
A

Query-driven Procedures for Hybrid MKNF Knowledge Bases

JOSÉ JÚLIO ALFERES and MATTHIAS KNORR and TERRANCE SWIFT, CENTRIA,
Departamento de Informática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Portugal

Hybrid MKNF knowledge bases are one of the most prominent tightly integrated combinations of open-
world ontology languages with closed-world (non-monotonic) rule paradigms. Based on the logic of minimal

knowledge and negation as failure (MKNF), the definition of Hybrid MKNF is parametric on the description

logic (DL) underlying the ontology language, in the sense that non-monotonic rules can extend any decid-
able DL language. Two related semantics have been defined for Hybrid MKNF: one that is based on the

Stable Model Semantics for logic programs and one on the Well-Founded Semantics (WFS). Under WFS,
the definition of Hybrid MKNF relies on a bottom-up computation that has polynomial data complexity

whenever the DL language is tractable. Here we define a general query-driven procedure for Hybrid MKNF

that is sound with respect to the stable model-based semantics, and sound and complete with respect to its
WFS variant. This procedure is able to answer a slightly restricted form of conjunctive queries, and is based

on tabled rule evaluation extended with an external oracle that captures reasoning within the ontology.

Such an (abstract) oracle receives as input a query along with knowledge already derived, and replies with
a (possibly empty) set of atoms, defined in the rules, whose truth would suffice to prove the initial query.

With appropriate assumptions on the complexity of the abstract oracle, the general procedure maintains

the data complexity of the WFS for Hybrid MKNF knowledge bases.
To illustrate this approach, we provide a concrete oracle for EL+, a fragment of the light-weight DL

EL++. Such an oracle has practical use, as EL++ is the language underlying OWL 2 EL, which is part of

the W3C recommendations for the Semantic Web, and is tractable for reasoning tasks such as subsumption.
We show that query-driven Hybrid MKNF preserves polynomial data complexity when using the EL+ oracle

and WFS.

Categories and Subject Descriptors: I.2.4 [Knowledge Representation Formalisms and Methods]: Rep-
resentation languages; I.2.3 [Deduction and Theorem Proving]: Logic programming; Nonmonotonic rea-
soning and believe revision; Inference engines; F.4.1 [Mathematical Logic]: Computational logic

General Terms: Theory, Languages

Additional Key Words and Phrases: hybrid knowledge bases, ontologies, rules, tabling, well-founded seman-
tics, description logics, tractable fragments

1. INTRODUCTION
It is frequently claimed that integrating open world with closed world reasoning is a
key issue for practical large-scale ontology applications. As one example, [Patel et al.
2007] describes a large medical case study about matching patient records for clinical
trials criteria containing up to millions of assertions. In that clinical domain, open
world reasoning is needed for radiology and laboratory data, because, for example,
unless a lab test asserts a negative finding, no arbitrary assumptions about the test

Author’s addresses: J.J. Alferes, M. Knorr, and T. Swift: CENTRIA, Faculdade de Ciências e Tecnologia,
Universidade Nova de Lisboa, 2825-516 Caparica, Portugal.
This work was supported by the Fundação para a Ciência e a Tecnologia under project “ERRO – Efficient
Reasoning with Rules and Ontologies” (PTDC/EIA-CCO/121823/2010).
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM 1529-3785/YYYY/01-ARTA $15.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 José Júlio Alferes et al.

can be made. However, in pharmacy data, the closed world assumption can be used to
infer that a patient is not on a specific medication unless it is asserted.

In general, both ontologies and rules provide distinct strengths for the represen-
tation and interchange of knowledge in the Semantic Web and for applications of
knowledge representation, such as the one described above. Expressive ontology lan-
guages are usually fragments of first-order logic represented in description logics (DLs)
[Baader et al. 2007] and offer the deductive advantages of first-order logic with an open
domain, while guaranteeing decidability. Rules on the other hand offer non-monotonic
(closed-world) reasoning that can be useful for formalizing scenarios under (local) in-
complete knowledge. They also enable reasoning about fixed points (e.g., reachability),
which cannot be expressed within first-order logic. Interest in ontologies, rules, and
their combination is demonstrated by the development of ontology languages for the
Semantic Web, such as OWL [Hitzler et al. 2009], and the growing interest on rule
languages for the Semantic Web, cf. the RIF [Boley and Kifer 2010] and the RuleML1

initiatives.
The majority of proposals for combining rules and ontologies (see, e.g., related work

in [Eiter et al. 2008; Knorr et al. 2011]) rely on one of the two most common semantics
for rules: the Well-Founded Semantics (WFS) [van Gelder et al. 1991] or the Answer-
Sets Semantics [Gelfond and Lifschitz 1991]. Both semantics are widely used and al-
low closed-world reasoning and the representation of fixed points. Furthermore, the
relationship between the two semantics has been fully explored. Of the two, the Well-
Founded Semantics is weaker (in the sense that it is more skeptical w.r.t. derivable
consequences), but it has the clear advantage that its lower complexity is more suitable
for applications with large amounts of data, such as the medical case study described
above.

Several formalisms have concerned themselves with combining decidable DLs with
WFS rules [Drabent and Małuszyński 2007; Lukasiewicz 2010; Eiter et al. 2011; Knorr
et al. 2011]. Among these, the well-founded semantics for Hybrid MKNF knowledge
bases (MKNFWF), introduced first in [Knorr et al. 2008] and further refined in [Knorr
et al. 2011], is based on a three-valued extension of the logics of minimal knowledge
and negation as failure (MKNF) [Lifschitz 1991], and is the only one that allows knowl-
edge about instances to be fully inter-definable between WFS rules and an ontology
that is taken as a parameter of the formalism.

MKNFWF is defined using a monotonic fixpoint operator that computes in each iter-
ation step, besides the usual immediate consequences from rules, the set of all atoms
derivable from the ontology that is augmented with the already proven atomic knowl-
edge. The least fixpoint of the MKNFWF operator coincides with the original WFS [van
Gelder et al. 1991] if the ontology is empty, and the associated semantics coincides with
the semantics of the ontology if there are no rules; in addition, if the DL underlying the
ontology language is polynomial, then MKNFWF retains a polynomial data complexity.
Furthermore, MKNFWF is sound with respect to the semantics of [Motik and Rosati
2010] for MKNF knowledge bases (KBs), which is based on the Answer-Set Semantics
and has a one-to-one correspondence with answer-sets of logic programs [Gelfond and
Lifschitz 1991] if the ontology is empty.

In one sense, the fixpoint operator of MKNFWF provides a way to compute, in a
naive bottom-up fashion, all consequences of a knowledge base. However, such an
approach is impractical for large knowledge bases. Consider the medical case study
above: knowledge of whether a specific patient is using a certain medication does not
require knowledge of the medications of thousands of other patients. Thus, despite its
polynomial complexity, bottom-up computation of MKNFWF does not scale to enter-

1http://ruleml.org/

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Query-driven Procedures for Hybrid MKNF Knowledge Bases A:3

prise applications, much less to those of the Semantic Web. A query-driven procedure
corresponding to the semantics of MKNFWF that only consults information relevant
for a specific patient is clearly preferable.

This paper presents such a querying mechanism, called SLG(O), that is sound and
complete for MKNFWF [Knorr et al. 2011], and sound for MKNF knowledge bases of
[Motik and Rosati 2010]. SLG(O) accepts DL-safe conjunctive queries, i.e., conjunc-
tions of predicates with variables where queries have to be ground before being pro-
cessed by the DL reasoner, returning all correct answer substitutions for variables in
the query. To the best of our knowledge, SLG(O) is the first query-driven, top-down
like procedure for knowledge bases that tightly combines an arbitrary decidable ontol-
ogy language with non-monotonic rules.

SLG(O) applies to any DL and under certain conditions maintains the data complex-
ity of MKNFWF . To show that these conditions are realistic, we also provide a concrete
oracle, with practical usage, namely for EL+. EL+ is a fragment of the light-weight
description logics EL++, which is the DL underlying OWL 2 EL – one of the tractable
profiles [Motik et al. 2009] of OWL 2 – and thus part of the W3C recommendations
for the Semantic Web. We show that the oracle thus defined is correct with respect to
the general procedure and maintains the polynomial data complexity of MKNFWF for
such a polynomial DL.

The gist of the approach
The main element of our approach addresses the interdependency of the ontology and
rules. In particular, SLG(O), presented in Section 4, extends SLG resolution [Chen
and Warren 1996], which evaluates queries posed to normal logic programs, i.e., sets
of non-disjunctive non-monotonic rules, under WFS. SLG is a form of resolution that
handles loops within the program, and does not change the data complexity of WFS.
It does that by resorting to already computed results in a forest of derivation trees, a
technique also known as tabling.

To adjoin an ontology to rules, the first thing that needs to be done is to allow an
SLG evaluation to make calls to an inference engine for the ontology. Since MKNF is
parametric on any given decidable ontology formalism,2 the inference engine is viewed
in SLG(O) as an oracle. In fact, every time SLG(O) selects an atom, the oracle’s infer-
ence engine may be called, in case the atom is not provable by the rules alone. Such
a queried atom, say P(a), might thus be provable in the ontology but only if a certain
set of atoms in turn is provable via rules. Our approach captures this by allowing the
oracle to return a new rule, say P(a) ← Goals, which has the property that a (possi-
bly empty) set Goals, in addition to the axioms in the ontology and the atoms already
derived from the combined knowledge base, would be sufficient to prove P(a). SLG(O)
then treats these new rules just as if they were part of the knowledge base.

Note that getting these conditional answers does not endanger decidability (or
tractability, if it is the case) of reasoning in the ontology alone. In fact, it is easy to
conceive of a modification of a tableau-based inference engine for an ontology that is
capable of returning these conditional answers and is decidable if the tableau algo-
rithm is. Simply add all the atoms that are defined in the rules to the ontology, then
proceed with the tableau as usual, but collect all those added facts that have been used
in the proof. Under some assumptions on the complexity of the oracle, it is shown (in
Section 5 along with some other properties) that SLG(O) also retains the data com-
plexity of MKNFWF .

2In fact, theoretically the limitation to decidable ontology formalisms is not strictly needed, but it is a prag-
matic choice to achieve termination and complexity results in accordance with decidable ontology languages,
such as OWL [Hitzler et al. 2009].

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 José Júlio Alferes et al.

The second element of our approach arises from the need to properly combine the
classical negation usually appearing in the ontology language with the non-monotonic
negation of rules. This problem, which is solved by the semantics of [Knorr et al. 2011],
is similar to the issue of coherence that arises when adding classical (or strong) nega-
tion to logic programs [Gelfond and Lifschitz 1991; Pearce and Wagner 1990; Pereira
and Alferes 1992]: the classical negation must imply negation by default. In our case,
if the ontology entails that some atom A is false, then the default negation notA must
hold as well. The derivation must accordingly be modified since the proof of notA can-
not simply rely on the failure of the proof of A as it is usual in Logic Programming. For
that purpose, an alternating fixpoint approach is used in the bottom-up construction
defined in [Knorr et al. 2011], where two alternating fixpoint operators are applied to
two different sets of rules. In each iteration step, the fixpoint construction alternates
between deriving more true atoms, and more (default) false atoms; when deriving more
true atoms, the original set of rules is used; when deriving more default false atoms,
a transformed set of rules is used so that rules with head A are removed if ¬A holds.
This ensures that notA is derived (see Section 2.3 for details).

Adapting the alternating fixpoint for the top-down derivation would result in a pro-
cedure significantly different from the original SLG. So instead, we transform the orig-
inal knowledge base to ensure coherence without the need for alternating between two
sets of rules. This approach is simpler to understand as it is a more direct extension
of SLG and separates the concerns of coherence from those of top-down derivation;
in addition the transformational approach should also facilitate implementations of
SLG(O). Indeed, one can rely more directly on the existing implementations that fol-
low closely SLG.3 Accordingly, Section 3 defines the above mentioned transformation
of the knowledge base. The transformation itself provides an alternative formulation
of MKNFWF and is another result of the paper.

Finally, in Section 6, we provide a concrete oracle for EL+. Our approach includes
a preprocessing step that applies the subsumption algorithm4 for EL+ to compute all
the subsumption relationships contained in the DL knowledge base and then remove
redundant information with respect to answering queries. The resulting reduced DL
knowledge base is then translated into rules and can be directly combined with the
set of rules contained in the combined knowledge base, so that SLG(O) can be applied
for querying. This direct integration of the oracle into the querying mechanism, as we
show, immediately ensures that the data complexity of MKNFWF is maintained, i.e.,
the EL+ oracle is polynomial.

Preliminary versions of the results in this paper appeared in [Alferes et al. 2009]
and [Knorr and Alferes 2010].

2. PRELIMINARIES
We assume a basic understanding of the Well-Founded Semantics [van Gelder et al.
1991] and first-order logic, in particular notions related to Logic Programming and
resolution (see e.g. [Lloyd 1987]). In this section we recall basic concepts that we rely
on in the following sections. In particular, we present description logics using the DL
ALC, the syntax of Hybrid MKNF knowledge bases, and their well-founded semantics.

3We have already made some experiments on the implementation of SLG(O) [Gomes et al. 2010], relying
on the XSB-Prolog implementation.
4Such as the one included in Pellet (http://clarkparsia.com/pellet/) or CEL (http://lat.inf.tu-
dresden.de/systems/cel/)

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Query-driven Procedures for Hybrid MKNF Knowledge Bases A:5

Table I. Syntax and semantics of ALC with role inclusions.

Name Syntax Semantics
top > ∆I

bottom ⊥ ∅
negation ¬C ∆I \ CI

conjunction C uD CI ∩DI

disjunction C tD CI ∪DI

existential restriction ∃R.C {x ∈ ∆I | ∃y ∈ ∆I : (x, y) ∈ RI ∧ y ∈ CI}
value restriction ∀R.C {x ∈ ∆I | ∀y ∈ ∆I : (x, y) ∈ RI implies y ∈ CI}
GCI C v D CI ⊆ DI

RI R1 ◦ · · · ◦Rk v R RI1 ◦ · · · ◦RIk v RI

concept assertion C(a) aI ∈ CI

role assertion R(a, b) (aI , bI) ∈ RI

2.1. Description Logics
We recall general notions for description logics, basing our examples on ALC with role
inclusions although our work is in principle applicable to any DL. Afterwards, since
we present a concrete oracle for EL+ in Section 6, we also review the syntax of that
DL. We refer to [Baader et al. 2007] for a general and thorough overview of description
logics

We start by recalling the syntax and semantics for a general DL DL. DLs define
concept descriptions inductively with the help of a set of constructors, starting with
a set NC of concept names, a set NR of role names, and a set NI of individual names.
Concept descriptions of DL are formed using a set of constructors, and the upper part
of Table I shows the constructors of ALC. There, and in general, we use a and b to
denote individual names, R and S to denote role names, and C and D to denote concept
descriptions (all possibly with indices).

The semantics of DL-concept descriptions is defined in terms of an interpretation
I = (∆I , ·I). The domain ∆I is a non-empty set of individuals and the interpretation
function ·I maps each concept name A ∈ NC to a subset AI of ∆I , each role name
R ∈ NR to a binary relation RI on ∆I , and each individual name a ∈ NI to an individual
aI ∈ ∆I . The extension of ·I to arbitrary concept descriptions is inductively defined as
shown in the third column of Table I for ALC.

A DL TBox T is a finite set of general concept inclusions (GCIs) and possibly role
inclusions (RIs), and both their syntax can be found in the middle of Table I. An inter-
pretation is a model of a TBox T if, for each GCI and RI in T , the conditions given in
the third column of Table I are satisfied. In the definition of the semantics of RIs, the
symbol ′◦′ denotes composition of binary relations.

A DL ABox A is a finite set of concept assertions for concept descriptions C and role
assertions for role names R whose syntax can be found in the lower part of Table I.
ABoxes are used to describe a snapshot or state of the world. An interpretation I is a
model of an ABoxA if, for each concept assertion and role assertion inA, the conditions
given in the third column of Table I are satisfied.

A DL knowledge base O consists of a DL TBox T and a DL ABox A, and I is a model
of O if it is a model of both T and A.

One of the main inference problems in DLs, actually the one considered in [Baader
et al. 2005] for EL++, is subsumption. Given two DL-concept descriptions C, D we say
that C is subsumed by D w.r.t. the TBox T (C vT D) iff CI ⊆ DI for all models I
of T . In addition, we recall the instance problem since, as we will see below, it is the
reasoning task we are interested in when answering top-down queries in our system

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 José Júlio Alferes et al.

combining rules and an oracle to an ontology. An individual name a is an instance of
a concept C in ABox A w.r.t. a TBox T if aI ∈ CI for every common model I of A and
T . Definition 2.1 extends the instance problem to instances of roles, a non-standard
reasoning task.

Definition 2.1. A pair of individuals (a, b) is an instance of a role R in ABox A w.r.t.
a TBox T if (aI , bI) ∈ RI for every common model I of A and T .

The above definition will be useful, since in the oracle we define queries for instances
of roles, i.e., binary predicates, as well as concepts.

2.1.1. EL+. The tractable DL EL+ is a large fragment5 of the DL EL++ [Baader et al.
2005]. It is obtained by restricting the allowed concept constructors to >, ⊥, u, and ∃,
i.e., negations, disjunctions, and value restrictions are not allowed. All the remaining
notions, in particular the semantics, carries over from the general case.

Two remarks regarding the expressivity of EL+ are in order. First, RIs allow expres-
sion of role hierarchies R v S, transitive roles using R ◦ R v R, right-identity rules
R ◦ S v S, and left-identity rules S ◦ R v S. Second, disjointness of complex concept
descriptions C, D (and unsatisfiability of a concept C), can be expressed by C uD v⊥
(resp. C v⊥).

2.2. Syntax of Hybrid MKNF Knowledge Bases
Hybrid MKNF knowledge bases, as introduced in [Motik and Rosati 2010], are essen-
tially formulas in the logics of minimal knowledge and negation as failure [Lifschitz
1991], i.e., first-order logic with equality and two modal operators, K and not, allow-
ing inspection of the knowledge base. At an intuitive level, given a first-order formula
ϕ, Kϕ asks whether ϕ is known, i.e., true in all models of the related Hybrid MKNF
knowledge base K, while notϕ is used to check whether ϕ is not known. Hybrid MKNF
knowledge bases consist of two components, a decidable DL knowledge base translat-
able into first-order logic, and a finite set of rules.

Definition 2.2. Let O be a DL knowledge base built over a language L with distin-
guished sets of countably infinitely many variables NV, and finitely many individuals
NI and predicates NP, where NC ∪ NR ⊆ NP. An atom P (t1, . . . , tn), where P ∈ NP and
ti ∈ NV ∪ NI, is called a DL-atom if P occurs in O, otherwise it is called non-DL-atom.
An MKNF rule r has the following form where, for all i and j, H, Ai, and Bj are atoms:

H ← A1, . . . , An,notB1, . . . ,notBm. (1)

H is called the (rule) head, and the sets {A1, . . . , An} and {notB1, . . .notBm} form the
body of the rule. Literals are positive literalsA or negative literals notB. We abbreviate
rules by H ← B, splitting B into two sets B+ (positive literals) and B− (negative liter-
als). A rule r is positive if m = 0 and a fact if n = m = 0. A program P is a finite set of
MKNF rules and called positive if all its rules are positive. A Hybrid MKNF knowledge
base K is a pair (O,P). The ground instantiation of K is the KB KG = (O,PG) where
PG is obtained from P by replacing each rule r of P with a set of rules substituting
each variable in r with constants from K in all possible ways.

In this definition and in the rest of the paper, we omit the modal operator K in rule
heads and bodies.6

5We omit nominals and concrete domains as concept constructors.
6The MKNF semantics in [Motik and Rosati 2010] and [Knorr et al. 2011] requires the presence of these
modal operators to ensure that the interaction between the DL KB O and the rules is limited to information
that is known to hold. For our purposes, a simpler representation of models suffices, thus allowing us to
simplify notation here.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Query-driven Procedures for Hybrid MKNF Knowledge Bases A:7

To ensure decidability, DL-safety is applied [Motik and Rosati 2010; Knorr et al.
2011]. Intuitively, DL-safety constrains the use of rules to individuals actually appear-
ing in the knowledge base under consideration. Since, as indicated in the introduction,
we are especially interested in querying the knowledge base, care also must be taken
to impose DL-safety on (conjunctive) queries:

Definition 2.3. An MKNF rule r is DL-safe if every variable in r occurs in at least
one (positive) non-DL-atom in the body of r. A Hybrid MKNF knowledge base K is
DL-safe if all its rules are DL-safe.

A DL-safe conjunctive query q is a non-empty set, i.e., conjunction, of literals
{A1, . . . , An,notB1, . . . ,notBm} where each variable in q occurs in at least one (posi-
tive) non-DL-atom in q. We also write q as a rule

q(Xi)← A1, . . . , An,notB1, . . . ,notBm

where Xi is the (possibly empty) set of variables, appearing in the body.

This restriction of conjunctive queries to DL-safety is not always necessary: for DLs
like SHIQ, conjunctive query answering is decidable [Glimm et al. 2008] and we may
make use of existing algorithms. However, for DLs where there is no known algorithm
for conjunctive query answering or where the problem is not decidable, such as full
EL++ [Rosati 2007], the limitation is required to achieve decidability in Hybrid MKNF
knowledge bases. For simplicity of presentation, we impose the restriction throughout
the paper.

Example 2.4. We present a small technical example to illustrate the notions in-
troduced in this section. Consider the Hybrid MKNF knowledge base K consisting of
an EL+ KB O containing two TBox statements and one assertion and a set of MKNF
rules. Here and in the following examples we follow the convention that DL-atoms are
capitalized, while non-DL-atoms start with lower case letters.

C v D C(b)
C u E v ⊥
p(x)← not D(x), o(x) o(a)←
E(x)← not E(x), o(x) o(b)←

The ground instantiation KG is obtained by grounding both rules with a and b. Note
that the atom o(x) ensures that both (non-ground) rules are DL-safe.

2.3. Well-founded Semantics of Hybrid MKNF Knowledge Bases
In this section, we recall the computation of the well-founded MKNF model from
[Knorr et al. 2011].7 We adopt that terminology here and recall the notions relevant for
its definition. First, we present some notions from [Knorr et al. 2011] that are useful
in the definition of the operators for obtaining that well-founded MKNF model.

Definition 2.5. Let K = (O,P) be a ground Hybrid MKNF knowledge base. The set
of known atoms of K, KA(K), is the smallest set that contains (i) all positive literals
occurring in P, and (ii) a positive literal ξ for each negative literal not ξ occurring in

7The well-founded MKNF semantics including the well-founded MKNF model, as presented in [Knorr et al.
2011], is based on a complete three-valued extension of the original MKNF semantics of [Motik and Rosati
2010]. In it, a model consists of two sets of sets of first-order interpretations; a 3-valued truth valuation is
defined that exactly determines the semantics, and in which any MNKF formula can be evaluated. However,
as here we are only interested in queries that are (conjunctions of) atoms, we limit ourselves to the compu-
tation of the literals that are true and false. This is called the well-founded partition in [Knorr et al. 2011]
but we term it the well-founded MKNF model here.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 José Júlio Alferes et al.

P. For a subset S of KA(K), the objective knowledge of S w.r.t. K is the set of first-order
formulas OBO,S = {π(O)} ∪ {ξ | (K) ξ ∈ S} where π(O) is the first-order translation of
O.

Basically all literals appearing in the rules are collected in the set KA(K) as a set
of positive literals while the objective knowledge OBO,S provides a first-order repre-
sentation of O together with a set of known/derived facts without the implicit modal
operator K. For the computation of the three-valued MKNF model, the set KA(K) can
be divided into true, undefined, and false literals.

Example 2.6. Recall K from Example 2.4 and its ground instantiation KG. Then
KA(KG) = {p(a), p(b), D(a), D(b), E(a), E(b), o(a), o(b)}.

We continue by defining an operator TK that allows us to draw conclusions from
positive Hybrid MKNF knowledge bases.

Definition 2.7. LetK = (O,P) be a positive, ground Hybrid MKNF knowledge base.
The operators RK, DK, and TK are defined on subsets S of KA(K):

RK(S) ={H | P contains a rule of the form H ← A1, . . . An

such that, for all i, 1 ≤ i ≤ n,Ai ∈ S}
DK(S) ={ξ | ξ ∈ KA(K) and OBO,S |= ξ}
TK(S) =RK(S) ∪DK(S)

RK derives consequences from the rules whileDK obtains knowledge from the ontology
O together with the information in S.

The operator TK is shown to be monotonic in [Knorr et al. 2011]. So, by the Knaster-
Tarski theorem [Tarski 1955], it has a unique least fixpoint, denoted lfp(TK), which is
reached after a finite number of iteration steps (since the ground knowledge base K is
always finite).

The computation of the well-founded MKNF model follows the alternating fixpoint
construction [van Gelder 1989] of the well-founded semantics for logic programs. This
construction requires a reduction that turns a Hybrid MKNF knowledge base into a
positive one to make TK applicable.

Definition 2.8. Let K = (O,P) be a ground Hybrid MKNF knowledge base and
S ⊆ KA(K). The MKNF transform K/S is defined as K/S = (O,P/S), where P/S
contains all rules H ← A1, . . . , An for which there exists a rule

H ← A1, . . . , An,notB1, . . . ,notBm

in P with Bj 6∈ S for all 1 ≤ j ≤ m.

Example 2.9. Consider again K from Example 2.4 and let S be KA(KG). Then KG/S
is obtained as follows:

C v D C(b)
C u E v ⊥
o(a)← o(b)←

The resulting KB is positive and we may apply TK and obtain {D(b), o(a), o(b)}. Note
that C(b) is not explicitly mentioned since it does not occur in KA(KG). It is nevertheless
derivable from KG.

The MKNF transform resembles the well-known answer-set transformation [Gel-
fond and Lifschitz 1991] for logic programs. Based on it, an antitonic operator can be
defined, but it is shown in [Knorr et al. 2011] that such an operator alone would not

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Query-driven Procedures for Hybrid MKNF Knowledge Bases A:9

properly treat a problem called coherence, i.e., classical negation would not enforce de-
fault negation. Therefore, a second, slightly different transformation is introduced in
[Knorr et al. 2011].

Definition 2.10. Let K = (O,P) be a ground Hybrid MKNF knowledge base and
S ⊆ KA(K). The MKNF-coherent transform K//S is defined as K//S = (O,P//S),
where P//S contains all rules H ← A1, . . . , An for which there exists a rule

H ← A1, . . . , An,notB1, . . . ,notBm

in P with Bj 6∈ S for all 1 ≤ j ≤ m and OBO,S 6|= ¬H.

Example 2.11. Consider again K from Example 2.4 and let S be ∅. Then KG//S is
obtained:

C v D C(b)
C u E v ⊥ p(a)← o(a)
p(b)← o(b) o(a)←
E(a)← o(a) o(b)←

The only rule that is removed is the one with head E(b), since C(b) holds and C and E
are disjoint. Hence, OBO,∅ |= ¬E(b). We can apply TKG

to the resulting positive KB and
obtain KA(KG) \ {E(b), D(a)}.

Note the difference between Definitions 2.8 and 2.10: we also remove a rule from the
MKNF-coherent transform, in case the classical negation of the head is derivable from
the ontology augmented by S.

These two transformations can now be used to define two operators for Hybrid
MKNF KBs as already hinted in the examples.

Definition 2.12. Let K = (O,P) be a ground Hybrid MKNF knowledge base and
S ⊆ KA(K). We define:

ΓK(S) = lfp(TK/S) and Γ′K(S) = lfp(TK//S).

Both operators are shown to be antitonic [Knorr et al. 2011] and form the basis for
defining the well-founded MKNF model. Here we present its alternating computation.

Definition 2.13. Let K be a ground Hybrid MKNF knowledge base. We define:
P0 = ∅ N0 = KA(K)

Pn+1 = ΓK(Nn) Nn+1 = Γ′K(Pn)

Pω =
⋃

Pi Nω =
⋂

Ni

Pω contains everything that is necessarily true, while Nω contains everything that is
not false. Note that, by finiteness of the ground knowledge base, the iteration stops
before reaching ω. It was shown in [Knorr et al. 2011] that the sequences are monoton-
ically increasing, decreasing respectively. The two fixpoints can also be used to detect
whether a knowledge base is MKNF-consistent or not [Knorr et al. 2011].

THEOREM 2.14. Let K = (O,P) be a ground Hybrid MKNF knowledge base. K is
MKNF-inconsistent iff Γ′K(Pω) ⊂ ΓK(Pω) or Γ′K(Nω) ⊂ ΓK(Nω) or O is inconsistent.

Intuitively, MKNF-consistency requires that O is (first-order) consistent and that nei-
ther of the two additional conditions of Theorem 2.14 succeed.8 These two comparisons

8The formal definition of MKNF-consistency from [Knorr et al. 2011] would require the complete material
on three-valued MKNF semantics, which we want to avoid.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 José Júlio Alferes et al.

ensure that the two fixpoints never contain contradictions and that there is no rule
such that the truth value of the (conjunction in the) body is greater than the truth
value of the head.

Example 2.15. Consider the following KB K1:

P(a)← not P(a) Q(a)← Q v ¬P

K1 is MKNF-inconsistent, since P(a) is necessarily false, so the first rule violates the
intuitive condition that the body should not have a higher truth value than the head.
In fact, the computation yields that P(a) is true and false at the same time, and the
test reveals that. Consider the KB K2:

R v¬P R(a)
P(a)←not u u←not u

P(a) is false, but u is undefined, so that we obtain a rule with false head and undefined
body, and this is detected with the test.

If K is MKNF-consistent, then the well-founded MKNF model exists.

Definition 2.16. The well-founded MKNF model MWF of an MKNF-consistent,
ground Hybrid MKNF knowledge base K = (O,P) is defined as

MWF = {A | A ∈ Pω} ∪ {π(O)} ∪ {notB | B ∈ KA(K) \Nω}.

Example 2.17. Consider again the running Example 2.4. We provide the results of
the computation.

P0 = ∅ N0 = KA(KG)
P1 = {D(b), o(a), o(b)} N1 = KA(KG) \ {E(b), D(a)}
P2 = {D(b), o(a), o(b), p(a)} N2 = KA(KG) \ {E(b), D(a), p(b)}
P3 = P2 N3 = N2

Thus we obtain the well-founded MKNF model as

MWF = {π(O)} ∪ {D(b), o(a), o(b), p(a)} ∪ {not E(b),not D(a),not p(b)}.

Consequently, E(a) is undefined.

To ease some proofs in the following section, we also adapt the notion of unfounded
sets [van Gelder et al. 1991] for Hybrid MKNF which relates to the sequence Ni (see
[Knorr et al. 2011]). The essential advantage is that the reasons why a certain atom
is considered false are better characterized. For that purpose, we first need to define
a notion of dependency that captures more precisely the derivations from OBO,S , for
some S, by the operator DK.

Definition 2.18. Let K = (O,P) be a ground Hybrid MKNF knowledge base, H an
atom with H ∈ KA(K), and S a (possibly empty) set of atoms with S ⊆ KA(K). We say
that H depends on S if and only if

(i) OBO,S |= H and
(ii) there is no S′ with S′ ⊂ S such that OBO,S′ |= H.

Intuitively, S is a minimal set that, in combination with O, allows us to derive H. Note
that there may exist several such minimal sets. Based on this notion of dependency,
the notion of an unfounded set can be extended to Hybrid MKNF KBs.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Query-driven Procedures for Hybrid MKNF Knowledge Bases A:11

Definition 2.19. Let K be a ground Hybrid MKNF knowledge base and (T, F) a pair
of sets of atoms with T, F ⊆ KA(K). We say that U ⊆ KA(K) is an unfounded set (of K)
with respect to (T, F) if, for each atom H ∈ U , the following conditions are satisfied:

(Ui) for each rule H ← B in P at least one of the following holds.
(Uia) Some atom A appears in B and in U ∪ F .
(Uib) Some negative literal notB appears in B and in T .
(Uic) OBO,T |= ¬H

(Uii) for each (possibly empty) S on which H depends, with S ⊆ KA(K) and OBO,S consis-
tent, there is at least one atom A such that OBO,S\{A} 6|= H and A in U ∪ F .

The union of all unfounded sets of K w.r.t. (T, F) is called the greatest unfounded set of
K w.r.t. (T, F) and denoted UK(T, F).

It can be shown that the computation of Ni based on Γ′K directly corresponds to the
computation of the greatest unfounded set w.r.t. (Pi−1,Ni−1).

Example 2.20. Consider the computation in Example 2.17. All three atoms that
were removed in the sequence of Ni — E(b), D(a), p(b) — obviously satisfy (Uii). How-
ever these removed atoms satisfy different conditions of (Ui). For E(b), (Uic) applies. In
the case of D(a), there is no rule with this head, so (Ui) is vacuously true. Finally, for
p(b), (Uib) applies because not D(b) occurs in the single rule for this atom, while D(b)
is true.

3. ALTERNATIVE COMPUTATION OF MKNFWF

As presented in Section 2, the bottom-up computation of the well-founded MKNF
model requires essentially two operators each with its own transformation of the
knowledge base. Using the operators directly would make the top-down procedure
quite different from the original SLG procedure, which operates on a single logic pro-
gram, and does not differentiate between the two phases of the alternating fixpoint. To
approximate the bottom-up computation to the SLG procedure, in this section we de-
fine that computation in a different way. Namely, we transform the original knowledge
base, by doubling the rules and the ontology in K using new predicates, and trans-
form both so that a single operator and copy of the KB can be used. As we shall see,
a simpler bottom-up computation, with a single operator, performed over this single
transformed knowledge base yields the same results as the one defined in Section 2,
and in particular still guarantees that classical negation enforces default negation.

The first definition introduces two new special predicates for each predicate appear-
ing inK based on which the transformation that doubles a knowledge baseK is defined.

Definition 3.1. Let K = (O,P) be a Hybrid MKNF knowledge base. We introduce
new predicates Ad and NA for each predicate A appearing in K, and then construc-
tively define

(1) Od by substituting each predicate A in O by Ad; and
(2) Pd by transforming each rule

H(~tH)← A1(~tA1), . . . , An(~tAn),notB1(~tB1), . . . ,notBm(~tBm)
occurring in P into two rules:

(2a)H(~tH)← A1(~tA1), . . . , An(~tAn),notBd
1 (~tB1), . . . ,notBd

m(~tBm) and either
(2b.i)Hd(~tH)← Ad

1(~tA1), . . . , Ad
n(~tAn),notB1(~tB1), . . . ,notBm(~tBm),

notNH(~tH) if H(~tH) is a DL-atom; or
(2b.ii)Hd(~tH)← Ad

1(~tA1), . . . , Ad
n(~tAn),notB1(~tB1), . . . ,notBm(~tBm)

if H(~tH) is a non-DL-atom.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 José Júlio Alferes et al.

We define the doubled Hybrid MKNF knowledge base Kd = (O,Od,Pd).

Intuitively, we use an atom based on the original predicate A to represent truth of A
in the original knowledge base, while the atom based on a newly introduced predicate
Ad represents non-falsity of A in the original knowledge base, i.e., if we want to know
whether some atom is (non-monotonically) false, then we query using the auxiliary
predicate. The new atom NH(~tH) appearing in (2b.i), is used as a marker to distin-
guish between rules that may be affected by the derivability of the classical negation
of its head (as in Γ′K) and the others (as in ΓK). Note that this process of doubling the
knowledge base has no impact on the (at best) polynomial data complexity of comput-
ing the well-founded MKNF model since it only alters the computation by the constant
factor 2.

Example 3.2. Consider K from Example 2.4. We obtain Kd as follows.

C v D Cd v Dd

C u E v ⊥ Cd u Ed v ⊥
C(b) Cd(b)

p(x)← not Dd(x), o(x) pd(x)← not D(x), od(x)

E(x)← not Ed(x), o(x) Ed(x)← not E(x), od(x),not NE(x)

o(a)← od(a)←
o(b)← od(b)←

Only the rule with head Ed(x) contains the marker in the body as the original rule
is the only one in K with a DL-atom in the head. Note that the atoms based on the
predicate o, which ensure DL-safety, could be excluded from the doubling for efficiency
reasons.

The marker has to be referenced in the modified transform but, before that, we define
a slightly different operator for doubled, positive Hybrid MKNF knowledge bases that
takes into account the parallel computations on the two renamings of the ontology.

Definition 3.3. Let Kd = (O,Od,Pd) be a doubled, positive, ground Hybrid MKNF
knowledge base. The operators RKd , DKd , and TKd are defined on subsets S of KA(Kd)
as follows:

RKd(S) = {H | Pd contains a rule of the form H ← A1, . . . An

such that, for all i, 1 ≤ i ≤ n,Ai ∈ S}
DKd(S) = {ξ | ξ ∈ KA(K) and OBO,S |= ξ}∪

{ξ | ξ ∈ KA(Kd) \ KA(K) and OBOd,S |= ξ}
TKd(S) =RKd(S) ∪DKd(S)

These operator definitions are the same as those of Definition 2.7 apart from two dif-
ferences. First, the doubled knowledge base Kd is considered and, consequently, atoms
from KA(Kd) appear. Second, the operator DKd computes consequences from O and Od

in parallel but limited to the corresponding set of atoms appearing in each of the two
renamings, thus preventing an inconsistency, e.g., in O, from affecting the consistency
of Od.

Next, we present a slightly altered version of the MKNF-coherent transform (cf.
Definition 2.10) taking into account the doubled Hybrid MKNF knowledge base and
the new negative literals of the form NH(~tH) that serve as markers.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Query-driven Procedures for Hybrid MKNF Knowledge Bases A:13

Definition 3.4. Let Kd = (O,Od,Pd) be a doubled, ground Hybrid MKNF knowl-
edge base and S ⊆ KA(Kd). The MKNFd-coherent transform Kd//′S is defined as
Kd//′S = (O,Od,Pd//′S), where Pd//′S contains all rules H ← A1, . . . , An for which
there exists a rule

H ← A1, . . . , An,notB1, . . . ,notBm

in Pd with

(1) Bj 6∈ S for all 1 ≤ j ≤ m; and
(2) OBO,S 6|= ¬H1(~tH1) if notNH1(~tH1) appears in the body, where H = Hd

1 (~tH1).

This definition is almost identical to the transformation of Definition 2.10 with the only
difference that the removal due to classical negation is only possible in marked rules.
Given Definition 3.1, this means that only rules whose head is a DL-atom and built by
means of a doubled predicate may be eliminated that way (case 2b.i of Definition 3.1).
Additionally, as we will see in Section 4, the marker itself can be used to actually
trigger a query to the ontology for the classical negation of the atom in the head (using
the original predicate for the atom).

We can now define a new operator Γd
K for ground knowledge bases K similar to the

ones in Definition 2.12, but that operates on atoms of KA(Kd).

Definition 3.5. Let Kd = (O,Od,Pd) be a doubled, ground Hybrid MKNF knowl-
edge base and S ⊆ KA(Kd). We define:

ΓKd(S) = lfp(TKd//′S).

We can show that this operator is antitonic just as its two predecessors.

LEMMA 3.6. Let Kd be a doubled, ground Hybrid MKNF knowledge base and S1 ⊆
S2 ⊆ KA(Kd). Then ΓKd(S2) ⊆ ΓKd(S1).

PROOF. We have to show that lfp(TKd//′S2) ⊆ lfp(TKd//′S1). Since K is finite, Kd is
also finite, and we prove by induction on n that TKd//′S2 ↑ n ⊆ TKd//′S1 ↑ n holds.

The base case for n = 0 is trivial since ∅ ⊆ ∅.
Assume that TKd//′S2 ↑ n ⊆ TKd//′S1 ↑ n holds, consider H ∈ TKd//′S2 ↑ (n+ 1). Then

H ∈ TKd//′S2(TKd//′S2 ↑ n) and there are two cases to consider:

(1) Kd//′S2 contains a rule of the form H ← A1, . . . , An such that Ai ∈ TKd//′S2 ↑ n for
each 1 ≤ i ≤ n. In this case, since S1 ⊆ S2 holds, we also have H ← A1, . . . , An in
Kd//′S1 and, by the induction hypothesis, Ai ∈ TKd//′S1 ↑ n holds for each 1 ≤ i ≤ n.
Hence, H ∈ TKd//′S1 ↑ (n+ 1).

(2) H is a consequence obtained from DKd . But DKd derives only consequences from
the unchanged DL renamings O and Od together with TKd//′S2 ↑ n. By the induc-
tion hypothesis, we conclude that H ∈ TKd//′S1 ↑ (n+ 1).

This finishes the proof.

Since this new operator is antitonic, we can define its iteration similar to Definition
2.13, but now with just one operator.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 José Júlio Alferes et al.

Definition 3.7. Let Kd be a doubled, ground Hybrid MKNF knowledge base. We
define:

Pd
0 = ∅ Nd

0 = KA(Kd)

Pd
n+1 = ΓKd(Nd

n) Nd
n+1 = ΓKd(Pd

n)

Pd
ω =

⋃
Pd

n Nd
ω =

⋂
Nd

n

The correspondence between Definitions 2.13 and 3.7 can be established with a pre-
cise relation between the atoms in the doubled knowledge base Kd and those in K. To
ease the proof of the corresponding property, we rely on an adaptation of the notion
of unfounded sets to doubled Hybrid MKNF KBs. For that purpose, we also adapt the
notion of dependency.

Definition 3.8. Let Kd = (O,Od,Pd) be a doubled, ground Hybrid MKNF knowl-
edge base, H an atom with H ∈ KA(Kd), and S a (possibly empty) set of atoms with
S ⊆ KA(Kd). We say that H depends on S if and only if, for O′ = O or O′ = Od:

(i) OBO′,S |= H and
(ii) there is no S′ with S′ ⊂ S such that OBO′,S′ |= H.

Based on this notion of dependency, the notion of an unfounded set for Hybrid MKNF
is extended from Definition 2.19 to include O and Od of the doubled KB.

Definition 3.9. Let Kd = (O,Od,Pd) be a doubled, ground Hybrid MKNF knowl-
edge base and (T, F) a pair of sets such that T, F ⊆ KA(Kd). We say that U ⊆ KA(Kd)
is an unfounded set (of Kd) with respect to (T, F) if, for each atom H ∈ U , the following
conditions are satisfied:

(Ui) for each rule H ← B in P at least one of the following holds.
(Uia) Some atom A appears in B and in U ∪ F .
(Uib) Some negative literal notB appears in B and in T .
(Uic) OBO,T |= ¬H1(~tH1) and notNH1(~tH1) ∈ B, where H = Hd

1 (~tH1)
(Uii) for each (possibly empty) S on which H depends, with S ⊆ KA(K) and OBO,S consis-

tent, there is at least one atom A such that OBO,S\{A} 6|= H and A in U ∪ F .
(Uiid) for each (possibly empty) S on which H depends, with S ⊆ KA(Kd) and OBOd,S

consistent, there is at least one atom A such that OBOd,S\{A} 6|= H and A in U ∪ F .

The union of all unfounded sets of Kd w.r.t. (T, F) is called the greatest unfounded set
of Kd w.r.t. (T, F) and denoted UKd(T, F).

Of course, (Uiid) is just a copy of (Uii) to deal with Od, the copy of O.
The correspondence to the sequence Nd

i for all i can now be established.

LEMMA 3.10. Let Kd = (O,Od,Pd) be a doubled, ground Hybrid MKNF knowledge
base and (Pd

i ,N
d
i) a pair of sets such that Pd

i ,N
d
i ∈ KA(Kd) in the computation of the

alternating fixpoint of Kd (Definition 3.7). Then the following holds:

KA(Kd) \Nd
i+1 = UKd(Pd

i ,KA(Kd) \Nd
i)

PROOF. We show both inclusions from which the equality follows.
KA(Kd) \Nd

i+1 ⊆ UKd(Pd
i ,KA(Kd) \Nd

i): Let H ∈ KA(Kd) \Nd
i+1. Then H 6∈ Nd

i+1, i.e.,
H 6∈ ΓKd(Pd

i) and H 6∈ lfp(TKd//′Pd
i
). Thus, two conditions hold. First, for all rules of

the form H ← B+ ∧ B− in Pd, there is at least one A ∈ B+ with A ∈ KA(Kd) \Nd
i+1,

or at least one notB ∈ B− with B ∈ Pd
i , or OBO,Pi

|= ¬H1(~tH1) and notH1(~tH1) ∈ B−,

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Query-driven Procedures for Hybrid MKNF Knowledge Bases A:15

where H = Hd
1 (~tH1). Second, neither OBO,Nd

i+1
|= H nor OBOd,Nd

i+1
|= H holds. The first

condition corresponds exactly to (Ui) of Definition 3.9 w.r.t. (Pd
i ,KA(Kd)\Nd

i). We derive
from the second condition that, for all S with S ⊆ KA(Kd) on which H depends, there
is at least one atom A such that OBO,S\{A} 6|= H, respectively OBOd,S\{A} 6|= H, and A
in KA(Kd) \Nd

i+1. This matches condition (Uii) (resp. condition (Uiid) of Definition 3.9
w.r.t. (Pd

i ,KA(Kd) \Nd
i), and we conclude that H ∈ UKd(Pd

i ,KA(Kd) \Nd
i).

UKd(Pd
i ,KA(Kd)\Nd

i) ⊆ KA(Kd)\Nd
i+1: Let H ∈ UKd(Pd

i ,KA(Kd)\Nd
i). Then H occurs

in the greatest unfounded set w.r.t. (Pd
i ,KA(Kd)\Nd

i). It follows from Definition 3.9 that
H 6∈ Nd

i+1. Consequently, H ∈ KA(Kd) \Nd
i+1.

We can now show the correspondence between atoms of K in the fixed point of Defi-
nition 2.13 and those of Kd in the fixed point of Definition 3.7.

PROPOSITION 3.11. Let K = (O,P) be a ground Hybrid MKNF knowledge base.
Then the following holds:

—A ∈ Pω if and only if A ∈ Pd
ω.

—B 6∈ Nω if and only if Bd 6∈ Nd
ω.

PROOF. We show by induction on n that two conditions hold.

(i)A ∈ Pn if and only if A ∈ Pd
n

(ii)B 6∈ Nn if and only if Bd 6∈ Nd
n

This is sufficient since the grounded knowledge base is finite, which means that the
iteration is finite and stops for some natural number n, i.e., the two fixpoints coincide
on the relevant atoms as in (i) and (ii).

The base case for n = 0 is straightforward since P0 and Pd
0 are empty while N0 and

Nd
0 both contain their entire Herbrand base.
(1) So, suppose that (i) and (ii) hold for n and let A ∈ Pn+1 and B 6∈ Nn+1. We show

that A ∈ Pd
n+1 and Bd 6∈ Nd

n+1. The other direction of the equivalence follows from an
identical argument.

(i) First, suppose that A ∈ Pn+1 but A 6∈ Pn (otherwise we obtain the result by the
induction hypothesis (1) immediately). We show that A ∈ Pd

n+1. If A ∈ Pn+1, then
A ∈ ΓK(Nn), by Definition 2.13, and, thus, A ∈ lfp(TK/Nn

) by Definition 2.12. So
A ∈ TK/Nn

↑ m for some m and we show by induction on m that A ∈ TKd//′Nn
↑ m

(2), which implies that A ∈ Pd
n+1. The base case for m = 0 holds immediately. As-

sume the claim (2) holds for m, we show it for m + 1. Suppose that A ∈ TK/Nn
↑

(m + 1) then A ∈ TK/Nn
(TK/Nn

↑ m). Then either A ∈ RK/Nn
(TK/Nn

↑ m)
or A ∈ DK/Nn

(TK/Nn
↑ m). We start with the first case, i.e., there is a rule

A ← A1, . . . , An,notB1, . . . ,notBm with Ai ∈ TK/Nn
↑ m and notBj 6∈ Nn for all

i and j. For each such rule A← A1, . . . , An,notB1, . . . ,notBm in K there is, accord-
ing to Definition 3.1, a rule A ← A1, . . . , An,notBd

1 , . . . ,notBd
m in Pd. Since, by the

induction hypothesis (1), we have that Bi 6∈ Nn if and only if Bd
i 6∈ Nd

n we obtain that
each rule in K/Nn has its correspondent in Kd//′Nd

n. We obtain by the nested induc-
tion hypothesis of (2) that A ∈ TKd//′Nn

↑ (m+1). Otherwise, A ∈ DK/Nn
(TK/Nn

↑ m)
holds, and A ∈ DKd//′Nn

(TKd//′Nn
↑ m) is obtained immediately by the induction hy-

pothesis (2) and the identical ontologies O contained in Kd and K.
(ii) To prove (ii) we suppose as well that B 6∈ Nn+1 but B ∈ Nn. We show that Bd 6∈

Nd
n+1. If B 6∈ Nn+1, then B ∈ UK(Pn,KA(K) \Nn). By Definitions 3.9, and 3.1, we

obtain that B ∈ UKd(Pd
n,KA(Kd) \Nd

n). Hence, by Lemma 3.10, B 6∈ Nd
n+1.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 José Júlio Alferes et al.

This finishes the proof.

It follows immediately from this proposition that we can use this alternative com-
putation to compute the well-founded MKNF model. Formally we obtain the following
theorem, which shows the adapted well-founded MKNF model.

THEOREM 3.12. Let K = (O,P) be a ground, MKNF-consistent Hybrid MKNF
knowledge base and let Pd

K,N
d
K ⊆ KA(Kd) with

Pd
K = {A | A ∈ Pd

ω and A ∈ KA(K)},Nd
K = {Ad | Ad ∈ Nd

ω and Ad ∈ KA(Kd)}.

Then

MWF = {A | A ∈ Pd
K} ∪ {π(O)} ∪ {notA | Ad ∈ (KA(Kd) \ KA(K)) \Nd

K}

is the well-founded MKNF model of K.

PROOF. The result is an immediate consequence of Proposition 3.11 and Definition
2.16.

The two sets Pd
K and Nd

K are just used to remove superfluous atoms, e.g., the atoms
based on doubled predicates for Pd

K. We note that for practical purposes we also derive
from this theorem and Proposition 3.11 that we have to use the new predicates Ad if
we query for negative literals.

To better illustrate how each of the two computations work, we finish the section
with a technical example.

Example 3.13. Consider the knowledge base K.

Q v ¬R
p(a)← not p(a)
Q(a)←
R(a)← not R(a)

We now show how both computation work in this example, yielding (as expected from
Proposition 3.11) the same results.

We can compute the two sequences Pi and Ni and obtain:

P0 = ∅ N0 = {p(a), Q(a), R(a)}
P1 = {Q(a)} N1 = N0

P2 = P1 N2 = {p(a), Q(a)}
P3 = {p(a), Q(a), R(a)} N3 = N2

P4 = P3 N4 = ∅

The knowledge base is obviously MKNF-inconsistent since we derive that everything
is true and false at the same time.

Now we apply the alternative computation using the doubled set of rules Pd and the
ontology O and its renaming Od including the special marker predicates NR and NQ.

Q v ¬R Qd v ¬Rd

p(a)← not pd(a) pd(a)← not p(a)

Q(a)← Qd(a)← not NQ(a)

R(a)← not Rd(a) Rd(a)← not R(a),not NR(a)

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Query-driven Procedures for Hybrid MKNF Knowledge Bases A:17

We compute the two sequences for the transformed knowledge base Kd and obtain:

Pd
0 = ∅ Nd

0 = {p(a), pd(a), Q(a), Qd(a), R(a), Rd(a), NQ(a), NR(a)}
Pd

1 = {Q(a), Qd(a)} Nd
1 = Nd

0

Pd
2 = Pd

1 Nd
2 = {p(a), pd(a), Q(a), Qd(a), R(a)}

Pd
3 = {p(a), Q(a), R(a)} Nd

3 = Nd
2

Pd
4 = Pd

3 Nd
4 = {p(a), Q(a), R(a)}

All atoms based on original predicates are true while all doubled atoms are false. This
indicates again that the knowledge base is MKNF-inconsistent.

Note that the inconsistency in R ensures that everything in the knowledge base is
considered inconsistent. This does not always hold (consider adding a fact p(a) ← to
the rules, then pd(a) is not false but true). However, whenever we encounter an atom
such that P is true while Pd is false, then we know that the KB is MKNF-inconsistent.
Adapting Theorem 2.14 to this alternative computation of the well-founded MKNF
model is not trivial, since the computation is now more intertwined. But this does not
constitute a problem. The purpose of this computation is to provide a link to top-down
querying, where, for reasons of efficiency, we do not want to test whether the entire KB
is MKNF-consistent: we only consider the portion of the KB used in the derivation of
the considered query.

4. TABLED SLG(O)-RESOLUTION FOR HYBRID MKNF
We present SLG(O) for Hybrid MKNF knowledge bases which extends SLG resolution
from [Chen and Warren 1996] with an oracle to capture first-order deduction in DLs.
SLG evaluation models well-founded computation for logic programs at an operational
level, ensuring goal-directedness, termination and optimal complexity for a large class
of programs (cf. [Chen and Warren 1996]). At the same time it has motivated the design
of modern tabling engines, and captures many aspects of their behavior. When SLG is
extended with an oracle in SLG(O), several of the definitions of SLG are affected. In
this section we present the definitions of SLG(O), as well as defining when an oracle
is suitable for use in an evaluation. As the SLG(O) definitions are presented, we make
clear how they differ from those of SLG. For the definition of SLG(O), we follow and
extend the model of [Swift 1999].

Briefly, an SLG(O) evaluation is a sequence of forests (sets) of program trees. Pro-
gram trees themselves correspond to subgoals that have been encountered in an eval-
uation. The nodes in these trees contain sets of literals divided into those literals that
have not been examined, and others that have been examined, but their resolution de-
layed (cf. Definition 4.2). The need to delay some literals arises for the following reason.
Modern Prolog engines rely on a fixed order for selecting literals in a rule, e.g., always
left-to-right. However, well-founded computations cannot be performed using a fixed-
order literal selection function.9 Hence, in SLG(O) the DELAY operation may postpone
evaluation of some literals, which may be later resolved through an operation called
SIMPLIFICATION. In addition to modeling the operational behavior of Prolog, the use of
delay and simplification supports the termination and complexity results of SLG(O)
discussed in Section 5, analogous to those presented for SLG in [Chen and Warren
1996].

9A literal selection function is employed to choose the next literal to resolve in the body of a rule. In SLG(O),
the only requirement for a selection function is that DL-atoms are not selected until they are ground, which
is always possible given DL-safety of conjunctive queries and the rules appearing in the knowledge base (cf.
Definition 2.3).

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 José Júlio Alferes et al.

Example 4.1. To ease the understanding of SLG(O), we present a concrete exam-
ple of an SLG(O) evaluation that does not use an oracle. Consider the following Hybrid
MKNF knowledge base K with empty O.

p(b)← (2)
p(c)← not p(a) (3)
p(X)← t(X, Y, Z),not p(Y),not p(Z) (4)
p(a)← p(b), p(a) (5)

t(a, a, b)← (6)
t(a, b, a)← (7)

We consider the query p(c) to K in which none of the atoms is a DL-atom, i.e., no
oracle needs to be used. The SLG(O) forest at the end of this evaluation is shown in
Figure 1 where each node is labeled with a number indicating the order in which it
was created in the SLG(O) evaluation. Nodes consist of either the symbol fail, or of
a head representing the bindings made to an atomic subgoal and a body with a set of
Delays, followed by the | symbol, followed by Goals that are still to be examined. The
evaluation begins by creating a tree for the initial query with root p(c)← |p(c) in node
1. Children of root nodes are created via the operation PROGRAM CLAUSE RESOLU-
TION just as in the SLD resolution of Prolog. Accordingly, the evaluation uses rule (3)
to create node 2. The (only possible) literal not p(a) in node 2 is selected. This literal
has an underlying subgoal p(a) that does not correspond to the root of any tree in the
forest so far. Thus, the SLG(O) operation NEW SUBGOAL creates a new tree for p(a)
(node 3), whose child, node 4, is created by PROGRAM CLAUSE RESOLUTION using rule
(4). The NEW SUBGOAL operation is again used to create a new tree for the selected lit-
eral t(a,X,Y) (node 5), and children nodes 6 and 7 are created by PROGRAM CLAUSE
RESOLUTION from rules (6) and (7). These latter nodes have empty Goals and are
termed answers; moreover, since they also have empty Delays, they are unconditional
answers.10 Any atom in the ground instantiation of an unconditional answer is true
in the well-founded MKNF model, cf. Theorem 5.3. The SLG(O) operation POSITIVE
RETURN is used to resolve the first of these answers against the selected literal of node
4, producing node 9. The selected literal of this latter node has p(a) as its underlying
subgoal, but there is already a tree for p(a) in the forest and there are no answers for
p(a) to return. Since there is another unconditional answer for t(a,X,Y) (in node 7),
POSITIVE RETURN can be used to produce node 10. The underlying subgoal p(b) is se-
lected, by NEW SUBGOAL the tree for p(b) is created, and it is eventually determined
that the subgoal p(b) has an unconditional answer (node 12); accordingly, using the
NEGATION FAILURE operation, the failure node, node 14, is created. Then, the compu-
tation, via PROGRAM CLAUSE RESOLUTION and program rule (5), produces another
child for p(a), node 15, and resolves p(b) (node 16). At this stage the subgoal p(a) is
neither true, as no unconditional answers have been derived for it, nor false as one
of its possible derivations, node 9, effectively has a loop through negation. However,
in SLG(O) it is possible to apply the DELAY operation to the selected negative literal,
by moving it from the Goals to the right of the | symbol into the Delays to the left of
the | symbol. This DELAY operation produces node 17, which is termed a conditional
answer, as it has empty Goals but non-empty Delays.11 DELAY also produces node 18

10In a practical program, a predicate defined by simple facts would not be evaluated using tabling, but
rather would use SLD resolution as in Prolog.
11Choosing delay in this order is not optimal and is made for purposes of illustrating the operations of
SLG(O). This does not affect the result of the query itself since SLG(O) is shown to be confluent in Theo-
rem 5.2.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Query-driven Procedures for Hybrid MKNF Knowledge Bases A:19

22. complete

8. complete 13. complete

20. complete

16. p(a)<− |p(a).

15. p(a)<− |p(b),p(a).

18. p(a)<− not p(a)|not p(b)

17. p(c)<− not p(a)|

19. fail

20. fail

21. p(c) <− |

1. p(c) <− | p(c)

2. p(c)<− | not p(a)

3. p(a) <− | p(a)

4. p(a)<− |t(a,X,Y),not p(X),not p(Y)

9. p(a)<− |not p(a),not p(b)

5. t(a,X,Y) <− |t(a,X,Y)

6. t(a,a.b) <− | 7. t(a,b,a) <− |

10. p(b)<− |not p(b),not p(a)

12. p(b) <− |

11. p(b) <− | p(b)

14. fail

Fig. 1. Final forest for the query p(c) to P1.

whose new selected literal not p(b) now fails (given the unconditional answer in node
12), producing the failure node 19. At this stage, all possible operations for non-answer
nodes in p(a) and the trees it depends on have been performed so that p(a) may be
completed (step 20). The completed subgoal p(a) has no answers, and so is termed
failed and is false in the well-founded MKNF model of K. This failed literal can be re-
moved from the delay list of node 18 through the SIMPLIFICATION operation producing
the unconditional answer node 21.

Example 4.1 covers most of the main aspects of SLG(O), more precisely the main
aspect of the underlying formalism, SLG, that is applicable to normal logic programs.
SLG does not especially differ from other Prolog-like tabling formalisms in the case of
programs that do not use default negation (not). However, for negation it introduces
the concept of delaying literals in order to be able to find witnesses of failure anywhere
in a rule, along with the concept of simplifying these delayed literals whenever their
truth value becomes known. SLG(O) allows additionally the usage of an oracle to
incorporate reasoning in the DL part O, and we present its definitions in the following.

An SLG(O) evaluation proceeds by constructing a forest according to the set of
SLG(O) operations. Such a forest, and the trees and nodes it contains are defined
as follows:

Definition 4.2. A node has the form

AnswerTemplate← Delays|Goals or fail.

In the first form, AnswerTemplate is an atom or a classically negated atom, while
Delays and Goals are sequences of literals. The second form is called a failure node.
A program tree T is a tree of nodes whose root is of the form S ← |S for some atom S

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 José Júlio Alferes et al.

or a classically negated atom S = ¬S1: we call S the root node for T and T the tree for
S. An SLG(O) forest F is a set of program trees. A node N is an answer when it is a
leaf node for which Goals is empty. If the Delays of an answer is empty, it is termed an
unconditional answer, otherwise, it is a conditional answer. A program tree T may be
marked with the symbol complete.

The notions in Definition 4.2 are almost identical to previous formulations of SLG
resolution. The only difference is that SLG(O) allows for the appearance of classically
negated atoms as roots to incorporate possible calls for the classical negation as
required by the bottom-up computation in Definition 3.4. Such a literal ¬A only
appears in an AnswerTemplate or as the only goal in the root node, and is only used to
query O.

An SLG(O) evaluation of a query Q starts with an initial forest with just one node
Q← |Q and creates a sequence of forests. Each forest is obtained from the previous one
by applying one SLG(O) operation. If no further SLG(O) operation is applicable, then
the final forest for the evaluation of the query has been reached. We introduce these
SLG(O) operations incrementally, in Definitions 4.5, 4.7, 4.11, and 4.14. But before we
present the first set of operations, we need two auxiliary definitions.

The definition of answer resolution in SLG(O) (and SLG) differs from resolution in
Horn rules in order to take into account delay literals in conditional answers.

Definition 4.3. Let N be a node A← D|L1, ..., Ln, where n > 0. Let Ans = A′ ← D′|
be an answer whose variables are disjoint from N . N is SLG(O) resolvable with Ans if
∃i, 1 ≤ i ≤ n, such that Li and A′ are unifiable with an mgu12 θ. The SLG(O) resolvent
of N and Ans on Li has the form:

(A← D|L1, ..., Li−1, Li+1, ..., Ln)θ

if D′ is empty; otherwise the resolvent has the form:

(A← D,Li|L1, ..., Li−1, Li+1, ..., Ln)θ

Note that this form of resolution delays Li rather than propagating the answer’s delay
list D′, which means that Li in the delay list is only resolved, once D′ in the conditional
answer has been resolved. This is necessary, as shown in [Chen and Warren 1996], to
ensure polynomial data complexity.13

Next, we relate different types of literals to their underlying subgoals.

Definition 4.4. The underlying subgoal of L is 1) L if L is a positive literal or L =
¬S; 2) is S if L = notS (and S is not based on one of the new predicates NH introduced
in Definition 3.4); or 3) is ¬H(~tH) if L = notNH(~tH).

The first set of operations that we present deals with the creation of new trees and
with resolution with program rules and with answers in other trees.

Definition 4.5 (SLG(O) Operations – 1). Let Kd = (O,Od,Pd) be a doubled Hybrid
MKNF knowledge base. Further assume that a fixed selection function is used to select
a literal from the Goals in a node.

Given a forest Fn of an SLG(O) evaluation of Kd, Fn+1 may be produced by one of
the following operations.

12most general unifier
13If delay lists were propagated directly, then delay lists could effectively contain all derivations which could
be exponentially many in the worst case.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Query-driven Procedures for Hybrid MKNF Knowledge Bases A:21

(1) NEW SUBGOAL: Let Fn contain a tree with non-root node
N = Ans← Delays|G,Goals

where S is the underlying subgoal of G. Assume Fn contains no tree with root S.
Then add the tree S ← |S to Fn.

(2) PROGRAM CLAUSE RESOLUTION: Let Fn contain a tree with root node N = S ← |S
and C be a rule Head ← Body such that Head unifies with S with mgu θ. Assume
that in Fn, N does not have a child Nchild = (S ← |Body)θ. Then add Nchild as a
child of N .

(3) POSITIVE RETURN: Let Fn contain a tree with non-root node N whose selected
literal S is positive. Let Ans be an answer for S in Fn and Nchild be the SLG(O)
resolvent of N and Ans on S. Assume that in Fn, N does not have a child Nchild.
Then add Nchild as a child of N .

As illustrated in Example 4.1, the operation NEW SUBGOAL creates a new tree in
the forest F for a selected literal in the Goals of some (non-root) node in a tree in F .
Once a root node N for a positive literal is created, the PROGRAM CLAUSE RESOLU-
TION operation can create children for N , given the rules in the knowledge base. POS-
ITIVE RETURN resolves positive literals in nodes, with answers already in the forest,
according to Definition 4.3. Contrary to SLG, the NEW SUBGOAL operation may also
create new trees for classically negated literals to which only the operation ORACLE
RESOLUTION, defined below, applies.

Now, if a sequence of SLG(O) operations yields a (possibly intermediate) forest con-
taining an unconditional answer, then this answer is considered to be true. Likewise, if
no more operations are applicable to a set of trees, and none of them contains an uncon-
ditional answer, i.e., the set of literals associated to these trees is completely evaluated
(see Definition 4.12), then we can interpret all these literals as false. Expanding on
this correspondence, we may associate an SLG(O) forest with a partial interpretation,
taking into consideration that, besides atoms and default negated atoms, SLG(O) also
allows classically negated literals as the roots of trees. This interpretation is shown to
correspond to MWF (cf. Theorem 5.3 below).

Definition 4.6. Let F be a forest. Then the interpretation induced by F , IF , is the
smallest set such that:

— A (ground) atom A ∈ IF iff A is in the ground instantiation of some unconditional
answer Ans← | in F .

— A (ground) negated atom ¬A ∈ IF iff ¬A is in the ground instantiation of some
unconditional answer Ans← | in F .

— A (ground) literal notA ∈ IF iff A is in the ground instantiation of a literal whose
tree in F is marked as complete, and A is not in the ground instantiation of any
answer in a tree in F .

An atom S is successful (resp. failed) in F if S′ (resp. notS′) is in IF for every S′ in the
ground instantiation of S.

Whenever an atom A is successful, we can fail its default negation notA. If an atom
A is failed, then we can simplify away notA. Ground default negated literals that are
neither failed nor successful may be delayed and be simplified later. More precisely:

Definition 4.7 (SLG(O) Operations – 2). Let Kd = (O,Od,Pd) be a doubled Hybrid
MKNF knowledge base, and assume a selection function as in Definition 4.5.

Given a forest Fn of an SLG(O) evaluation of Kd, Fn+1 may be further produced by
one of the following operations.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 José Júlio Alferes et al.

(4) NEGATIVE RETURN: Let Fn contain a tree with a leaf node, whose selected literal
notS is ground

N = Ans← Delays|notS,Goals.

(a) NEGATION SUCCESS: If S is failed in Fn then create a child for N of the form:
Ans← Delays|Goals.

(b) NEGATION FAILURE: If S succeeds in Fn, then create a child for N of the form
fail.

(5) DELAYING: Let Fn contain a tree with leaf node
N = Ans← Delays|notS,Goals

such that S is ground in Fn, but S is neither successful nor failed in Fn. Then
create a child for N of the form Ans← Delays,notS|Goals.

(6) SIMPLIFICATION: Let Fn contain a tree with leaf node
N = Ans← Delays|

and let L ∈ Delays
(a) If L is failed in F then create a child fail for N .
(b) If L is successful in F , then create a child Ans← Delays′| for N , where Delays′

= Delays− L.

In Hybrid MKNF knowledge bases, an atom S is true if it is derivable from the rules
or from the DL part of the knowledge base. So far, we have presented the operation
PROGRAM CLAUSE RESOLUTION that handles the former case. We now introduce the
ORACLE RESOLUTION operation to deal with the latter.

The next definition characterizes the behavior of an abstract oracle, O,14 that com-
putes entailment according to the DL knowledge base O, to be used in the ORACLE
RESOLUTION operation. For that purpose, we define an oracle transition function that,
given an interpretation induced by a forest, computes in a single step all possible atoms
required to prove a goal S. In other words, such an oracle, when presented with S and
a forest F , non-deterministically returns in one step a set of ground atoms L such that:
for each L ∈ L there is at least one rule with L in the head in ground PG, and if L were
added to O augmented with IF , the extended theory would immediately entail S. We
only have to take into account that we appropriately query O or its renaming Od in a
doubled Hybrid MKNF knowledge base, and that we extend O only with the positive
part of IF .

Definition 4.8. Let Kd = (O,Od,Pd) be a doubled Hybrid MKNF knowledge base,
S a ground goal, L a set of ground atoms such that each L ∈ L is unifiable with at least
one rule head in Pd, and I+

F = IF \ {notA | notA ∈ IF}. The complete oracle for O,
denoted compTO, is defined by

compTO(IF , S,L) iff O ∪ I+
F ∪ L |= S or Od ∪ I+

F ∪ L |= S

Example 4.9. Consider the Hybrid MKNF knowledge base K containing O.

C(a) C u F v E

Assume that IF is empty, and that there is at least one rule whose head unifies with
F(a). We query for E(a). In this case, compTO(∅, E(a), {F(a)}) holds because O∪{F(a)} |=
E(a). Thus, deriving F(a) from the rules would be enough to conclude that E(a) is true
in the well-founded MKNF model.

14We overload O syntactically to represent the oracle and the ontology, i.e., its underlying DL knowledge
base, since from the viewpoint of SLG(O) they are the same.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Query-driven Procedures for Hybrid MKNF Knowledge Bases A:23

The setO∪I+
F ∪L (and likewiseOd∪I+

F ∪L) may be inconsistent even though the well-
founded MKNF model of K exists. Consequently, such a complete oracle potentially
allows us to obtain a large number of entailments that are eventually useless to derive
S if K is MKNF-consistent.

Example 4.10. Consider the Hybrid MKNF knowledge base K containing O.

C(a) C v ¬D E v F

Assume that IF is empty and we query for E(a). If O were extended with D(a), O would
become inconsistent, so that all statements would be derivable from the extended O,
including E(a). Hence compTO(∅, E(a), {D(a)}) holds because O ∪ {D(a)} is inconsistent.
However, as K is MKNF-consistent, D(a) cannot be derived so that the corresponding
tree eventually fails. In Section 5, we provide the definition of a partial oracle which
overcomes this lack of efficiency, and upon which concrete oracles can be based.

Complete oracles are applied to define the next SLG(O) operation, which has no
correspondence in SLG:

Definition 4.11 (SLG(O) Operations – 3). LetKd = (O,Od,Pd) be a doubled Hybrid
MKNF knowledge base. Given a forest Fn of an SLG(O) evaluation of Kd, Fn+1 may be
produced by:

(7) ORACLE RESOLUTION: Let Fn contain a tree with root node N = S ← |S, and
suppose that compTO(IFn , S,Goals) holds. Assume that N does not have a child
Nchild = S ← |Goals in Fn.15 Then add Nchild as a child of N .

SLG(O) also includes an operation that marks a set of trees as complete if the
corresponding set of literals is completely evaluated. Completed trees can be used in
SLG(O) to simplify other trees and to augment the interpretation associated with the
forest with default negated literals

Definition 4.12. A set S of literals in a forest F is completely evaluated if at least
one of the conditions holds for each S ∈ S
(1) The tree for S contains an answer S ← |; or
(2) For each node N in the tree for S:

(a) The underlying subgoal of the selected literal of N is marked as complete; or
(b) The underlying subgoal of the selected literal of N is in S and there are no ap-

plicable NEW SUBGOAL, PROGRAM CLAUSE RESOLUTION, POSITIVE RETURN
(Definition 4.5), NEGATIVE RETURN, DELAYING (Definition 4.7) or ORACLE
RESOLUTION (Definition 4.11) operations for N .

Once a set of literals is determined to be completely evaluated, a COMPLETION opera-
tion marks the trees for each literal (Definition 4.2). If a subgoal S is completed due to
condition 1 holding, we say that S is early completed. If condition 1 does not hold, condi-
tion 2a of the above definition prevents the COMPLETION operation from being applied
to one of a set of trees if certain other operations are applicable to those trees. This no-
tion of completion is incremental in the sense that once a set S of mutually dependent
subgoals is fully evaluated, the derivation need not be concerned with the trees for S
apart from any answers they contain. In an actual implementation resources for such
trees can be reclaimed.

In certain cases the propagation of conditional answers through resolution (Defini-
tion 4.3) can lead to a set of unsupported answers — conditional answers that are false

15For that comparison, we consider the sequences Goals as sets to avoid that one root node has several
children whose sequences Goals are merely permutations.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 José Júlio Alferes et al.

in the well founded model (see, e.g., Example 1 of [Swift et al. 2009]).16 Intuitively,
these answers, which have positive mutual dependencies, correspond to an unfounded
set, but their technical definition is based on the form of conditional answers.

Definition 4.13. Let F be an SLG(O) forest, and Answer be an atom that occurs in
the head of some answer in a tree with root S. Then Answer is supported in F if and
only if:

(1) S is not completely evaluated; or
(2) there exists an answer node Answer′ ← Delays| in S such that Answer′ subsumes

Answer and for every positive literal L ∈ Delays, L is supported in F .

We are now able to characterize the last two operations of SLG(O): one allows the
completion of trees, and the other removes unsupported answers.

Definition 4.14 (SLG(O) Operations – 4). LetKd = (O,Od,Pd) be a doubled Hybrid
MKNF knowledge base. Given a forest Fn of an SLG(O) evaluation of Kd, Fn+1 may
also be produced by one of the following operations.

(8) COMPLETION: Given a completely evaluated set S of literals (Definition 4.12),
mark the trees for all literals in S as complete.

(9) ANSWER COMPLETION: Given a set of unsupported answers UA, create a failure
node as a child for each answer Ans ∈ UA.

Each of the operations (1)–(9), in Definitions 4.5, 4.7, 4.11 and 4.14, can be seen as a
function that associates a forest with a new forest by adding a new tree, adding a new
node to an existing tree, or marking a set of trees as complete. The only thing missing
to complete the description of the procedure is the formalization of the initialization of
an SLG(O) evaluation, i.e., how the initial (DL-safe) conjunctive query is defined.

Definition 4.15. Let Kd be a doubled Hybrid MKNF knowledge base and let q be
a query of the form q(Xi) ← A1, . . . , An,notBd

1 , . . . ,notBd
m where Xi is the (possibly

empty) set of requested variables. We set F0 = {q(Xi)←| q(Xi)} to be the initial forest
of an SLG(O) evaluation of Kd for q and add q itself to Kd.

Of course, if the query is atomic we can simply start with the query itself, i.e., with
the root containing the queried literal itself. Since the derivation uses Kd (the dou-
bled knowledge base), the technically correct way to query negative literals is to use
notBd instead of notB for any atom B which is why we use the doubled predicates for
negative literals in the query.

Finally, note that if O represents an expressive DL, then O may derive equalities
between different individuals because the unique names assumption (UNA) is not
applied. Hybrid MKNF accounts for that using the standard names assumption (see
[Motik and Rosati 2010; Knorr et al. 2011]), thus adapting reasoning with equalities
as well. As such, equalities allow us to derive further information in the sense that, for
example, if C(a) and a ≈ b hold, then C(b) is derivable. If C(a) is a DL-atom, then the
DL reasoner of the oracle takes care of the problem internally. Only if C(a) is a non-
DL-atom, then we specifically have to query for equalities in O which is why ORACLE
RESOLUTION is not restricted to DL-atoms.

In the next section, we show that SLG(O) always terminates (Theorem 5.1) and,
even though some orders of application of the possible operations are more efficient
than others, that the procedure is confluent (Theorem 5.2). We also show that the

16As an aside, we note that unsupported answers appear to be uncommon in practical evaluations which
minimize the use of delay such as [Sagonas et al. 2000].

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Query-driven Procedures for Hybrid MKNF Knowledge Bases A:25

procedure is sound and complete w.r.t. the well-founded MKNF model (Theorem 5.3)
and that it is sound w.r.t. the semantics of two-valued MKNF (Corollary 5.4). Finally,
under some assumptions, we maintain the computational complexity of the bottom-up
procedure (Theorem 5.7), which is actually an improvement since we do not have to
consider the entire knowledge base but only the part relevant for a concrete query. But
before showing these results, we finish the presentation of SLG(O) with an example
illustrating its behavior.

Example 4.16. In order to illustrate the actions of SLG(O) we consider a deriva-
tion of an answer to the query discount(Bill) using a KB K from [Motik and Rosati
2007]:17

NonMarried ≡¬Married (8)
¬Married v HighRisk (9)
∃Spouse.T v Married (10)

(∃Spouse.{Michelle})(Bill) (11)
NonMarried(x)←not Married(x) (12)
discount(x)←not HighRisk(x) (13)

First, note that TBox and ABox information are each distributed over both the
DL KB and the rules. Figure 2 shows the final forest for this evaluation, where ele-
ments are marked in the order they are created. The initial forest for the evaluation
consists of node 1 only. Given the selected literal of node 1, discount(Bill), we can
only apply PROGRAM CLAUSE RESOLUTION, so we use rule (13) to produce node 2,
followed by NEW SUBGOAL to produce node 3. No rules are applicable for node 3,
HighRisk(Bill), but an ORACLE RESOLUTION operation can be applied to derive from
axioms (8) and (9) that if NonMarried(Bill) can be proven (node 4), then this suffices
to prove HighRisk(Bill). Then, via a NEW SUBGOAL operation, node 5 is obtained.
For the selected literal in node 5, NonMarried(Bill), PROGRAM CLAUSE RESOLUTION
produces node 6 from (12) and NEW SUBGOAL produces node 7. The selected literal of
node 7, Married(Bill), is not the head of a rule, so the only possibility is to use ORA-
CLE RESOLUTION, and the answer Married(Bill) is derived from axioms (10) and (11).
Using this answer, the tree for Married(Bill) can be early completed and a NEGATIVE
RETURN operation produces node 10. The tree for NonMarried(Bill), which does not
have an answer, must be completed (step 11), and the same holds for HighRisk(Bill)
(step 12). Once this occurs, a NEGATIVE RETURN operation is enabled to produce node
13.

The evaluation in the example illustrates two main points. First, the evaluation
makes use of classical negation in the ontology along with closed world negation in the
rules. Second, the actions of the DL part and the program part are interleaved, with
the program “calling” the oracle by ORACLE RESOLUTION, and the oracle “calling” the
program back with the answers of that operation.

5. PROPERTIES OF TABLED SLG(O)-RESOLUTION
We now present several properties of SLG(O)-resolution. The first property we can
ensure is that our extension of SLG resolution terminates for the evaluation of any
query, generating a final forest.

17For ease of reading and since neither an MKNF-inconsistency nor an issue related to coherence occurs, we
operate on K directly instead of on Kd.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26 José Júlio Alferes et al.

1. discount(bill)<− |discount(bill)

14. complete

13. discount(bill)<−|

12. complete

11. complete

10. complete

9. fail

6. NonMarried(bill)<− |not Married(bill)

5. NonMarried(bill)<−|NonMarried(bill)

4. HighRisk(bill)<− |NonMarried(bill)

3. HighRisk(bill)<− |HighRisk(bill)

7. Married(bill)<− |Married(bill)

8. Married(bill) <− |

2. discount(bill)<− | not HighRisk(bill)

Fig. 2. Final Forest for the query discount(Bill) to K.

THEOREM 5.1. Let q = L be a query to a doubled Hybrid MKNF knowledge baseKd.
Then any SLG(O) evaluation of K d for q terminates after finitely many steps, producing
a finite final forest.

PROOF. The proof is straightforward since we know already that SLG, i.e., SLG(O)
without ORACLE RESOLUTION and the extended NEW SUBGOAL operation, termi-
nates finitely for programs with bounded term-depth, and transfinitely otherwise (cf.
Theorem 5.10 of [Chen and Warren 1996]). Since Definition 2.2 ensures that Hybrid
MKNF knowledge bases do not contain recursive terms, i.e., non-nullary functors, they
have bounded term depth, and so does the doubled knowledge base Kd. Accordingly, we
only have to ensure that the new operation ORACLE RESOLUTION and the extension
of NEW SUBGOAL do not invalidate finite termination.

The operation ORACLE RESOLUTION can be applied in the same situation as PRO-
GRAM CLAUSE RESOLUTION, namely when creating a new child for a root of a tree, so
that each operation can be applied only once to a given node (for each of the finitely
many rules, respectively for each of the finitely many possible answers of the complete
oracle), and this creates one child per successful application. Now, since the knowledge
base Kd is finite, the number of (ground) rule heads is finite. Thus, 1) the number of
children possibly created with ORACLE RESOLUTION for any arbitrary root is finite;
and 2) the size of the nodes created is also finite.

The extension of the operation NEW SUBGOAL creates even in the worst case finitely
many more trees with roots to which only ORACLE RESOLUTION is applicable, which
in its turn is finitely many, as just demonstrated.

We conclude that termination holds for SLG(O).

As SLG(O) is defined, there is no prescribed order in which to apply the operations
possible in a forest Fi. For SLG some orders of application are in general more efficient
than others but, as shown in [Chen and Warren 1996], any order yields the same
outcome for any query. This same sort of confluence also holds for SLG(O):

THEOREM 5.2. Let E1 and E2 be two SLG(O) evaluations of a query q = L to a
doubled Hybrid MKNF knowledge base Kd, F1 the final forest of E1, and F2 the final
forest of E2. Then, IF1 = IF2 .

PROOF. This is a well-known property for SLG as defined using the operations of
Definition 4.5 excluding the extension of NEW SUBGOAL to classical negation, and the
operations of Definitions 4.7 and 4.14 (cf. Theorem 5.7 of [Chen and Warren 1996]). Ac-
cordingly, we consider cases in which E1 and E2 make use of the operations that have
been introduced/extended in SLG(O). However, PROGRAM CLAUSE RESOLUTION is

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Query-driven Procedures for Hybrid MKNF Knowledge Bases A:27

used in SLG, and if we just consider the created children, then PROGRAM CLAUSE
RESOLUTION and ORACLE RESOLUTION are not distinguishable. Thus, we can con-
sider that ORACLE RESOLUTION is a syntactic variant of PROGRAM CLAUSE RES-
OLUTION. The same holds for NEW SUBGOAL and the treatment of default negated
atoms notS that create a tree with root S and those special literals notNH(ti) that
may allow us to create a tree with root ¬H(ti): both its children are not distinguishable
and only one of the two is applicable in each case. Thus, confluence of SLG(O) follows
directly from confluence of SLG (see Theorem 5.7 of [Chen and Warren 1996]).

The above theorem is also helpful to prove that SLG(O) is a correct query procedure
for MKNFWF and terminates within the same complexity bounds as the semantics
defined in [Knorr et al. 2011]. First, we show that SLG(O) coincides with MKNFWF .
Intuitively, what we have to show is that the well-founded MKNF model, as presented
in Section 2 and based on the computation presented in Section 3, coincides with the
interpretation IF induced by the final forest Fn for some query q to Kd in all the ground
literals involved in the query.18 We can further simplify that by showing, for each
literal L appearing in Kd

G, that L ∈ MWF (Definition 2.16) if and only if L ∈ IF with
ground query q = L and Fn for some n. Note that this correspondence also holds for
atoms and classically negated atoms only appearing in the ontology.

THEOREM 5.3. Let Kd be a doubled Hybrid MKNF knowledge base, and IF the
interpretation induced by the final forest F of an SLG(O) evaluation of Kd for a ground
query q = L where L is a literal or a classically negated atom. SLG(O) resolution is
sound and complete w.r.t. MWF , which is obtained from Pd

ω and Nd
ω, i.e.,

— for L ∈ KA(Kd
G):

—L ∈ Pd
ω if and only if L ∈ IF and

—Ld
1 6∈ Nd

ω if and only if L = notLd
1 ∈ IF .

— for L 6∈ KA(Kd
G): O ∪Pd

ω |= L or Od ∪Pd
ω |= L if and only if L ∈ IF .

PROOF.
(Completeness): We show by induction on n that

— for L ∈ KA(Kd
G), if L is a positive literal, then L ∈ Pd

n implies that L ∈ IF ; and if
L = notLd

1 is a negative literal, then Ld
1 6∈ Nd

n implies that notLd
1 ∈ IF

— for L 6∈ KA(Kd
G), if O ∪Pd

n |= L or Od ∪Pd
n |= L then L ∈ IF .

The induction base holds immediately, for L ∈ KA(Kd
G), since Pd

0 is empty and Nd
0

contains all literals appearing in KA(Kd
G). For L 6∈ KA(Kd

G), we obtain that O |= L or
Od |= L, so we can create a tree L : − | L and with ORACLE RESOLUTION an answer
L : − |, which shows L ∈ IF .

(Induction Hypothesis 1) Now suppose the claim holds for n. We have to show the
induction step for n + 1. For L ∈ KA(Kd

G), let L be a positive literal, and suppose that
L ∈ Pd

n+1 but L 6∈ Pd
n (otherwise the claim would immediately follow by the induction

hypothesis). Therefore, L ∈ ΓKd
G

(Nd
n) and so L ∈ TKd

G//′Nd
n
↑ ω (Definition 3.5). We show

by induction on m that L ∈ TKd
G//′Nd

n
↑ m implies that L ∈ IF .

Inner Induction
The base case is void since TKd

G//′Nd
n
↑ 0 is empty.

(Induction Hypothesis 2) Suppose the property holds for m, we show it for m + 1.
So, assume that L ∈ TKd

G//′Nd
n
↑ (m + 1) but L 6∈ TKd

G//′Nd
n
↑ m (otherwise

18Without loss of generality, we can restrict that statement to ground queries, a non-ground query would
simply require to check all the ground instances.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:28 José Júlio Alferes et al.

the property would immediately follow by the induction hypothesis (2)). Then L ∈
TKd

G//′Nd
n
(TKd

G//′Nd
n
↑ m) and either L ∈ RKd

G//′Nd
n
(TKd

G//′Nd
n
↑ m) (i.e., L is a conse-

quence of rule deduction, Definition 3.3) or L ∈ DKd
G//′Nd

n
(TKd

G//′Nd
n
↑ m) (L is a con-

sequence of deduction in the ontology). In the first case, for L to be the consequence
of a rule derivation, there must be a rule L ← A1, . . . , An,notB1, . . . ,notBm in Kd

G

such that all Bj 6∈ Nd
n and all KAi ∈ TKd

G//′Nd
n
↑ m. Such a rule gives rise to the

rule L← A1, . . . , An in the the MKNF-coherent reduction, Kd
G//

′Nd
n. We thus know by

the two induction hypotheses that all Ai and all notBj appear in IF . From that we
can construct a tree with root L : − | L and a child obtained by applying PROGRAM
CLAUSE RESOLUTION with the rule considered. In the resulting child the set of goals
contains exactly all Ai that can be removed by POSITIVE RETURN and all notBj that
can be removed by NEGATIVE RETURN. The result is a leaf node L : − | and we obtain
that L ∈ IF for this order of applying SLG(O) operations. Since Theorem 5.2 ensures
that we achieve the same result if we alter the order of such applications of SLG(O)
operations, we know that the statement holds in general. In the second case, i.e., for
L ∈ DKd

G//′Nd
n
(TKd

G//′Nd
n
↑ m), we construct a tree L : − | L and apply ORACLE RESO-

LUTION as (finitely) many times as necessary. One of those children is the one actually
allowing to derive L by means of the ontology, i.e., all goals in this child are positive lit-
erals that are true in TKd

G//′Nd
n
↑ m. We apply POSITIVE RETURN to these literals, and

this, by the induction hypothesis (2), results in a leaf node L : − |. As before, Theorem
5.2 ensures that a different application order again yields eventually the same result.

Now, let L be a negative literal notLd
1, and suppose that Ld

1 6∈ Nd
n+1 but Ld

1 ∈ Nd
n

(otherwise the claim would follow immediately by the induction hypothesis (1)). Then,
Ld

1 ∈ UKd
G

(Pd
n,KA(Kd

G) \Nd
n) by Lemma 3.10, i.e., Ld

1 occurs in the greatest unfounded
set w.r.t. (Pd

n,KA(Kd
G) \ Nd

n). We construct a tree with root Ld
1 : − | Ld

1. We proceed
by creating all children of that root, applying PROGRAM CLAUSE RESOLUTION and
ORACLE RESOLUTION as (finitely) many times as possible. By Definition 3.9, each
such child (after finitely many subsequent operations) is either false or completely
evaluated as in case 2.(b) of Definition 4.12, which means that another element of
UKd

G
(Pd

n,KA(Kd
G) \ Nd

n) has been encountered in the list of goals. Note that SLG(O)
selects literals in some order, while the greatest unfounded set U just refers to some
other element in U . Consequently, it may happen that we have to evaluate some lit-
erals first whose evaluation is only known in an iteration step m with m > n. But
this does not cause any problem. Such negative literals may be simply delayed (DE-
LAYING), while both positive and negative literals are processed (NEW SUBGOAL and
so on): if a literal can eventually be resolved, then it is removed from the list of goals
of a child. Otherwise, we obtain an even larger unfounded set. In both cases, once no
further operation can be applied, the set U can be completed, and, by Definition 4.6,
we derive notLd

1 ∈ IF .
End of Inner Induction

The previous inner induction handled the case where Lwas derived as a consequence
of a rule. Alternately, suppose that L 6∈ KA(Kd

G) andO∪Pd
n |= L orOd∪Pd

n |= L. We can
can construct a tree starting with L : − | L and apply ORACLE RESOLUTION until we
get a child L : − | Goals such that Goals ⊆ Pd

n, which has to exist. We apply POSITIVE
RETURN to all positive literals in Goals, which is possible by the induction hypothesis
(1) thus deriving the answer L : − |, from which we conclude L ∈ IF .
(Soundness): We show by induction on n that:

— for L ∈ KA(Kd
G), if L is a positive literal, then L ∈ IFn

implies that L ∈ Pd
ω, and if

L = notLd
1 is a negative literal, then L ∈ IFn implies that Ld

1 6∈ Nd
ω; and

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Query-driven Procedures for Hybrid MKNF Knowledge Bases A:29

— for L 6∈ KA(Kd
G), if L ∈ IF , then O ∪Pd

ω |= L or Od ∪Pd
ω |= L.

The induction base holds trivially, since IF0 is empty. So assume the property holds
for n. We show that the property holds for all cases (1)–(9) of an SLG(O) operation
that may be applied to IFn yielding IFn+1 .

(1) NEW SUBGOAL: This operation creates a new tree and does alone not alter IF , i.e.,
if L ∈ IFn+1 , then L ∈ IFn

, and the property holds by the induction hypothesis.
(2) PROGRAM CLAUSE RESOLUTION: A new child is created for the root S ← | S.

If this child has an empty list of goals, then a rule with empty body was used to
create this child. Now, if L is a positive literal with L = S, then L ∈ IFn+1 . But
then, L ∈ Pd

ω since there is a fact L in Kd
G. Alternatively, if the list of children is

not empty, then L ∈ IFn+1 implies L ∈ IFn
, and the property holds by the induction

hypothesis.
(3) POSITIVE RETURN: If the resolved goal is the last remaining, then the outcome of

the operation is an unconditional answer. Suppose the answer template is equal to
L. We can trace back this child to the immediate child of the root. All goals in this
particular child have already been resolved, so that, by the induction hypothesis,
all positive literals L appear in Pd

ω and all negative literals notLd
1 do not appear

in Nd
ω. But then the property holds, no matter whether L ∈ KA(Kd

G) or not. Alter-
natively, if the list of goals (including delayed ones) is not empty, then L ∈ IFn+1

implies L ∈ IFn , and the property holds by the induction hypothesis.
(4) NEGATIVE RETURN

(a) NEGATION SUCCESS: The argument is exactly the same as for POSITIVE RE-
TURN, only now the last goal is a negative literal.

(b) NEGATION FAILURE: This operation fails one child. However, it does alone not
contribute to IF , i.e., if L ∈ IFn+1 , then L ∈ IFn

, and the property holds by the
induction hypothesis.

(5) DELAYING: This operation at best provides a conditional answer. As such it does
not affect IF alone. Therefore, if L ∈ IFn+1 , then L ∈ IFn , and the property holds by
the induction hypothesis.

(6) SIMPLIFICATION:
(a) The first simplification case corresponds exactly to NEGATION FAILURE, only

here the failure occurs in Delays and the failed literal may be positive or nega-
tive.

(b) The second simplification case corresponds exactly to NEGATION SUCCESS,
only now the success occurs in Delays and the successful literal may be pos-
itive or negative.

(7) ORACLE RESOLUTION: A new child is created for the root S ← | S by means of the
oracle. If the returned list of goals is empty, then the oracle allows us to derive the
root directly, and O∪ IFn |= L or Od ∪ IFn |= L. In this case, if L is a positive literal
with L = S, then L ∈ IFn+1 . If L ∈ KA(Kd

G), then L ∈ Pd
ω, since the operator DKd

G

together with all L′ ∈ IFn , for which L′ ∈ Pd
ω holds by the induction hypothesis,

allows us to derive L. If L 6∈ KA(Kd
G), then O ∪ Pd

ω |= L or Od ∪ Pd
ω |= L holds

since we have that, for all L′ ∈ IFn
, L′ ∈ Pd

ω holds by the induction hypothesis.
Alternatively, if the list of goals is not empty, then L ∈ IFn+1 implies L ∈ IFn

, and
the property holds by the induction hypothesis.

(8) COMPLETION: This operation only affects IF if some A is in the ground instantia-
tion of a completely evaluated literal in F and A is not in the ground instantiation
of any answer in a tree in F . In other words, this operation introduces notL′ to
IF . In particular, consider L = notLd

1 as a negative literal and L ∈ IFn+1 . Thus,
the tree for Ld

1 does not contain any answer but also no further operation can be

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:30 José Júlio Alferes et al.

applied, i.e., in each child, there is (at least) one literal that either can not be re-
solved or it is failed. This matches the condition of the greatest unfounded set and
we obtain that Ld

1 6∈ Nd
ω. For all other cases, if L ∈ IFn+1 , then L ∈ IFn , and the

property holds by the induction hypothesis.
(9) ANSWER COMPLETION: This operation may affect IF by adding failure nodes as

children to conditional answers. Assume that one such answer occurs within some
tree with root S ← S in Fn. In such a case, S may become false in IFn+1 but was
not false in IFn

. However, the notion of an answer that is not supported (Defini-
tion 4.13) captures the definition of an element of an unfounded set: in this case
literals in the unfounded set may be in the Delays of an answer. As with the case
of COMPLETION, we have that for any L in the ground instantiation of S, Ld 6∈ Nd

ω.
For all other cases, if L ∈ IFn+1 , then L ∈ IFn , and the property holds by the induc-
tion hypothesis.

We conclude that soundness holds.

Given the soundness of MKNFWF with respect to the semantics of MKNF knowledge
bases of [Motik and Rosati 2010], it follows easily from [Knorr et al. 2011] that:

COROLLARY 5.4. Let K be a Hybrid MKNF knowledge base and L a literal that
appears in Kd

G. If L ∈ IF (L = notLd
1 ∈ IF respectively), where IF is induced by the

forest F of an SLG(O) evaluation of Kd
G for query q = L, then L (notL1 respectively) is

derivable from all two-valued MKNF models of K.

In addition to the interpretation of the final forest IF being sound with respect to the
2-valued MKNF model, the conditional answers in F can be seen as a well-founded
reduct of the rules in K, augmented with conditional answers derived by ORACLE RES-
OLUTION operations. As a result, the final forest can be seen as a residual program: a
sound transformation not only of the rules, but of information from the oracle, and can
be used to construct a partial 2-valued stable model.19

Regarding complexity, it is clear that the complexity of the whole procedure SLG(O)
depends on the complexity of the oracle, and also on the number of results returned
by each call to the oracle. Clearly, the complexity associated to the computation of one
result of the oracle function is a lower-bound of the complexity of SLG(O). Moreover,
even if the computation of one result of the oracle is tractable, the (data) complexity of
SLG(O) may still be exponential if exponentially many solutions are generated by the
oracle, e.g., if returning all supersets of a solution. This is so, because our definition of
the oracle is quite general, and in order to prove interesting complexity results some
assumptions must be made about the oracle. We start by defining a correct partial
oracle:

Definition 5.5. Let Kd = (O,Od,Pd) be a doubled Hybrid MKNF knowledge base,
S a goal, and L a set of ground atoms such that each L ∈ L is unifiable with at least
one rule head in Pd (called program atoms). A partial oracle for O, denoted pTO, is a
relation pTO(IF , S,L) such that if pTO(IF , S,L), then

O ∪ I+
F ∪ L |= S and O ∪ I+

F ∪ L consistent; or

Od ∪ I+
F ∪ L |= S and Od ∪ I+

F ∪ L consistent.

A partial oracle pTO is correct w.r.t. compTO iff, for all MKNF-consistent Kd, replacing
compTO in SLG(O) with pTO succeeds for exactly the same set of queries.

19[Chen and Warren 1996] discusses these transformational aspects of SLG resolution, which are preserved
in SLG(O), while the XSB manual discusses how the residual program can serve as input to an ASP solver.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Query-driven Procedures for Hybrid MKNF Knowledge Bases A:31

Note that the complete oracle is indeed generating unnecessarily many answers,
and it can be replaced by a partial one that assures correctness. E.g., consider a partial
oracle that does not return supersets of other results. Such a partial oracle is obviously
correct. A further improvement on efficiency is the restriction to consistent sets O ∪
I+
Fn
∪ L and Od ∪ I+

Fn
∪ L. If the knowledge base is MKNF-consistent, then looking

for derivations based on inconsistencies is pointless anyway: we would just create a
potentially large number of children none of which would result in an unconditional
answer. In this sense, partial oracles are limited to meaningful derivations. In the case
of an MKNF-inconsistent knowledge base, things get a bit more complicated.

Example 5.6. Consider again the already doubled knowledge base from Exam-
ple 3.13.

Q v ¬R Qd v ¬Rd

p(a)← not pd(a) pd(a)← not p(a)

Q(a)← Qd(a)← not NQ(a)

R(a)← not Rd(a) Rd(a)← not R(a),not NR(a)

Cf. the computation in Example 3.13, p(a), Q(a), and R(a) are true in the sequence
Pd

ω while pd(a), Qd(a), and Rd(a) are false in the sequence Nd
ω. The same results are

derivable with a complete oracle. Q(a) is derivable from the corresponding fact. From
that ¬R(a) is derivable and therefore not Rd(a) as well. This allows us to obtain R(a).
Now, Q(a) and R(a) together with O are inconsistent from which we can derive p(a), but
also ¬Q(a) and ¬p(a). Consequently, not pd(a) and not Qd(a) hold as well, i.e., everything
is supposedly true and false at the same time.

If we limit ourselves to the partial (consistent) oracle, then we no longer derive p(a),
not Q(a), or not p(a). In this case, R(a) is still true and false (inconsistent), but Q(a) is
true, and p(a) is undefined.

Thus, the usage of such a partial oracle partially hides MKNF-inconsistencies and
demonstrates a somewhat paraconsistent behavior instead.

This example also shows why correctness of a partial oracle is only defined w.r.t.
MKNF-consistent knowledge bases. For MKNF-inconsistent knowledge bases the
derivation relation is not identical in general.

By making assumptions on the complexity and number of results of an oracle, com-
plexity results of SLG(O) are obtained.

THEOREM 5.7. Let Kd be a doubled Hybrid MKNF knowledge base, and pTO a
correct partial oracle for O, such that for every goal S, the cardinality of pTO(IF , S, L)
is bound by a polynomial on the number of program atoms. Moreover, assume that
computing each element of pTO is decidable with data complexity C. Then, the SLG(O)
evaluation of a query in Kd is decidable with data complexity PC .

PROOF. Decidability is guaranteed by Theorem 5.1. As for complexity, first note
that, given the polynomial data complexity of SLG [Chen and Warren 1996], SLG(O)
without calls to the oracle is of polynomial data complexity as well. Considering the
oracle, since the cardinality of pTO(IFn

, S, L) is bound by a polynomial, and each of
the calls to the oracle can be seen as adding a new program rule (the result of OR-
ACLE RESOLUTION operation), only polynomially many such rules are added. Hence,
as such, the inclusion of oracle calls does not alter the the polynomial data complexity
of SLG. Now, computing each such rule amounts to a call to the oracle, which by hy-
pothesis is decidable and with data complexity C. So, the overall data complexity is PC .

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:32 José Júlio Alferes et al.

Note that the doubling of the knowledge base does not affect that since the factor 2 is
subsumed by the (at least) polynomial complexity.

In particular, Theorem 5.7 means that if the partial oracle is tractable, and produces
only polynomial many results, then SLG(O) is also tractable. Clearly, for an ontology
part of the knowledge base that is tractable, it is possible to come up with a correct
partial oracle that is also tractable. Basically, all that needs to be done is to proceed
with the usual entailment method, assuming that all program atoms hold, and collect-
ing them for the oracle result. To guarantee that the number of solutions of the oracle
is bound by a polynomial, and still keeping with correctness, might be a bit more dif-
ficult. It amounts to finding a procedure that returns less results, and at the same
time does not damage the completeness proof (similar to that of Theorem 5.3). At least
for the tractable case this is possible, albeit the oracle being the (polynomial complex-
ity) bottom-up procedure that defines MKNFWF . This approach is, however, somewhat
counterproductive to the whole idea of a top-down querying mechanism: we could sim-
ply use the bottom-up procedure in the first place to compute the model and store the
results in a database which we then query on demand. The following section defines a
concrete oracle for the tractable description logic EL+ that maintains the desired data
complexity and retains goal-orientation.

6. AN ORACLE FOR EL+

When defining an oracle on EL+ we could simply try to use the algorithm for subsump-
tion presented in [Baader et al. 2005]: reduce instance checking to subsumption and
return the desired set of atoms which, when proven, would ensure the derivability of
the initial query. However, apart from the technical problems we would have to face,
like how to obtain these sets of atoms whose truth allows us to prove the initial query,
this would mean that we would have to run the entire subsumption algorithm for each
query posed to the oracle in EL+.

We therefore proceed differently. We still use the algorithm for subsumption from
[Baader et al. 2005] to compute the complete class hierarchy of the EL+ TBox T , but we
use it only once, as a kind of preprocessing of the ontology. Then we take the obtained
results together with the TBox T and simplify them by removing all statements that
are redundant when looking for instances of classes in a top-down manner. The result,
together with the EL+ ABox A, is then turned into a set of rules which can be used
in a top-down manner, by using SLG alone, yielding the desired oracle. Moreover, this
way we can straightforwardly combine these transformed rules with the ones in the
knowledge base and, with the top-down querying system defined in Section 4, obtain a
single top-down procedure querying an MKNF knowledge base where the ontology is
described in EL+.

6.1. Subsumption in EL+

In [Baader et al. 2005], a polynomial time algorithm for subsumption was described,
and we recall important notions from it, restricted to EL+. For a TBox T , the notion
BCT represents the smallest set of concept descriptions that contains all concept names
used in T plus the top concept >; while RT denotes the set of all role names used in T .
Using this notation, a normalized form of a TBox T is defined.

Definition 6.1. [Baader et al. 2005] A TBox T is in normal form if

(1) all GCIs have one of the following forms, where C1, C2 ∈ BCT and D ∈ BCT ∪ {⊥}:
(1) C1 v D (3) ∃R.C1 v D
(2) C1 u C2 v D (4) C1 v ∃R.C2

(2) all RI are of the form R v S or R1 ◦R2 v S

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Query-driven Procedures for Hybrid MKNF Knowledge Bases A:33

By appropriately introducing new concept and role names, any TBox T can be turned
into normal form and, as shown in [Baader et al. 2005], this transformation can be
done in linear time. So, from now on, we assume that any TBox T is in normal form.

The subsumption algorithm for EL+ ([Baader et al. 2005]) applies a set of completion
rules to compute the entire class hierarchy, i.e. all subsumption relationships between
all pairs of concept names occurring in T . In detail, given a normalized TBox T , the
algorithm computes:

— a mapping S from BCT to a subset of BCT ∪ {⊥}; and
— a mapping T from RT to a binary relation on BCT .

These mappings make implicit relations explicit in the following sense:

(I1). D ∈ S(C) implies that C v D,
(I2). (C,D) ∈ T (R) implies that C v ∃R.D.

The initialization of these mappings is the following:

— S(C) := {C,>} for each C ∈ BCT
— T (R) := ∅ for each R ∈ RT

Then the following completion rules are applied to extend S and T until no more rule
applies.

CR1 If C ′ ∈ S(C), C ′ v D ∈ T , and D 6∈ S(C)
then S(C) := S(C) ∪ {D}

CR2 If C1, C2 ∈ S(C), C1 u C2 v D ∈ T , and D 6∈ S(C)
then S(C) := S(C) ∪ {D}

CR3 If C ′ ∈ S(C), C ′ v ∃R.D ∈ T , and (C,D) 6∈ T (R)
then T (R) := T (R) ∪ {(C,D)}

CR4 If (C,D) ∈ T (R), D′ ∈ S(D), ∃R.D′ v E ∈ T , and E 6∈ S(C)
then S(C) := S(C) ∪ {E}

CR5 If (C,D) ∈ T (R), ⊥ ∈ S(D), and ⊥ 6∈ S(C)
then S(C) := S(C) ∪ {⊥}

CR6 If (C,D) ∈ T (R), R v S ∈ T , and (C,D) 6∈ T (S)
then T (S) := T (S) ∪ {(C,D)}

CR7 If (C,D) ∈ T (R1), (D,E) ∈ T (R2), R1 ◦R2 v R3 ∈ T , and (C,E) 6∈ T (R3)
then T (R3) := T (R3) ∪ {(C,E)}

Note that we omitted the four completion rules related to nominals and concrete do-
mains.

It is shown in [Baader et al. 2005] that this algorithm terminates in polynomial time
and that it is correct.

6.2. Simplifying the Ontology
Given a normalized EL+ TBox T (Definition 6.1) and an EL+ ABox A, the first step in
transforming the ontology is to apply the subsumption algorithm to T and obtain the
mappings S and T computed by it. In particular, we obtain via S all the subsumption
relationships implicitly or explicitly present in C. In fact, it is easy to see that the
initialization of C ∈ S(C) for each C ∈ BCT ensures that each GCI of the form (1) of
the normal form of Definition 6.1 (C1 v D) is also obtained by D ∈ S(C1), and each
GCI of the form (4) (C1 v ∃R.C2) is obtained by (C1, C2) ∈ T (R).20

20Cf. the completion rules CR1 and CR3 in Section 2 which precisely add each such explicit GCIs to the
appropriate mapping.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:34 José Júlio Alferes et al.

It follows immediately from that, that we can actually ignore all GCIs of the form
(1) and (4) as long as we have the complete mappings S and T of the subsumption
algorithm available. But we can simplify even more.

Example 6.2. Consider the Hybrid MKNF knowledge base with O in EL+, contain-
ing one rule, and some facts.

C v ∃ R.D G(x)← D(x)
∃ R.C v D C(a). C(b).

C1 u C2 v D R(a, b).

Now consider that we want to know whether G(a) holds. There is only one rule that
allows us to derive G(a), and this requires that D(a) is derivable. Obviously, if we have
C1(a) and C2(a) then D(a) holds as well. But this information is currently not present in
the knowledge base. If we check the second GCI then obtaining D(a) requires finding
R(a, x) and C(x) which appear as facts in the rule part, for x = b. Intuitively, we want
the oracle to transform the query D(a) into an SLG(O) node D(a) : − | R(a, x), C(x), the
goals of which can then be resolved, leading to a derivation of D(a).

Next, suppose we alternatively query for G(b), and subsequently query the oracle for
D(b). Then the second GCI does not allow us to derive D(b) because there is no R(b, x)
for some x derivable; the third does not allow us to derive D(b) because there are no
individuals known to hold in C1 or C2. But even using the first GCI does not allow us
to derive D(b): while C(a) holds and we know that there is an explicit relation R(a, b)
in the knowledge base, the semantics of O (and descriptive first-order semantics in
general) does not allow to derive D(b), since D(b) does not hold in all models of O -
there are models where R(a, i) and D(i) hold for some individual i not appearing in the
knowledge base.

Clearly in a EL+ KB with a normalized TBox T , GCIs of the form (3) (∃R.C1 v D) and
(2) (C1uC2 v D) – and therefore also of the form (1) – can be used to derive information
when answering an (instance) query. On the other hand, the example implies that
GCIs of the form (4) (C1 v ∃R.C2) do not contribute to drawing this kind of conclusions.
We now formalize this observation.

For simplicity of notation, we start by transforming all the mappings obtained from
the algorithm into GCIs, and then we remove all GCIs of the form (4).

Definition 6.3. Let T be an EL+ TBox and S and T be the mappings obtained from
the subsumption algorithm. We obtain the completed EL+ TBox T ′ from T by adding
for each D ∈ S(C) a GCI C v D to T ′ and for each (C,D) ∈ T (R) a GCI C v ∃R.D to
T ′.

Let T be a completed EL+ TBox. We define the reduced EL+ TBox T ′ which is ob-
tained from the completed TBox T by removing all GCIs of form (4).

It is straightforward to see that the transformation from the TBox T to the completed
TBox T ′ simply allows us to disregard the mappings S and T obtained by the algorithm
of subsumption without losing any of the subset relationships contained in these map-
pings.

Now we have to show that a reduced TBox, which in general does not preserve EL+

semantics, is still suitable for the query answering we are interested in, which restricts
itself to queries of the form C(a) or R(a, b).

PROPOSITION 6.4. Let A be an EL+ ABox, T be a completed EL+ TBox, and T ′ the
reduced EL+ TBox obtained from T . Then the following two conditions hold.

(i) a is an instance of concept C in A w.r.t. T iff a is an instance of concept C in A w.r.t.
T ′.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Query-driven Procedures for Hybrid MKNF Knowledge Bases A:35

(ii) (a, b) is an instance of role R in A w.r.t. T iff (a, b) is an instance of role R in A w.r.t.
T ′.

PROOF. For (i) we have to show that aI ∈ CI for every common model I of A and
T iff aI ∈ CI for every common model I of A and T ′; for (ii) we have to show that
(aI , bI) ∈ RI for every common model I of A and T iff (aI , bI) ∈ RI for every common
model I of A and T ′. We are going to sketch the argument for (i); the case of (ii) follows
analogously.
′ ⇐′: follows directly from monotonicity: adding GCIs of the form (4) will not invalidate
any drawn conclusions, i.e. if aI ∈ CI for every common model I of A and T ′ then
adding GCIs of the form (4) can only reduce the common models of I of A and never
increase. We conclude aI ∈ CI for every common model I of A and T .
′ ⇒′: suppose that aI ∈ CI for every common model I ofA and T . If none of the GCIs of
the form (4) contains the concept name C then we can remove them all and aI ∈ CI for
every common model I of A and T ′. The same argument applies if C appears only on
the left hand side of such GCIs. So assume C appears on the right hand side of at least
one such GCI C1 v ∃R.C. However, even if there is an individual i such that iI ∈ CI1
and (iI , aI) ∈ RI for every common model I of A then T does not allow to conclude
aI ∈ CI for every common model I of A and T . We can thus conclude that aI ∈ CI for
every common model I of A and T ′.

Having proven that TBox completion does not alter the derivability of instance
queries, we can take a short cut: instead of completing the TBox we can directly re-
move all GCIs of the form (4) and discard the mapping T . We then complete the TBox
only with respect to the mapping S and obtain the reduced TBox.

COROLLARY 6.5. Let T be a EL+ TBox and S and T be the mappings obtained from
the subsumption algorithm. We obtain the reduced TBox T ′ from T by removing all
GCIs of the form (4) from T and by adding for each D ∈ S(C) a GCI C v D.

6.3. Transformation into Rules
Now, we show how to transform the reduced EL+ KB into rules in such a way that
running the SLG procedure on the obtained set of rules yields an oracle that can be
used in SLG(O). Special care must be taken with inconsistencies and with the fact that
if an atom is proven false in the ontology, then its negation also holds in the rules. Note
that this is achieved in SLG(O) by querying for classically negated atoms, but these
are outside the syntax of REL even though a restricted form of negation is achievable
via ⊥.

Regarding inconsistencies, there are two kinds which can appear in the three-valued
Hybrid MKNF semantics as presented in [Knorr et al. 2011]: either the ontology alone
is inconsistent, or there is an inconsistency resulting from contradictory derivations
in the rules and the ontology. In the first case, there is not much to be done. An in-
consistent ontology has no models and we can simply derive anything from it, making
reasoning over a combined knowledge base rather pointless. We therefore admit in the
following an a-priori consistency check of the ontology alone, and proceed only if it suc-
ceeds, i.e., we limit ourselves in the following to a consistent ontology.21 For the second
case, the bottom-up computation allows us to detect such problems, but in SLG(O) we
are limited to finding atoms that are true and false at the same time, i.e., if for some
C(a) both queries C(a) and not Cd(a)22 are answered with ’yes’, then the combined KB

21Note that ontologies in EL+ can in fact be inconsistent: consider a GCI C v⊥ in the TBox and an assertion
C(a) in the ABox.
22Recall that we use the doubled predicate for determining falsity.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:36 José Júlio Alferes et al.

is inconsistent. This can, of course, not be complete for a partial oracle, as shown in
Example 5.6, so that we obtain a paraconsistent behavior. To carry over this behavior
to a transformation into rules, we have to take into consideration the transformation
presented in Definition 3.4 and their effect on the EL+ KB.

Regarding classical negation, we solve the problem in a specific way. In SLG(O), the
special negative literals notNH(ti) are used to call ¬H(ti). Since this is not expressible
in EL+ we simply consider notNH(ti) as normal negative literals, and transform O
into rules such that notNH(ti) holds if ¬H(ti) holds. More precisely, if H v ⊥, then
NH(ti) holds.

We are now ready to define the transformation of the ontology O consisting of a
reduced TBox and an ABox into a set of already doubled rules (see Definition 3.1).

Definition 6.6. Let K = (O,P) be a Hybrid MKNF knowledge base with a consis-
tent EL+ KB O. We define Pd

O from O, where C,D, C1, and C2 are concept names, R, S,
T are role names, and a, b are individual names, as the smallest set containing:

(a1). for each C(a) ∈ A: C(a)← and Cd(a)← notNC(a).
(a2). for each R(a, b) ∈ A: R(a, b)← and Rd(a, b)← notNR(a, b).
(c1). for each GCI C v D ∈ T : D(x)← C(x) and
Dd(x)← Cd(x),notND(x).
(c2). for each C1 u C2 v D ∈ T : D(x)← C1(x), C2(x) and
Dd(x)← Cd

1 (x), Cd
2 (x),notND(x).

(c3). for each ∃R.C v D ∈ T : D(x)← R(x, y), C(y) and
Dd(x)← Rd(x, y), Cd(y),notND(x).
(r1). for each RI R v S ∈ T : S(x, y)← R(x, y) and
Sd(x, y)← Rd(x, y),notNS(x, y).
(r2). for each R ◦ S v T ∈ T : T (x, z)← R(x, y), S(y, z) and
T d(x, z)← Rd(x, y), Sd(y, z),notNT (x, z).
(i1). for each C v⊥∈ T : NC(x)←.
(i2). for each C1 u C2 v⊥∈ T : NC2(x)← C1(x) and NC1(x)← C2(x).
(i3). for each ∃R.C v⊥∈ T : NC(y)← R(x, y) and NR(x, y)← C(y) .

Note that the cases (i1) to (i3) are used to introduce truth of some NH(ti). Further-
more, these three cases only produce one rule, since atoms based on predicates of the
forms NCd or NRd are not required anywhere.

Program Pd
O can then be used as the basis for obtaining a correct partial oracle

for EL+, to be integrated in the general procedure of SLG(O). Recall that an oracle
receives a query S and the already derived (positive) information I+

Fn
, and returns a

set of atoms L, which if proven, ensure that S is derivable. The general idea of such
an oracle for EL+ would be to use SLG to query Q in a program consisting of Pd

O plus
facts for all the atoms in I+

Fn
, in such a way that any time an atom also defined in

the rules is queried, the atom can succeed, i.e., is removed from the resolvent, and is
collected in a set associated to the respective derivation branch.23 Upon success, the
so modified SLG procedure would return the set of collected atoms. The partial oracle
would be defined by the relation with the query, the running forest, and the returned
set of collected atoms. However, since both the rule part and the oracle itself would
be evaluated by an SLG procedure, they can be combined: instead of collecting the
atoms in the set, and then calling them in SLG(O) after the oracle returns a result,
one can simply immediately call the otherwise collected atoms, i.e., the atoms defined

23An alternative way of viewing this, would be to add to Pd
O facts for all the atoms defined in the rules, run

SLG as usual, but collecting all those facts that were used in the derivation.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Query-driven Procedures for Hybrid MKNF Knowledge Bases A:37

in the program. This way, correctness of the so defined partial oracle is equivalent to
the correctness of the above transformation. We start by proving this for the consistent
case:

THEOREM 6.7. Let K = (O,P) be an MKNF-consistent Hybrid MKNF knowledge
base with O in EL+. Then KEL+ = (∅, (Pd ∪ Pd

O)) is semantically equivalent to Kd =
(O,Od,Pd).

PROOF. We have to show that Pd
O is equivalent to O and Od.

The transformations on ABox assertions, (a1) and (a2), on GCIs in C, (c1), (c2), and
(c3), and on role inclusions, (r1) and (r2), are semantically equivalent and can be found,
e.g., in [Grosof et al. 2003]. Since O contains the original GCIs and Od the doubled
ones with new predicate names, we also create two rules, one for each of the two DL
knowledge bases in Kd. Note that the addition of predicates, such as NC(x), to the
body of a rule with head Cd(x) is just done to enforce that whenever NC(x) holds, i.e.,
¬C(x), then Cd(x) cannot become true, which is used in the consistent case to enforce
coherence. We only have to consider the transformations (i1) to (i3).

(i1)C v⊥: C is unsatisfiable, i.e., ¬C(x) for all x; O contains a statement that allows us
to infer ¬C(x) which corresponds exactly to the fact NC(x)←.

(i2)C1 uC2 v⊥: the statement expresses disjointness of C1 and C2, i.e., ¬(C1(x)∧C2(x))
for all x which is equivalent to C1(x) → ¬C2(x) and C2(x) → ¬C1(x); using the
correspondences ¬C1(x)→ NC1(x) and ¬C2(x)→ NC2(x).

(i3) ∃R.C v⊥ follows the same argument as (i2).

This finishes the proof.

For the MKNF-inconsistent case, we point out that one result of the transformation
into rules is that we obtain a somewhat paraconsistent approach: while an inconsis-
tent ontology allows us to derive anything from it, the process of doubling the rules
enables us to derive those consequences that do not depend on inconsistent informa-
tion contained in the KB as presented in Example 5.6. We leave further details of this
paraconsistency to future studies.

Finally, we have to show that the process of translating the ontology into rules and
reasoning over the combined set of rules with SLG(O) also preserves the intended
polynomial data complexity.

THEOREM 6.8. Let K = (O,P) be a Hybrid MKNF knowledge base with O in EL+.
An SLG(O) evaluation of a query in KEL+ = (∅, (Pd ∪ Pd

O)) is decidable with data
complexity in P.

PROOF. The EL+ oracle is in fact a transformation of the evaluation of the EL+

ontology into a set of rules so that evaluation of the Hybrid MKNF KB is made w.r.t.
a combined set of rules. Note that the polynomial subsumption algorithm for EL+ and
the linear transformations to obtain KEL+ together are in P.

We consider the data complexity to be the number of answers returned for a given
atomic query w.r.t. the number ground facts in the rules, and the number of assertions
in the ABox. Note that the transformation of the EL+ axioms introduces a number of
facts in the rules at most linear in the size of the ABox (cases a1 and a2 of Defini-
tion 6.6). As a result the number of facts in the transformed system will be linear in
the size of the rule facts plus the ABox of the original system.

Finally, note that Theorem 5.7 ensures polynomial data complexity of query evalua-
tion in Hybrid MKNF. The transformed KB KEL+ can be considered a Hybrid MKNF
KB with empty O, so that by Theorem 5.7 the transformed KB has a data complexity

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:38 José Júlio Alferes et al.

in P. Since the transformed KB increases the size of the rule facts linearly this proves
the statement.

7. DISCUSSION AND CONCLUSIONS
7.1. Related Work
Three other semantics define well-founded models for a combination of rules and on-
tologies, namely the works in [Eiter et al. 2011], [Lukasiewicz 2010], and [Drabent
and Małuszyński 2007]. The approach of [Eiter et al. 2011] combines ontologies and
rules in a modular way, keeping separate the semantics of both, and has identical data
complexity to the well-founded MKNF semantics for a tractable DL. As such, it has
similarities with SLG(O) in terms of reasoning, in the sense that both treat reason-
ing in the DL separately. However, the approach of [Eiter et al. 2011], implemented
using the dlv hex system [Eiter et al. 2006], has a looser integration, limiting the way
the ontology can call back program atoms. In [Eiter et al. 2011], the set of atoms oc-
curring in rules and DLs are disjoint, and links must be established using specific
interface atoms in the rules, which can only temporarily add information to the DL
part. To the contrary, our semantics does not require any such restriction so that the
flow of information between rules and DLs is not limited. The well-founded semantics
for normal dl-programs [Lukasiewicz 2010] does not require any of these limitations
either, but it requires that the ontology be decomposable into a positive and a negative
part. This severely restricts the applicability to arbitrary DLs although it is shown in
[Lukasiewicz 2010] that the approach is applicable to the DL-Lite family. This con-
trasts with SLG(O), which can be applied to any decidable DL. Hybrid programs of
[Drabent and Małuszyński 2007] are even more restrictive than [Eiter et al. 2011] in
the combination: in fact it only allows to transfer information from the ontology to the
rules and not the other way around. Moreover, the semantics of this approach differs
from MKNF [Motik and Rosati 2010; Knorr et al. 2011] and also [Eiter et al. 2011;
Lukasiewicz 2010] in that if an ontology expresses B1 ∨ B2, then the semantics in
[Drabent and Małuszyński 2007] derives p from rules p ← B1 and p ← B2, p while
MKNF and [Eiter et al. 2011; Lukasiewicz 2010] do not. More generally, several well-
founded models may exist, contrary to the more common definitions of well-founded
models.

In Section 6, we also presented a concrete oracle for SLG(O) that allows the com-
bination of non-monotonic rules with the DL EL+. Using this oracle, SLG(O) remains
tractable w.r.t. data complexity, and permits the discovery of possible inconsistencies
between the rules and the ontology. These results contribute to the work related to
conjunctive query answering with respect to EL+. Conjunctive query answering has
been studied, e.g., for acyclic EL+ in [Mei et al. 2009] as an extension to [Lutz et al.
2009], where the limitation to acyclic TBoxes avoids general undecidability (see [Rosati
2007]). In contrast, our work limits the queries to be DL-safe but adds rules as an ad-
ditional expressive means. As an additional point of comparison, since the concrete
oracle operates in a kind of abductive way – by finding the set of atoms which together
with the ontology prove the query - our work also bears some relation to [Bienvenu
2008] where general complexity results on abduction for EL++ are established. An-
other concrete oracle for SLG(O) was very recently presented in [Knorr and Alferes
2011] providing a top-down procedure for DL-LiteR, the DL underlying the tractable
OWL 2 profile, OWL 2 QL. As does the EL+ oracle, the DL-LiteR oracle maintains the
data complexity of the bottom-up approach.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Query-driven Procedures for Hybrid MKNF Knowledge Bases A:39

7.2. Conclusions
Together with the alternate computation method of Section 3, SLG(O) provides a
sound and complete querying method for Hybrid MKNF knowledge bases. Further,
SLG(O) maintains the favorable computational complexity of the well-founded MKNF
model and freely allows bidirectional calls between the ontology and the rules, unlike
other approaches (as discussed in Section 7.1). As such it presents a significant step
towards making Hybrid MKNF knowledge bases practically usable for the Semantic
Web.

Future work with regard to concrete oracles includes the (non-trivial) extension of
the EL+ oracle to EL++. A second potentially fruitful extension is the construction of
an oracle for ELP ([Krötzsch et al. 2008]), an approach based on rules that allow DL ex-
pressions instead of (negated) atoms and that covers EL++. Since the altorithmization
of ELP, like that of the EL+ oracle, transforms its expressive rules into datalog rules it
may benefit from the pre-processing step introduced for EL+ knowledge bases. A third
concrete oracle to investigate is SROELVn [Krötzsch et al. 2011], a tractable fragment
of SROIQ enhanced with nominal schemas that covers not only datalog rules in DL
syntax but also EL++.

Other future work will address the class of conjunctive queries that SLG(O) can
answer. While SLG(O) queries posed to KBs without an ontology are handled in the
same way as in SLG, the queries posed to the ontology, which are required to be ground,
are not conjunctive queries in the sense of [Glimm et al. 2008], where boolean queries
may contain anonymous variables that are interpreted existentially. The extension to
such queries may possibly by supported by anonymous variables in XSB, the system
in which SLG(O) is currently implemented.

Furthermore, we may take evolution and dynamics into consideration. In [Slota and
Leite 2010b; Slota et al. 2011], updating Hybrid MKNF knowledge bases is considered,
while [Slota and Leite 2010a; 2011] presents the problem from a more general perspec-
tive in SE-models. The extension of SLG(O) to such dynamic knowledge bases forms
another line of future work.

Finally, we mention that a prototype implementation of SLG(O) exists [Gomes et al.
2010] based on XSB Prolog and its ontology management library CDF. Because CDF
includes an ALCQ prover written directly using XSB, the ORACLE RESOLUTION op-
eration of Section 4 is more easily implemented than it would be using a separate
prover, as is the detection of when a mutually dependent set of subgoals is completely
evaluated (Definition 4.12). Accordingly, the polynomial data complexity of the ora-
cle is also more easily guaranteed. The resulting implementation will enable further
study into how Hybrid MKNF knowledge bases can be practically used and will in-
dicate needed optimizations and useful extensions. For instance, since XSB supports
constraint processing, temporal or spatial constraints can be added to the ABox. From
a systems perspective, the multi-threading of XSB can allow for the construction of
Hybrid MKNF knowledge servers that make use of either Prolog rules or F-logic rules
(via FLORA-2, which is implemented using XSB). As mentioned in Section 5 the final
forest of a SLG(O) evaluation produces a well-founded reduct of the rules and oracle
information. This reduct, which is materialized in XSB’s tables, can be sent to a stable
model generator through XSB’s XASP library to obtain a partial stable MKNF model
of [Motik and Rosati 2010].

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers whose comments helped to improve this work.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:40 José Júlio Alferes et al.

REFERENCES
ALFERES, J. J., KNORR, M., AND SWIFT, T. 2009. Queries to hybrid MKNF knowledge bases through oracu-

lar tabling. In The Semantic Web - ISWC 2009, 8th International Semantic Web Conference, ISWC 2009,
Chantilly, VA, USA, October 25-29, 2009. Proceedings, A. Bernstein, D. R. Karger, T. Heath, L. Feigen-
baum, D. Maynard, E. Motta, and K. Thirunarayan, Eds. Springer, 1–16.

BAADER, F., BRANDT, S., AND LUTZ, C. 2005. Pushing the EL envelope. In IJCAI-05, Proceedings of the 19th
International Joint Conference on Artificial Intelligence, L. P. Kaelbing and A. Saffiotti, Eds. Morgan
Kaufmann, 364–369.

BAADER, F., CALVANESE, D., MCGUINNESS, D. L., NARDI, D., AND PATEL-SCHNEIDER, P. F., Eds. 2007.
The Description Logic Handbook: Theory, Implementation, and Applications, 2nd ed. Cambridge Uni-
versity Press.

BIENVENU, M. 2008. Complexity of abduction in the EL family of lightweight description logics. In Proceed-
ings of the Eleventh International Conference on Principles of Knowledge Representation and Reasoning
(KR08). 220–230.

BOLEY, H. AND KIFER, M., Eds. 2010. RIF Overview. W3C Candidate Recommendation, 22 June 2010.
Available at http://www.w3.org/TR/rif-overview/.

CHEN, W. AND WARREN, D. S. 1996. Tabled Evaluation with Delaying for General Logic Programs. 43, 1,
20–74.

DRABENT, W. AND MAŁUSZYŃSKI, J. 2007. Well-Founded semantics for hybrid rules. In Proceedings of the
First International Conference on Web Reasoning and Rule Systems (RR2007), M. M. Marchiori, J. Z.
Pan, and C. de Sainte Marie, Eds. Springer, 1–15.

EITER, T., IANNI, G., LUKASIEWICZ, T., AND SCHINDLAUER, R. 2011. Well-founded semantics for descrip-
tion logic programs in the Semantic Web. ACM Transactions on Computational Logic 12, 11:1–11:41.

EITER, T., IANNI, G., LUKASIEWICZ, T., SCHINDLAUER, R., AND TOMPITS, H. 2008. Combining answer set
programming with description logics for the Semantic Web. Artificial Intelligence 172, 12–13 (August),
1495–1539.

EITER, T., IANNI, G., SCHINDLAUER, R., AND TOMPITS, H. 2006. Effective integration of declarative rules
with external evaluations for semantic web reasoning. In Proceedings of the 3rd European Conference
on Semantic Web (ESWC 2006), Y. Sure and J. Domingue, Eds. Springer, 273–287.

GELFOND, M. AND LIFSCHITZ, V. 1991. Classical negation in logic programs and disjunctive databases.
New Generation Computing 9, 365–385.

GLIMM, B., LUTZ, C., HORROCKS, I., AND SATTLER, U. 2008. Answering conjunctive queries in the SHIQ
description logic. Journal of Artificial Intelligence Research 31, 150–197.

GOMES, A. S., ALFERES, J. J., AND SWIFT, T. 2010. Implementing query answering for hybrid MKNF
knowledge bases. In Practical Aspects of Declarative Languages, 12th International Symposium, PADL
2010, Madrid, Spain, January 18-19, 2010. Proceedings, M. Carro and R. Peña, Eds. Springer, 25–39.

GROSOF, B. N., HORROCKS, I., VOLZ, R., AND DECKER, S. 2003. Description logic programs: Combining
logic programs with description logics. In Proceedings of the World Wide Web Conference (WWW2003),
Budapest, Hungary. ACM, 48–57.

HITZLER, P., KRÖTZSCH, M., PARSIA, B., PATEL-SCHNEIDER, P. F., AND RUDOLPH, S., Eds. 2009.
OWL 2 Web Ontology Language: Primer. W3C Recommendation 27 October 2009. Available at
http://www.w3.org/TR/owl2-primer/.

KNORR, M. AND ALFERES, J. J. 2010. Querying in EL+ with nonmonotonic rules. In Proceedings of the 19th
European Conference on Artificial Intelligence, ECAI2010, H. Coelho, R. Studer, and M. Wooldridge, Eds.
IOS Press, 1079–1080.

KNORR, M. AND ALFERES, J. J. 2011. Querying OWL 2 QL to hybrid MKNF and non-monotonic rules.
In The Semantic Web - ISWC 2011, 10th International Semantic Web Conference, ISWC 2011, Bonn,
Germany, October 23-27, 2011, Proceedings, Part I, L. Aroyo, C. Welty, H. Alani, J. Taylor, A. Bernstein,
L. Kagal, N. F. Noy, and E. Blomqvist, Eds. Springer, 338–353.

KNORR, M., ALFERES, J. J., AND HITZLER, P. 2008. A coherent well-founded model for hybrid MKNF
knowledge bases. In Proceedings of the 18th European Conference on Artificial Intelligence, ECAI2008,
M. Ghallab, C. D. Spyropoulos, N. Fakotakis, and N. Avouris, Eds. IOS Press, 99–103.

KNORR, M., ALFERES, J. J., AND HITZLER, P. 2011. Local closed world reasoning with description logics
under the well-founded semantics. Artificial Intelligence 175, 9–10 (June), 1528–1554.

KRÖTZSCH, M., MAIER, F., KRISNADHI, A. A., AND HITZLER, P. 2011. A better uncle for OWL: Nominal
schemas for integrating rules and ontologies. In Proceedings of the 20th International World Wide Web
Conference, WWW2011, March/April 2011. ACM, 645–654.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Query-driven Procedures for Hybrid MKNF Knowledge Bases A:41

KRÖTZSCH, M., RUDOLPH, S., AND HITZLER, P. 2008. ELP: Tractable rules for OWL 2. In Proceedings of
the 7th International Semantic Web Conference (ISWC-08), A. P. Sheth, S. Staab, M. Dean, M. Paolucci,
D. Maynard, T. Finin, and K. Thirunarayan, Eds. Springer, 649–664.

LIFSCHITZ, V. 1991. Nonmonotonic databases and epistemic queries. In Proceedings of the 12th Interna-
tional Joint Conferences on Artifical Intelligence, IJCAI’91, J. Mylopoulos and R. Reiter, Eds. 381–386.

LLOYD, J. W. 1987. Foundations of Logic Programming, 2nd ed. Springer.
LUKASIEWICZ, T. 2010. A novel combination of answer set programming with description logics for the

Semantic Web. IEEE Transactions on Knowledge and Data Engineering (TKDE) 22, 11 (November),
1577–1592.

LUTZ, C., TOMAN, D., AND WOLTER, F. 2009. Conjunctive query answering in the description logic el using
a relational database system. In IJCAI’09: 21st International Joint Conference on Artificial Intelligence.
Morgan Kaufmann, 2070–2075.

MEI, J., LIU, S., XIE, G. T., KALYANPUR, A., AND FOKOUE, A. 2009. A practical approach for scalable
conjunctive query answering on acyclic EL+ knowledge base. In The Semantic Web - ISWC 2009, 8th
International Semantic Web Conference, ISWC 2009, Chantilly, VA, USA, October 25-29, 2009. Proceed-
ings, A. Bernstein, D. R. Karger, T. Heath, L. Feigenbaum, D. Maynard, E. Motta, and K. Thirunarayan,
Eds. Springer, 408–423.

MOTIK, B., GRAU, B. C., HORROCKS, I., WU, Z., FOKOUE, A., AND LUTZ, C., Eds. 2009. Profiles. W3C
Recommendation 27 October 2009. Available at http://www.w3.org/TR/owl2-profiles/.

MOTIK, B. AND ROSATI, R. 2007. A faithful integration of description logics with logic programming. In
Proceedings of the Twentieth International Joint Conference on Artificial Intelligence (IJCAI-07), M. M.
Veloso, Ed. AAAI Press, Hyderabad, India, 477–482.

MOTIK, B. AND ROSATI, R. 2010. Reconciling Description Logics and Rules. Journal of the ACM 57, 5,
93–154.

PATEL, C., CIMINO, J. J., DOLBY, J., FOKOUE, A., KALYANPUR, A., KERSHENBAUM, A., MA, L., SCHON-
BERG, E., AND SRINIVAS, K. 2007. Matching patient records to clinical trials using ontologies. In The
Semantic Web, 6th International Semantic Web Conference, 2nd Asian Semantic Web Conference, ISWC
2007 + ASWC 2007, Busan, Korea, November 11-15, 2007, K. Aberer, K.-S. Choi, N. F. Noy, D. Allemang,
K.-I. Lee, L. J. B. Nixon, J. Golbeck, P. Mika, D. Maynard, R. Mizoguchi, G. Schreiber, and P. Cudré-
Mauroux, Eds. Springer, 816–829.

PEARCE, D. AND WAGNER, G. 1990. Reasoning with negative information I: Strong negation in logic pro-
grams. In Language, Knowledge and Intentionality, L. Haaparanta, M. Kusch, and I. Niiniluoto, Eds.
Acta Philosophica Fennica 49, 430–453.

PEREIRA, L. M. AND ALFERES, J. J. 1992. Well founded semantics for logic programs with explicit negation.
In 10th European Conference on Artificial Intelligence, ECAI 92, Vienna, Austria, August 3-7, 1992,
B. Neumann, Ed. John Wiley and Sons, Chichester, 102–106.

ROSATI, R. 2007. On conjunctive query answering in EL. In Description Logics 2007, D. Calvanese, E. Fran-
coni, V. Haarslev, D. Lembo, B. Motik, A.-Y. Turhan, and S. Tessaris, Eds. CEUR Electronic Workshop
Proceedings.

SAGONAS, K., SWIFT, T., AND WARREN, D. S. 2000. The limits of fixed-order computation. Theoretical
Computer Science 254, 1-2, 465–499.

SLOTA, M. AND LEITE, J. 2010a. On semantic update operators for answer-set programs. In Proceed-
ings of the 19th European Conference on Artificial Intelligence (ECAI 2010), H. Coelho, R. Studer, and
M. Wooldridge, Eds. Frontiers in Artificial Intelligence and Applications, vol. 215. IOS Press, Lisbon,
Portugal, 957–962.

SLOTA, M. AND LEITE, J. 2010b. Towards Closed World Reasoning in Dynamic Open Worlds. Theory and
Practice of Logic Programming, 26th Int’l. Conference on Logic Programming (ICLP’10) Special Is-
sue 10, 4-6 (July), 547–564.

SLOTA, M. AND LEITE, J. 2011. Back and forth between rules and SE-models. In Proceedings of the 11th
International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR-11), J. P. Del-
grande and W. Faber, Eds. Lecture Notes in Computer Science, vol. 6645. Springer, Vancouver, Canada,
174–186.

SLOTA, M., LEITE, J., AND SWIFT, T. 2011. Splitting and updating hybrid knowledge bases. Theory and
Practice of Logic Programming, 27th Int’l. Conference on Logic Programming (ICLP’11) Special Is-
sue 11, 4-5, 801–819.

SWIFT, T. 1999. A new formulation of tabled resolution with delay. In Recent Advances in Artifiial Intelli-
gence. LNAI, vol. 1695. Springer, 163–177.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:42 José Júlio Alferes et al.

SWIFT, T., PINTO, A. M., AND PEREIRA, L. M. 2009. Incremental answer completion. In Logic Program-
ming, 25th International Conference, ICLP 2009, Pasadena, CA, USA, July 14-17, 2009. Proceedings,
P. M. Hill and D. S. Warren, Eds. 519–524.

TARSKI, A. 1955. Lattice-theoretic fixpoint theorem and its applications. Pacific Journal of Mathematics 5, 2,
285–309.

VAN GELDER, A. 1989. The alternating fixpoint of logic programs with negation. In Principles of Database
Systems. ACM Press, 1–10.

VAN GELDER, A., ROSS, K. A., AND SCHLIPF, J. S. 1991. The well-founded semantics for general logic
programs. Journal of the ACM 38, 3, 620–650.

Received July 2010; revised December 2011; accepted Mai2012

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

