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1. INTRODUCTION
Proving the satisfiability or unsatisfiability of a first-order formula (possibly modulo
some background theory) is an essential problem in computer science – in particu-
lar for the automatic verification of complex systems, and instantiation schemes can
be used for this purpose. Such schemes can be viewed as functions Θ that map a set
of formulæ (or clauses) S to a set of ground (i.e. without variable) instances Θ(S) of
S. An instantiation scheme Θ is refutationally complete if for all sets of clauses S,
Θ(S) is satisfiable exactly when S is. Examples of refutationally complete instantia-
tion schemes include [Lee and Plaisted 1992; Plaisted and Zhu 2000; Ganzinger and
Korovin 2003; Baumgartner and Tinelli 2003]. It is clear that an instantiation scheme
that is refutationally complete does not always terminate, as Θ(S) may be infinite, but
schemes that are both complete and terminating can be defined for specific classes of
clause sets, that are thus decidable. A trivial and well-known example is the Bernays-
Schönfinkel class (i.e. the class of purely universal formulæ without function symbols
of arity distinct from 0, see, e.g., [Dreben and Goldfarb 1979]), since in this case the
set of ground instances is finite. Other examples include the class of stratified clause
sets [Abadi et al. 2010] and many classes of clause sets of the form G ∪ A, where G is
a set of ground formulæ and A is the set of axioms of a specific theory1, such as the
theory of arrays (see for example [Bradley and Manna 2007]), the theory of pointer
structures such as lists [Mcpeak and Necula 2005], of sets with cardinalities [Ohlbach
and Koehler 1999], a local theory [Givan and Mcallester 1992] etc. For instance, [Mc-

1In this case, of course, only the axioms in A need to be instantiated.
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0:2 Echenim and Peltier

peak and Necula 2005] provides an instantiation scheme for a language that describes
properties of scalar fields and pointers. As long as no disequalities between pointers
are allowed, their instantiation scheme is complete.

Instantiation schemes can also be defined for specific theories for which decision pro-
cedures exist. Then, the theory is not axiomatized, but directly handled by an external
prover – used as a “black box”. In this case, the instantiation procedure should pre-
serve the validity of the formula modulo the considered theory. Such procedures are
appealing, because it is usually much easier to check the validity of a ground set than
that of a non-ground set (see for instance [Bradley et al. 2006]).

Frequently, one has to handle heterogeneous problems, defined on complex theories
for which no instantiation procedure exists. Such theories are frequently obtained by
combining simpler theories. For instance the theory describing a data-structure (ar-
rays, list, etc.) may be combined with the theory modeling the elements it contains
(e.g., integers). Most systems rely on the Nelson-Oppen method and its numerous re-
finements to reason on combination of theories. This scheme allows one – under cer-
tain conditions – to combine independent decision procedures (see, e.g., [Tinelli and
Harandi 1996; Echenim and Peltier 2011]), but it is of no use for reasoning on theories
that include axioms containing function or predicate symbols from both theories. As
an example, consider the following formula:

∀i, j : nat, i ≤ j ⇒ select(t, i) ≤ select(t, j),

that states that an array t is sorted. This formula uses symbols from the theory of
integers (the predicate ≤) and from the theory of arrays (the function select, which
returns the value stored in a certain array at a certain index).

In this paper, we show how to construct automatically instantiation schemes for
such axioms, by combining existing instantiation schemes. More precisely, from two
complete instantiation procedures ΘN and ΘA for the theory of integers and for the
theory of arrays respectively, we construct a new procedure Θ which is able to handle
a particular class of “mixed” axioms, containing function symbols from both theories
(including for instance the axioms for sorted arrays and many others). Θ will be com-
plete and terminating if both ΘN and ΘA are (as proven in Section 4). This approach is
not restricted to specific theories such as ΘN and ΘA; on the contrary it is generic and
applies to a wide range of theories and some examples are provided in Section 5. The
conditions that must be satisfied by the considered theories and by their instantiation
procedures are identified in Section 3.2. They can be roughly summarized as follows.
Firstly, the combination of theories must be hierarchic, in the sense that the domains
of the function symbols of the first theory (called the base theory) must be distinct from
the ranges of the function symbols of the second theory (called the nesting theory).
Second, the instantiation procedure for the base theory must instantiate variables by
ground terms in a uniform way; and this set of ground terms must be invariant under
some operations on the considered clause sets, such as disjunction and replacement
of variables by variables. Finally, the instantiation procedure for the nesting theory
must be monotonic and the instances cannot depend on the names of the base terms
occurring in the clauses.

Comparison with Related Work
There is an extensive amount of work on the combination of (usually disjoint) theo-
ries, using mainly refinements or extensions of the Nelson-Oppen method (see, e.g.,
[Nelson and Oppen 1979; Tinelli and Harandi 1996; Bruttomesso et al. 2009]). For in-
stance, [Fontaine 2009] shows that many decidable fragments of first-order logic can
be combined with any disjoint theory, even if these fragments do not fulfill the stable
infiniteness condition in general. A related result is presented in [Fontaine et al. 2004]
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for the theory of lists (with a length function). However, these results do not apply to
non-disjoint theories such as those we consider in this paper, and they cannot handle
nested combinations of arbitrary theories.

Reasoning on the combination of theories with mixed axioms has been recognized
as an important problem and numerous solutions have been proposed in many specific
cases. Most existing work focuses on testing the satisfiability problem of ground for-
mulæ in combinations or extensions of existing theories. In contrast, our method aims
at reducing non-ground satisfiability to ground satisfiability tests, via instantiation.

For instance, [Bradley et al. 2006; Bradley and Manna 2007] define a decision pro-
cedure for extensions of the theory of arrays with integer elements, which is able to
handle axioms such as the one above for sorted arrays. As we shall see in Section 5,
our approach, when applied to these particular theories, permits to handle a strictly
more expressive class of quantified formulæ.

[Ghilardi et al. 2007a] focuses on arrays with integer indices and devises a method
to combine existing decision procedures (for Presburger arithmetic and for the theory
of arrays). This method is able to handle some important specific features of arrays
such as sortedness or array dimension. Similarly to our approach, theirs is based on
an instantiation of the axioms. As we shall see, some of its features can be tackled with
our method and others (such as Injectivity) are out of its scope. However, our method is
generic in the sense that it applies to a wide class of theories and axioms (in particular,
it applies to axioms that are not considered in [Ghilardi et al. 2007a]). It is essentially
syntactic, whereas that of [Ghilardi et al. 2007a] is more of a semantic nature.

A logic devoted to reasoning with arrays of integers is presented in [Habermehl
et al. 2008] and the decidability of the satisfiability problem is established by reduction
to the emptiness problem for counter automata. In Section 5 we shall show that the
expressive power of this logic is again incomparable with the one we obtain with our
approach.

Most approaches for handling quantified formulæ rely on the original work of
[Detlefs et al. 2005] on the Simplify prover, in which heuristics for quantifier instantia-
tion are devised (based on E-matching). Of course, these heuristics are not complete in
general, and the class for which completeness is ensured is not precisely characterized.
State-of-the-art techniques include [Ge et al. 2009; de Moura and Bjørner 2007]. [Ge
and de Moura 2009] proposes an instantiation scheme for sets of clauses possibly con-
taining arithmetic literals, which can handle some of the axioms we consider. However
termination is not guaranteed for this scheme, in contrast to ours.

Reduction functions are widely used tools allowing to reduce complex theories to sim-
ple ones. The instantiation procedures considered in the present work can be viewed as
reduction procedures from quantified formulæ to ground sets. [Kapur and Zarba 2005]
identifies various reduction methods that are widely used in efficient SMT-solvers
[Barrett et al. 2010] (e.g. from arrays to equality theory) and provides a general method
for combining existing reduction procedures. Unlike the present paper, arbitrary com-
binations are allowed, but only ground formulæ are considered.

Slightly closer to our approach is the work described in [Sofronie-Stokkermans 2005;
2010], which defines the notion of the (stably) local extension of a theory and shows that
the satisfiability problem in a (stably) local extension of a theory A can be reduced to a
simple satisfiability test in A. The notion of a local extension is a generalization of the
notion of a local theory, originally defined for Horn clauses in [Givan and Mcallester
1992; Givan 2000] and then generalized by allowing arbitrary term orderings and full
clauses in [Basin and Ganzinger 2001] (semantic criteria based on saturation are pro-
posed in [Ganzinger 2001] for proving locality of a theory). The idea is that, for testing
the satisfiability of a ground formula G in the local extension of a theory, it is sufficient
to instantiate the variables occurring in the new axioms by ground terms occurring
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either in G or in the axioms (in [Ihlemann et al. 2008], the notion of locality is further
generalized by considering a closure operator Ψ which returns the set of terms that
must instantiate the variables). The previous condition holds for numerous useful ex-
tensions of base theories, including for instance extensions with free functions, with
selector functions for an injective constructor, with monotone functions over integers
or reals etc. Our approach departs from these results because our goal is not to ex-
tend basic theories, but rather to combine existing instantiation procedures. Locality
(or Ψ-locality) is a property of a set of axioms: there exists local and non-local presen-
tation of a given theory. However, it is essentially a semantic notion, in the sense that
testing whether a given presentation is local or whether there exists an equivalent
local presentation, is an undecidable problem. Thus, this property must be established
separately for every considered extension, although there exist decidable criteria and
automated methods for extending a non-local presentation into a local one [Ganzinger
2001; Basin and Ganzinger 2001]. Actually, our results can be viewed as a general
method for proving that a given theory extension is local (relatively to some closure
operator): if the theories B and N satisfy the conditions of Section 3.2 then any hierar-
chic expansionN [B] (see Definition 3) is Ψ-local (in the sense of [Ihlemann et al. 2008]),
where Ψ is the closure operator obtained by considering the whole set of ground terms
obtained by applying the instantiation procedure ΘN [ΘB ] defined in Definition 13.

In our approach we define conditions on the theories ensuring that they can be safely
combined. These conditions can be tested once and for all for each theory, and then
any combination is allowed. An important restriction of our approach compared to
[Sofronie-Stokkermans 2005; 2010] is that the theories must be combined in a hier-
archic way: intuitively there can be function symbols mapping elements of the first
theory B (the “base” theory) to elements of the second one N (the “nesting” theory), but
no function symbols are allowed from N to B.

Other methods based on the superposition calculus [Bachmair and Ganzinger 1994]
have also been proposed. [Bonacina et al. 2011] investigates how to test the satisfia-
bility of formulæ involving quantifiers and decidable subtheories by tightly coupling a
general-purpose theorem prover based on the superposition calculus with SMT solvers
for the subtheories. Other extensions of the superposition calculus have also been pro-
posed to handle first-order extensions of a base theory (see for example [Bachmair
et al. 1994; Althaus et al. 2009]). The superposition calculus is used to reason on the
generic part of the formulæ whereas the theory-specific part is handled by an exter-
nal prover. These proof procedures can be used to reason on some of the formulæ we
consider in the present paper. However, we are not aware of any termination result
for these approaches (even completeness requires additional restrictions that are not
always satisfied in practice). [Ganzinger et al. 2006] devises a superposition calculus
for combinations of first-order theories involving total and partial functions. Some ter-
mination and completeness results are presented. Our approach uses an instantiation-
based approach instead of superposition, and ensures that termination is preserved by
the combination, at the cost of much stronger syntactic restrictions on the considered
formulæ.

Organization of the Paper
The rest of the paper is structured as follows. Section 2 contains general definitions and
notations used throughout the present work. Most of them are standard, but some are
more particular, such as the notions of ω-clauses or specifications. Section 3 describes
our procedure for the nested combination of instantiation schemes, and introduces
conditions to ensure that completeness is preserved. Section 5 shows some interesting
applications of these results for theories that are particularly useful in the field of
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verification (especially for extensions of the theory of arrays). Section 6 concludes the
paper and gives some lines of future work.

2. PRELIMINARIES
In this section, we first briefly review usual notions and notations about first-order
clausal logic. Then we introduce the rather nonstandard notion of an ω-clause (a clause
with infinitely many literals). We define the notion of specifications and provide some
examples showing how usual theories such as those for integers or arrays can be en-
coded. Finally we introduce the notion of instantiation methods.

2.1. Syntax
Let S be a set of sort symbols and F be a set of function symbols together with a
ranking function rnk : F → S∗ × S. For every f ∈ F , we write f : s1 × · · · × sn → s if
rnk(f) = s1, . . . , sn, s. If n = 0 then f is a constant symbol of sort s. We assume that F
contains at least one constant symbol of each sort. To every sort s ∈ S is associated a
countably infinite set Xs of variables of sort s, such that these sets are pairwise disjoint.
X =

⋃
s∈S Xs denotes the entire set of variables. For every s ∈ S, the set of terms of sort

s is denoted by Ts(X ) and built inductively as usual on X and F :

—Xs
def

⊆ Ts(X ).
— If f : s1 × . . .× sn → s and for all i ∈ [1, n], ti ∈ Tsi(X ) then f(t1, . . . , tn)

def
∈ Ts(X ).

The set of terms is defined by T(X )
def
=

⋃
s∈S Ts(X ).

An atom is an equality t ' s between terms of the same sort. A literal is either an
atom or the negation of an atom (written t 6' s). If L is a literal, then Lc denotes its
complementary: (t ' s)c def

= (t 6' s) and (t 6' s)c def
= (t ' s). A clause is a finite set (written

as a disjunction) of literals. We assume that S contains a sort bool and that F contains
a constant symbol true of sort bool. For readability, atoms of the form p ' true will be
simply denoted by p (thus we write, e.g., a ≤ 2 instead of (a ≤ 2) ' true).

The set of variables occurring in an expression (term, atom, literal or clause) E is
denoted by Var(E), and E is ground iff Var(E) = ∅. The set of ground terms of sort s is
denoted by Ts and the set of ground terms by T

def
=

⋃
s∈S Ts.

A substitution is a function that maps every variable to a term of the same sort. The
image of a variable x by a substitution σ is denoted by xσ. The domain of a substitution
σ is the set2 dom(σ)

def
= {x ∈ X | xσ 6= x}, and its co-domain is the set of elements the

variables in the domain are mapped to. Substitutions are extended to terms, atoms,
literals and clauses as usual: f(t1, . . . , tn)σ

def
= f(t1σ, . . . , tnσ), (t ' s)σ

def
= (tσ ' sσ),

(¬L)σ
def
= ¬(Lσ) and (

∨n
i=1 Li)σ

def
=

∨n
i=1 Liσ. A substitution σ is ground if ∀x ∈ dom(σ),

Var(xσ) = ∅. A ground instance of an expression E is an expression of the form Eσ,
where σ is a ground substitution of domain Var(E).

Definition 1. A substitution σ is pure iff for all x ∈ X , xσ ∈ X . In this case, for
any term t, tσ is a pure instance of t. A substitution σ is a renaming if it is pure and
injective. 3

A substitution σ is a unifier of a set of pairs {(ti, si) | i ∈ [1, n]} iff ∀i ∈ [1, n], tiσ = siσ.
It is well-known that all unifiable sets have a most general unifier (mgu), which is
unique up to a renaming.

2for technical convenience we do not assume that dom(σ) is finite.
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0:6 Echenim and Peltier

2.2. Semantics
An interpretation I is a function mapping:

— All sort symbols s ∈ S to nonempty disjoint sets sI .
— Every function symbol f : s1 × . . .× sn → s ∈ F to a function f I : sI1 × . . .× sIn → sI .

DI denotes the domain of I, i.e., the set
⋃

s∈S s
I . As usual, the valuation function E 7→

[E ]I maps every ground expression E to a value defined as follows:

— [f(t1, . . . , tn)]I
def
= f I([t1]I , . . . , [tn]I),

— [t ' s]I = true iff [t]I = [s]I ,
— [t 6' s]I = true iff [t ' s]I 6= true,
— [

∨n
i=1 Li]I

def
= true iff ∃i ∈ [1, n], [Li]I = true.

An interpretation I satisfies a clause C if for every ground instance Cσ of C we have
[Cσ]I = true. A set of clauses S is satisfied by I if I satisfies every clause in S. If this
is the case, then I is a model of S and we write I |= S. A set of clauses S is satisfiable
if it has a model; two sets of clauses are equisatisfiable if they are both satisfiable or
both unsatisfiable.

In the sequel, we restrict ourselves, w.l.o.g., to interpretations such that, for every
s ∈ S, sI = {[t]I | t ∈ Ts}.

2.3. ω-Clauses
For technical convenience, we extend the usual notion of a clause by allowing infinite
disjunctions of literals:

Definition 2. An ω-clause is a possibly infinite set of literals. 3

The notion of instance extends straightforwardly to ω-clauses: if C is an ω-clause then
Cσ denotes the ω-clause {Lσ | L ∈ C} (recall that the domain of σ may be infinite).
Similarly, the semantics of ω-clauses is identical to that of standard clauses: if C is a
ground ω-clause, then [C]I

def
= true iff there exists an L ∈ C such that [L]I = true. If C is

a non-ground ω-clause, then I |= C iff for every ground substitution of domain Var(C),
[Cσ]I = true. The notions of satisfiability, models etc. are extended accordingly. If S, S′
are two sets of ω-clauses, we write S E S′ if for every ω-clause C ′ ∈ S′ there exists an
ω-clause C ∈ S such that C ⊆ C ′.
Proposition 3. If S E S′ then S′ is a logical consequence of S.

Of course, most of the usual properties of first-order logic such as semi-decidability
or compactness fail if ω-clauses are considered. For instance, if C stands for the ω-
clause {b ' f i(a) | i ∈ N} and Dj

def
= {b 6' f j(a)} for j ∈ N, then S

def
= {Dj | j ∈ N} ∪ {C} is

unsatisfiable, although every finite subset of S is satisfiable.

2.4. Specifications
Usually, theories are defined by sets of axioms and are closed under logical conse-
quence. In our setting, we will restrict either the class of interpretations (e.g., by fixing
the interpretation of a sort int to the natural numbers) or the class of clause sets (e.g.,
by considering only clause sets belonging to some decidable fragments or containing
certain axioms). This is why we introduce the (slightly unusual) notion of specifica-
tions, of which we provide examples in the following section:

Definition 4. A specification A is a pair (I,C), where I is a set of interpretations and
C is a class of clause sets. A clause set S ∈ C is A-satisfiable if there exists an I ∈ I
such that I |= S (I is an A-model of S). S and S′ are A-equisatisfiable if they are both

ACM Transactions on Computational Logic, Vol. 0, No. 0, Article 0, Publication date: 201?.



Instantiation schemes for nested theories 0:7

A-satisfiable or both A-unsatisfiable. We write S |=A S′ iff every A-model of S is also
an A-model of S′. 3

For the sake of readability, if A is clear from the context, we will say that a set of
clauses is satisfiable, instead of A-satisfiable. We write (I,C) ⊆ (I ′,C′) iff I = I ′ and
C ⊆ C′. By a slight abuse of language, we say that C occurs in A if there exists a set
S ∈ C such that C ∈ S.

In many cases, I will simply be the set of all interpretations, which we denote by
Ifol. But our results also apply to domain-specific instantiation schemes such as those
for Presburger arithmetic. Of course, restricting the form of the clause sets in C is
necessary in many cases for defining instantiation schemes that are both terminating
and refutationally complete. This is why we do not assume that C contains every clause
set. We shall simply assume that C is closed under inclusion and ground instantiations,
i.e., for all S ∈ C if S′ ⊆ S and S′′ only contains ground instances of clauses in S,
then S′, S′′ ∈ C. All the classes of clause sets considered in this paper satisfy these
requirements.

We shall restrict ourselves to a particular class of specifications: those with a set of
interpretations that can be defined by a set of ω-clauses.

Definition 5. A specification A = (I,C) is ω-definable iff there exists a (possibly infi-
nite) set of ω-clauses Ax(I) such that I = {I | I |= Ax(I)}. 3

Assumption 6. From now on, we assume that all the considered specifications are ω-
definable.

In most cases, the axioms of the considered specifications will be standard clauses.
Infinite axioms are useful mainly to encode the domain of the specification, for in-
stance for the natural numbers: ∀x,

∨
i∈N x ' si(0). Of course, it could be possible to

avoid having to consider such infinite disjunctions by adding further restrictions on
the considered interpretations (e.g. by explicitly restricting their domains). However,
it would then be necessary to add additional conditions on the interpretations in order
to ensure that the combination is feasible; in our setting, the condition is straightfor-
ward: it suffices to assume that these axioms are defined over disjoint signatures.

2.5. Examples

Example 7. The specification of first-order logic is defined by Afol
def
= (Ifol,Cfol) where:

— Ifol is the set of all interpretations (i.e. Ax(Ifol)
def
= ∅).

— Cfol is the set of all clause sets on the considered signature.

Example 8. The specification of Presburger arithmetic is defined as follows: AZ
def
=

(IZ,CZ) where:

— Ax(IZ) contains the domain axiom:
∨
k∈N(x ' sk(0) ∨ x ' −sk(0)) and the usual

axioms for the function symbols 0 : int, − : int → int, s : int → int, p : int → int,
+ : int × int → int, and for the predicate symbols 'k: int × int → bool (for every

ACM Transactions on Computational Logic, Vol. 0, No. 0, Article 0, Publication date: 201?.



0:8 Echenim and Peltier

k ∈ N) ≤: int× int→ bool and <: int× int→ bool:

0 + x ' x s(x) + y ' s(x+ y)
p(x) + y ' p(x+ y) p(s(x)) ' x

s(p(x)) ' x sk(0) 'k 0
−0 ' 0 −s(x) ' p(−x)

−p(x) ' s(−x) x 6'k y ∨ sk(x) 'k y
x 6'k y ∨ pk(x) 'k y x < y ⇔ s(x) < s(y)
x 6< y ∨ x < s(y) x ≤ y ⇔ (x < y ∨ x ' y)

x < s(x)

'k denotes equality modulo k (which will be used in Section 5.1.1); x, y denote vari-
ables of sort int and k is any natural number. Note that the domain axiom is an
infinite ω-clause, while the other axioms can be viewed as standard clauses.

— CZ is the class of clause sets built on the previous set of function and predicate sym-
bols.

In the sequel, the terms sk(0) and pk(0) will be written k and −k respectively.

Example 9. The specification of arrays is AA
def
= (IA,CA) where:

— Ax(IA)
def
= {select(store(x, z, v), z) ' v, z′ ' z ∨ select(store(x, z, v), z′) ' select(x, z′)},

where select and store are respectively of profile: array × ind → elem and array ×
ind× elem→ array (x is a variable of sort array, z, z′ are variables of sort ind and v
is a variable of sort elem).

— CA is the class of ground clause sets built on select, store and a set of constant symbols.

It should be noted that reals can be also handled by using any axiomatization of real
closed fields, which are elementarily equivalent to the real numbers (in this case the
axioms are standard clauses: there is no need for an infinite domain axiom).

2.6. Instantiation Procedures
An instantiation procedure is a function that reduces the A-satisfiability problem for
any set of A-clauses to that of a (possibly infinite) set of ground A-clauses.

Definition 10. Let A = (I,C) be a specification. An instantiation procedure for A is
a function Θ from C to C such that for every S ∈ C, Θ(S) is a set of ground instances
of clauses in S. Θ is complete for A if for every finite clause set S ∈ C, S and Θ(S) are
A-equisatisfiable. It is terminating if Θ(S) is finite for every finite clause set S ∈ C. 3

If Θ is complete and terminating, and if there exists a decision procedure for check-
ing whether a ground (finite) clause set is satisfiable in I, then the A-satisfiability
problem is clearly decidable. Several examples of complete instantiation procedures
are available in the literature. Some of them are general (hence non-terminating)
methods handling full first-order logic [Plaisted and Zhu 2000; Ganzinger and Korovin
2003; Baumgartner and Tinelli 2003; Bonacina et al. 2011], other focus on or some de-
cidable subclasses [Abadi et al. 2010; Echenim and Peltier 2010]. Several techniques
have been devised for handling specific theories, by providing ways of instantiating
axioms in such a way that satisfiability is preserved [Loos and Weispfenning 1993;
Bradley et al. 2006; Echenim and Peltier 2012; Sofronie-Stokkermans 2010; Goel et al.
2008]. Our goal in this paper is to provide a general mechanism for constructing new
complete instantiation procedures by combining existing ones.
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3. NESTED COMBINATION OF SPECIFICATIONS
3.1. Definition
Theories are usually combined by considering their (in general disjoint) union. De-
cision procedures for disjoint theories can be combined (under certain conditions) by
different methods, including the Nelson-Oppen method [Tinelli and Harandi 1996] or
its refinements. In this section we consider a different way of combining specifications.
The idea is to combine them in a “hierarchic” way, i.e., by considering the formulæ of
the first specification as constraints on the formulæ of the second one.

For instance, if AZ is the specification of Presburger arithmetic and AA is the speci-
fication of arrays, then:

— 0 ≤ x ≤ n is a formula of AZ (x denotes a variable and n denotes a constant symbol
of sort int).

— select(t, x) ' a is a formula of AA (stating that t is a constant array).
— 0 ≤ x ≤ n ⇒ select(t, x) ' a (stating that t is a constant on the interval [0, n]) is a

formula obtained by combining AZ and AA hierarchically.

Such a combination cannot be viewed as a union of disjoint specifications, since the
axioms contain function symbols from both specifications.

More formally, we assume that the set of sorts S is divided into two disjoint sets SB
and SN such that for every function f : s1×. . .×sn → s, if s ∈ SB , then s1, . . . , sn ∈ SB . A
term is a base term if it is of a sort s ∈ SB and a nesting term if it is of a sort s ∈ SN and
contains no non-variable base term. Any clause will be divided into two disjoint parts,
a base part, containing only base terms, and a nesting part, containing only nesting
terms. By definition, no nesting term can occur in a base term and the only base terms
occurring in nesting terms are variables. This last condition is not by itself a serious
restriction, because every non-variable base term t can be replaced by a variable x by
adding the inequation x 6' t in the base part of the clause. The essential point (that also
justifies the distinction between the base specification and the nesting specification) is
that function symbols from SN to SB are not allowed, while there can be functions from
SB to SN . Note that since SB and SN are disjoint, the boolean sort cannot occur both in
SB and SN . However, this problem can easily be overcome by considering two copies of
this sort (bool and bool′).

In the sequel we let XB
def
=

⋃
s∈SB Xs (resp. XN

def
=

⋃
s∈SN Xs) be the set of base variables

(resp. nesting variables) and let FB (resp. FN ) be the set of function symbols whose co-
domain is in SB (resp. SN ). An SB-ground instance of an expression E is an expression
of the form Eσ where σ is a ground substitution of domain Var(E) ∩ XB . Intuitively, an
SB-ground instance of E is obtained from E by replacing every variable of a sort s ∈ SB
(and only these variables) by a ground term of the same sort.

Definition 1. ΩB denotes the set of ω-clauses C such that every term occurring in C
is a base term. ΩN denotes the set of ω-clauses C such that:

(1) Every non-variable term occurring in C is a nesting term.
(2) For every atom t ' s occurring in C, t and s are nesting terms. 3

Notice that it follows from the definition that ΩB ∩ ΩN = ∅, since SB and SN are
disjoint.

Definition 2. A specification (I,C) is a base specification if Ax(I) ⊆ ΩB and for every
S ∈ C, S is a finite subset of ΩB . It is a nesting specification if Ax(I) ⊆ ΩN and for every
S ∈ C, S ⊆ ΩN . 3
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0:10 Echenim and Peltier

In the example at the beginning of the section, AZ is the base specification and AA
is the nesting specification.

Throughout this section, B = (IB ,CB) will denote a base specification and N =
(IN ,CN ) a nesting specification. Notice that the clause sets in CB are finite, but that
those in CN can be finite or infinite. Base and nesting specifications are combined as
follows:

Definition 3. The hierarchic expansion of N over B is the specification N [B] = (I,C)
defined as follows:

(1) Ax(I)
def
= Ax(IB) ∪ Ax(IN ).

(2) Every clause set in C is of the form {CBi ∨CNi | i ∈ N} where {CBi | i ∈ N} ∈ CB and
{CNi | i ∈ N} ∈ CN .

If C is a clause in C, then CB is the base part of the clause and CN is its nesting part.
If S is a set of clauses in C, then SB and SN respectively denote the sets {CB | C ∈ S}
and {CN | C ∈ S}, and are respectively called the base part and nesting part of S. 3

It is easy to check that for every clause C occurring in a clause set in C, there exist
two unique clauses CB and CN such that C = CB ∨ CN .

Example 4. Consider the following clauses:

c1 {x 6≥ a ∨ select(t, x) ' b} (t is constant on [a,∞[)
c2 {x 6≥ a ∨ x 6≤ b ∨ select(t, x) ' select(t′, x)} (t and t′ coincide on [a, b])
c3 {select(t, i) ' select(t′, i + 1)} (t and t′ coincide up to a shift)
c4 {x 6≤ y ∨ select(t, x) ≤ select(t, y)} (t is sorted)
c5 {select(t, x) ≤ x} (t is lower than the identity)

Clauses c1 and c2 occur in AA[AZ], and for instance, cN1 = (select(t, x) ' b) and cB1 =
(x 6≥ a). Clause c3 does not occur in AA[AZ] because the atom select(t′, i + 1) of the
nesting specification contains the non-variable term i + 1 of the base specification.
However, c3 can be equivalently written as follows:

c′3 {j 6' i+ 1 ∨ select(t, i) ' select(t′, j)}

and c′3 is in AA[AZ]3. Clause c4 does not occur in AA[AZ], because select(t, x) ≤
select(t′, x) contains symbols from bothAZ (namely≤) andAA (select) which contradicts
Condition 2 of Definition 3. However, c4 can be handled in this setting by considering
a copy A′Z of AZ (with disjoint sorts and function symbols). In this case, c4 belongs to
(AA ∪ A′Z)[AZ], where AA ∪ A′Z denotes the union of the specifications AA and A′Z. Of
course A′Z can be replaced by any other specification containing an ordering predicate
symbol. The same transformation cannot be used on the clause c5, since (because of the
literal select(t, x) ≤ x) the sort of the indices cannot be separated from that of the ele-
ments. Again, this is not surprising because, as shown in [Bradley and Manna 2007],
such axioms (in which index variables occur out of the scope of a select) easily make
the theory undecidable. A natural and potentially interesting line of research would be
to identify classes of formulae that can be automatically transformed into clause sets
in AA[AZ] by duplicating some elements of the signature, as done previously for the
clause c4.

3However as we shall see in Section 5, our method cannot handle such axioms, except in some very partic-
ular cases. In fact, adding axioms relating two consecutive elements of an array easily yields undecidable
specifications (as shown in [Bradley and Manna 2007]).
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Instantiation schemes for nested theories 0:11

3.2. Nested Combination of Instantiation Schemes
The goal of this section is to investigate how instantiation schemes for B and N can be
combined in order to obtain an instantiation scheme for N [B]. For instance, given two
instantiation schemes for integers and arrays respectively, we want to automatically
derive an instantiation scheme handling mixed axioms such as those in Example 4.
We begin by imposing conditions on the schemes under consideration.

3.2.1. Conditions on the Nesting Specification. First, we investigate what conditions can
be imposed on the instantiation procedure for the nesting specification N . Note that
having a complete instantiation procedure for N is not sufficient; indeed, since by def-
inition every term of a sort in SB occurring in CN is a variable, such an instantiation
would normally replace every such variable by an arbitrary ground term (a constant,
for example). This is not satisfactory because in the current setting, the value of these
variables can be constrained by the base part of the clause. Thus we need to impose
a stronger condition. We shall assume that the considered procedure is complete for
every clause set that is obtained from clauses in CN by grounding the variables in XB ,
no matter the grounding instantiation.

Definition 5. An SB-mapping is a function α mapping ground base terms to ground
base terms. Such a mapping is extended straightforwardly into a function from expres-
sions to expressions: for every expression (term, atom, literal, clause or set of clauses)
E , α(E) denotes the expression obtained from E by replacing every base term t occur-
ring in E by α(t).

An instantiation procedure Θ is SB-invariant iff for every SB-mapping α, and every
clause C in a set S, C ∈ Θ(S)⇒ α(C) ∈ Θ(α(S)). 3

We may now define nesting-complete instantiation procedures. Intuitively, such a
procedure must be complete on those sets in which the only terms of a sort in SB that
occur are ground, the instances cannot depend on the names of the base terms and the
addition of information cannot make the procedure generate less instances for a given
clause set.

Definition 6. An instantiation procedure Θ is nesting-complete if the following condi-
tions hold:

(1) For all sets S ∈ CN and all set of clauses S′ such that every clause in S′ is an
SB-ground instance of a clause in S, S′ and Θ(S′) are N -equisatisfiable.

(2) Θ is SB-invariant.
(3) Θ is monotonic: S′ ⊆ S ⇒ Θ(S′) ⊆ Θ(S). 3

Notice that a nesting-complete instantiation procedure is necessarily complete (for
the nesting specification).

3.2.2. Conditions on the Base Specification. Second, we impose conditions on the instan-
tiation procedure for the base specification B. We need the following definitions:

Definition 7. Let S be a set of clauses and let G be a set of terms. We denote by S↓G
the set of clauses of the form Cσ, where C ∈ S and σ maps every variable in C to a
term of the same sort in G. 3

Example 8. Let S = {p(x, n), f(x, y) ' c}, where x, y are variables of sort s and n is
a variable of sort nat. Let G = {a, b : s, 0 : nat}. Then S↓G = {p(a, 0), p(b, 0), f(a, a) '
c, f(a, b) ' c, f(b, a) ' c, f(b, b) ' c}.
Definition 9. If S is a set of clauses, we denote by S?∨ the set of clauses of the form∨
i=1,...,n Ciσi such that for every i ∈ [1, n], Ci ∈ S and σi is a pure substitution. 3
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0:12 Echenim and Peltier

Example 10. Let S = {p(x, y)}. Then S?∨ contains among others the clauses
p(x, x), p(x, y), p(x, y) ∨ p(z, u), p(x, y) ∨ p(y, x), p(x, y) ∨ p(y, z) ∨ p(z, u), etc.

Definition 11. An instantiation procedure Θ for B is base-complete if for every finite
clause set S there exists a finite set of terms GS such that Θ(S) = S↓GS

and the follow-
ing conditions hold:

(1) For every S ∈ CB , S↓GS
and S are B-equisatisfiable.

(2) If S′ ⊆ S then GS′ ⊆ GS .
(3) For every clause set S ∈ C, GS?

∨ ⊆ GS (thus by 2, we have GS?
∨ = GS). 3

Obviously these conditions are much stronger than those of Definition 6. Informally,
Definition 11 states that all variables must be instantiated in a uniform4 way by
ground terms, and that:

(1) Satisfiability must be preserved.
(2) The instantiation procedure is monotonic.
(3) The considered set of ground terms does not change when new clauses are added

to S, provided that these clauses are obtained from clauses already occurring in S
by disjunction and pure instantiation only.

These conditions are somewhat similar to those on closure operators in [Ihlemann
et al. 2008]. Actually, the function mapping the set of terms in S to GS could be viewed
as a closure operator. The difference is that GS is defined on a set of clauses S whereas
closure operators are defined on the sets of ground terms occurring in S. Since GS
depends on the clause set and not on the terms it contains, Condition 3 is not necessar-
ily fulfilled. Consider for instance an instantiation procedure based on hyper-linking5

[Lee and Plaisted 1992]. Let S = {p(a),¬p(x), q(f(x)),¬q(x)}. The only hyper-links are
p(a),¬p(x) and q(f(x)),¬q(x), which yields the following set of ground terms: {a, f(⊥)}.
On the other hand, if the clause ¬p(x)∨ q(f(x)) is considered, then the term f(a) must
be added.

3.2.3. Definition of the Combined Instantiation Scheme. We now define an instantiation pro-
cedure for N [B]. Intuitively this procedure is defined as follows.

(1) First, the nesting part of each clause in S is extracted and all base variables are
instantiated by arbitrary constant symbols • (one for each base sort).

(2) The instantiation procedure for N is applied on the resulting clause set. This in-
stantiates all nesting variables (but not the base variables, since they have already
been instantiated at Step 1). The role of this step is essentially to compute the nest-
ing part of the instantiating substitutions. Notice that the instantiation procedure
is not applied to the clause set obtained after instantiating base variables because
this set may be very large.

(3) All the substitutions on nesting variables from Step 2 are applied to the initial
set of clauses. Notice that base variables are not instantiated. Furthermore, the
constant • can appear in the obtained clause set (it will the eliminated during the
next step).

(4) Assuming the instantiation procedure for B is base-complete, if this procedure was
applied to the base part of the clauses, then by Definition 11, the base variables in
the base part of the clauses would be uniformly instantiated by some set of terms
G. All base variables and all occurrences of constants • (occurring in the co-domain

4Of course sort constraints must be taken into account.
5See Section 5.2.1. We assume that the variables are instantiated in a uniform way, so that the conditions
of Definition 11 hold.
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Instantiation schemes for nested theories 0:13

of a substitution generated during the previous step) are replaced by all possible
terms in G. All occurrences of every variable are mapped to the same term, which
ensures that all the generated clauses are instances of the original ones.

Example 12. Assume that B = AZ, N = Afol and that F contains the following sym-
bols: a : int, b : int, c : s and p : int×s→ bool. Consider the set S = {x 6≤ a∨p(x, y), u 6≤
b∨¬p(u, c)}. The instantiation procedures for B and N are assumed to be given (formal
definitions and proofs will be given later).

(1) We compute the set SN = {p(x, y),¬p(u, c)} and replace every base variable by •.
This yields the set: {p(•, y),¬p(•, c)}.

(2) We apply an instantiation procedure for Afol
6. Obviously, this procedure should

instantiate the variable y by c, yielding {p(•, c),¬p(•, c)}.
(3) We apply the (unique in our case) substitution y 7→ c to the initial clauses: {x 6≤

a ∨ p(x, c), u 6≤ b ∨ ¬p(u, c)}. Note that at this point all the remaining variables are
in XB .

(4) We compute the set of clauses SB = {x 6≤ a, u 6≤ b} and the set of terms GSB . It
should be intuitively clear7 that x must be instantiated by a and u by b, yielding
GSB = {a, b}.

(5) We thus replace all base variables by every term in {a, b} yielding the set {a 6≤
a ∨ p(a, c), b 6≤ a ∨ p(b, c), a 6≤ b ∨ ¬p(a, c), b 6≤ b ∨ ¬p(b, c)}, i.e., after simplification,
{p(a, c), b 6≤ a ∨ p(b, c), a 6≤ b ∨ ¬p(a, c),¬p(b, c)}. It is straightforward to check that
this set of clauses is unsatisfiable. Any SMT-solver capable of handling arithmetic
and propositional logic can be employed to test the satisfiability of this set.

The formal definition of the procedure is given below. Let γ• be a substitution map-
ping every variable of a sort s ∈ SB to an arbitrary constant symbol •s of sort s.

Definition 13. Let ΘB be a base-complete instantiation procedure and ΘN be a
nesting-complete instantiation procedure. ΘN [ΘB ](S) is defined as the set of clauses
of the form (CB ∨ CN )θ′σ where:

—C ∈ S.
—CNγ•θ ∈ ΘN (SNγ•).
— θ′ is obtained from θ by replacing every occurrence of a constant symbol •s in the

co-domain of θ by a fresh variable of the same sort.
— σ maps every variable in Cθ′ to a term of the same sort in GSB . 3

The following proposition is straightforward to prove and states the soundness of
this procedure:

Proposition 14. Let ΘB be a base-complete instantiation procedure and let ΘN be a
nesting-complete instantiation procedure. For every set of clauses S ∈ C, ΘN [ΘB ](S) is
a set of ground instances of clauses in S. Thus if ΘN [ΘB ](S) is N [B]-unsatisfiable, then
so is S.

Several examples of concrete instantiation procedures satisfying the conditions of
Definitions 6 and 11 are provided in Section 5.

In order to be applicable in practice, the described procedure has to be refined and
adapted so that the instances can be generated efficiently. Obviously, the set of in-
stances ΘN [ΘB ](S) can be generated with only a minimal modification of the base and
nesting instantiation procedures ΘB and ΘN : we only have to make them return the

6There exist several instantiation procedures for Afol, one such example is given in Section 5.2.1.
7A formal definition of an instantiation procedure for this fragment of Presburger arithmetic will be given
in Section 5.1.1.
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0:14 Echenim and Peltier

instantiating substitutions, rather than the corresponding clauses. Apart from this,
the procedures are used as black boxes. Thus our technique could be integrated into
existing systems without too drastic a change in the code. The applications of the pro-
cedures ΘB and ΘN are completely independent and thus can be run in parallel. Ex-
isting heuristics for guiding the choice of the most relevant instances for the base and
nesting theories (as for instance those described in [Detlefs et al. 2005; Ge et al. 2009;
de Moura and Bjørner 2007]) can also be applied to the combined procedure. It is clear
that the instances can be generated in an incremental way: rather than generating
the whole set of clauses ΘN (SNγ•), and then – for each clause CNγ•θ occurring in this
set – computing the corresponding set of clauses (CB ∨CN )θ′σ, it is obviously possible
to generate these instances on the fly and send them to a ground SMT-solver in a dy-
namic way: in case a contradiction is found then the search can be stopped, otherwise
one has to iterate the process to generate new instances. This is particularly important
if the set ΘN (SNγ•) is infinite, or very large.

4. COMPLETENESS
This section is devoted to the proof of the main result of this paper, namely that the
procedure ΘN [ΘB ] is complete for N [B]:

Theorem 1. Let ΘB be a base-complete instantiation procedure (for B) and let ΘN be
a nesting-complete instantiation procedure (for N ). Then ΘN [ΘB ] is complete for N [B];
furthermore, this procedure is monotonic and SB-invariant.

The rest of the section (up to Page 21) can be skipped entirely by readers not inter-
ested in the more theoretical aspects of the work. The proof of this theorem relies on a
few intermediate results that are developed in what follows.

4.1. Overview of the Proof
We start by providing a general overview of the proof. Although it hides some techni-
calities, this overview should help the reader understand the following subsections. In
all examples in this section a literal belongs to the nested specification iff it is non-
equational.

We consider an unsatisfiable clause set S and we prove that ΘN [ΘB ](S) is unsatisfi-
able.

(1) From S to S|I : For each interpretation I in the base specification, we define (in Sec-
tion 4.3) a clause set S|I , obtained by instantiating the base variables of the clauses
in S in all possible ways and by evaluating the base part of each instantiated clause
using the interpretation I. For instance, if S = {x 6' 0 ∨ a 6' x + 1 ∨ p(x, y)}, then
S|I will either be ∅ (if I 6|= a ' 1) or p(0, y) (if I |= a ' 1). The goal of this trans-
formation is to make possible the application of the instantiation procedure for the
nesting specification. To accomplish this, we first need to prove that any ground
substitution can be decomposed into two parts: a nesting substitution and a base
substitution, which is done in Section 4.2. This ensures that every clause in S|I is
obtained by instantiating a nesting clause by a base substitution, which makes the
procedure ΘN applicable on S|I .

(2) S|I is unsatisfiable: We then remark in Lemma 7 that S|I is unsatisfiable (for
every interpretation I). Indeed, we prove that if S|I has a model J then it can be
transformed into a model of S by combining it with I in a rather natural way, which
yields a contradiction since S is unsatisfiable by hypothesis. Since ΘN is complete,
this entails that ΘN (S|I) is also unsatisfiable.

(3) If S|I is unsatisfiable for every I then ΘB(U) is unsatisfiable: By construction,
for every clause CNη ∈ ΘN (S|I), the set of ground instances of S will contain a
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clause of the form (CB∨CN )η, where I 6|= CBη. Thus, since ΘN (S|I) is contradictory,
it follows that the disjunction of the clauses CBη, where CNη ranges over the whole
set ΘN (S|I), is a logical consequence of S, and more precisely of the instances of S
that are obtained by applying the grounding substitutions generated by ΘN . For
instance, if S = {0+1 6' 1∨p(x), 0 ' 1∨¬p(a)∨p(y), ¬p(b)}, then S|I = {p(x), ¬p(a)∨
p(y), ¬p(b)}, ΘN (S|I) = {p(a), ¬p(a)∨p(b), ¬p(b)}, and we have {0+1 6' 1∨p(a), 0 '
1 ∨ ¬p(a) ∨ p(b), ¬p(b)} |= 0 + 1 6' 1 ∨ 0 ' 1.
Since ΘN (S|I) is infinite in general, this disjunction is not necessarily a clause: it
is an ω-clause, denoted by EI , and by construction EI is false in I. By considering
the set of all ω-clauses EI for every interpretation I in the base specification, we
thus obtain an unsatisfiable set U of ω-clauses. We then apply the instantiation
procedure ΘB on U , after proving that the former is complete for sets of ω-clauses
(not only for standard clauses), which is done in Section 4.5. This shows that ΘB(U)
is unsatisfiable.

(4) If ΘB(U) is unsatisfiable then ΘN [ΘB ](S) is unsatisfiable: In order to obtain
the desired result, we finally show that ΘN [ΘB ](S) |= ΘB(U). To this purpose, we
remark that the entailment S |= U only depends on the nesting part of the clauses,
hence holds for all possible values of the base terms, provided the relations between
these terms are preserved. To formalize this property, we introduce a new notion
of logical entailment, denoted by |=r, in which the base variables are handled in a
“rigid” way. This is done in Section 4.4. This relation, together with the definition
of ΘN [ΘB ], enables us to prove that ΘN [ΘB ](S) |= ΘB(U), hence that ΘN [ΘB ](S) is
unsatisfiable.

We wish to emphasize the important role played by the notion of ω-clauses in this
proof. It allows us to handle non-compact specifications in a rather natural way. Indeed,
since we do not assume that the considered specifications are compact, the “unsatis-
fiable core” of the set of instances that is generated by ΘN on the clause sets S|I can
be infinite. To propagate the information to the base procedure ΘB , it is necessary to
consider an infinite disjunction of base clauses and to establish completeness results of
the instantiation procedure ΘB for these infinite disjunctions (see Section 4.5). With-
out this notion, the scope of the results would have to be restricted, either by assuming
that N is compact or that ΘN is terminating.

4.2. Substitution Decomposition
Definition 2. A substitution σ is a base substitution iff dom(σ) ⊆ XB . It is a nesting
substitution iff dom(σ) ⊆ XN and for every x ∈ dom(σ), xσ contains no non-variable
base term. 3

We show that every ground substitution can be decomposed into two parts: a nesting
substitution and a base substitution. We begin by an example:

Example 3. Assume that B = AZ,N = Afol and that F contains the following symbols:
f : s × int → s, c : s. Consider the ground substitution σ = {x 7→ f(c, s(0)), y 7→
f(f(c, 0), 0), n 7→ s(0)}. We can extract from σ a nesting substitution by replacing all
base terms by variables8, thus obtaining σN = {x 7→ f(c, n), y 7→ f(f(c,m),m)}, and
then construct the base substitution σB = {n 7→ s(0),m 7→ 0} such that σ = σNσB .
Note that σN is not ground and that dom(σB) 6⊆ dom(σ).

The following result generalizes this construction:

8Equal subterms may be replaced by the same variable.

ACM Transactions on Computational Logic, Vol. 0, No. 0, Article 0, Publication date: 201?.



0:16 Echenim and Peltier

Proposition 4. Every ground substitution σ can be decomposed into a product σ =
(σNσB)|dom(σ)

where σN is a nesting substitution, σB is a base substitution, and for all
x ∈ dom(σB) \ dom(σ):

— ∀y ∈ dom(σB) ∩ dom(σ), xσB 6= yσB ,
— ∀y ∈ dom(σB) \ dom(σ), yσ = xσ ⇒ x = y.

PROOF. Let E be the set of base terms occurring in an element of the co-domain of
σ (in the previous example, we get: E = {s(0), 0}). Let ν be a partial function mapping
every term t ∈ E to an arbitrarily chosen variable ν(t) such that ν(t)σ = t (e.g. ν :
{s(0) 7→ n}). This function ν is extended into a total function on E by mapping all
terms t for which ν(t) is undefined to pairwise distinct new variables, not occurring in
dom(σ) (continuing the previous example we can take: ν : {s(0) 7→ n, 0 7→ m}). Note
that ν is injective by construction. The substitutions σB and σN are defined as follows:

— dom(σN )
def
= dom(σ)∩XN and xσN is the term obtained by replacing every occurrence

of a term t ∈ E in xσ by ν(t);
— dom(σB)

def
= [dom(σ) ∩ XB ] ∪ ν(E); if x = ν(t) for some term t ∈ E, then xσB

def
= t;

otherwise, xσB
def
= xσ. Note that σB is well-defined, since by definition if ν(t) = ν(s)

then t = s.

In the previous example, the reader can check that we obtain the substitutions σN =
{x 7→ f(c, n), y 7→ f(f(c,m,m))} and σB = {n 7→ s(0),m 7→ 0}. By construction, σN
is a nesting substitution and σB is a base substitution. Furthermore, since ν(t)σB =
t, xσNσB = xσ for every x ∈ dom(σ) ∩ XN . Similarly, for every x ∈ dom(σ) ∩ XB ,
xσNσB = xσB = xσ and therefore σ = (σNσB)|dom(σ)

. Let x ∈ dom(σB) \ dom(σ).
By definition of σB , x is of the form ν(t) for some t ∈ E, and there is no variable
y ∈ dom(σ) such that yσ = t, since otherwise ν(t) would have been defined as y. Thus
∀y ∈ dom(σB)∩dom(σ), xσB 6= yσ = yσB . Now if y ∈ dom(σB)\dom(σ) and xσB = yσB ,
then y is also of the form ν(s) for some s ∈ E and we have xσB = t and yσB = s, hence
t = s and x = y.

4.3. Partial Evaluations
Given a set of clauses S in N [B] and an interpretation I of B, we consider a set of
clauses S′ of N by selecting those ground instances of clauses in S whose base part
evaluates to false in I and adding their nesting part to S′. This will allow us to apply
the procedure ΘN on S′. More formally:

Definition 5. For every clause CB ∈ CB and for every interpretation I ∈ IB , we de-
note by ΦI(C

B) the set of ground substitutions η of domain Var(CB) such that I 6|= CBη.
Then, for every S ∈ C we define:

S|I
def
= {CNη | C ∈ S, η ∈ ΦI(C

B)}.

Example 6. Let S = {x 6' a ∨ P (x), y < 2 ∨ Q(y, z)} be a set of clauses in Afol[AZ],
where x, y, a are of sort int and z is a variable of a sort distinct from int. Let I be the
interpretation of natural numbers such that aI = 1. Then ΦI(x 6' a) = {x 7→ 1} and
ΦI(y < 2) = {y 7→ k | k ∈ N, k ≥ 2}. Therefore S|I = {P (1)} ∪ {Q(k, z) | k ∈ N, k ≥ 2}.

The following lemma shows that S|I isN -unsatisfiable when S isN [B]-unsatisfiable.

Lemma 7. For every N [B]-unsatisfiable set of clauses S ∈ C and for every I ∈ IB , S|I
is N -unsatisfiable.
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PROOF. Let N [B] = (I,C). Assume that S|I is N -satisfiable, i.e. that there exists
an interpretation J ∈ IN validating S|I . W.l.o.g. we assume that the domain of J is
disjoint from that of I. We construct an interpretation K ∈ I satisfying S, which will
yield a contradiction since S is N [B]-unsatisfiable by hypothesis.

For all sort symbols s ∈ SB and for all e ∈ sI , we denote by γ(e) an arbitrarily chosen
ground base term such that [γ(e)]I = e9. If E is a ground expression, we denote by E↓γ
the expression obtained from E by replacing every term t by γ([t]I); by construction
[E ]I = [E ↓γ ]I . Let ψ : DI ] DJ → DJ be the function defined for every element e ∈
DI ∪DJ as follows:

— if e ∈ sI then ψ(e)
def
= [γ(e)]J ;

— otherwise ψ(e)
def
= e.

We define the interpretation K by combining I and J as follows:

—K coincides with I on SB and on every function symbol whose co-domain is in SB .
—K coincides with J on SN .
— For all function symbols f ∈ FN of arity n, fK(e1, . . . , en)

def
= fJ(ψ(e1), . . . , ψ(en)).

Note that fK is well-defined since by definition of ψ, if e ∈ sK then ψ(e) ∈ sJ .

Let E be a ground expression (term, atom, literal, clause or ω-clause) such that E↓γ=
E . Assume that E is a ground instance of an expression occurring in a clause in ΩN . We
prove by structural induction on E that [E ]J = ψ([E ]K).

— If E is a term of a sort in SB then since I and K coincide on SB ∪ FB , we have
[E ]K = [E ]I . By hypothesis E↓γ= E , thus γ([E ]I) = E and by definition of ψ, ψ([E ]K) =
ψ([E ]I) = [γ(E)]J = [E ]J .

— If E is of the form f(t1, . . . , tn) where f ∈ FN , then by definition [E ]J =
fJ([t1]J , . . . , [tn]J) and by the induction hypothesis, [ti]J = ψ([ti]K) for i ∈ [1, n].
Again by definition, [E ]K = fJ(ψ([t1]K), . . . , ψ([tn]K)) = fJ([t1]J , . . . , [tn]J) = [E ]J .
Thus, since the domains of I and J are disjoint, [E ]J 6∈ SIB , hence ψ([E ]J) = [E ]J .

— If E is an atom of the form t1 ' t2 then t1, t2 6∈ SB . Indeed E occurs in a ground
instance of a clause C occurring in ΩN and by Definition 1, such clauses cannot
contain equalities between base terms. Thus we have ψ([ti]K) = [ti]K (for i = 1, 2)
and the proof is straightforward.

— The proof is immediate if E is a literal or a (possibly infinite) disjunction of literals.

Since J |= S|I and all specifications are assumed to be ω-definable (see Definition
5), we deduce that K |= S|I ∪ Ax(IN ). Indeed, for the sake of contradiction, assume
that there exists an ω-clause C ∈ S|I ∪ Ax(IN ) and a ground substitution θ of domain
Var(C) such that K 6|= Cθ. Since K |= t ' t↓γ for every term t, necessarily K 6|= Cθ′

where xθ′ def
= xθ ↓γ . But then Cθ′ ↓γ= Cθ′ and since [E ]J = ψ([E ]K), we conclude that

J 6|= Cθ′ which is impossible since by hypothesis J is an N -model of S|I .
We now prove that K |= S. Let C ∈ S and η be a ground substitution of domain

Var(C). W.l.o.g. we assume that ∀x ∈ Var(C), xη ↓γ= xη. Let ηB (resp. ηN ) be the re-
striction of η to the variables of a sort in SB (resp. in SN ). If I |= CBηB then K |= CBηB
because K and I coincide on SB ∪ FB , and consequently K |= Cη (since Cη ⊇ CBηB).
If I 6|= CBηB then ηB ∈ ΦI(C), hence CNηB ∈ S|I . Again K |= CηB hence K |= Cη;
therefore K |= S.

Finally, since K coincides with I on SB ∪ FB we have K |= Ax(IB). This proves that
K is an N [B]-model of S, which is impossible.

9γ(e) always exists since we restricted ourselves to interpretations such that, for every s ∈ S, sI = {[t]I |
t ∈ Ts} (see Section 2.2).
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4.4. Abstraction of Base Terms
Lemma 7 relates theN [B]-unsatisfiability of a set of clauses S to theN -unsatisfiability
of sets of the form S|I . By definition, S|I is of the form S′σ, for some clause set S′ ∈
CN and for some ground base substitution σ. However, since neither Ax(IN ) nor CN
contains symbols of a sort in SB , the interpretation of the ground base terms of S′ in
an interpretation of IN is arbitrary: changing the values of these terms does not affect
the N -satisfiability of the formula. Thus the actual concrete values of the ground base
terms does not matter: what is important is only how these terms compare to each
other.

Example 8. Assume that N = Afol, p : int × s → bool, a : s, and let S =
{p(x, z),¬p(y, a)}. Consider σ : {x 7→ 0, y 7→ 0}, clearly, Sσ |=N 2. But also S{x 7→
s(0), y 7→ s(0)} |=N 2 and more generally S{x 7→ t, y 7→ t} |=N 2. On the other hand,
S{x 7→ 0, y 7→ s(0)} 6|=N 2 and more generally S{x 7→ t, y 7→ t′} 6|=N 2 if t, t′ are distinct
integers.

Therefore, if Sσ |=N Cσ for some base substitution σ then actually Sθ |=N Cθ, for
every substitution θ such that xθ = yθ ⇔ xσ = yσ. This will be formalized in the
following definitions and lemma. We first introduce an unusual notion of semantic
entailment. The intuition is that variables in SB are considered as “rigid” variables
that must be instantiated by arbitrary ground terms:

Definition 9. Let S ∈ CN . We write S |=r C iff for every ground substitution of domain
XB , Sσ |=N Cσ. 3

Example 10. Assume that N = Afol. Let a : s, p : int × s → bool and q : int → bool,
where int ∈ SB , s ∈ SN . Let S = {p(x, y),¬p(u, a) ∨ q(u)}, where x, y, u are variables.
Then S |=r q(x), but S 6|=r q(0). Note that x denotes the same variable in S and q(x)
(the variables are not renamed).

Definition 11. For every substitution σ we denote by 〈σ〉 an arbitrarily chosen pure
substitution such that xσ = yσ ⇒ x〈σ〉 = y〈σ〉, for every x, y ∈ X . 3

Note that such a substitution always exists10. The next lemma can be viewed as
a generalization lemma: it shows that the values of the ground base terms can be
abstracted into variables.

Lemma 12. Let S ∈ CN and σ be a base substitution. If Sσ |=N Cσ then S〈σ〉 |=r C〈σ〉.

PROOF. Let θ be a substitution of domain XB . We assume that there exists an I ∈ IN
such that I |= S〈σ〉θ and I 6|= C〈σ〉θ, and we show that a contradiction can be derived.

For every ground term t, we denote by Γ(t) the ground term obtained from t by
replacing every ground subterm of the form xσ by x〈σ〉θ. Γ is well-defined: indeed,
if xσ = yσ, then by definition of 〈σ〉, x〈σ〉 = y〈σ〉 thus x〈σ〉θ = y〈σ〉θ. Let J be the
interpretation defined as follows11:

— If s ∈ SB then sJ
def
= Ts.

— If f is a symbol of rank s1× . . .×sn → s where s1, . . . , sn, s ∈ SB then fJ(t1, . . . , tn)
def
=

f(t1, . . . , tn).

10It suffices, e.g., to fix a total order among variables and to map every variable x to the least variable y
such that xσ = yσ.
11Intuitively, J interprets every base term as itself and coincides with I on nesting terms.
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— If f is a symbol of rank s1 × . . . × sn → s where s 6∈ SB then fJ(t1, . . . , tn)
def
=

f I(t′1, . . . , t
′
n) where for every i ∈ [1, n], si ∈ SN ⇒ t′i = [ti]J and si ∈ SB ⇒ t′i =

[Γ(ti)]I .

By construction, [s]J = s for every ground base term s; we prove that for every
ground nesting term t, [t]J = [Γ(t)]I , by induction on t. If t = f(t1, . . . , tn), then
[t]J = f I(t′1, . . . , t

′
n) where for every i ∈ [1, n], si ∈ SN ⇒ t′i = [ti]J and si ∈

SB ⇒ t′i = [Γ(ti)]I . By the induction hypothesis, si ∈ SN ⇒ t′i = [Γ(ti)]I . Thus
[t]J = f I([Γ(t1)]I , . . . , [Γ(tn)]I) = [Γ(t)]I .

Now let σ′ be a ground substitution with a domain in XN , and let θ′ def
= Γ ◦ σ′. We

prove that for every expression E occurring in S∪{C} that is not a base term, [Eσσ′]J =
[E〈σ〉θθ′]I .

— Assume that E is a variable x in XN . Then [Eσσ′]J = [xσ′]J , and by the previous
relation we get [Eσσ′]J = [Γ(xσ′)]I = [xθ′]I = [E〈σ〉θθ′]I .

— Assume that E is a nesting term of the form f(t1, . . . , tn). Then by the result above,
[Eσσ′]J = [Γ(Eσσ′)]I . By definition of Γ we have Γ(Eσσ′) = f(Γ(t1σσ

′), . . . ,Γ(tnσσ
′)),

therefore, [Eσσ′]J = f I([Γ(t1σσ
′)]I , . . . , [Γ(tnσσ

′)]I). For i ∈ [1, n], if ti is a nesting
term then by the result above [Γ(tiσσ

′)]I = [tiσσ
′]J and by the induction hypothesis,

[Γ(tiσσ
′)]I = [ti〈σ〉θθ′]I . Otherwise, ti is a base term, and must necessarily be a vari-

able, thus Γ(tiσ) = ti〈σ〉θ. Therefore Γ(tiσσ
′) = Γ(tiσ) = ti〈σ〉θ = ti〈σ〉θθ′. Therefore

[Eσσ′]J = f I([t1〈σ〉θθ′]I , . . . , [tn〈σ〉θθ′]I) = [E〈σ〉θθ′]I .
— The proof is similar if E is of the form t ' s, t 6' s of

∨n
i=1 li.

We thus conclude that for every clauseD ∈ S∪{C}∪Ax(I), J |= Dσσ′ iff I |= D〈σ〉θθ′.
Since I |= S〈σ〉θ∪Ax(IN ), we deduce that J |= Sσ ∪Ax(IN ), which proves that J ∈ IN .
Since I 6|= C〈σ〉θ we have J 6|= Cσ, which is impossible because J ∈ IN and Sσ |=N Cσ.

4.5. Completeness of ΘB for ω-Clauses
In this section, we prove that any procedure that is base-complete is also complete
for some classes of sets of possibly infinite ω-clauses – this is of course not the case
in general. We first notice that the notation S?∨ of Definition 9 can be extended to ω-
clauses, by allowing infinite disjunctions:

Definition 13. Given a set of clauses, S, we denote by Sω∨ the set of ω-clauses12 of the
form

⋃
{Ciσi | i ∈ N, Ci ∈ S, σi is a pure substitution}. 3

The notation S↓G also extends to ω-clauses: S↓G is the set of ω-clauses Cσ such that
C ∈ S and σ maps every variable in C to a term in G.

Proposition 14. Let S be a finite set of clauses and G be a finite set of terms. Then
Sω∨↓G is a finite set of clauses.

PROOF. By definition, any literal occurring in Sω∨ is of the form Lσ where L is a
literal occurring in a clause C ∈ S and σ is a pure substitution. Thus any literal occur-
ring in Sω∨↓G is of the form Lσθ where L is literal occurring in a clause in S, σ is pure
and θ maps every variable to a term in G. Obviously, since G and S are finite, there are
finitely many literals of this form. Hence all the ω-clauses in Sω∨↓G are actually finite,
and there are only finitely many possible clauses.

12By definition, any clause is an ω-clause, thus Sω
∨ is a set of ω-clauses.
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Lemma 15. Let S be a finite set of clauses and S′ a set of ω-clauses with S′ ⊆ Sω∨ .
If G is a finite set of terms, then there exists a finite set of clauses S′′ E S′ such that
S′′↓G = S′↓G.

PROOF. Let C be a clause in S′↓G; by Proposition 14, C is finite. By definition there
exists an ω-clause C ′ ∈ S′ such that C = C ′θ, where θ is a substitution mapping all the
variables in Var(C ′) to a term in G. Every literal in C ′ is of the form Lγ, where literal
L occurs in S and γ is a pure substitution of Var(L). Since S and G are finite, there is a
finite number of possible pairs (L, γθ). Thus there exists a finite subset DC ⊆ C ′ such
that for every literal Lγ occurring in C ′, there exists a literal Lγ′ ∈ DC with γθ = γ′θ.

Every variable occurring in a literal Lγ of C ′ is of the form xγ, where x ∈ Var(L).
Let ηC be the substitution mapping every variable xγ ∈ Var(C ′ \DC) to xγ′. Then for
every literal Lγ ∈ C ′, we have LγηC = Lγ′ ∈ DC . Thus C ′ηC = DC ; furthermore, ηC is
pure and DCηC = DC .

We define S′′ = {DC | C ∈ S′↓G}; obviously S′′ E S′ and by definition S′′↓G ⊇ S′↓G.
Conversely, let E be a clause in S′′↓G, E is necessarily of the form DCθ where C ∈ S′↓G
and θ maps every variable to a term in G. But then E is of the form C ′ηCθ, where
C ′ ∈ S′, and ηCθ is a substitution mapping every variable in C ′ to a term in G; thus E
must occur in S′↓G.

The next lemma proves the completeness result for ω-clauses:

Lemma 16. Let Θ be a base-complete instantiation procedure (with Θ(S) = S↓GS
) and

S be a finite set of clauses. If S′ ⊆ Sω∨ then S′ and S′↓GS
are B-equisatisfiable.

Note that the clauses in S are finite, but those in S′ may be infinite.

PROOF. S′↓GS
is a logical consequence of S′, thus if S′ is satisfiable then so is S′↓GS

;
we now prove the converse. Let I be an interpretation validating S′↓GS

. By Lemma 15,
there exists a set of clauses S′′ such that S′′ E S′ and S′↓GS

= S′′↓GS
. Since I |= S′↓GS

,
we deduce that S′′↓GS

is satisfiable, hence (since by Condition 1 in Definition 11, Θ is
complete13) so is S′′. But S′′ E S′ therefore by Proposition 3, S′ is satisfiable.

Example 17. Assume for instance that CB is the specification of Bernays-Schönfinkel
clause sets (interpreted in the usual way). Then the procedure replacing all vari-
ables by every constant symbol14 is base-complete. Lemma 16 proves that this pro-
cedure is also complete for sets of infinite clauses constructed over CB . For instance,
the satisfiability of the set S = {¬p(xi, y) | i ∈ N} ∪ {p(a, b)} can be decided by
instantiating all variables xi, y by a and b. Although S contains an infinite clause,
the instantiated clauses are finite, since the number of constants is finite. We get:
{¬p(a, a),¬p(a, a) ∨ ¬p(b, a),¬p(b, a),¬p(a, b),¬p(a, b) ∨ ¬p(b, b),¬p(b, b), p(a, b)}.

4.6. Main Proof
We are now in the position to give the proof of the main theorem. For the reader’s
convenience, this theorem is stated again below:

Theorem 1. Let ΘB be a base-complete instantiation procedure (for B) and let ΘN be
a nesting-complete instantiation procedure (for N ). Then ΘN [ΘB ] is complete for N [B];
furthermore, this procedure is monotonic and SB-invariant.

PROOF. Let Θ
def
= ΘN [ΘB ] and let S be an unsatisfiable clause set in C. We prove that

Θ(S) is also unsatisfiable.

13Recall that S′′ is a set of finite clauses.
14Assuming that the signature contains at least such constant.
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Let I ∈ IB , by Lemma 7, the set S|I = {CNη | C ∈ S, η ∈ ΦI(C)} is N -unsatisfiable,
and by completeness of ΘN , so is ΘN (S|I). We define

AI =
{
Cηθ | C ∈ S, CNηθ ∈ ΘN (S|I)

}
.

This set may be infinite, since no assumption was made on the decidability of N (for
instance, if N is first-order logic, then obviously no complete instantiation procedure
can be terminating, thus ΘN (S|I) – and therefore also AI – can be infinite). Every
clause in AI is of the form Cηθ where I 6|= CBη,15 and by Proposition 4, Cηθ = Cσσ′,
where σ is a nesting substitution and σ′ is a base substitution. In particular, since
dom(σ) ⊆ XN , CBσσ′ = CBσ′ and I 6|= CBσ′.

By construction, the set {CNσσ′ | (CN ∨ CB)σσ′ ∈ AI} is N -unsatisfiable. Thus for
every model J of AI , there exists a clause (CN ∨ CB)σσ′ ∈ AI such that J 6|= CNσσ′,
hence J |= CBσσ′ (since J |= AI we have J |= (CN ∨ CB)σσ′). Since the CB cannot
contain nesting variables, we have CBσσ′ = CBσ′. Hence AI |=N

∨
Cσσ′∈AI

CBσ′. We
let T = SB and define:

BI =
{
Cσ〈σ′〉 | Cσσ′ ∈ AI

}
and EI =

∨
Cσσ′∈AI

CB〈σ′〉.

Note that since AI may be infinite, EI is an ω-clause that belongs to Tω∨ . Lemma 12
guarantees that BI |=r EI ; thus by definition, for all sets of ground base terms G,
BI↓G |=N EI↓G. This is in particular the case for G = GT .

Let U = {EI | I ∈ IB}; by construction, for all I ∈ IB , I 6|= U ; hence U is B-
unsatisfiable and since U ⊆ Tω∨ , by Lemma 16, U↓GT

is also B-unsatisfiable (notice
that T is finite, since the base theory only contains finite sets of clauses). We have
shown that BI↓G |=N EI↓G. This, together with the fact that U↓GT

=
⋃
I∈IB EI↓GT

per-
mits to deduce that

⋃
I∈IB BI↓GT

|=N U↓GT
. Since U↓GT

is B-unsatisfiable (hence also
N [B]-unsatisfiable),

⋃
I∈IB BI↓GT

is N [B]-unsatisfiable.
There remains to prove that

⋃
I∈IB BI↓GT

⊆ Θ(S) to obtain the result. Consider the
function α that maps every term of a sort s ∈ SB to •s; it is clear that α(S|I) ⊆ SNγ•.
In particular, if CNσσ′ ∈ ΘN (S|I), then by the SB-invariance and monotonicity of ΘN ,

CNσ〈σ′〉γ• = α(CBσσ′) ∈ ΘN (α(S|I)) ⊆ ΘN (SNγ•).

Therefore, (Cσ〈σ′〉)↓GT
⊆ Θ(S), hence the result.

The fact that ΘN [ΘB ] is SB-invariant and monotonic follows immediately from the
definition and from the fact that ΘN is SB-invariant and that ΘB and ΘN are mono-
tonic.

5. APPLICATIONS
In this section, we show some examples of applications of Theorem 1 that are particu-
larly relevant in the context of program verification.

5.1. Examples of Base-Complete Specifications
5.1.1. Presburger Arithmetic. No base-complete instantiation procedure can be defined

for the specification AZ as defined in Section 2.5, as evidenced by the following exam-
ple.

Example 1. Assume that a base-complete procedure Θ exists, and consider the clause
set S = {x 6' y + 1, y 6' 0}. Since Θ is base-complete by hypothesis, by Definition 11,

15Recall that CBη = CBηθ, since η is a ground base substitution
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Θ(S) = S↓GS
for some finite set of ground terms GS , and by Condition 3, GS contains

GS?
∨ . But S?∨ contains in particular the clause: Cn :

∨n
i=1 xi 6' xi−1 + 1 ∨ x0 6' 0. Cn is

obviously AZ-unsatisfiable (since the xi’s denote universally quantified variables), but
the only instance of Cn that is AZ-unsatisfiable is: Cn{xi 7→ i | i ∈ [0, n]}. Consequently
{i | i ∈ [0, n]} ⊆ GS hence GS cannot be finite, thus contradicting Definition 11.

It is however possible to define base-complete procedures for less general specifica-
tions, that are still of a practical value.

Definition 2. Let χ be a special constant symbol of sort int, letm be a natural number
distinct from 0 and let TB be a set of ground terms of sort int not containing χ. We
denote by BZ the specification (I ′Z,C′Z) defined as follows. Ax(I ′Z)

def
= Ax(IZ) ∪ {χ >

t + m | t ∈ TB}, where Ax(IZ) is defined in Example 8 (Section 2.5). C′Z contains every
clause set S such that every non-ground literal occurring in a clause in S is of one of
the following forms:

— x 6≤ t or t 6≤ x for some variable x and for some ground term t ∈ TB ;
— x 6≤ y for some variables x, y;
— x 6'k t for some k ∈ N \ {0} that divides m, some ground term t ∈ TB and some

variable x. 3

Intuitively, the constant χ occurring in Ax(I ′Z) is meant to translate the fact that
the terms appearing in S admit an upper bound (namely χ). It is clear that if S is an
arbitrary set of arithmetic clauses (not containing the special constant χ), then the set
TB and the integer m can be computed so that S indeed belongs to C′Z.

Definition 3. For every set of clauses S ∈ C′Z, let BS be the set of ground terms t such
that either t = χ or S contains an atom of the form x ≤ t. We define the instantiation
procedure ΘZ by: ΘZ(S)

def
= S↓GZ

S
, where GZ

S is defined by: GZ
S

def
= {t − l | t ∈ BS , 0 ≤ l <

m}. 3

The two following propositions are straightforward consequences of the definition:

Proposition 4. If S ⊆ S′ then GZ
S ⊆ GZ

S′ .

Proposition 5. GZ
S = GZ

S?
∨

.

PROOF. This is immediate because the set of ground terms occurring in S?∨ is the
same as that of S, since the atoms in S?∨ are pure instances of atoms in S. Thus BS?

∨ =
BS .

Theorem 6. ΘZ is base-complete if B = BZ.

PROOF. We adopt the following notations for the proof: given a set of terms W , we
write x 6≤ W for

∨
t∈W x 6≤ t and x 6≥ W for

∨
t∈W x 6≥ t. Additionally, if K is a set of

pairs (k, t) ∈ N× Tint then we denote by ¬K(x) the disjunction
∨

(k,t)∈K x 6'k t.
Let S ∈ C′Z and assume that S is BZ-unsatisfiable, we prove that ΘZ(S) is also BZ-

unsatisfiable. Let I ∈ I ′Z, then in particular, I |= {χ > t+m | t is a ground term in S}.
Let C be a clause in S such that I 6|= C. By definition of C′Z, C can be written as
C = D ∨

∨n
i=1(xi 6≤ Ui ∨ xi 6≥ Li ∨ ¬Ki(xi)), where D is ground and where the xi’s

(1 ≤ i ≤ n) denotes distinct variables16. Since I 6|= C, there exists a ground substitution
θ such that I 6|= Cθ, i.e., for all i ∈ [1, n]:

— ∀u ∈ Ui, [xiθ]I ≤ [u]I ;

16Note that the sets Ui, Li and Ki could be empty.
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— ∀l ∈ Li, [l]I ≤ [xiθ]I ;
— ∀(k, t) ∈ Ki, [xiθ]I 'k [t]I .

If [xiθ]I is such that [xiθ]I > [χ]I , then it is straightforward to verify that [xiθ]I − m
satisfies the same conditions, since for all terms t in Ui ∪ Li, [χ]I −m > [t]I , and since
m is a common multiple of every k occurring in Ki. We may therefore assume that
[xiθ]I ≤ [χ]I .

We denote by ui an element in Ui ∪ {χ} such that [ui]I is minimal in {[u]I | u ∈
Ui ∪ {χ}}, and by mi the greatest integer such that mi ≤ [ui]I and for every (k, t) ∈ Ki,
mi 'k t holds; the existence of mi is guaranteed by what precedes and [xiθ]I ≤ mi.
We cannot have mi + m ≤ ui, because otherwise mi would not be the greatest integer
satisfying the conditions above. Thus, necessarily, mi > [ui]I −m, and there must exist
a term vi ∈ GZ

S such that [vi]I = mi. Let σ def
= {xi 7→ vi | i ∈ [1, n]}, we deduce that

I 6|= Cσ. Since Cσ ∈ S↓GZ
S
, we conclude that S↓GZ

S
is BZ-unsatisfiable, hence the result.

We have shown that Condition 1 of Definition 11 is satisfied. By construction, GZ
S

is finite. By Propositions 4 and 5, Conditions 2 and 3 are satisfied, respectively, which
concludes the proof.

5.1.2. Term Algebra with Membership Constraints. We give a second example of a specifi-
cation for which a base-complete instantiation procedure can be defined. We consider
formulæ built over a signature containing:

— a set of free function symbols Σ;
— a set of constant symbols interpreted as ground terms built on Σ;
— a set of monadic predicate symbols P, each predicate p in P is interpreted as a

(fixed) set p̂ of ground terms built on Σ. We assume that the emptiness problem is
decidable for any finite intersection of these sets (for instance p̂ can be the set of
terms accepted by a regular tree automaton, see [Comon et al. 1997] for details).

From a more formal point of view:

Definition 7. Let Σ ⊆ FB . We denote by T(Σ)s the set of ground terms of sort s built
on Σ. Let P be a finite set of unary predicate symbols, together with a function p 7→ p̂
mapping every symbol p : s→ bool ∈ P to a subset of T(Σ)s.

We denote by A∈ the specification (I∈,C∈) where:

— Ax(I∈) contains the following axioms:∨
t∈T(Σ)s

x ' t for s ∈ SB , x ∈ XB ,
xi ' yi ∨ f(x1, . . . , xn) 6' f(y1, . . . , yn) if f ∈ Σ, i ∈ [1, n]
p(t) if p ∈ P, t ∈ p̂.
¬p(t) if p ∈ P, t 6∈ p̂.

— Every non-ground atom in C∈ is of the form ¬p(x), or of the form x 6' t for some
ground term t. 3

The axioms of Ax(I∈) entail the following property which is proved by a straightfor-
ward induction on the depth of the terms:

Proposition 8. For all interpretations I ∈ I∈ and all terms t, t′ occurring in a clause
in C∈, if [t]I = [t′]I then t = t′.

If the sets in {p̂ | p ∈ P} are regular then A∈ is well-known to be decidable, see, e.g.,
[Comon and Delor 1994]. We define the following instantiation procedure for A∈:

Definition 9. For every clause set S, Θ∈(S)
def
= S↓G∈

S
, where G∈S is the set of ground

terms containing:
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— Every ground term t such that S contains an atom of the form x 6' t.
— An arbitrarily chosen ground term sP ∈

⋂
p∈P p̂, for each P ⊆ P such that

⋂
p∈P p̂ 6= ∅

(recall that the emptiness problem is assumed to be decidable). 3

Theorem 10. Θ∈ is base-complete if B = A∈.

PROOF. Let C be a clause in C∈, C is of the form
∨n
i=1 xi 6' ti ∨

∨m
i=1 ¬pi(yi) ∨ D

where D is ground, xi and yj (i ∈ [1, n], j ∈ [1,m]) are variables, ti is a ground term
for i ∈ [1, n] and pj ∈ P for j ∈ [1,m]. Let X = {x1, . . . , xn} and Y = {y1, . . . , ym}; note
that these sets are not necessarily disjoint. For every variable y ∈ Y we denote by Py
the set of predicates pj (1 ≤ j ≤ m) such that yj = y and we let sy

def
= sPy

. Consider the
substitution σ of domain X ∪ Y such that:

— xiσ
def
= ti for every i ∈ [1, n];

— if y ∈ Y \X then yσ
def
= sy (notice that sy must be defined since y ∈ Y )

We prove that Cσ |=A∈ C.
Let I be an interpretation such that I |= Cσ and I 6|= C. Then there exists a substi-

tution θ such that I 6|= Cθ, which implies that for all i ∈ [1, n], [xiθ]I = [ti]I , and for all
j ∈ [1,m], [yjθ]I ∈ [p̂j ]I . Proposition 8 entails that xiθ = ti for all i ∈ [1, n], and yjθ ∈ p̂j
for all j ∈ [1,m]. Thus, in particular, for all x ∈ X, xσ = xθ, and for all y ∈ Y \ X,⋂
p∈Py

p̂ 6= ∅.
Since I |= Cσ and xiσ = ti for all i ∈ [1, n], there must exist a j ∈ [1,m] such that

[yjσ]I 6∈ [p̂j ]I ; and, again by Proposition 8, this is equivalent to yjσ /∈ p̂j . If yj ∈ X,
then yjθ = yjσ /∈ p̂j and I |= Cθ, which is impossible. Thus yj ∈ Y \ X, and since⋂
p∈Pyj

p̂ 6= ∅, by construction, yjσ = syj ∈ p̂j ; this contradicts the assumption that
yjσ /∈ p̂j .

Since Cσ |=A∈ C, we deduce that for every clause C ∈ S, there exists aD ∈ S↓G∈
S

such
that D |=A∈ C, and therefore, S ≡A∈ S↓G∈

S
. By construction, G∈S is finite, G∈S = G∈S?

∨
and

G∈S ⊆ G
∈
S′ if S ⊆ S′. Hence all the conditions of Definition 11 are satisfied.

5.2. Combination of Specifications
Building on the results of the previous section, we now provide some concrete applica-
tions of Theorem 1.

5.2.1. Combining First-order Logic without Equality and Presburger Arithmetic. We begin with
a simple example to illustrate how the method works, by showing how to enrich the
language of first-order predicate logic with some arithmetic constraints. We assume
that F contains no function symbol of co-domain int other than the usual symbols
0, s,+,− introduced in Section 2.5.

Let Nfol be the restriction of the specification Afol defined in Example 7 to non-
equational clause sets (i.e. to clause sets in which all atoms are of the form t ' true).
We consider the combination Nfol[BZ] of the specification BZ introduced in Section 5.1.1
with Nfol. According to Theorem 6, ΘZ is base-complete for BZ; thus, in order to apply
Theorem 1, we only need to find a nesting-complete instantiation procedure for Nfol.
We will use an instantiation procedure based on hyper-linking [Lee and Plaisted 1992].
It is defined by the following inference rule:∨n

i=1 li, m1 ∨ C1, . . . , mn ∨ Cn∨n
i=1 liσ

if σ is an mgu. of the (li,m
c
i )’s.

If S is a set of clauses, we denote by Θ′fol(S) the set of clauses that can be obtained
from S by applying the rule above (in any number of steps) and by Θfol(S) the set
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of clauses obtained from Θ′fol(S) by replacing all remaining variables of sort s by a
constant symbol ⊥s of the same sort.

Proposition 11. Θfol is nesting-complete for Nfol.

PROOF. In [Lee and Plaisted 1992], it is proven that S and Θfol(S) are equisatisfi-
able, thus Condition 1 of Definition 6 holds; furthermore, by definition, Θfol is mono-
tonic. To verify that Θfol is SB-invariant, it suffices to remark that if a clause D is
deducible from a set of clauses S by the instantiation rule above, then for every SB-
mapping α, α(D) must be deducible from Θfol(α(S)), since the unifiers are not affected
by the replacement of ground terms: if an mgu maps a variable x to a term t in S, then
the corresponding mgu will map x to α(t) in α(S).

Theorem 1 guarantees that Θfol[ΘZ] is complete for Nfol[BZ]. Note that in general,
Θfol[ΘZ] (and Θfol) are not terminating. However, Θfol[ΘZ] is terminating if the set of
ground terms containing no subterm of sort int (and distinct from •int) is finite (for
instance if F contains no function symbol of arity greater than 0 and of a sort distinct
from int).

Example 12. Consider the following set of clauses S, where i, j denote variables of
sort int, x, y denote variables of sort s, and F contains the following symbols: a, b : int,
c, d : s, p : int× s→ bool and q : int× s× s→ bool.

(1) ¬p(i, x) ∨ ¬q(i, y) ∨ r(i, x, y)
(2) p(a, c)
(3) j 6< b ∨ q(j, d)
(4) i 6'2 0 ∨ ¬r(i, x, y)

Clauses (2) and (3) are not in Nfol[BZ]. Indeed, the non-arithmetic atom p(a, c) con-
tains a non-variable arithmetic subterm a and (3) contains a literal j 6< b that is not
allowed in BZ (see Definition 2). Thus these clauses must be reformulated as follows:

(2)’ i 6≤ a ∨ a 6≤ i ∨ p(i, c)
(3)’ j 6≤ b− 1 ∨ q(j, d)

To apply the procedure Θfol[ΘZ], we compute the set SN and replace every arithmetic
variable occurring in it by a special constant • of sort int:

SN =


¬p(•, x) ∨ ¬q(•, y) ∨ r(•, x, y)
p(•, c)
q(•, d)
¬r(•, x, y)

We apply the procedure Θfol. The reader can verify that we obtain the following
clause set:

Θfol(S
N ) =



¬p(•,⊥) ∨ ¬q(•,⊥) ∨ r(•,⊥,⊥)
p(•, c)
q(•, d)
¬r(•,⊥,⊥)
¬p(•, c) ∨ ¬q(•, d) ∨ r(•, c, d)
¬r(•, c, d)

Next we consider the clauses in SB : {i 6≤ a ∨ a 6≤ i, j 6≤ b − 1, i 6'2 0} and compute
the set GZ

SBZ , according to Definition 3. The terms occurring as the right operands of a
symbol ≤ are {a, b − 1}. The least common multiple of all the natural numbers k such
that SB contains a comparison modulo k is 2. Thus GZ

SBZ = {a, b − 1, a − 1, b − 2}. To
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get the clause set Θ[ΘZ](S), the substitutions generated by Θ are combined with all
instantiations of integer variables by elements of GZ

SBZ . This yields:

¬p(a,⊥) ∨ ¬q(a,⊥) ∨ r(a,⊥,⊥) p(a, c)
¬p(b− 1,⊥) ∨ ¬q(b− 1,⊥) ∨ r(b− 1,⊥,⊥) p(b− 1, c)
¬p(a− 1,⊥) ∨ ¬q(a− 1,⊥) ∨ r(a− 1,⊥,⊥) p(a− 1, c)
¬p(b− 2,⊥) ∨ ¬q(b− 2,⊥) ∨ r(b− 2,⊥,⊥) p(a− 2, c)
¬r(a,⊥,⊥) ¬r(a, c, d)
¬r(b− 1,⊥,⊥) ¬r(b− 1, c, d)
¬r(a− 1,⊥,⊥) ¬r(a− 1, c, d)
¬r(b− 2,⊥,⊥) ¬r(b− 2, c, d)
¬p(a, c) ∨ ¬q(a, d) ∨ r(a, c, d) q(a, d)
¬p(b− 1, c) ∨ ¬q(b− 1, d) ∨ r(b− 1, c, d) q(b− 1, d)
¬p(a− 1, c) ∨ ¬q(a− 1, d) ∨ r(a− 1, c, d) q(a− 1, d)
¬p(b− 2, c) ∨ ¬q(b− 2, d) ∨ r(b− 2, c, d) q(b− 2, d)

The resulting set of clauses is Nfol[BZ]-unsatisfiable, hence, so is S.

5.2.2. Arrays with Integer Indices and Uninterpreted Elements. The specification of arrays
with integer indices and uninterpreted elements can be defined as a hierarchic expan-
sion of the base specification BZ defined in Section 5.1.1 with a simple specification
NA = (Ifol,CA), where the clauses in CA are built on a set of variables of sort int, on a
signature containing only constant symbols of sort array or elem and a function sym-
bol select : array × int → elem. We have assumed that CA contains no occurrence of
the function symbol store for convenience. There is no loss of generality: indeed, every
definition of the form s = store(t, i, a) where s, t, i, a are ground terms can be written as
the conjunction of the following clauses:

select(s, i) = v
i+ 1 6≤ z ∨ select(s, z) ' select(t, z)
z 6≤ i− 1 ∨ select(s, z) ' select(t, z)

It is simple to verify that these three clauses are in CA. Obviously, the last two clauses
are equivalent to z ' i ∨ select(s, z) ' select(t, z).

There exists a straightforward nesting-complete instantiation procedure for NA:
namely the identity function id(S)

def
= S. This is indeed an instantiation procedure

since all the variables occurring in CA are of type int; these variables will already be
instantiated by the instantiation procedure for BZ and the remaining clause set will be
ground. The following result is a direct consequence of Theorem 1:

Proposition 13. id[ΘZ] is complete for NA[BZ].

We provide some examples of properties that have been considered in [Bradley and
Manna 2007; Habermehl et al. 2008; Ghilardi et al. 2007b], and can be expressed in
NA[BZ] (t,t′ denotes constant symbols of sort array).
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(1) ∀i, a 6≤ i ∨ i 6≤ b ∨ select(t, i) ' v
t is constant on [a, b].
(2) ∀i, a 6≤ i ∨ i 6≤ b ∨ select(t, i) ' select(t′, i)
t and t′ coincide on [a, b].
(3) ∀i, j, a 6≤ i ∨ i 6≤ b ∨ ∨c 6≤ j ∨ j 6≤ d ∨ select(t, i) 6' select(t′, j)
The restriction of t and t′ to [a, b] and [c, d] respectively are disjoint.
(4) ∀i, j, i 6'2 0 ∨ j 6'2 1 ∨ select(t, i) 6' select(t, j)
The values of t at even indices are disjoint from those at odd ones.
(5) ∀i, i 6'2 0 ∨ select(t, i) ' select(t′, i) ∨ select(t, i) ' select(t′′, i)
For every even index, the value of t is equal to the value of t′ or t′′.
(6) ∀i, i 6≥ 0 ∨ i 6≤ d ∨ select(t, i) 6' ⊥

∀i, i 6≥ succ(d) ∨ select(t, i) ' ⊥
Array t has dimension d.
(7) ∀i, select(map(f, t), i) ' f(select(t, i))
Array map(f, t) is obtained from t by iterating function f .

Arrays play a fundamental role in verification, and numerous techniques have been
considered for reasoning about them. For instance, Properties (1-3) can be expressed
in the Array property fragment (see [Bradley and Manna 2007]), but not Property (4),
because of condition i '2 0. Property (4) is expressible in the Logic for Integer Arrays
(LIA) introduced in [Habermehl et al. 2008], but not Property (5), because there is a
disjunction in the value formula. The combinatory array logic of [de Moura and Bjørner
2009] allows one to reason on arrays built over a combination of theories, enriched by
new combinators that can express properties such as (1) and (7), but does not consider
quantified formulæ. [Ghilardi and Ranise 2010] contains a decidability result for a
very general class of formulæ with quantification on the indices, provided the theory
of indices satisfies some additional properties (which do not hold for integers).

On the other hand, Properties such as Injectivity cannot be expressed in our setting:
(8) ∀i, j, i ' j ∨ select(t, i) 6' select(t, j)
t is injective.
(9) ∀i, j, i ' j ∨ select(t, i) 6' select(t, j) ∨ select(t, i) ' ⊥
t is injective on its domain.

Indeed, the literal i ' j is not allowed in C′Z.

5.2.3. Arrays with Integer Indices and Interpreted Elements. Instead of using the mere spec-
ification NA, one can combine the specification BZ with a richer specification, with
function and predicate symbols operating on the elements of the arrays. For instance,
consider the specification NR

A = (IR,CR
A), where Ax(IR) is some axiomatization of real

closed fields over a signature FR and the clauses occurring in CR
A are built on a set of

variables of sort int and on a signature containing all function symbols in FR, constant
symbols of sort array or real and a function symbol select : array× int→ real. Then
NR

A [BZ] is the specification of arrays with integer indices and real elements, and an
immediate application of Theorem 1 yields:

Proposition 14. id[ΘZ] is complete for NR
A [BZ].

To model arrays with integer indices and integer elements, it is necessary to use
a combination of the specification BZ with a specification containing the symbols in
BZ: 0 : int, s : int → int, ≤: int × int → bool, etc. However, this is not permitted
in our approach since the clause sets of the nesting specification would then contain
function symbols with co-domains of a sort of the base specification (namely int), thus
contradicting the conditions on SB and SN (see Section 3.1). A solution is to use a copy
of the sort int and of every symbol of co-domain int. We denote byN Z

A the specification
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(I ′Z,CZ) where Ax(I ′Z) is the image of Ax(IZ) by the previous transformation and where
the clause sets in CZ

A are built on a set of variables of sort int and on a signature
containing all function symbols 0′, s′,≤′,. . . in Ax(I ′Z), constant symbols of sort array or
int′ and a function symbol select : array×int→ int′. Then N Z

A [BZ] is a specification of
arrays with integer indices and integer elements, and by Theorem 1, id[ΘZ] is complete
for N Z

A [BZ].
Note however that, due to the fact that the sort symbols are renamed, equations

between integer elements and integer indices are not permitted: indices cannot be
stored into arrays and terms of the form select(t, select(t, i)) are forbidden. However, the
sharing of a constant symbol c between the two sorts int and int′ (as in the equation:
select(t, c) ' c) is possible, by adding ground axioms of the form: k ' c⇒ k′ ' c′, where
c′ denotes the copy of c, k is any integer in int and k′ denotes its copy in int′. Let
A denote this set of axioms; it is obvious that A is countably infinite. It is clear that
id[ΘZ](S∪A) = id[ΘZ](S)∪A, so that the instantiation procedure is not affected by this
addition. Thus these axioms can be simply removed afterward by “merging” int and
int′ and by replacing c′ by c (it is straightforward to verify that this transformation
preserves satisfiability).

We provide some examples. ≤′ and +′ are renaming of the symbols ≤ and + respec-
tively. Notice that the indices of the arrays are of sort int, whereas the elements are
of sort int′. The following properties can be expressed in N Z

A [BZ]:

(1) ∀i, j, i 6≤ j ∨ select(t, i) ≤′ select(t, j)
Array t is sorted.
(2) ∀i, j, a 6≤ i ∨ i 6≤ b ∨ c 6≤ j ∨ j 6≤ c ∨ select(t, i) ≤′ select(t′, j)
The values of t at [a, b] are lower than those of t′ at [c, d].
(3) ∀i, i 6'2 0 ∨ i 6≤ n ∨ select(t, i) '′ select(t′, i) +′ select(t′′, i)
For every even index lower than n, t is the sum of t′ and t′′.

Here are some examples of properties that cannot be handled:

(4) ∀i, select(t, i) ' i
Array t is the identity.
(5) ∀i, select(t, i)− select(t, i+ 1) ≤ 2
The distance between the values at two consecutive index
is at most 2.

Property (4) is not in N Z
A [BZ] because there is an equation relating an element of sort

int (i.e. an index) to an element of sort int′ 6= int (an element). Property (5) could be
expressed in our setting as ∀i, j, j 6' i + 1 ∨ select(t, i) − select(t, j) ≤ 2 but the atom
j 6' i + 1 is not in BZ. Property (5) can be expressed in the logic LIA (see [Habermehl
et al. 2008]). This shows that the expressive power of this logic is not comparable to
ours.

These results extend straightforwardly to multidimensional arrays.

5.2.4. Arrays with Translations on Arrays Indices. In some cases, properties relating the
value of an array at an index i to the value at index i + k for some natural number k
can be expressed by reformulations.

Definition 15. Let S be a clause set, containing clauses that are pairwise variable-
disjoint. Let λ be a function mapping every array constant to a ground term of sort
int. S is shiftable relatively to λ iff the following conditions hold:

(1) Every clause in S is of the form C ∨D, where D is a clause in N Z
A and every literal

in C is of one of the following form: i 6≤ j + s, i 6≤ s, s 6≤ i, i 6'k s, where i, j are
variables of sort int, s is a ground term of sort int and k is a natural number.
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(2) For every clause C ∈ S and for every literal i 6≤ j + s occurring in C, where i, j are
variables and s is a term of sort int, C contains two terms of the form select(t, i)
and select(t′, j) where λ(t′)− λ(t) is equivalent to s.

(3) If C contains two terms of the form select(t, i) and select(t′, i) then λ(t) = λ(t′).
(4) If C contains a equation t ' t′ between arrays then λ(t) = λ(t′). 3

The existence of such a function λ is easy to determine: conditions (2-4) above can im-
mediately be translated into arithmetic constraints on the λ(t)’s, and the satisfiability
of this set of constraints can be tested by using any decision procedure for Presburger
arithmetic.

We define the following transformation of clause sets:

Definition 16. Let t 7→ t′ be an arbitrarily chosen function mapping all the constants
t of sort array to pairwise distinct fresh constants t′ of sort array. We denote by shift(S)
the clause set obtained from S by applying the following rules:

— every clause C containing a term of the form select(t, i) (where i is a variable) is
replaced by C{i 7→ i− λ(t)};

— then, every term of the form select(t, s) is replaced by select(t′, s+ λ(t)). 3

Lemma 17. Let S be a shiftable clause set. Then:

— shift(S) and S are equisatisfiable.
— shift(S) is in N Z

A [BZ].

PROOF. It is clear that for every clause C in S, C ≡ C{i 7→ i − k}: since i ranges
over all integers, i and i− k range over the same set. The replacement of select(t, s) by
select(t′, s + λ(t)) obviously preserves sat-equivalence: it suffices to interpret t′ as the
array defined by the relation: select(t′, i)

def
= select(t, i − λ(t)). Thus shift(S) and S are

equisatisfiable.
We prove that shift(S) is in N Z

A [BZ]. By Condition 3 of Definition 15, if a clause
C{i 7→ i − λ(t)} contains a term of the form select(s, i − λ(t)) then we must have
λ(s) = λ(t), thus this term is replaced by select(s′, i) when the second rule above is
applied. Consequently, the non-arithmetic part of the resulting clause cannot contain
any non-variable term of sort int. Now assume that C contains an arithmetic literal
of the form i ≤ j + s. Then by Condition 2, C also contains terms of the form select(t, i)
and select(t′, j), where λ(t′)−λ(t) is equivalent to s. Hence, the clause in shift(S) corre-
sponding to C contains the literal i−λ(t) ≤ j−λ(t′)+s ≡ i ≤ j−(λ(t′)−λ(t))+s ≡ i ≤ j.

Lemma 17 shows that the satisfiability test for shiftable clause set can be reduced to
a satisfiability test for a clause set inN Z

A [BZ]. This does not imply that the instantiation
procedure id[ΘZ] is complete for shiftable clause set. We provide an example in which
this result applies.

Example 18. Consider for instance the following clause set:

S =



(1) ∀i, j, a 6≤ i ∨ i 6≤ b ∨ j 6' i− a ∨ select(s, i) ' select(t, j)
s is identical to t up to a shift of length a.
(2) ∀i, j, a 6≤ i ∨ i 6≤ b ∨ j 6' i− a ∨ select(u, i) ' select(s, j)
u is identical to s up to a shift of length a.
(3) c ≥ a+ a
(4) c ≤ b
(5) ∀i, j, i 6' c ∨ j 6' c− a− a ∨ select(u, c) 6' select(t, j)
u is not identical to t up to a shift of length a+ a.
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It is simple to check that S is shiftable relatively to the mapping: λ(u) = a+a, λ(s) = a
and λ(t) = 0. According to Definition 17, S is reformulated as follows:

shift(S) =


(1′) ∀i, j, 0 6≤ i ∨ i 6≤ b− a ∨ j 6' i ∨ select(s′, i) ' select(t′, j)
(2′) ∀i, j, 0 6≤ i ∨ i 6≤ b− a ∨ j 6' i ∨ select(u′, i) ' select(s′, j)
(3) c ≥ a+ a
(4) c ≤ b
(5) ∀i, j, i 6' c ∨ j 6' c− a− a ∨ select(u′, c) 6' select(t′, j)

shift(S) and S are equisatisfiable, and shift(S) belongs to N Z
A [BZ]. The unsatisfiability

of shift(S) can be proven by applying the procedure id[ΘZ].

5.2.5. Nested Arrays. An interesting feature of this approach is that it can be applied
recursively, using nesting specifications some nested combination of other specifica-
tions: Theorem 1 ensures that the obtained instantiation procedure satisfies the re-
quired properties. This idea is similar to the chains of (local) theory extensions used
in, e.g., [Ihlemann et al. 2008] to extend the array property fragment. Note that it
would not be possible to use a nested combination of specifications as the base spec-
ification, because a nested combination of instantiation procedures is not necessarily
base-complete.

We denote by B′Z a copy of the specification BZ in which the symbols int, 0, s, ≤,
. . . are renamed into int′, 0′, s′, ≤′, . . . We denote by Θ′Z the corresponding instantiation
procedure, as defined by Definition 3. Let N Z

A
′ be a copy of the specification N Z

A , in
which the symbols int′, 0′, s′, ≤′, select. . . are renamed into int′′, 0′′, s′′, ≤′′, select′

. . . Let AZ3

def
= N Z

A
′
[B′Z][BZ].

Proposition 19. id[Θ′Z][ΘZ] is complete for AZ3
.

In AZ3
, the (integer) indices of an array t can themselves be stored into arrays of

integers, but of a different type than t.

Example 20. The following clause set is AZ3
-unsatisfiable (for the sake of readability

we use t 6' s as a shorthand for t 6≤ s ∨ t 6≤ s):

(1) i ≤ j ∨ select(t, i) ≤ select(t, j)
Array t is sorted.
(2) i′ ≤ j′ ∨ select′(t′, i′) ≤′ select′(t′, j′)
Array t′ is sorted.
(3) a ≤ b
(4) x 6' a ∨ y 6' b ∨ x′ 6' select(t, x) ∨ y′ 6' select(t, y)

∨select′(t′, x′) > select(t′, y′)
Array t′ ◦ t is not sorted.

We describe the way the procedure works on this very simple but illustrative exam-
ple. According to the definition of id[Θ′Z][ΘZ], the variables i, j, x and y are replaced
by a special symbol • and the instantiation procedure id[Θ′Z] is applied. The variables
i′, j′, x′, y′ are replaced by a constant symbol •′ and the procedure id is applied on the
resulting clause set (in a trivial way, since this set is ground). Next, we apply the
procedure Θ′Z. According to Definition 3, Θ′Z instantiates the variables i′, j′, x′, y′ by
select(t, •). This substitution is applied to the original clause set and the procedure ΘZ
is invoked. The variables i, j, x and y, and the constant symbol • are replaced by {a, b}.
After obvious simplifications, we obtain the following set of instances:
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a ≤ b ∨ select(t, a) ≤ select(t, b)
b ≤ a ∨ select(t, b) ≤ select(t, a)

select(t, a) ≤ select(t, a) ∨ select′(t′, select(t, a)) ≤′ select′(t′, select(t, a))
select(t, a) ≤ select(t, b) ∨ select′(t′, select(t, a)) ≤′ select′(t′, select(t, b))
select(t, b) ≤ select(t, b) ∨ select′(t′, select(t, b)) ≤′ select′(t′, select(t, b))
select(t, b) ≤ select(t, a) ∨ select′(t′, select(t, a)) ≤′ select′(t′, select(t, a))

a ≤ b
select′(t′, select(t, a)) > select′(t′, select(t, b))

At this point, ≤′ may be simply replaced by ≤ (this operation obviously preserves eq-
uisatisfiability) and the resulting clause set can be refuted by any SMT-solver handling
ground equality and integer arithmetic.

Such nested array reads are outside the scope of the Array property fragment of
[Bradley and Manna 2007] and of the Logic LIA of [Habermehl et al. 2008]. They are
not subsumed either by the extensions of the theory of arrays considered in [Ghilardi
et al. 2007b]. Note that, due to the fact that we use distinct renamings of the specifi-
cation of integers, equations such as select(t′, select(t, a)) ' select(t′, a) are forbidden (if
arrays are viewed as heaps, this means that there can be no equation between pointers
and referenced values).

6. DISCUSSION
In this paper we have introduced a new combination method of instantiation schemes
and presented sufficient conditions that guarantee the completeness of the result-
ing procedure. As evidenced by the examples provided in Section 5, this combination
method permits to obtain instantiation procedures for several theories that are quite
expressive, at almost no cost. One direct consequence of these results is that it should
be possible for developers of SMT solvers to focus on the design of efficient decision pro-
cedures for a few basic theories, such as, e.g., the theory of equality with uninterpreted
function symbols (EUF) or Presburger arithmetic, and obtain efficient SMT solvers for
a large panel of theories.

This combination method may seem inefficient, since exponentially many ground
clauses may be generated, except for the trivial cases. An interesting line of research
is to investigate how incremental techniques can be implemented and the instantia-
tions controlled so that the (un)satisfiability of the clause set under consideration can
be detected before all clauses are instantiated in all possible ways. For instance, we
believe it is possible – but this will probably depend on B and N – to devise more
subtle strategies that first replace base variables with the constants •s and apply the
instantiation procedure for N , and then derive additional information from the re-
sulting set of ground clauses to avoid having to instantiate all base variables in all
possible ways. Further investigations into this line of work could lead to the design of
more powerful instantiation procedures that could enlarge the scope of modern SMT
solvers by making them able to handle efficiently more expressive classes of quanti-
fied formulæ. The idea is to use the models constructed by the SMT-solvers to guide
the generation of new instances. Techniques such as those described in [Plaisted and
Zhu 2000; Ganzinger and Korovin 2003] (for first-order logic with equality) and [Ja-
cobs 2008; Sofronie-Stokkermans 2005] (for local reasoning) could be used to that end,
and we believe this to be a fruitful line of research.
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