
Next, we will assume that X ¥ ¢ —? ) and show that (X,c,Y) ¥ ¢ —? ¢. Indeed,
by Lemma 3.13, there is a triple u = (X,,,d,Y,) = (X,¢,Y) such that ¢ € X, and
1 € Y,. By the induction hypothesis, u I ¢. We will now prove that v ¥ ¢) for any
chain u = v; ~% vy ~%2 ... 4y =y such that dy Udy U ---Ud,, = dand n > 1.
Indeed, let v = (X,,¢,,Y,). By Lemma 3.17, ¢ € Y, implies that ¢ ¢ X,. By the
induction hypothesis, v }¥ 1. Thus, v ¥ v for any v such that u ~»¢ v. Therefore,
(X,c,Y) W ¢ =9

(W)

O

3.7. Final Steps

We are ready to finish the proof of Theorem 3.1. By our assumption, I" ¥¢ A. Hence,
(T', ¢, A) is a consistent triple. By Lemma 3.7 and Lemma 3.9, there is a consistent and
saturated triple (I, ¢, A’) such that T C TV and A C A’.

We will show that (I, ¢, A") ¥ AT —¢\/ A. Assume the opposite:

(I, e, A IE AT = \/ A, €]

Note that I" C I'V. Thus, by combination of an axiom and weakening rule, IV - ~ for all
~ € I'. Hence, by Lemma 3.23, (I, ¢, A’) I AT. Then, by assumption (1), there is a node
v = (Ty, ¢y, Ay) such that (I, ¢, A’) ~¢ v and v I \/ A. Thus, v I+ §; for some §, € A.
By Lemma 3.23, T, - §p. By Lemma 3.17, g ¢ A’. Hence, §; ¢ A. This contradicts the
choice of §y. This concludes the proof of Theorem 3.1.

COROLLARY 3.24. The set of all sequents provable in the calculus of cooperation is
decidable.

PRrROOF. Follows from the completeness with respect to the class of all finite
games. O

4. MULTIPARTY PROTOCOLS AS GAMES

The main motivation for our development of the calculus of cooperation was our desire
to find a natural formal framework for reasoning about privacy in multiparty computa-
tion protocols. In this section, we demonstrate how privacy properties in such protocols
can be expressed through coalition-controlled implication in a certain game defined by
the protocol. We then use the calculus of cooperation to formally verify privacy proper-
ties in several multiparty computation protocols.

Secure Multiparty Protocols.. Multiparty computation is an evaluation of a function
of multiple inputs contributed by different parties. Informally, a set of collaborative
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Fig. 3. Interaction Diagram for Conjunction and Exclusive Or Protocols

actions taken by the involved parties to arrive at the desired value is known as a
protocol for the multiparty computation.

A protocol is executed over a set of channels connecting the parties. On these chan-
nels, messages are sent from one party to another, and sometimes from one party to
the entire group. After interacting via messages sent on these channels, one or more
of the parties arrives at the desired value. Informally, a protocol is considered correct
if it leads to a successful evaluation of the desired function when all parties follow the
protocol specification.

In each of the protocols we present and analyze in this article, we assume that all
parties follow the protocol exactly as specified. In particular, we adopt the passive
honest-but-curious model [4], where parties create and send messages exactly as di-
rected by the protocol. However, we assume curiosity causes these parties to examine
all information they have received, and to try to learn as much as they can about other
parties’ inputs. Additionally, we use a secure channel model, where it is assumed that
each pair of parties is connected by a dedicated communication channel which is im-
mune to eavesdroppers. In lieu of individual physical communication channels, it can
be assumed that the secure channel is implemented using symmetric-key cryptogra-
phy, as long as protection against adversaries with polynomially-bounded resources is
sufficient.

The adjective secure, when applied to a multiparty computation protocol, captures
the fact that the protocol achieves not only correctness, but some additional explicitly-
stated security goals [10; 2]. One very common security goal, resiliency [6; 25; 4], in-
volves the protocol’s ability to complete the desired function evaluation despite the
fact that a subset of the parties do not follow the protocol specification. Another com-
mon objective is privacy (see, for example, [16; 15]), where individual parties’ input
values do not leak to other parties or outsiders as a result of the protocol’s execution.
Our main intended application of the calculus of cooperation is privacy verification.
However, it also can be used to reason about other properties of protocols.

We will use coalition-controlled implication to reason about protocols in a manner
very similar to the way Hoare triples [13] are used to reason about programs. Different
other logical calculi for proving [3; 7] and model checking [22; 27] general security
properties have been suggested before. These works focus on low-level languages that
can be used to state and verify different security properties of cryptographic protocols.
The calculus of cooperation allows one to reason about privacy properties on a more
abstract level that does not deal with key exchanges, encryption, or authentication
issues.

4.1. Boolean Function Protocols

Conjunction Protocol.. We start with a very simple example of a four-party protocol
executed on the graph in Figure 3. Under this protocol, parties A and B pick arbitrary
boolean values a and b and send them to party C. Party C computes value c as the
conjunction of ¢ and b and sends the result to party D. Note that the behavior of party
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/N
XY ety
A \b/ c D
Fig. 4. Interaction Diagram for Modified Exclusive Or Protocol

C is completely deterministic, but parties A and B have choices in picking “arbitrary”
values. We will consider the choices made by A and B as “moves” in a game. Clearly,
parties A and B can cooperate to force any fixed boolean value of c. For instance, they
can cooperate to achieve ¢ = 0. In the language of the calculus of cooperation, this
can be expressed as T —45 ¢ = 0. Another property of the same protocol is that if
the value of a is known to be 1, then party B can force the value of ¢ to be 1. In our
notation, thisis:a =1 =% ¢ =1.

Exclusive Or Protocol.. Our second example is also based on Figure 3, and is essen-
tially the same protocol described above, but this time we assume that party C com-
putes the exclusive or of bits a and b. It is easy to see that our two previous claims about
the protocol: T —4% ¢ = 0and a = 1 =% ¢ = 1 still hold. However, for the modified
protocol something more interesting can be claimed: party B can force ¢ = 1 no matter
what the value of « is, as long as A makes the first move, and this move is known to
B.! Expressed in the language of the calculus of cooperation, this is: [4] =7 ¢ = 1.

Modified Exclusive Or Protocol.. Let us now consider a modified exclusive or protocol
(see Figure 4), in which bits a and b are both generated by the same party. We want
to capture the idea that once bit a is sent, party A still can force condition ¢ = 0
through an appropriate choice of b. For this, we will abandon our implicit assumption
that players in the game are parties in the protocol. Instead, we will assume that
“communication channels” (such as a and b) are the true players in the game. A protocol
party could, thus, be viewed as a coalition of such channels. Using this “channels-as-
players” approach, we can now state that [a] = ¢ = 1.

Of course, generally speaking, there may be some required dependency between two
messages sent by the same party in a protocol. In that situation, once one of the mes-
sages is sent over the first channel, the range of available moves for the second channel
is reduced.

Protocol Verification.. Multiparty protocols can specify message interdependencies
that must be enforced by individual protocol parties. For example, ¢ = a @ b is such a
specification for party C in the Exclusive Or Protocol. In this article, we distinguish
between local and global properties of a multiparty protocol. A local protocol property
is one that follows from the specification of the protocol for any single party; a global
property is property of the protocol as a whole. For example, a = ¢ — b = 0 is a local
property of the Modified Exclusive Or protocol, because it follows from ¢ = a®b. On the
other hand, T —%" ¢ = 1 is a global property of the protocol. By protocol verification,
we will mean the derivation of a global protocol property from local protocol properties
of the protocol in the calculus of cooperation. Below is an example of such a derivation:

1Note that a fundamental property of our notion of a game (implicit in Definition 2.3) is that once a party
makes a move, that move becomes known to all other parties.
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b=-aklc=1

[a] F® b= —-a b=-a,[b]Fc=1 (W)
(cp)
TreT T,lalFbe=1
Trebe=1 ©r)
== (RS)

FT sabe=1

where T ¢ T is an axiom of the calculus, [a] F* b = —a is a local condition for party A,
and b = —a - ¢ = 1 is a local condition for party C.

Privacy Verification.. Our main intended application of the calculus of cooperation is
proving privacy properties of multiparty protocols. For example, for the Exclusive Or
protocol, knowledge of a does not reveal any information about c. More formally, this
claim can be stated as follows, using the channels-as-players approach: any combina-
tion of values a and ¢ of channels ¢ and ¢ that can occur in the protocol independently
can also happen simultaneously. Using the language of games, if the coalition of all
players in the game can force a = @ and the same coalition can force ¢ = ¢, then this
coalition can also force the conjunction a = a A ¢ = é:

T _>a,b,c a= &7 T _>a,b,c c=¢ - T _>a,b,c (a =alNc= é)

In the statement above, we included all protocol channels, but of course only channels a
and b have move choices in this particular protocol. Here is the proof of this statement
in the calculus of cooperation:

[aFPb=a®é
o g —=a [a,d), T =®bcc=¢Flb=a®eé W) b=a®ékc=¢
T oabeg=a+Ca=a W la,d], T s»@bcc=étbe=c P
T sabeqg=q,T s0bcc=¢ THC (a=aAc=2é) ®)
(R=)

T oebea=aT 00 c=0FT 5%%¢ (a=aAc=2)

where statement -% @ = G is a local condition at party A, statement [a] F* b=a @ ¢isa
local condition at party B, and statement b = a & ¢ - ¢ = ¢ is a local condition at party
C.

4.2. Dating Cryptographers Protocol

We close this article by using our logical calculus to verify privacy properties of a less
trivial protocol. Though we have verified the privacy properties of Chaum’s Dining
Cryptographers protocol [5] using the calculus of cooperation, we found the verification
too lengthy to serve as an example in this article. Instead, we demonstrate here how
the calculus of cooperation can be applied to verify privacy properties of a protocol we
designed to solve a problem which we call the Dating Cryptographers problem. It is a
two-input version of a problem known in the literature as Anonymous Veto [11].

Description of the Problem.. Suppose that two individuals, known as Alice (A) and
Bob (B), are trying to determine if they are in love with each other. Both parties fear
face-to-face rejection, and therefore don’t want to announce their feelings to the other
person explicitly. Instead, they enlist a third party, a priest (P), to help. (If they deter-
mine that they are both in love, they will get married.) Let bits a and b, respectively,
represent the feelings of Alice and Bob, where the appropriate bit has value 1 exactly
when that individual is in love. However, in case one or both of them is not in love, Alice
and Bob don’t want to suffer the embarrassment of even allowing the priest to know
the feelings of each party. With the help of the priest, they want to engage in a protocol
which reveals only the conjunction of bits ¢ and b, and (of course) any information that
can be logically deduced from it.
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Fig. 5. Interaction Diagram for Dating Cryptographers Protocol

Description of the Protocol.. At the start of the protocol (see Figure 5), Bob knows his
bit b and Alice knows her bit a. As before, we represent this internal state of each party
with a self-loop indicating that the party sends this information to itself. Bob initiates
the protocol by selecting a random key bit %k, and a random label bit ¢, which he sends
to Alice. In addition, Bob prepares two bits eg and ¢;, as follows. Value e, is computed
as b @ k, where @ denotes the exclusive-or operation, and the remaining value e, is
simply a randomly-selected bit. The value e, serves as a sort of envelope storing b; it
looks like a random bit to anyone who does not know the key & which can unlock it.
Both e-values — the envelope containing b and the one which is just a random bit —
are forwarded to the priest. The idea is that Bob gives Alice the name of the e-value
which contains b (that is, Bob gives her /), and the key value £ which would allow her
to open the envelope. Alice then sends a bit n to the priest, requesting value e,,. Alice
determines which value to request as follows. If @ = 1, that is, if Alice is in love, then
she requests the envelope named ¢,. She can then use the key value k to determine
if Bob is too, by computing e, @ k to recover b. However, if Alice is not in love, she
already knows that the result a A b = 0; she doesn’t need any information from the
other parties. However, if she doesn’t ask the priest for a value, the priest could reason
that a = 0, and Alice’s feelings will no longer be a secret. Therefore, when a = 0, Alice
requests the e-value that is simply a randomly-selected value which is not related to b,
the one named e_,. The priest does not know which value contains useful information,
and which contains a random value, since he is not given ¢, and he does not know a. So
the priest blindly forwards the requested value to Alice. Finally, though the channel is
not displayed in Figure 5, Alice forwards the outcome a A b to Bob and the priest as the
final step in the protocol.

First, we will show that in the dating cryptographers protocol, no information about
values of a and b is revealed to the Priest. That is, any possible combination of val-
ues known to the Priest (¢g, e1, and n), can happen together with any combination of
possible values of a and b. This can be written using coalition-controlled implication
as:

THEOREM 4.1.
T—)A’B’Peozéo/\elzél/\n:ﬁ,
T 4B g —anb=b
}_
T —AB.P (ep=égNer=¢é1An=n)A
AMa=anb=bh).

In the statement of this theorem A, B, and C can be viewed as individual game players,
or, as we discussed earlier, as coalitions of players (if we prefer to view channels as
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game players). The proof of the above theorem could be written in the same formal
form as earlier examples of verification. However, for clarity, we have inserted English
comments into the proof.

PROOF. We begin by observing that according to the specification of the protocol,
Bob can pick values ¢, e1, £, and b randomly. (This, of course, will determine the value
of k.) In fact, if Alice has already made her move in the game, Bob can use the value of
a in his choice of value of /:

[AlFP eg=égNer =, Ab=bA(l=1Bad 7). (2)

Next, note that according to the specification of the protocol for Alice,n =1 @G ¢ P a. In
the other words,

[B],
co=éoANer = Ab=bA(l=1Badn),
a=a

}_
(eozéo/\€1 =é /\n:ﬁ)/\(a:d/\b:f)).
The last sequent can be combined with (2) using the (CP) rule into
[A],
a=a
|_B (3)
(eo=é ANey=é An="n)A(a=aAb=Db).

Turning again to the specification of local conditions for Alice, we observe that she is
free in her choice of a. Thus, H* a = a. This observation can be combined with (3) using
rule (CP):

FA’B (GOZéQAel :él /\n:ﬁ)A(a:d/\b:B)
By the weakening rule (W),

T
FA,B,P

(eo=¢oAey=é An=n)A(a=aAb=Dh).
By rule (R_,),
FT A8 (eg=¢égNep =é An=n)A
AMa=aAb=b).
Lastly, by the weakening rule (W),

T 48P ¢ =éygNep =€ An=n,
T S4BFP b="b

l_
T ABP (e =égNey =é An=n)A
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Our final example will show how the calculus of cooperation can be used to make
and prove a conditional privacy statement. We will show that in the protocol for the
dating cryptographers problem (if parties are assumed to be honest), if Alice is not in
love, then she will not learn about Bob’s feelings. Note that Alice only learns values of

£, v, and k. In the calculus of cooperation, we can state that ¢, %, k are values of ¢, v,

and k that can occur under condition a = 0, as follows:
a=0=2BP =i nv=0Nk=k.

Similarly, « = 0 —4-B-F b = b says that b is a possible value of b that can occur under

condition a = 0. The whole privacy statement is expressed in the following Theorem:

THEOREM 4.2.
a:O—>A’B’P€=lZ/\v:f}/\k‘:l%,
a=0-4BPp=})
F
a=0-BPi=ipnv=0Ak=kAb=b.
PROOF. The specification of the protocol for party P says that value v is equal to ¢,
(the content of n-th envelope). This can be written as

F 4)
(=iNv=0ANk=kAb=Dh.
The specification of the protocol for party A says that if a = 0, then A should request
the envelope different from envelope [:

a=0Fn=-/,
The last sequent can be combined with (4) by rule (CP) into
a=0,
(=iNey=0Nk=kAb=Db

By the weakening rule (W),

B,

= 0,

=lNey=0ANk=kAb=b

F 5)
(=0ANv=0ANk=kAb=h.

Our next step is based on the observation that according to the specification of the
protocol for B, this party can randomly pick values of ¢, e_y, k, and b. (Of course, once
these values are picked, the value of ¢/ is determined). Thus,

FBl=iNey=0Nk=kAb=Dh.
The last statement in combination with (5), implies, by rule (CP), that
a=0Fl=iNv=0Nk=kAb=D. (6)

S 2
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By the weakening rule (W),

a=0-4BP 1 =ipnv=0Nk=k,
b

a=0-4BP =}
a=20
}_A,B7P

Therefore, by rule (R_,),

a=0=4BPp=ipnv
A,B,Pb:i)

I
>
>
oyl
I
T

a=0—
',
a=0—-%YBP p=inv=0Ak=kAb=D.

O

5. CONCLUSION

The article illustrates how an extension of the intuitionistic logic with labeled implica-
tion can be used to reason about a special class of games and how this type of reasoning
can be employed for verification of privacy properties of multiparty protocols. The def-
inition of the game that we gave was specifically targeted to protocol verification. It
would be interesting to see if a similar technique could be applied to reason about out-
comes of other types of games more commonly studied in game theory. Another unan-
swered question is possibility of cut elimination in the calculus of cooperation. This
question appears to be a non-trivial one especially because the system has two cut-like
rules: (CP) and ( CUT), both of which will have to be eliminated simultaneously.
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