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Löf randoms and Kurtz non-randoms) have left-r.e. numberings, there is no canonical, or acceptable, left-r.e.
numbering for any class of left-r.e. randoms. Finally, we note some fundamental differences between left-r.e.
numberings for sets and reals.

Categories and Subject Descriptors: F.4.1 [Mathematical Logic and Formal Languages]: Mathematical
Logic —Computability Theory, Computational Logic

General Terms: Algorithms, Theory

Additional Key Words and Phrases: arithmetical hierarchy, Schnorr randomness, computable randomness

ACM Reference Format:
Kjos-Hanssen, B., Stephan, F., and Teutsch, J. 2012. Arithmetic complexity via effective names for random
sequences. ACM Trans. Comput. Logic 13, 3, Article 1 (July 2012), 19 pages.
DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. EFFECTIVE RANDOMNESS
Think of a real number between 0 and 1. Is it random? In order to give a meaningful
answer to this question, one must first obtain an expression for the real number in
mind. Any reasonable language contains no more than countably many expressions,
and therefore we must always settle for a language with uncountably many indescrib-
able reals. On the other hand, there exists a natural and robust class of real numbers
which admit recursive increasing approximations. We call such numbers left-r.e. re-
als. Brodhead and Kjos-Hanssen [Brodhead and Kjos-Hanssen 2009] observed that
there exists an effective enumeration, or numbering, of the left-r.e. reals, and Chaitin
[Chaitin 1987] showed that some left-r.e. reals are Martin-Löf random. Random left-r.e.
reals thus serve as a friction point between definability and pure randomness.
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1:2 B. Kjos-Hanssen et al.

In the following exposition we examine which classes of left-r.e. randoms and non-
randoms admit numberings (and are therefore describable). A related definability
question also arises, namely how difficult is it to determine whether a real is random?
As a means of classifying complexity, we place the index sets for left-r.e. randoms in-
side the arithmetic hierarchy. One can view this program as a continuation of work by
Hitchcock, Lutz, and Terwijn [Hitchcock et al. 2007] which places classes of randoms
inside the broader Borel hierarchy. In contrast with the case of r.e. sets, we shall find a
close connection between numberings and arithmetic complexity for classes of left-r.e.
reals.

Notation.. Some standard notation used in this article includes ∀∞ which denotes
“for all but finitely many” and ∃∞ which means “there exist infinitely many.” X � n
is the length n prefix of X, and _ denotes concatenation. For finite sequences σ and
τ , σ � τ means that σ is a prefix of τ , σ ≺ τ indicates that σ is a proper prefix of
τ , and |σ| is the length of σ. For non-negative integers x, |x| is the floor of log(x + 1).
〈·, ·〉 : ω × ω 7→ ω is some recursive pairing function which we fix for rest of the paper.
For sets A and B, A ⊕ B = {2n : n ∈ A} ∪ {2n+ 1 : n ∈ B}. ′ is the jump operator, µ is
the unbounded search operator, ↓ denotes convergence, and A ≤T B means A Turing
reduces to B. As usual, ∅′ denotes the halting set, and A denotes the complement of
the set A. For further background on recursion theory and algorithmic randomness,
see [Soare 1987] and [Downey and Hirschfeldt 2010].

A sequence is the characteristic function of a set of natural numbers, and each se-
quence A corresponds to a unique real number

real(A) =
∑
n

2−n−1 ·A(n).

We denote the class of all sequences by {0, 1}ω, and {0, 1}∗ is the class of finite strings.
A partial recursive function (synonymously, a machine) M is said to be prefix-free if for
any finite strings σ, τ ∈ domM , σ is not a proper prefix of τ . The prefix-free complexity
of a string σ with respect to a prefix-free machine M is given by KM (σ) = min{|p| :
M(p) = σ}. Furthermore, there exists a universal prefix-free machine U such that for
any prefix-free machine M , KU (σ) ≤ KM (σ) + O(1) for all σ ∈ {0, 1}∗ [Li and Vitányi
2008]. We fix such a U and let K = KU for the remainder of this exposition.

Definition 1.1. A sequence X is called Martin-Löf random [Levin 1974; Martin-Löf
1966] if

(∃c) (∀n) [K(X � n) ≥ n− c]. (1)

Intuitively, every prefix of the string X in (1) is incompressible and therefore admits
no simple description.

A martingale M : {0, 1}∗ → R ∩ [0,∞) is a function satisfying the fairness condition:
for all σ ∈ 2<ω,

M(σ) =
M(σ0) +M(σ1)

2
.

The martingale M succeeds on a sequence X if lim supM(X � n) =∞. If M succeeds on
X and there exists a recursive, non-decreasing, unbounded function g satisfying g(n) ≤
M(X � n) for infinitely many n, we say that M Schnorr-succeeds on X. A martingale
M Kurtz-succeeds on a set A if M succeeds on A and there exists a recursive, non-
decreasing, unbounded function f such that M(A � n) > f(n) for all n. The idea behind
Definition 1.2 is that no gambling strategy can achieves arbitrary wealth by betting
on a random sequence.
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Definition 1.2. A sequence X is called computably random [Schnorr 1971a,b] if
no recursive martingale succeeds on X, Schnorr random [Schnorr 1971b] if no recur-
sive martingale Schnorr-succeeds on X, and Kurtz random [Downey et al. 2004; Kurtz
1981; Wang 1996] if no recursive martingale Kurtz-succeeds on X.

The classes of randoms mentioned above relate to each other as follows:

THEOREM 1.3 (SEE [DOWNEY AND HIRSCHFELDT 2010] OR [NIES 2009]).
Martin-Löf randomness =⇒ computable randomness =⇒ Schnorr randomness =⇒
Kurtz randomness.

Our discussion will also involve a related class of sequences which we introduce in
Definition 1.4. A set of finite strings S is called dense if for every string σ there exists
τ ∈ S extending σ.

Definition 1.4. A sequence is weakly 1-generic if it has a prefix in every dense r.e.
set of strings. Even stronger, a sequence X is 1-generic if for every r.e. set of strings A,
either X has a prefix in A or there exists a prefix of X which has no extension in A.

While a left-r.e. real cannot be 1-generic [Odifreddi 1999, Proposition XI.2.3], weakly 1-
generic sets can be left-r.e. [Jain et al. 2011; Nies 2009; Stephan and Teutsch Stephan
and Teutsch]. We shall make use of the following result of Kurtz which also appears in
[Downey and Hirschfeldt 2010, Theorem 8.11.7].

THEOREM 1.5 (KURTZ [1981]). Every weakly 1-generic is Kurtz random.

2. SETS, REALS, AND ACCEPTABLE NUMBERINGS
We turn our attention to the magical correspondence between sequences of natural
numbers and reals in [0, 1]. In particular, the characteristic function of each subset is
the binary expansion of some real number and vice-versa. We call a real non-dyadic
if its binary expansion contains both infinitely many 1’s and infinitely many 0’s, and
dyadic otherwise. This definition highlights an important distinction between sets and
reals. For any string σ, the real number .σ011111 . . . equals .σ100000 . . . . Hence there
is no difference between the set of “finite” reals and the set of “co-finite” reals. For
the same reason, and unlike the case for sequences, there is no difference between
“infinite” and “co-infinite” reals. We shall use real(A) to denote the unique real repre-
sentation of a set A and set(X) to denote an arbitrarily selected set representation of
a real X.

In general, enumerability will depend on whether we view our objects of study as
sequences or as reals, see Remark 2.4. Indeed, sequence enumerations are more re-
strictive than real enumerations. For random objects, however, the choice of sequences
versus reals is immaterial since random reals are non-dyadic. Every random real cor-
responds to a unique random sequence (which in turn corresponds uniquely to the
characteristic function of a set) and vice-versa. The identification of finite and co-finite
sets leads to ambiguity in terminology and reference, hence we favor sets over reals
throughout this exposition. Nevertheless, we keep in mind the correspondence between
sets and reals and occasionally exploit their relationship. Where the discussion does
not benefit from distinction between random reals, random sets, or random sequences,
we may simply refer to objects as randoms.

A set A is called left-r.e.1 if there exists a uniformly recursive approximation
A0, A1, A2, . . . toA such thatAs ≤lex As+1 for all s. HereAs ≤lex As+1 means that either

1Our definition is analogous to the usual definition of left-r.e. for reals which requires that the real admits
a recursive approximation from below. In more detail, a real number X ∈ [0, 1] is called left-r.e. if it can be
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As+1 = As or the least element x of the symmetric difference satisfies x ∈ As+1. Left-
r.e. sets are limit-recursive sets with recursive approximations of a special form. We
call A0, A1, A2, . . . a left-r.e. approximation of A. Every r.e. set is left-r.e. as As ⊆ As+1

implies As ≤lex As+1. Zvonkin and Levin [Zvonkin and Levin 1970] and later Chaitin
[Chaitin 1987] showed that there exists a left-r.e. Martin-Löf random set. (Like Chaitin
we will fix one and call it Ω.) It follows that each of the classes in Theorem 1.3 contains
a left-r.e. member.

A numbering ϕ is a partial-recursive (p.r.) function 〈e, x〉 7→ ϕe(x). A numbering
ϕ is a programming language, and ϕe is the eth program in that language. While ϕ
enumerates p.r. functions, our main focus in this paper will be enumerations of sets
and reals which admit recursive approximations from below.

Definition 2.1. Let C be a class of left-r.e. sets2. A left-r.e. numbering α of C is a
function with range C given by

e 7→ lim
s→∞

αe,s = αe

where:

(I) αe,s is uniformly recursive in e and s, and
(II) αe,0, αe,1, αe,2, . . . is a left-r.e. recursive approximation of αe.

The following definition is a terse review of the arithmetic hierarchy. For a more
in-depth discussion see [Soare 1987].

A set A ⊆ ω is a called a Σn set if it is Σ0
n in the usual sense of recursion theory. The

complement of a Σn set is a Πn set. We say that a set A many-to-one reduces to a set B,
or A ≤m B, if there exists a recursive function f such that for all x, x ∈ A ⇐⇒ f(x) ∈
B. A set A is called Σn-hard (respectively, Πn-hard) if for every Σn (resp. Πn) set X,
X ≤m A. A set A is Σn (resp. Πn) complete if A is a Σn (resp. Πn) set and A is Σn-hard
(resp. Πn-hard). The index set for a class C with respect to a (left-r.e.) numbering α is
{e : αe ∈ C}.

We make use of the following classical theorem, and we will prove an analogue for
left-r.e. index sets in Theorem 3.7.

THEOREM 2.2 (Σ3-REPRESENTATION THEOREM [SOARE 1987]). Let
W0,W1,W2, . . . be an acceptable universal r.e. numbering, and let A be a Σ3-set.
Then there exists a recursive function f such that for all x,

x ∈ A =⇒ (∀∞y) [Wf(x,y) = ω];

x /∈ A =⇒ (∀y) [Wf(x,y) is finite].

A left-r.e. numbering of all left-r.e. sets is called universal. Similarly, an r.e. num-
bering of a class C is a mapping e 7→ domϕe for some numbering ϕ, and an r.e. num-
bering is universal if every r.e. set appears in its range. Universal r.e. numberings are

written in the form

X =
X

x∈domϕ

2−|x|.

for some numbering ϕ.
2 For reals, the definition of left-r.e. numbering would be similar but, as we see from Remark 2.4, not equiv-
alent. A left-r.e. numbering of a class of left-r.e. reals C is a function with range C given by

e 7→
X

σ∈domϕe

2−|σ| (2)

for some numbering ϕ.
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known to exist, see [Soare 1987, Definition 4.1]. Universal left-r.e. numberings also ex-
ist [Brodhead and Kjos-Hanssen 2009]: if ϕe induces a universal r.e. numbering, then
ϕe induces a universal left-r.e. numbering.

We shall use capital letters to denote sequences and sets, but we reserve the capital
letter W for r.e. numberings. Greek letters σ and τ will denote finite binary strings, ϕ
and ψ will denote numberings, and α, β, γ, and ζ will be left-r.e. numberings (with an
exception in Theorem 2.5).

The following result illustrates a crucial difference between left-r.e. reals and left-r.e.
sets:

PROPOSITION 2.3. The co-infinite left-r.e. sets do not have a left-r.e. numbering.

PROOF. Suppose that such a numbering α exists, let W0,W1,W2, . . . be a universal
r.e. numbering with Wd,0,Wd,1,Wd,2, . . . a recursive approximation of Wd. Then Wd is
co-infinite if and only if Wd = αe for some e, that is:

(∃e) (∀s, x) (∃t > s) [αe,t(x) = Wd,t(x)].

Thus {d : Wd is co-infinite} is Σ3, contradicting the fact that this set is also Π3-complete
[Soare 1987, Corollary 3.5].

Remark 2.4. On the other hand, every real belongs to the equivalence class of some
co-infinite set because every dyadic rational can be represented using infinitely many
0’s and finitely many 1’s, and every non-dyadic rational can be represented using in-
finitely many 0’s and infinitely many 1’s. Brodhead and Kjos-Hanssen [Brodhead and
Kjos-Hanssen 2009] showed that there exists a left-r.e. numbering of all left-r.e. sets,
hence the class in Proposition 2.3 has a left-r.e. numbering when viewed as real num-
bers, contrary to the corresponding result for sets.

Theorem 2.5 more precisely describe the relationship between enumerations of left-
r.e. sets and left-r.e. reals. A [left-r.e. or r.e.] numbering is called a [left-r.e. or r.e.] one-
one numbering or left-r.e. Friedberg numbering if every member in its range has a
unique index.

THEOREM 2.5. A set C of nonzero reals between 0 and 1 has a left-r.e. numbering α
(in the sense of Footnote 2) iff the class of sets

{A : A is infinite and real(A) ∈ C}
has a left-r.e. numbering. The same holds for left-r.e. one-one numberings.

PROOF. =⇒: Let α0, α1, . . . be a (one-one) enumeration with dyadic approximations
αe,s to α, let

Ae,s = set[(1− 3−s) · αe,s],
and let Ae = limsAe,s. Since real(Ae) = αe for all e, it remains only to show that Ae
is infinite. If αe is non-dyadic, then Ae is the unique infinite set with real(Ae) = αe.
Otherwise αe is dyadic, in which case all the sets Ae,s are lexicographically less than
Ae and so Ae is co-finite. Finally, the numbering A is one-one whenever the numbering
α is.
⇐=: If A0, A1, A2, . . . is a list of infinite r.e. sets then the reals

αe,s =
∑

{x<s : x∈Ae,s}

2−x−1 ·Ae,s(x)

approximate uniformly in e the numbers real(Ae) from below. Again if the numbering
A is one-one then so is α.

ACM Transactions on Computational Logic, Vol. 13, No. 3, Article 1, Publication date: July 2012.



1:6 B. Kjos-Hanssen et al.

Garden variety numberings in recursion theory satisfy the s-m-n Theorem [Soare
1987] and are called acceptable numberings:

Definition 2.6. A (left-r.e.) numbering ϕ is called a (left-r.e.) Gödel numbering or ac-
ceptable (left-r.e.) numbering if for every (left-r.e) numbering ψ there exists a recursive
function f such that ϕf(e) = ψe for all e.

Intuitively, the function f in Definition 2.6 translates code from program ψ into pro-
gram ϕ. Thus acceptable numberings are maximal: any given numbering can be uni-
formly translated into any acceptable one. Furthermore, any two acceptable number-
ings are isomorphic in the sense of [Rogers 1958]. These two properties make the no-
tion of an acceptable numbering rather robust. Moreover, the existence of an acceptable
numbering is in a sense equivalent to Church’s Thesis via the s-m-n Theorem [Soare
1987].

We show that there is no canonical way to number random sets via acceptable left-
r.e. numberings. The class of left-r.e. random reals is a natural example of a class which
has a left-r.e. numbering but no maximal (i.e. acceptable) numbering.

Definition 2.7. Let C ⊆ {0, 1}ω. A set X is a shift-persistent element of C if σ_X ∈ C
for every string σ.

THEOREM 2.8. Assume that a family C has a shift-persistent element and there
exists an infinite left-r.e. set R <lex ω with R 6∈ C. Then C does not have an acceptable
left-r.e. numbering.

PROOF. Let X be a shift-persistent member of C, let R be the missed out infinite
set with R <lex ω, and let σ0, σ1, σ2, . . . be a left-r.e. approximation of R such that all
n satisfy σn1111 . . . <lex σn+10000 . . . <lex R. Every infinite left-r.e. set has such an
approximation. Suppose α is an acceptable left-r.e. numbering of C.

Fix a left-r.e. approximation Ω0,Ω1,Ω2, . . . for Ω, and let cΩ(n) be the first stage for
which this approximation has settled on the first n positions. Note that cΩ dominates
every recursive function, otherwise we would infinitely often have K(Ω � n) ≤ log n+ k
for some constant k. Now there is a ∅′-recursive function F such that F (n) is the first
m such that the first m bits of R differ from the first m bits of every αk with k ≤ cΩ(n).
This function F has an approximation Fs and now one takes the set βn = σs

_X for the
first stage s such that for all t ≥ s it holds that Ft(n) = Fs(n) and the first Fs(n) bits
of σt exist and are equal to those of σs. Note that this σs can be found as the function
values Ft(n) converge to F (n) and similarly the σt converge to R.

Each set βn is in the list α0, α1, α2, . . . by definition of X. Furthermore, βn coincides
with R on its first F (n) bits while every αk with k ≤ cΩ(n) differs from R on its first
F (n) bits. Hence βn /∈ {α0, α1, . . . , αcΩ(n)}. It follows that there is no recursive function
f with βn = αf(n) for all n as cΩ would dominate f . Thus the numbering α cannot be
an acceptable numbering of the left-r.e. sets of its type.

It follows that there is no canonical way to enumerate random reals:

COROLLARY 2.9. There is no acceptable left-r.e. numbering of either the left-r.e. ran-
doms or the left-r.e. non-randoms (under any reasonable definition of random).

3. ARITHMETIC CLASSIFICATION VIA NUMBERINGS
Unlike r.e. numberings, the existence of left-r.e. numberings admits a neat charac-
terization in terms of Σ3 sets. As a corollary, we will get that the left-r.e. Martin-Löf
random reals are enumerable but not co-enumerable. In order to make concatenation
easier, we introduce the following operator on finite strings.
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Definition 3.1. For any finite binary string σ, σy denotes the string σ with the max-
imum 1 changed to a 0 (if it exists). If σ consists of all zeros, then σy = σ.

A refinement of the following result appears in [Nies 2009, Theorem 3.5.21] using
an alternate proof.

LEMMA 3.2 (NIES [2009]). Let X be a sequence which infinitely often has a prefix
of length n followed by n · 2n zeros. Then X is not Schnorr random.

PROOF. We exhibit a martingale which Schnorr-succeeds onX. The betting strategy
is as follows. For simplicity, let us assume that we start with $3. For the initial bet,
place $1 on the “1” outcome. Now suppose we have already seen a string σ of length n.
If the last digit of σ is “0,” then bet 2−n dollars on the “1” outcome. Otherwise, make
the same bet that was made the last time.

We claim this martingale succeeds on X. The martingale loses at most 2−n dollars
from betting on the (n+ 1)st digit of X. Thus the total money lost from playing over an
infinite amount of time is at most $2. On the other hand, we are bound to eventually
reach a string of consecutive zeros of length n · 2n immediately following X � n. At
this point, 2−n dollars will be wagered n · 2n times in a row, for a net gain of $n over
the interval of zeros. By assumption on X we reach such points infinitely often, and
therefore the winnings go to infinity.

Finally we exhibit a recursive function which infinitely often is a correct lower bound
for the gambler’s capital. Define a recursive function which guesses at each position
that we are at the end of an interval of n · 2n zeros. The function always outputs n
where n is the length of the corresponding interval that would have preceded the long
string of zeros. if no such integer n exists, then output 0. Infinitely often this guess
will be correct and, as noted in the previous paragraph, we will indeed have at least n
dollars at this point.

Since weakly 1-generic sets are Kurtz random (Theorem 1.5), Proposition 3.3 below
implies that Lemma 3.2 does not carry over for Kurtz random sequences.

PROPOSITION 3.3. Let X be weakly 1-generic sequence and let f be a recursive
function. Then for infinitely many n, (X � n)_0f(n) is a prefix of X.

PROOF. Let

An = {σ_0f(|σ|) : |σ| ≥ n}.
For all n, some member of An is a prefix of X since An is a dense r.e. set. Suppose there
are only finitely many prefixes of X of the form (X � n)_0f(n), and let k be greater than
the length of the longest such prefix. Then some member of Ak must also be a prefix of
X, contradicting the definition of k.

Definition 3.4. Let σ0, σ1, σ2, . . . be a sequence of strings where σe,s is a stage s
approximation of σe. We will say that σe blows up to infinity if lims |σe,s| = ∞, and
σe gets kicked to infinity if σj blows up to infinity for some j < e.

THEOREM 3.5. Let A ⊆ ω be a Σ3-set, and let α be an acceptable universal left-r.e.
numbering. Then there exist a recursive function g such that

x ∈ A =⇒ αg(x) is Martin-Löf random;
x /∈ A =⇒ αg(x) is not Schnorr random.

PROOF. Let W be an acceptable universal r.e. numbering. Without loss of gener-
ality, assume that for all e at most one element of e enters We at each stage of its
enumeration {We,s} and furthermore at least one We increases at each stage. By the
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Σ3-Representation Theorem, there exists a function f satisfying:

x ∈ A =⇒ Wf(x,n) is infinite for some n;
x /∈ A =⇒ Wf(x,n) is finite for all n.

For each x and s, let

σx0,s = Ωs �
∣∣Wf(x,0),s

∣∣,
let

m(e, s) = greatest stage t+ 1 < s such that
max{x : Ωe,t+1(x) = 1} 6= max{x : Ωe,t(x) = 1},

and inductively define

σxn+1,s = 1(|σxn,s|+2)·2|σxn,s|_
(
Ωs �

∣∣Wf(x,n+1),m[f(x,n+1),s]

∣∣)
y
. (3)

Roughly speaking, σxn+1,s consists of a long string of 1’s followed by an approximation
of Ω. Define the recursive function g by

αg(x) = lim
s
σx0,s

_σx1,s
_σx2,s . . . (4)

By Lemma 3.2, there are enough 1’s that if all the σxn’s remain finite, then (4) is not
Schnorr random. On the other hand, if some σxn does blow up to infinity, then (4) be-
comes the Martin-Löf random Ω with some finite prefix attached.

We verify that the approximation in (4) is left-r.e. by analyzing the change between
stages s and s + 1. By induction, the length of σxn,t is increasing in t for every n. Let
e be the least index such that σxe,s+1 is longer than σxe,s. By minimality, the prefix of
1’s at the beginning of this string must remain unchanged but the approximation to Ω
increases. In particular,∣∣Wf(x,e),m[f(x,e),s]

∣∣ 6= ∣∣Wf(x,e),m[f(x,e),s+1]

∣∣.
Due to the y operator, the 0 at some existing position changes to a 1 in stage s + 1.
Hence σxe can expand in stage s + 1 while permitting a left-r.e. approximation for (4).
Finally, the limit in (4) exists because the sequence of reals is increasing and bounded
from above.

Suppose that Wf(x,n) is infinite for some n, and let e be the least such index. By
minimality, σxj = lims σ

x
j,s is finite for all j < e. Hence for e > 0,

αg(x) = σx0
_σx1

_σx2
_ · · ·_1(|σxe |+2)·2|σxe |_Ω,

which is Martin-Löf random. All σxn with n > e gets kicked to infinity. The case e = 0 is
similar.

On the other hand, suppose that Wf(x,n) is finite for all n. In this case σx0 is finite,
and

σxn+1 = 1(|σxn|+2)·2|σxn|_
(
Ωsn �

∣∣Wf(x,n+1),m[f(x,n+1),sn]

∣∣)
y
,

where sn is the final stage where Wf(x,n+1) increases. Thus infinitely often αg(x) has a
prefix of length |σ| followed by (|σ| + 2) · 2|σ| 1’s. By Lemma 3.2, αg(x) is not Schnorr
random.

COROLLARY 3.6. In any acceptable universal left-r.e. numbering, the indices of the
left-r.e. Martin-Löf randoms are Σ3-hard.
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Recall that a left-r.e. numbering is called a left-r.e. Friedberg numbering if every
member in its range has a unique index. Friedberg initiated the study of these num-
berings in 1958 when he showed that the r.e. sets can be enumerated without repeti-
tion [Friedberg 1958]. More recently Kummer [Kummer 1990] gave a simplified proof
of Friedberg’s result, and Brodhead and Kjos-Hanssen [Brodhead and Kjos-Hanssen
2009] adapted his idea to show that there exists a left-r.e. Friedberg numbering of the
left-r.e. Martin-Löf random sets. We now show that left-r.e. Friedberg numberings can
be used to characterize Σ3-index sets.

THEOREM 3.7. Let C be a class of infinite left-r.e. reals which contains a shift-
persistent element. Then for any universal left-r.e. numbering α, the following are equiv-
alent:

(I) {e : αe ∈ C} is a Σ3-set.
(II) There exists a left-r.e. numbering of C.

(III) There exists a left-r.e. Friedberg numbering of C.
PROOF. Let α be any universal left-r.e. numbering, and let

Cα = {e : αe ∈ C}.
PROOF (I) ⇐⇒ (II). Suppose that β is a left-r.e. numbering for C. Then

Cα = {e : (∃d) [αe = βd]}
= {e : (∃d) (∀n, s) (∃t > s) [αe,t � n = βd,t � n]} ,

so Cα is a Σ3 set.
Conversely, assume that Cα ∈ Σ3 and let γ be an acceptable universal left-r.e. num-

bering. By Theorem 3.5, there exists a recursive function g such that

e ∈ Cα ⇐⇒ γg(e) is Martin-Löf random.

For sets X, let

rb(X) = max{n : (∀m ≤ n) [K(X � m) ≥ m− b]},
and in case X has a recursive approximation X0, X1, X2, . . . , then we define a mono-
tonic approximation to rb as follows:

rb,s+1(X) = max{rb,s(X),max{n : (∀m ≤ n) [Ks(Xs � m) ≥ m− b]}},
where Ks is a monotonically decreasing computable approximation to K. It may not
be the case that lims rb,s(X) = rb(X), however we do achieve lims rb,s(X) = ∞ ⇐⇒
rb(X) =∞.

Without loss of generality, assume that αe,s has finitely many 1’s at each stage
s of the recursive approximation. Let C be a shift-persistent element of C, and let
C0, C1, C2 . . . be a left-r.e. approximation for C. Since we want to avoid dealing with
αe’s which are equal to 0, let

f(e) = eth α-index found to be nonzero,

and let t(e) be the first stage at which αf(e) appears to be nonzero. For notational
convenience, let

q(e) = min{x : αf(e),t(e)(x) = 1},
and let

ξ〈e,b〉,s =
{

0q(e) if
∣∣rb,s(γg[f(e)],s)

∣∣ ≤ q(e);
αf(e),s � rb,s(γg[f(e)]) otherwise
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1:10 B. Kjos-Hanssen et al.

be the prefix of αf(e),s that has the length of γg[f(e)]’s prefix which looks random at
stage s. Let

m(e, s) = greatest stage t+ 1 < s such that
max{x : αf(e),t+1(x) = 1} 6= max{x : αf(e),t(x) = 1}.

Define a further left-r.e. numbering β by

β〈e,b〉,s+1 = ξ〈e,b〉,m(e,s)y

_Cs+1. (5)

The operator y in (5) is needed to ensure that β is a left-r.e. numbering: whenever
rb,m(e,s+1)(γg[f(e)]) 6= rb,m(e,s)(γg[f(e)]), this expansion is handled by replacing a “0” with
“1” which clears the higher indices, making room for Cs+1.

Finally, β0, β1, . . . is a left-r.e. numbering for C. Indeed,

f(e) ∈ Cα =⇒ (∃b) [γg[f(e)] is Martin-Löf random with constant b]
=⇒ β〈e,b〉 = αf(e).

Of course a β-index for the real 0 can be added if necessary. In the case where γg[f(e)]

is not Martin-Löf random with constant b, Cs does not get kicked to infinity but then
β〈e,b〉 ∈ C because C is a shift-persistent member of C.

PROOF (II) ⇐⇒ (III). Assume that C has a numbering γ. Let C be a shift-persistent
element of C, and let

B = {1n_C : n ∈ ω} ∪ {X ∈ C : X ≤ C}
be a subclass of C. B is the union of two classes which have left-r.e. numberings and
therefore has itself a left-r.e. numbering. A numbering for the latter class is achieved
by pausing the enumeration of X whenever it tries to exceed C. Let β be a left-r.e.
numbering for B.

Note that

A := {X : X ∈ C − B} = {X ∈ C : (∃n) [1n_C < X < 1n+1_C]}
has a left-r.e. numbering α given by: α〈e,n,k〉,s =

1n_Cs + 2−k if (γe,s � k)_0 ≤lex (1n_Cs � k)_0;
γe,s if (1n_Cs � k)_0 <lex (γe,s � k)_0 <lex (1n+1_Cs � k)_0;
1n+1_Cs − 2−k if (1n+1_Cs � k)_0 ≤lex (γe,s � k)_0.

where the triple 〈e, n, k〉 ranges over values k which are greater than or equal to the
index of the least 0 in 1n_C. The numbering α exploits the fact that if X 6= 1n_C, then
X and 1n_C must differ on some prefix. Strictly speaking, every tail of C must be a
shift-persistent element in order that each α-index yields a member of C. Since every
member of C is infinite, however, we can overcome this shortcoming by modifying the
tails for α〈e,n,k〉,s to be Cs in the first and third cases.

Using α and β, we now exhibit a Friedberg numbering ζ for A ∪ B = C. Let

M = {e : (∀j < e) [αj 6= αe]}.
Every member of A has a unique index in M . Since M is a Σ2-set, there exists a
∅′-recursive function m whose domain is M . Let m0,m1,m2, . . . be a recursive approx-
imation to m. Using this approximation, we shall design ζ in such a way that each
α-indexed real in M occurs at exactly one ζ-index, and the remaining ζ-indices will be
home to the β-indexed reals.

We define a function f : ω 7→ (ω ∪ {∞}) × {α, ∗} which maps ζ-indices to either α-
indices or *’s. The ∞ symbol is used for destroyed β indices which are (or never were)
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attached to ζ-indices, and the α and ∗ symbols indicate whether the particular ζ-index
is following an α-index or a β-index. If f(e) = 〈x, ∗〉 for some x, f(e) “explodes” and we
say that the ζ-index e has been destroyed. fs : ω 7→ ((ω ∪ {∞}) × {α, ∗}) ∪ {↑} will
be a recursive approximation to f based on the recursive approximation ms. ζ-indices
that are destroyed at some stage take on β-indices in the limit (rather than α-indices).
We shall also keep track of which β-indices have been taken on by ζ-indices: Gs will
be the set of β-indices which have been ζ-used by stage s. We will achieve limGs = ω.
Since C contains only infinite sets, every α-indexed real is less than some β-indexed
real, and therefore we can use β as a garbage can to collect for those approximations
ms(e) which turned out to be wrong. We shall also have an auxiliary recursive function
r(s) which marks the boundary between the ζ-indices which are following values in
ω ∪ {∗} and those whose value is ↑ at stage s.

The construction is as follows:

. Stage 0.
Set G0 = ∅, r(0) = 0, f0(e) = ↑, and ζe,0 = 0 for all e ≥ 0.
. Stage s+ 1. Let

A = {x < s : ms+1(x) ↑ and ms(x) ↓},
X = {x < s : ms+1(x) ↓ and ms(x) ↑},

let {a1, a2, . . . ak} be the indices below or equal to r(s) satisfying fs(ei) ∈ A, and let
{x1, x2, . . . , xd} be the indices below or equal to r(s) satisfying fs(ei) ∈ X. We destroy
all followers of {x1, . . . , xd}, and create new followers for {a1, . . . , ak}:

fs+1(n) =



〈xi, ∗〉 if fs(n) = 〈xi, α〉 for some 1 ≤ i ≤ d;
〈ai, α〉 if n = r(s) + i for some 1 ≤ i ≤ k;
〈s, α〉 if n = r(s) + k + 1;
〈∞, ∗〉 if n = r(s) + k + 2;
fs(n) otherwise.

(6)

The ζ-index r(s)+k+1 is used to introduce a new α-index, and the ζ-index r(s)+k+2
is used to ensure that some new β-index is taken up at this stage. Set r(s + 1) =
r(s) + k + 2.
Next, assign new reals from B to the ζ-indices that were destroyed in this stage.
— Let

y1 = (µn) [βn,s > ζx1,s & n /∈ Gs]
and inductively for 0 ≤ i ≤ d,

yi+1 = (µn) [βn,s > max{ζxi+1,s, βyi} & n /∈ Gs].

Choose the least β-index not yet assigned to a ζ-index and call it z:

z = min{n : n /∈ {y1, y2, . . . , yd} and n /∈ Gs}. (7)

This choice of z ensures that every member of B will have some index in ζ.
— Set

ζn,t =
{
βyi,t if fs+1(n) = 〈xi, ∗〉 for some 1 ≤ i ≤ d;
βz,t if n = r(s+ 1).

for all t > s.
— Set Gs+1 = Gs ∪ {y0, y1, . . . , yk, z}.
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For the remaining ζ-indices which have not been destroyed in this stage or some
previous stage, continue following α-indices:

ζe,s+1 =
{

0 if fs+1(e) = ↑;
αfs+1(e),s+1 if fs+1(e) /∈ {〈n, ∗〉 : n ∈ ω} ∪ {↑}. (8)

By induction on stages, (6) and (8) ensure that for all s and e ≤ s, there exists a unique
n such that

ζn,s+1 = αfirst projection of fs+1(e), s+ 1.

Since each sequence {αfirst projection of fs+1(e)} converges to a unique member in the range
of α on the set of indices e ∈ domm, it follows that there is a unique ζ-index for each
real in A. Indeed for e /∈ domm, the approximation for m(e) may oscillate between
convergence and divergence infinitely often, but we simply introduce a fresh ζ-index
for an unused member of B each time this happens and therefore αe will not occupy a
ζ-index in the limit. Furthermore (6) and (7) ensure that there is a unique ζ-index for
each real in B.

Finally, ζe ∈ A ∪ B for all e. If the index e is destroyed at some stage in the construc-
tion, then some β-index n is assigned at that stage and ζe = βn. On the other hand if
index e is never destroyed, then ζe takes an α-index, namely ζe = αfirst projection of f(e).

Hence (I) ⇐⇒ (II) ⇐⇒ (III).

COROLLARY 3.8. The following classes have left-r.e. numberings:

(I) the left-r.e. Martin-Löf random sets,
(II) the left-r.e. Kurtz non-random sets, and

(III) the infinite left-r.e. sets.
(IV) the infinite r.e. sets.

Proposition 3.9 below contrasts with Corollary 3.8(IV). This dichotomy does not sur-
prise us too much as the recursive sets are also enumerable if viewed as r.e. char-
acteristic functions, what is well-known to be impossible for recursive functions. To
see such an enumeration, we start with an enumeration of the binary p.r. functions,
f0, f1, f2, . . . . We can uniformly interpret each fi as the recursive set whose character-
istic function is the truncation of fi up to the highest number n such that fi(x) ↓ for all
x < n, followed by the constant zero function. Then the indices for total functions will
yield the characteristic functions for the recursive sets, and the non-total functions
will yield finite sets which are also recursive.

PROPOSITION 3.9. There is no r.e. numbering of the infinite r.e. sets.

PROOF. Suppose that A0, A1, A2, . . . were an r.e. numbering of the infinite r.e. sets.
Search for an a0 ∈ A0, and let b0 = a0 + 1. Next, search for an a1 ∈ A1 which is
greater than b0, and let b1 = a1 + 1. Continuing the diagonalization, find a2 ∈ A2

which is greater than b1 and let b2 = a2 + 1, and proceed similarly for b3, b4, . . . . Now
{b0 < b1 < b2 < . . . } is an infinite r.e. set which disagrees from the nth r.e. set at an.

It remains to show that the hypothesis “contains a shift-persistent element” is nec-
essary in Theorem 3.7.

THEOREM 3.10. There exists a Σ3-class of infinite left-r.e. reals which contains no
shift-persistent element and has no left-r.e. numbering.
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PROOF. Let α be a universal left-r.e. numbering and define the following α-index
set:

X = {e : (∃x) [x /∈ αe ∪ Ω]
and (∀y < x) [y ∈ αe ⇐⇒ y /∈ Ω]

and (∀y > x) [y ∈ αe ⇐⇒ y is odd]}. (9)

By the third line,X is infinite, and by the second line,X contains no shift-persistent el-
ement. Furthermore, (9) is a Σ2-formula with a ∅′-recursive predicate, hence X ∈ Σ3. If
X would have a left-r.e. numbering, then by the first line, Ω would be the lexicographic
supremum of all the approximations occurring to members of this left-r.e. numbering
and Ω would be a left-r.e. set, contradicting that Ω is nonrecursive.

Also along the lines of randomness, we note that the class of left-r.e. reals X satisfying
X + Ω ≤ 1 has a Π1 index set (in any numbering), has no shift-persistent element, and
has no left-r.e. numbering. Indeed if this class had a left-r.e. numbering, then Ω would
be recursive.

COROLLARY 3.11. The left-r.e. Martin-Löf non-random reals, computable non-
random reals, and Schnorr non-random reals have no left-r.e. numberings. Hence none
of these classes has a Σ3 index set in any universal left-r.e. numbering.

PROOF. These classes are Π3-hard in any acceptable numbering by Corollary 3.6.
It follows from Theorem 3.7 that none of these classes are effectively enumerable and
hence cannot be Σ3 in any universal left-r.e. numbering.

4. WEAKLY 1-GENERIC SETS
We examine left-r.e. numberings for Kurtz random, bi-immune, bi-hyperimmune, and
weakly 1-generic sets. We introduced weakly 1-generic sets in Definition 1.4.

Definition 4.1. An infinite set is immune if it contains no infinite recursive subset.
Even stronger, a set A = {a0 < a1 < · · · } is hyperimmune if there exists no recursive
function f such that f(n) > an for all n. It is bi-(hyper)immune if both A and the
complement A are (hyper)immune.

THEOREM 4.2. Let A ⊆ ω be a Σ3-set, and let α be an acceptable universal left-r.e.
numbering. Then there exist a recursive function g such that

x ∈ A =⇒ αg(x) is co-finite;
x /∈ A =⇒ αg(x) is weakly 1-generic.

PROOF. LetW be an acceptable universal r.e. numbering. By the Σ3-Representation
Theorem, there exists a recursive function f such that:

x ∈ A =⇒ Wf(x,n) is infinite for some n;
x /∈ A =⇒ Wf(x,n) is finite for all n.

The idea now is make αg(x) a sequence of the form

αg(x) = σ0
_0_σ1

_0_σ2
_0 · · ·

such that σ0
_0_σ1

_0_ · · ·_σn is a member of Wn whenever Wn is dense and Wf(x,e)

is finite for all e. If on the other hand Wf(x,e) is infinite for some e, then some σn will
blow up to infinity and αg(x) will be co-finite.

For every n, let

τn,s = σ0,s_0_σ1,s
_0_ · · ·_σn,s.
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At Stage 0, σe,0 = 0 for all e, and αg(x),0 = σ0,0
_0_σ1,0

_0_σ2,0
_0_ · · · . At Stage s+ 1,

let e be the least index, if one exists, such that either:

(1)
∣∣Wf(e,x),s+1

∣∣ > ∣∣Wf(e,x),s

∣∣, or
(2) some member of We,s+1 extends τe_1, and no member of We,s+1 is a prefix of τe.

If condition 1 is satisfied, let σe,s+1 = σe,s
_1 so that σe becomes longer. Otherwise, let

σe,s+1 be an extension of σe,s_1 such that τe,s+1 ∈We,s+1. This latter case aims to make
αg(x) weakly 1-generic. In either case, σj,s+1 = σj,s for j 6= e. If no such e exists, skip to
Stage s+ 2.

The sequence {αg(x),s} is indeed a left-r.e. approximation. In each stage swhere some
action takes place in the construction, the 0 following σe,s is changed to a 1 before this
string is extended.

We claim that ifWf(x,n) is finite for all n, then αg(x) will be weakly 1-generic. By some
stage s, Wf(0,x),s must stop expanding. Whether or not W0 is dense, σ0 will change at
most one time after stage s, and therefore τ0 settles by some stage t0. If W0 is dense,
then τ0 will contain a member of W0. Similarly Wf(1,x),s must stop expanding at some
point after stage t0, τ1 will eventually contain a prefix of W1 if W1 is dense, and τ1,t
settles by some stage t1. Continuing by induction, we see that αg(x) is weakly 1-generic.

If Wf(x,n) is infinite for some least n, then the argument in the previous paragraph
shows that τn−1,t eventually settles, and then infinitely often σn,s+1 = σn,s

_1 and so
αg(x) is co-finite.

Since every weakly 1-generic set is both hyperimmune [Nies 2009, Proposition 1.8.48]
and Kurtz random (Theorem 1.5) we have the following:

COROLLARY 4.3. In any acceptable universal left-r.e. numbering, the index sets for
the following classes are Π3-hard:

(I) the left-r.e. immune sets,
(II) the left-r.e. hyperimmune sets,

(III) the left-r.e. bi-immune sets,
(IV) the left-r.e. bi-hyperimmune sets,
(V) the left-r.e. weakly 1-generic sets,

(VI) the left-r.e. Kurtz random sets.

From Theorem 3.7 we also have the following result.

COROLLARY 4.4. In any universal left-r.e. numbering, the classes listed in Corol-
lary 4.3 have Π3 − Σ3 index sets. Moreover there exists a left-r.e. numbering for each of
the corresponding complementary classes.

It is known that every Kurtz random is bi-immune [Kurtz 1981], but the reverse in-
clusion does not hold [Bienvenu et al. 2010]. We can also separate the left-r.e. versions
of these notions.

PROPOSITION 4.5. There exists a left-r.e. bi-hyperimmune set which is not Kurtz
random.

PROOF. Let A be any bi-hyperimmune left-r.e. set. Then A ⊕ A is bi-hyperimmune
but not Kurtz random since a recursive martingale can win on every second bit.

The reverse of Proposition 4.5 holds as well: Chaitin’s Ω is an example of a left-r.e.
Martin-Löf random (in particular, Kurtz random) which, by Lemma 3.2, is not hyper-
immune (in particular, not bi-hyperimmune).
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5. CLASSES OF HIGHER COMPLEXITY
We now investigate the complex randomness notions of Schnorr randomness and com-
putable randomness. As we shall see, neither of these left-r.e. classes, nor their com-
plements, have left-r.e. numberings. A set A is called high if A′ ≥T ∅′′. A theorem of
Nies, Stephan, and Terwijn [Nies et al. 2005] shows the existence of left-r.e. Schnorr
randoms which are not Martin-Löf random:

THEOREM 5.1 (NIES, STEPHAN, TERWIJN [NIES ET AL. 2005]). The following
statements are equivalent for any set A:

(I) A is high.
(II) There is a set B ≡T A which is computably random but not Martin-Löf random.

(III) There is a set C ≡T A which is Schnorr random but not computably random.
In the case that A is left-r.e. and high, the sets B and C can be chosen as left-r.e. sets as
well.

Furthermore, Downey and Griffith [Downey and Griffiths 2004; Downey and
Hirschfeldt 2010] proved that every left-r.e. Schnorr random real is high. Therefore

FACT 5.2. A left-r.e. set X is high ⇐⇒ X Turing equivalent to a left-r.e. Schnorr
random set ⇐⇒ X is Turing equivalent to a left-r.e. computably random set.

In his PhD thesis [Schwarz 1982], Schwarz characterized the complexity of the high
r.e. degrees:

THEOREM 5.3 (SCHWARZ [1982], [SOARE 1987]). In any acceptable universal r.e.
numbering W0,W1,W2, . . . , {e : We is high} is Σ5-complete.

Using this Schwarz’s theorem, we obtain the following enumeration result.

THEOREM 5.4. Let C be a class of left-r.e. reals such that:

(I) Every member of C is high, and
(II) every high r.e. set is Turing equivalent to some member of C.

Then for any universal left-r.e. numbering α, {e : αe ∈ C} is not a Σ4-set and hence is
neither enumerable nor co-enumerable.

PROOF. Let C be a class satisfying the hypothesis of the theorem, let W be an ac-
ceptable universal r.e. numbering, let Φ denote a Turing functional, and suppose that

αi ∈ C ⇐⇒ (∃n1) (∀n2) (∃n3) (∀n4) [P (i, n1, n2, n3, n4)].

for some recursive predicate P .
For convenience assume that whenever a computation ΦWe,t

j is injured, it is unde-
fined for at least one stage; then

We is high ⇐⇒ (∃i, j)
[
αi ∈ C & αi = ΦWe

j

]
⇐⇒ (∃i, j, n1) (∀x, n2) (∃t) (∃n3) (∀u > t) (∀n4)[

P (i, n1, n2, n3, n4) & αi,u(x) = ΦWe,u

j,u (x)
]
.

Thus {e : We is high} is a Σ4-set, contrary to Theorem 5.3.

COROLLARY 5.5. Neither the Schnorr random sets nor the computably random sets
reals are Σ4 in any universal left-r.e. numbering. Hence neither class nor its complement
has a left-r.e. numbering.
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PROOF. By Fact 5.2, the left-r.e. Schnorr random sets and the left-r.e. computably
random sets satisfy the hypothesis of the Theorem 5.4. Apply Theorem 3.7.

It remains to characterize the hardness of computable random sets and Schnorr
random sets in an acceptable universal left-r.e. numbering. For the remainder of this
paper, we fix an acceptable universal left-r.e. numbering α and an acceptable universal
r.e. numbering W . The principal function of a set A = {a0 < a1 < a2 < . . . } is given
by n 7→ an; we write pA(n) = an. We will be particularly interested in the principal
functions of co-r.e. sets, so we use the abbreviation pe for pW e

. We say that a function
f : ω → ω is dominating if it dominates all recursive functions.

THEOREM 5.6. There is a Turing reduction procedure Φ and a recursive function g
such that for all e,

(I) Φpe is a left-r.e. real,
(II) αg(e) = Φpe , and

(III) Φf is computably random if f is dominating.

PROOF. This fact follows from the proof of Nies, Stephan, Terwijn [Nies et al. 2005,
Theorem 4.2, (I) implies (II), r.e. case] which appears as Theorem 5.1 in this paper.

A set A is low if A′ ≤T ∅′, and a function is low if it is computable from a low set. A
function f is diagonally non-recursive (DNR) if for some numbering ϕ and every e, the
value ϕe(e), if defined, differs from f(e).

LEMMA 5.7. A low left-r.e. set cannot compute a Schnorr random.

PROOF. Suppose such a real A computes a Schnorr random set X. Since X is not
high, X must also be Martin-Löf random (by Theorem 5.1). Kučera showed that every
Martin-Löf random set computes a DNR function [Kučera 1985], [Kjos-Hanssen et al.
2006, Theorem 6], so A computes a DNR function. Moreover A has r.e. Turing degree
because it is truth-table equivalent to the r.e. set {σ : σ_0ω ≤ A}. An r.e. set computes
a DNR-function if and only if the set is Turing complete [Arslanov 1981][Jockusch et al.
1989][Kjos-Hanssen et al. 2006, Corollary 9][Kjos-Hanssen et al. 2011], hence A ≡T ∅′.
This contradicts the fact that A is low.

An r.e. set A is maximal if for each r.e. set W with A ⊆ W , either ω \W or W \ A is
finite. Friedberg [Friedberg 1958] proved that maximal sets exist.

THEOREM 5.8. For every A ∈ Π4, there exists a recursive function f such that for all
e,

e ∈ A =⇒ αf(e) is computably random; (10)
e /∈ A =⇒ αf(e) is not Schnorr random. (11)

PROOF. Let us fix a Π4-complete set A; By [Soare 1987, XII. Exercise 4.26], there is
a recursive function h such that

e ∈ A ⇐⇒ Wh(e) is maximal ⇐⇒ Wh(e) is not low.

Martin and Tennenbaum showed that the principal function of the complement of a
maximal set dominates all recursive functions [Soare 1987, XI. Proposition 1.2]. Using
this result and the function g given by Theorem 5.6,

Wh(e) is maximal =⇒ p
h(e)

is dominating

=⇒ αg[h(e)] = Φph(e) is computably random,
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and by Lemma 5.7 with Theorem 5.6(I),

Wh(e) is not maximal =⇒ p
h(e)

is low

=⇒ αg[h(e)] = Φph(e) is not Schnorr random.

The function f = g ◦ h witnesses the conclusion of this theorem.

Note that if we replaced “computably random” with “Martin-Löf random” in (10), we
would obtain a characterization of Σ3 sets rather than Π4 sets (care of Theorem 3.5).
Since every computable random is Schnorr random (Theorem 1.3), we obtained an
optimal hardness result:

COROLLARY 5.9. In any acceptable universal left-r.e. numbering, both the indices
of the Schnorr random sets and the indices of the computably random sets are Π4-
complete.

We summarize our main results in Table I. A theorem in a forthcoming paper
[Stephan and Teutsch Stephan and Teutsch] states that every ∅′-recursive 1-generic
set has a co-r.e. indifferent set which is retraceable by a recursive function. It follows
that for each the families of randoms listed in Table I, there exists a universal left-r.e.
numbering which makes the set of the indices for that class 1-generic. Therefore we
cannot obtain any arithmetic hardness results for index sets in the general case of
universal left-r.e. numberings.

Table I. Calculated complexities

Left-r.e. family Complexity Hardness*
Martin-Löf randoms Σ3 −Π3 [3.11] Σ3-hard [3.6]
computable randoms Π4 − Σ4 [5.5] Π4-hard [5.9]

Schnorr randoms Π4 − Σ4 [5.5] Π4-hard [5.9]
Kurtz randoms Π3 − Σ3 [4.4] Π3-hard [4.3]
bi-immune sets Π3 − Σ3 [4.4] Π3-hard [4.3]

Note: Complexities listed hold for any universal left-r.e.
numbering.
∗Hardness results are for acceptable universal left-r.e.
numberings.

We can separate most of the adjacent left-r.e classes in Table I simply by observing
differences in arithmetic complexity (and using the well-known result Theorem 1.3).
The remaining separations follow from Theorem 5.1 and Proposition 4.5. All of these
separations were previously known, with the possible exception of a left-r.e. Kurtz
random which is not bi-immune.

Among the families Table I, only the Martin-Löf randoms have a left-r.e. number-
ing, and among the complementary families only the Kurtz non-randoms and non-bi-
immune sets do (by Theorem 3.7).

6. EXPANDING THE VOCABULARY
In Section 2, we identified left-r.e. sets as limit-recursive sets with recursive approx-
imations of a special form. However there are other easy to describe limit-recursive
sets which are Martin-Löf random but not left-r.e. For example, {x : 2x ∈ Ω} is Martin-
Löf random and low by van Lambalgen’s Theorem [Downey and Hirschfeldt 2010; van
Lambalgen 1987] but not left-r.e. (as left-r.e. Martin-Löf random sets are weak truth-
table complete [Nies 2009, Corollary 3.2.31]). See [Jain et al. 2011, Proposition 13] for
an elementary explanation why {x : 2x ∈ Ω} and {x : 2x + 1 ∈ Ω} cannot both have
left-r.e. approximations.
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QUESTION 6.1. If A = a0 < a1 < a2 < . . . is an infinite r.e. (co-r.e.) set, and Ω is a
left-r.e. Martin-Löf random, is the set

Ω(a0)Ω(a1)Ω(a2) . . . (12)

Martin-Löf random? If not, which classes of sequences of the form (12) have number-
ings?
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