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1. INTRODUCTION

Since the publication of the celebrated AGM article in 1989¢hourron et al. 1985},
Belief Revisiorhas grown to be a central area of researcKimowledge Representation
Belief Revision studies the process by which a rational ageanges her initial belief set
in the light of new information.

In the original formal framework developed in [Alchourronat. 1985], the new informa-
tion is modeled as aingle logical sentencg and two types of belief change are studied;
belief revision after which the whole area took its nahand beliefcontraction More
recent work generalized this framework to include episteimput encoded as a (possibly
infinite) set of logical sentencds thus introducing the processesrfiltiple revisionand
multiple contraction(see [Fuhrmann and Hansson 1994], [Peppas 1996], [Zhan§a@nd
2001], [Peppas 2004]).

The transition to multiple epistemic input was not withoaiblications and some impor-
tant questions remain unanswered. In this article we addhese of the most challenging
open problems in multiple belief change. All three problewiate to well known con-
ditions that reduce multiple revision and contraction t@ges of sentence-revisions and
sentence-contractions respectivély.

To describe the three problems in more detail, some backdrisunecessary. The process
of belief revision is defined as the type of rational beliedisge for which the epistemic
input needs to be incorporated into the agent’s initialddedetK, possibly at the expense
of some of the original beliefs iK. In belief contraction on the other hand, the epistemic
input represents information that needs to be removed fhaninitial belief setk. Once
again, beliefs dferent from the epistemic input may also bEeated in the process.

Belief revision and contraction have been described batimaatically and constructively,

in what is now known as thAGM paradigm In terms of axiomatic models, the so-called
AGM postulatedor revision and contraction are widely acknowledged toeheaptured
much of what is the essence of these two types of belief chaAgeong constructive
models, the three most popular ones are dhgtem of spheres moddhe partial meet
mode] and theepistemic entrenchmemtsodel. The system of spheres model is used to
construct revision functions, while the other two are useddntraction. Representation
results have been established that prove the equivalethwedrethe AGM postulates and
the corresponding constructions (see [Peppas 2008] feeatsurvey on Belief Revision).

As noted above, the AGM paradigm has recently been externdeditide multiple epis-
temic input. The AGM postulates for revision have been mediéiccordingly, [Lindstrom
1991], and so was the corresponding system of spheres ni@dgipas 2004]. In the
case of belief contraction, things were more complicatetheie are at least threefidir-
ent ways of interpreting the contraction of a belief Keby a set of sentencds known

INamed so after the initials of its authoarlos Alchourron, Peter GardenfarandDavid Makinson

2To distinguish the research area from the process, we sathe capitalized terielief Revisioror the former

and the same term in lower case letter (Delief revision for the latter.

SWe shall often refer to the original AGM revision and contiaic operators as sentence-revision and sentence-
contraction, to distinguish them from their multiple coenmarts.
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Maps in Multiple Belief Change . 3

aspackage contractiorchoice contractiorandset contraction[Fuhrmann and Hansson
1994], [Zhang and Foo 2001]. In this article we consider dhly third and most recent
generalization of contraction.

Set contraction is defined as the process of rationally actihgK to make itconsistent
with the epistemic inpuf (notice the diference in aim with sentence contraction). Zhang
and Foo, [Zhang and Foo 2001], proposed a generalizatidredAGM postulates for set
contraction and considered corresponding generalizatdrthe constructive models for
contraction. In the case of the partial meet model thingkeaout well. Generalizing the
epistemic entrenchment model however proved more chatigng new structure called a
nicely ordered partitiorwas introduced for this purpose which however didn’t quitgech
up to the postulates: the functions constructed from nioeliered partition are proper
subset of those satisfying the postulates for set contraciihe mismatch was fixed with
the introduction of an extra postulate, called lingit postulatefor set contraction, which
associates contraction by a set of senteficedth contractions byinite subsets of" (the
symbolc; below stands fofinite subseti.e. C C; D means tha€ is a finite subset ob):

(=LP)  K-T'=Uac,r Necicnry K-(AU B)

With the addition of £LP), Zhang and Foo obtained an exact match between the atestul
for set contraction and the functions induced from nicelyeved partitions, and provided
arguments in support of the intuitive appeal of the new gatgu

However the introduction of(LP) generates gaps on other fronts. Firstly, conditieloR)
needs to be mapped into appropriate constraints in theapanget model. This is an
important open problem already identified in [Zhang and Fo@12.

Secondly, because of the close relation between contraatid revision via the Levi and
Harper Identities (see section 8 below), the limit postufat set contraction gives rise to
a corresponding extra postulate for multiple revision:

("*LP)  K#T'=Unac,r Necienn K * (AU B)

Like (~LP), the new postulate (*LP) creates the need for extra caimss on systems of
spheres. Formulating these conditions and proving theiivatence to (*LP) is still an
open problem.

A third open problem in multiple belief change is the relaship between (*LP) and an-
other very similar condition also reducing multiple rewisito sentence revision proposed
and studied in [Peppas 1996], [Peppas 2004]:

(K*F)  Kx#I'=Nacr((K+A)+T)

Our aim in this paper is to address all three open problemsiamed aboveWe formulate
constraints for the partial meet and system of spheres madsich characterize precisely

4In condition (K*F), + denotes the operation ekpansioni.e. union followed by logical closure — see section 2
for details)
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the postulates<{LP) and (*LP) respectively. Moreover, we prove that (K*F)sisictly
stronger than (*LP) by explicitly constructing a multipleuvision function that violates
the former but satisfies the latteFhese results, together with the ones in [Zhang and Foo
2001] and [Peppas 2011], complete the picture of ffeces that the limit postulate(s) have
on the multiple belief change landscape.

The article is structured as follows. In the next section mteoduce the necessary nota-
tion and terminology. In section 3 we review the postulateshfiultiple revision and the
associated system of spheres model. In section 4 we compadéions (*LP) and (K*F).

In section 5 we present our system-of-spheres charadienzzf (*LP) and we prove that
(*LP) is strictly weaker than (K*F). Next we turn to set caattion. We introduce the rele-
vant background in section 6, and in section 7 we presentantiapmeet-characterization
of (~LP). Section 8 contains some concluding remarks.

2. PRELIMINARIES

Throughout this paper we shall be working with a formal laaxgel. governed by a logic
which is identified by its consequence relationVvery little is assumed aboltandr. In
particular,L is taken to be closed under all Boolean connectives,-amals to satisfy the
following properties:

(
@iy If F (¢ = y) andr ¢, thenr y (modus ponens).
(i)  +is consistent, i.ex p A —¢.

)+ ¢ forall truth-functional tautologies (supraclassicality).

(iv)  + satisfies the deduction theorem, thatis, ¢2, ..., ¢n} F Yiff - @1 AgaA ...
Apn Y.
(v) +iscompact.

For afiniteset of sentences = {¢1, . . ., ¢n}, Of L we shall use\Ato denote the conjunction
of all elements off, i.e. the sentencg; A --- A ¢n. For a set of sentenc&sof L, Cn(T)
denotes the set of all logical consequencel,dfe. Cn(T') = {¢ € L: T + ¢}. WheneveA
is afinite subset of", we write A C¢ T.

A theory K of L is any set of sentences bfclosed under, i.e. K = Cn(K). We shall
denote the set of all theories bfby K . A theoryK of L is completeff for all sentences
¢ €L, o e Kor—-¢ € K. We shall denote the set of all consistent complete theaofies
L by M_. In the context of Belief Revision, consistent completeoties play the role
of possible worldsand therefore we shall use the two terms interchangeablya Bet of
sentenceF of L, [I'] denotes the set of all consistent complete theoridstbht contairT.
Often we shall use the notatiog][for a sentence € L, as an abbreviation of¢}]. For a
theoryK and a set of sentencEswe shall denote bi +T" the closure underof KUT, i.e.
K+ T =CnlKUT). For asentencg € L we shall often writeK + ¢ as an abbreviation of
K + {¢}. For two sets of sentencE&sA, we defind + A iff T + 6 for all § € A. Finally, the
symbolsT and_L will be used to denote an arbitrary (but fixed) tautology amtadiction
of L respectively.
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Maps in Multiple Belief Change . 5
3. MULTIPLE BELIEF REVISION REVIEW

Multiple belief revision was defined in [Lindstrom 1991],a$unctions : K x2- — %X,
mappinkK, T') to K = T, that satisfies the following postulates:

(K+1) K=«Tisatheoryofl.

(K«2) T cKs=«T.

(Kx3) KxIcK+T.

(K«4) IfK+T#LthenK+T CK=«T.

(K+5) K=x«TrLIiffT kL.

(K«6) IfCn(I) =Cn(A)thenK «T' = K = A.

(K«7) Kx(UA)C(K=T)+A.

(K«8) If(K«I)+A#LthenK=+I)+ACK=x=([UA).

The above postulates are a straightforward generalizafitme AGM postulates for sen-
tence revision (i.e. revision by a single sentepaather than aetof sentencd’). The
reader is referred to [Gardenfors 1988] and [Peppas 2008] detailed discussion on the
motivation of these postulates.

To improve readability, in this article we shall ignore tlimaiting cases of revising by an
empty or an inconsistent set, and we assume that the epistemitI” is always anon-
emptyandconsistenset of sentences.

It turns out thatK = 1) - (K = 8) are satisfied not by one, but by a whole family of revision
functions. This family can be constructed with the aid of mdure called asystem of
spheresntroduced in [Grove 1988] originally for sentence revisibut later generalized
in [Peppas 2004] for multiple revision.

Given a theorK, Grove defines a system of sphe&sentered onK], to be a collection
of subsets ofM_, the elements of which are callepheresthat satisfies the following
conditions:

(S1) Sistotally ordered with respect to set inclusion.

(S2) The smallest sphere &is [K]; thatis [K] € S, and ifU € S then [K] C U.
(S3) M, € S (and thereforeM,_ is the largest sphere ).

(S4) Forevery consistepte L, there is a smallest sphereSnintersecting §].

A system of sphereS is essentially a preorder on possible worlds (alias, ctersi£om-
plete theories) representing comparative plausibilitye ¢loser a world is to the center
of the system K] the more plausible it is. With this reading in mind, Groveposed
an intuitive construction of sentence revision functioasdd on systems of spheres (see
condition (S*) below) and proves that his method is sound @rdplete with respect to
the AGM postulates for sentence revision. Peppas, [Pep@4],2ater generalized this
result for multiple revision. The generalization howevequired two further constraints
on systems of spheres. The first constraint is a straigh#fiahgeneralization of (S4):

ACM Transactions on Computational Logic, Vol. 0, No. 0, 01L.20
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(SM)  For every nonempty consistefitC L, there exists a smallest sphereSn
denotec:(I), intersectingT].

The second constraint relates the notion oeEfamentaryset of possible worlds, inspired
by the notion of an elementary class of models from claskigat (see [Chang and Keisler
1991]), and adequately adjusted in the present contextatticplar, we shall say that a
setV of consistent complete theorieseéementaniff V = [ V].® In other wordsy is
elementary if no world outside is compatible with the theony) V. As shown in [Peppas
et al. 1995], not all sets of consistent complete theoriessbementary; in fact for every
languagd_ with infinitely many logical equivalent classes, there arfinitely many non-
elementary subsets @i, . Condition (SD) below requires that in a system of sph&es
the spheres are so arranged that the@dtn [I] is always elementary:

(SD) For every nonempty consistdnc L, c¢(I') N [T'] is elementary.

Although initially it strikes us as a technical conditio§) can also be understood intu-
itively once we consider the special role of theg@) N [I'] in belief revision. Notice that
under the intended reading 8f the setc(I') N [I'] contains the most plausibléworlds,
which in turn are the very worlds used in the system-of-sphepnstruction of revision
functions:

(89 Ks«T'=N(c(l)N[I])

Condition (S*) defines the result of revision as the theonyasponding to the most plau-
sible worlds compatible with the epistemic input. This isgsely the method proposed
by Grove in [Grove 1988] and later generalized by PeppaséppBs 2004]. In view of
(S*) let us now re-examine (SD). Consider a nonempty comsigtet of sentencdsand
suppose that, contrary to (SD), there is a warlcompatible with\(c(I') N [I]), that is
not in ¢(I') N [I']. This entails thatz ¢ c(I'). Hencez is strictly less plausible than all
worlds inc(T') N [[']. So when revising by we end up with a belief set compatible with a
“sub-optimal” (i.e. not maximally plausibld)-world; putting it diferently, the epistemic
loss induced from the revision Byis over and above what is necessitated litgelf. This

is clearly in violation with one of the defining features ofioaality in belief revision,
known as therinciple of minimal changewhich loosely speaking, dictates that epistemic
loss should be minimized during this process. Hence the fue¢&D).

We shall say that a system of sphef&ss well rankediff in addition to (S1) - (S4), it
satisfies the conditions (SM) and (SD). In [Peppas 2004] & sl@own that the functions
produced by well ranked systems of spheres are precisedg thatisfying the postulates
(K % 1) - (K = 8) for multiple revision mentioned above:

TueoreMm 1. [Peppas 2004]. Let K be a theory and S a well ranked systemtadrep
centered ofiK]. The function: defined from S via (S*) satisfies ¢1) - (K = 8).

51f V = 0, we definen V = L, from which is follows that the empty set is elementary.

ACM Transactions on Computational Logic, Vol. 0, No. 0, 01.20
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Tueorem 2. [Peppas 2004]. Let K be a theory arda multiple revision function satis-
fying (K= 1) - (K % 8). There exists a well ranked system of spheres S centeljd] @uch
that (S*) is satisfied.

4. COMPARING (*LP) WITH (K*F)

Having reviewed the necessary background on multiple im@vjdet us now turn to the
open problems mentioned in the introduction, starting i relationship between the
conditions (*LP) and (K*F), repeated below:

(*LP)  K«T =Uac,r Nac,enr K * (AU B)
(K*F)  K«T'=Nac,r((K=A)+T)

Both these conditions can be viewed as methods of reduciftipieuevision to sentence
revision (since revision by a finite sétis equivalent to revision by the sentencd).
Moreover in [Zhang and Foo 2001] it was shown that in the presef (K*1) - (K*8),
(*LP) is equivalento the condition (rLP) below, which at first sight looks veign#ar to
(K*F):

(rLP) KT = (Nacicnn(K « A)) +T

The two conditions look very similar indeed. In fact there anly two diferences between
(K*F) and (rLP). Firstly, in (rLP) the initial belief seK is revised by all finite subsets of
theclosureof I', whereas in (K*F) only the finite subsets Bitself as used. Secondly, in
(rLP) this series of sentence revisions is first interseatedithen expanded iy whereas
in (K*F) it's the other way around (the result of each senteravision is first expanded by
" and then all expanded theories are intersected). Theseifieosthces, however small as
they may appear, flice to make (K*F) strictly stronger than (rLP), and therefstrictly
stronger than (*LP).

Ouir first result shows that (K*F) entails (*LP). We break dothie proof into a lemma and
a corollary since the lemma will be used independently liaténe article®

Lemma 1. Let K be a theory' € L a nonempty consistent set of sentences,saad
multiple revision function satisfying (K*1) - (K*8). If tireis a CC¢ I such that K« C is
consistent witlT', then K« T = (Jac,r Nac,cnr) K * (AU B).

Proof. Assume that there is@ C; I such thalK = C is consistent witd". Then from
(K 7), (K« 8) we derive thaK « (CUT) = (K = C) + I', which again by K = 6) entails
thatK «T' = (K« C) + T.

Consider now any € K=I'. Theng € (K«C)+T and consequently, by compactness, there
isaD ¢ I' such that {D — ¢) € K « C. Moreover, sincé’ is consistent withK = C), D

6Alternatively, we can use (rLP) as an intermediate to eistalthe same result.
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is also consistent with = C). Hence by K x 7) - (K« 8),K « (Cu D) = (K« C) + D and
consequently € K % (C U D). Now call A the setC U D. Itis not hard to verify that for
anyB c; Cn(I), K * (AU B) = (K  A) + B.” Consequently, sinag € K = A, it follows that
¢ € K« (AU B). SinceB was chosen arbitrarily, this entails that (g, cyr) (K * (AUB)),
which in turn implies thaK +« ' € Uac,r Nec,cnn (K * (AU B)).

For the converse, let be any sentence igac,r Nec,cnr)(K * (AU B)). Then there is a
A C¢ T such thaty € K = (AU B) for all B C; Cn('). Consequentlyy € K = (AU C). Next
notice that, sinc& * C is consistent witlT, it is also consistent witlA, and therefore by
(Kx7)-(K=*8),Kx(AUC)=(K=C)+ A which again entailg € (K =« C) + I'. Hence,
fromK «T" = (K % C) + " we derive thatp € K = " as desireds

CororLary 1. Let K be atheory of L, anda multiple revision function satisfying (K*1)
- (K*8). If « satisfies (K*F) then it also satisfies (*LP).

Proof. Assume thak satisfies (K*F), and lef” be any nhonempty consistent set of sen-
tences. ByK #5), K«I'is consistent, and therefore sin€e I" = (ac, r((K+A)+T), there

is at least oné\ C¢ T, such thaK = Ais consistent witi". Then by Lemma 1x satisfies
(*LP). m

Our next result shows that the converse is not true; i.e. Jk&Etrictly strongerthan (*LP).
Theorem 3 below proves this through the construction of & rmaeked system of spheres
whose induced multiple revision function is shown to sgt{3£.P) but violate (K*F).

Tueorem 3. There exists a consistent theory K and a multiple revisioction satis-
fying (K*1) - (K*8), such that« satisfies (*LP) but violates (K*F) at K.

Proof. For the purpose of this proof (and only for this proof), walkfix the details of
the language. as follows: we takd to be a propositional language withfinitely many
propositional variables denotgwd, pi1, p2, .... DefineTy, Ty, To, ..., to be the following
theories:

To = Cn({ Po, P1, - - })
T, = Cn({ P1, P2, .. })
T2 =Cn({p2, p3, - - -})

Tj = Cn({pj, Pj+1,---})

We setK = Ty and defineS to be the following system of spheres centeredkit(see
Figure 1):

S={[Ti]:ieNguiM®

“Notice thatK = A= (K = C) + D, and sinceK = C is consistent wittT", it follows thatK = A is consistent wittB,
which by K = 7) - (K = 8) entails thaK = (AU B) = (K = A) + B.
8By Np we denote the set of all non-negative integers;Ng={0,1,2,3,...}.
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[K]

Fig. 1. (*LP)=» (K*F)

We will show thatS is a well ranked system of spheres, and moreover that thepheult
revision function: induced byS satisfies (*LP) but violates (K*F).

Starting with the well-rankness &, notice that from its construction, it is straightforward
to verify that conditions (S1) - (S3) are true. Next for (SM},I" be an arbitrary nonempty
consistent set of sentences. If none@f [with i € Np) intersectsT] then (SM) is trivially
true. Assume therefore that for some No, [T;] N [I] # 0. Since there are only finitely
many spheres i smaller thanT;] (namely, [To], [T4],...[Tj-1]), it follows that there is

a smallest sphere i8 intersecting I']; thus (SM) is true, and therefore (S4) is also true
(notice that (SM) entails (S4)). For (SD), notice thditspheres ir8 are (by construction)
elementary. Hence for all nonempty, consistent sets oésent", c(I') is elementary, and
thereforec(I') N [I] is also elementary as desired.

For (*LP), letT" be a nonempty consistent set of sentences. We distinguialeée two
cases:c(I') # M, andc(I') = M. Starting with the first case, assume tbh@t) # M.

Then there is § € Ny such that(l') = [T;]. Consequently, there are oriiyitely many
spheres smaller thasfl') in S. Moreover notice that for al\ C¢ Cn(I'), c(A) € c¢(I') and
therefore, there is & C¢ Cn(I') such that(A) C c(2), for all A ¢ Cn('). Next we show
thatc(Z) = c(I'). Assume towards contradiction thgZ) c c(I'). Thenc(Z) N [I'] = 0, and
therefore by compactness and si#) is elementary, it follows that there isBac; Cn(I)

such that") c(Z) + =(AB). This again entails tha(Z) c ¢(B U Z), contradicting our initial
assumption abow. Hencec(Z) = c(I'), and given thatl[] C [Z] it follows thatK = Z is

consistent witi". Then, from Lemma 1 we derive (*LP).

Consider now the second case whefE) = M. If there is aZ ¢t Cn(') such that
c(Z2) = M., then clearlyK = Z is consistent witH" and, like before, (*LP) follows from
Lemma 1. Assume therefore thetA) ¢ M, for all A < Cn(I'). Notice that since
c(l) = M., (S*) entails thak « " = T". We will prove (*LP) by proving the equivalent
condition (rLP). This in turn is done by showing that, undex aissumptions of the case,
all sentenceg in Mac,cnr) K * A are tautologies.

ACM Transactions on Computational Logic, Vol. 0, No. 0, 01L.20
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Assume towards contradiction that for some (Mac,cyr) K * A, there is a worldz e M
that falsifiesy; i.e. z + —¢. Let p; be the propositional variable with the highest index
in ¢, and letu be the world that agrees witton po, py, . .., pj and satisfies all remaining
variablespj.1, Pj+2,..;i.e. forall0<i < j,u+ piffz+ p, andu + p; forall i > j.
Clearlyu + —¢. Next observe that falsifies at least one dfy, ..., p;. For assume that
ur p, forall0<i < j. Thenu = Tp = K, and consequently ¢ K, which again entails
thaty ¢ (MNac,cnn) K + A% This of course contradicts our initial assumption ahautience
there is a propositional variable {mo, . . ., p;}, falsified byu. Let py, be the maximun
such variable; i.eu + =py with 0 < m < j, andu + p; for alli > m. Notice that since
c(l') = My, T'is inconsistent withl'y,. Hence by compactness, there islalNg such that
'+ =(PmA--- A pm). Call Bthe singleto{—pm V - -V =pmy}. Itis not hard to see that
¢(B) = [Tm1] and thereforeK « B] = [Tyl N [=Pm V - - - V =Pmst]- This again entails that
u € [K * B], and therefore, sincey € u, ¢ ¢ K x B. Consequentlyp ¢ MNac,cnr K * A,
contradicting our initial assumption abagit Hence all sentencegsin (ac,cnr K * Aare
tautologies, and consequentfyi{c,cnr) K *A) +I' =T. Given that, under the assumptions
of the caseK = T" =T, we derive that (rLP) is satisfied, and consequently so i®}*L

We conclude the proof by showing thatviolates (K*F) atK. LetT be the sefl =
{=pPo, =p1,...}. Clearlyc(I') = M_. Let A be any finite subset df, and letpx be the
propositional variable with the highest indexAn It is not hard to see th&{A) = [Tk.4],
and thereforgy,1 € K«A. This again entails thatis inconsistent with = A, and therefore
(K+A)+T =1. Given thatA was chosen arbitrarily, it follows thal s (K * A) +T) +L.
On the other hand, sindeis consistent, fromK = 5) it follows thatK =« T" ¥L. Hence
KT # Nac,r((K + A) +T), violating (K*F).m

We conclude this section with an alternative way to appraaehrelationship between
(K*F) and (*LP).1°

Zhang and Foo defing)ac,r Mac,cnr K * (A U B) as thelower limit of the set family
{K«A: A Ct I'}. Hence (*LP) esentially equates multiple revisionIbwith the lower
limit of the set family{K =« A : A C; T'}. Itis natural to consider the other side of the coin
as well; i.e. the condition that equates multiple revisigthwhe upper limitof the same
set family (also defined in [Zhang and Foo 2001]):

(U*LP) KT = Nac;r Uscienm K * (AU B)
It turns out that (K*F) entails (u*LP) as well:

Lemma 2. Let K be a theory of L, and a multiple revision function satisfying (K*1) -
(K*8). If = satisfies (K*F) then it satisfies (u*LP).

Proof. Assume that satisfies (K*F). Lel” be nonempty consistent set of sentences. From
(K*F) it follows that there is & C¢ I' such thal is consistent witlK = C. Then by (K*6)

9To see this simply observe thah v —po (like any other tautology) belongs ©n(), and moreovelK =
K x {po V —~po}. Therefore since ¢ K, it follows thate ¢ Nac,cnr) K * A
10we are grateful to the reviewer for pointing out this altékreapproach.
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- (K*8) we derive thatK « C) + I' = K =« I'. Moreover it is not hard to see that for aByc ¢
Cn(I"), Bis consistent witkK «C and therefor& =« (CUB) = (K«C)+B C (K«C)+T" = K«T.
Hencel gc,cnr K *(CUB) ¢ K+I'and consequentlf)ac,r Usc,cnry K+ (AUB) € K+T.

For the converse, let be any sentence i =« I'. Then, sinceK «T' = (K =« C) + T, by
compactness we derive that there iA & I" such that ({A) — ¢) € K = C. Consider
now any finite subsed of I'. Clearly,AU A is consistent wittK « C, and therefore from
(K*7) - (K*8) we derive thatK « (AU C U A) = (K % C) + (AU A), which in turn implies
thaty € K« (AUC U A). Hence, for amyA C¢ T, ¢ € Ugc,cnn) K * (AU B). Therefore
¢ € Nac;r Usc,cnry K#* (AU B), and consequentl «I" € (Mac,r Usc,cnr) K*(AUB). B

According to Corollary 1 and Lemma 2, whenever (K*F) is trbeth (*LP) and (u*LP)
are true. Therefore another way to prove Theorem 3 would tshoov that there is a
multiple revision function satisfying (*LP) but not (u*LPJo this end, one can utilize a
counterexample from [Zhang and Foo 2001] showing that tisexset contraction function
= satisfying £LP) for which the lower limit of the familyK-A : A C¢ I'} is different from
the upper limit. To this result, one can apply the Levi idgnfivith some adjustments) to
get the desired conclusion. The advantage of our proof feofédm 3 over this alternative
line of reasoning is that in our proof we provide an expliggtem-of-spheres construction
that diferentiates (*LP) from (K*F), thus helping to get a bettergpaf the essence of the
two conditions.

5. THE LIMIT POSTULATE IN THE SYSTEM OF SPHERES MODEL

How would (*LP) look like in the realm of systems of spheres?He previous section we
showed that (*LP) is strictly weaker that (K*F), so perhaps system-of-spheres charac-
terization of (K*F) is a good place to start with.

Let K be a theoryS a system of spheres centered &fi,[and = the revision function
induced fronS via (S*). In [Peppas 2004] it was shown thatatisfies (K*F) ff S satisfies
the following condition:

(SF) ForallQc S, |JQis elementary.

How can (SF) be weakened to match (*LP)? An obvious way to eed8F) would be to
require only individual spheres & (and not arbitrary unions of them) to be elementary.
This is essentially what condition (EL) below says, exclpt it restricts the elementarity
request tqproperspheres 08.

By a proper sphere we mean any sph¥ére S that contains at least one world outside
all spheres smaller thavi. More precisely, for a sphei € S, we define theore of V,
denotedv®, to be se® = J{U € S: U c V}. We shall say that a spheee S is proper

iff V # V°. Notice that a non-proper sphelkis a degeneratesphere as far as multiple
revision is concerned, in the sense that there is no set térseed” such that) = ¢(I). It

is easy to show that all such non-proper spheres can be rerfrove a system of spheres
S without &tecting the induced multiple revision function. Hence thetnietion to proper
spheres in condition (EL) below:
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(EL)  All proper spheres it$ are elementary.

Condition (EL) is a natural constraint on a system of sph&rdésat can be justified along
similar lines to (SD)! Intuitively a proper spher¥ of S can be understood as a “fallback”
position that the agent can retreat to if her initial belitft§ is challenged (see for example
[Rott 2004]). All possible worlds outsid¥ are strictly less plausible than those\h
Suppose now that is not elementary. Then the agent’s fallback theléfy= (N V admits

a worldzthat is strictly less plausible than what is necessitatethbyer retreat t& (i.e.
ze [K’] and yetz ¢ V); clearly an undesired sidefect.

Unfortunately, despite its intuitive appeal, there is amagch between (EL) and (*LP):

Lemma 3. There exists a consistent theory K and a well ranked systespladres S
centered ofK] such that S satisfies (EL) and yet the multiple revision fanetinduced
from S violates (*LP).

Proof. LetL be the language produced from the boolean connectivesterpropositional
variablesy, po, p1, P2, - . .. Define the theorie¥o, Yi, Ya, ... as follows??

Yo = Cn({q, po, P1,- - -})
Y1 = Cn({q, p1, P2, - - -})

Yj = Cn({q, pj, Pj+1, - - -})

LetK = Yp and definés to be the system of spher8s= {[Y{] : i € No}U{M_}. Itis not hard
to verify thatS is indeed a well ranked system of spheres centerel]Jafthe argument
is exactly the same as the one in the proof of Theorem 3). Merday construction, all
spheres ir§ are elementary and therefore (EL) is satisfied. Next we shaithe revision
function= induced fromS atK violates (*LP).

Let I be the sel” = {-q V —=po,—~q V =p1,—qV —pz,...}. Itis not hard to verify that
[T =[~q] Y[{=po, = P1, = P2, - - -}]. Hence, the smallest sphere intersectirig M, , which
by construction, is also the smallest sphere intersectig .e. c(I') = c(—q) = M.
Consequentlyg ¢ K =« I'. To prove that« violates (*LP) it sufices to show thag €
Uac,cnm K * A (this would violate (rLP) which as already stated, is eqginato (*LP)).

Consider any finite subsét of Cn(I'). Then by compactness there exist finitely many
variablespi,, pi,, - .., pi, With iy < i2 < --- < iy, such that—q v -p;,,-q V =pi, ...,
-qV =p,} + A or equivalently—~q Vv (=pi, A =pi,A ... A=p;,) F A Itis not hard to
see that the theorY; .1 is compatible with-q Vv (=pi, A =pi,A ... A=p;,) and therefore it

is also compatible witlA. Consequently the smallest sphere intersecti&jgq no larger

UNotice that (EL) entails (SD).
12v,, Y1, Y2, . . . are essentially extensions by the new variablef the theoriedlo, T1, To, ... respectively in the
proof of Theorem 3.
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than [Y; .1]; i.e. ¢(A) C [Yi+1]. Given that, by construction, all worlds irYj[.1] satisfy
g we then derive that] € K = A. SinceA was chosen arbitrarily, it then follows that
g € Uac,cnm K * A. Hence (rLP) is violated, and consequently so is (*18P).

The above result proves that “vanilla” (EL) is notfScient to characterize (*LP) while
on the other hand (SF) is too strong. The notion of an elemgst of worlds however
remains central to the characterization. What is needashiething in between (EL) and
(SF) (with a twist).

First one definition. LeK be a theory an& a system of spheres centered &i.[We shall
say that a sphere M is finitely reachabldn S iff there exists a consistent sentepce L
such that(y) = V.

Consider now the following restrictions on a system of sph8; whereV is an arbitrary
sphere irS:

(R1) If Visfinitely reachable theW is elementary.
(R2) IfVisfinitely reachable theW® is elementary.

(R3) IfVC % Vthen Ve C V.

Condition (R1) is a weaker version of (EL) since it requiras/dinitely reachable spheres
to be elementary. Similarly, (R2) is a weaker version of (3fR)y collections of spheres
strictly smaller from a finitely reachable one are requietiave an elementary union.

The last condition, (R3), is perhaps the most interestintp@three. Although it may not
be apparent at first sight, (R3) is also a weaker version of. (S8 V be a non-finitely-
reachable sphere and consider the principle case whésedifferent from its coreve.
Moreover letz be any world in [ V¢]. Where care be placed in the system of sphe&3
Condition (SF) confines the location nto VC. Condition (R3) on the other hand is not
as strict. It allows to move away fromV/¢ as long as it doesn't go beyond Ve. V is a
boundary that ng) V¢-world can pass. Hence althouyh may not be elementary as (SF)
would require, it is, in a sens@Jmostelementary since any “runaway” world (i.e. any
world in [ V] — V°) doesn’t go that far away after all; it stays withih

Conditions (R1) - (R3) turn out to be the system-of-spheoemterpart of (*LP):
Tueorem 4. Let K be a theory, S a well-ranked system of spheres centéféd zand

x the multiply revision function induced from S at K via (S*heh= satisfies (*LP) S
satisfies (R1) - (R3).

Proof.

(=)
Assume that (*LP) holds. We show that (R1) - (R3) are satisfied
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Starting with (R1), suppose towards contradiction thatehe a spherd/ e S that is
finitely reachable but not elementary. Then there iy &L such that(y) = V and there
isaworldz e [V] — V. Definel" to be the sel”’ = {xVy e L : x € Z. We derive a
contradiction by showing thaty ¢ K « I' and yet-y € (ac,cqr) K * A (Which of course
violates (rLP) and therefore it violates (*LP)).

Itis not hard to verify thatl[] = [y] U {z} and therefore, since¢ V, ¢(I') = V = c(y). This
again entails thaty ¢ K = T.

For the second part of the argument, consider an arbitraitg fubsetA of Cn(l'). By
compactness there exist, - - - X, € zsuch thaf{(x; Vy) A --- A (Xy VY)} + A and therefore
{yv (Xt A--- A X))+ A DefineBto be the seB = {Xy, - - , Xn}. Clearly thenB C; zand
c(A) c c(B). Now observe that to provey € K = A it suffices to show that(B) c V.13
Clearly, sinceB ¢ zandz € [ V], there is aB-world in V and therefore(B) C V. Hence
from z ¢ V we derive that ¢ c(B) n [B], and consequently from (SD) it follows that
contradictsK « B. Therefore there is @ € z such that-p € K « B. Consider now the
setB U {yp}. ClearlyB U {¢} C¢ z and therefore, given thate [ V], c(BU {¢}) C V.
Moreover, since-p € K * Bt follows thatc(B) c ¢(B U {¢}). Consequentlyg(B) c V, as
desired. This again, as mentioned above, provesthatK = A.

We have thus shown thaty ¢ K = T and yet for all finite subset& of Cn(I'), -y € K = A.
This clearly violates (rLP) and therefore it violates (*LIPlence (R1) is satisfied.

For (R2), letV be any finitely reachable sphere$h Then for some consistept € L,
c(¢) = V. Assume towards contradiction that the coré/as not elementary and conse-
quently there is @ € [ V€] such thatz ¢ V. LetA be the sefA = {p v x: x € Z}. Itis not
hard to verify that A] = [¢] U {2}, and therefore(A) = c(¢), which by the construction of
A entails that-¢ ¢ K « A. Then by (rLP) it follows that there is a finite subgedf Cn(A)
such that¢ ¢ K « A, which again entails thaiy) C c(A). Moreover, by the construction
of A and compactness we derive that there is @ z, such thatfy v x} + A. Therefore
C(e) € c(A) C c({e Vv x}). This again entails that C c({x}). Hence all worlds in the core of
V are-x-worlds and thereforex € (N V°. This however contradicts our assumption that
ze [N VY. Hence (R2) holds.

Finally for (R3), assume on the contrary that there is a sp¥fer S such thatv® c V and
yet for somez € [ V°], z ¢ V. Letw be any world inV — V¢ and letl" be the setl’ =
{xVvy:xewandy € z. Itis not hard to see thal = {w, zZ} and therefore(T') = V,
which again entail& « I' = w.

Next we show thaf\ac,cyr) K * A € Cn(I'). Assume on the contrary that there is a
¢ € Nac,enn K * Asuch thaty ¢ Cn(T'). By (rLP) andK = I" = w we derive thatp € w.
Therefore, since ¢ Cn(I'), from the construction of it follows that—-¢ € z Applying
(rLP) atK + zwe get,K + z= 2= z+ (g, K * B. Therefore from-¢ € zit follows that
there is aB C; z such thaty ¢ K x B. Notice that sinceB ¢; zandz € [ V®], there

is at least onéB-world in V¢, and consequentlg(B) c V = ¢(I'). This, combined with
the fact thatc(B) is elementary — recall that we have already shown (R1) —sgisethat

' contradictg) ¢(B). Hence by compactness there ig a Cn(I') such that-y € M c(B).

13For in this caseg(A) c V = ¢(¢), and therefore all worlds in(A) entail -y.
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Consider now the sentenceH) v y. Clearly (A\B) vy € Cn(I'). Moreover it is not hard
to verify that, becausey € (M ¢(B), c({(AB) Vv y}) = ¢(B), and therefor& = {(AB) vV y} =
K x B. Hencep ¢ K = {(AB) Vv y}, which however contradicts € (Mac,cnr) K * A. Thus
Nac;cnm K * A< Cn(I') as desired.

From Nac,cnn K * A € Cn(I') we get thall” + Nac,cny K * A = Cn(I'), and given that
Cn(I') c w= K «T, we derivel’ + Nac,cnr) K * A € K+ T', which of course contradicts
(rLP). Thus (R3) is satisfied.

(=)

Assume that (R1) - (R3) are true and Iebe an arbitrary nonempty consistent set of sen-
tences. Ifc(T) is finitely reachable, then by (R2), the coreofl), call it V, is elementary.
Hence by compactness there i®\a: Cn(I') such that-(AA) € (V. This again entails
thatc(A) = ¢(I'), which again entails tha€ « A is consistent witl", and consequently by
Lemma 1, (*LP) holds.

Assume therefore thai(I') is not finitely reachable. First we show thiét« ' € T +
Macicnr K * A, or equivalently thatll] N [Nac,cnry K * Al € [K+T]. Giventhat K «IT =
c(I') n [I7, it suffices to show that(iac,cnry K * Al € ¢('). Notice that alll-worlds
in c(I') are outside its core; i.ec()® c c(I'). Moreover it is not hard to verify that
[Nacienm K * Al = [N(Uac,cnm[K * A])]. Next observe that, sinceg(I') is not finitely
reachable ir5, c(A) c c(I') for all A ¢ Cn(I'). Then given that, by (SDX(A) N [A] is
elementary,K = A] is always a subset of the cored(’), and consequently,)ac,cnn[K *
A] ¢ ¢(I')°. This again entails tha{[(Uac,cnn[K * AD)] € [N c(I)] and therefore by
(R3), [Nac,cnr) K = Al € ¢(I) as desired. This proves thidt« I' C ' + (Nac,cnr) K * A.

To conclude the proof we also need to show the converse. @antsierefore any sentence
yin T + Nac,cnr K * A. By compactness there isxae Cn(I') such that X — y) €
Nac;cnm K * A. We next show that all worlds io(I') satisfy k — y). Assume towards
contradiction that there is a (A —=y)-world in c(I'). Then, since we have assumed that
c(T) is not finitely reachable irs, c({x A =y}) c c(I), which again entails by (R1) that
N c({x A =y}) contradictd”. Consequently, by compactness, theregseaCn(I') such that
- € (N c({xA —y}). Consider now the sentenge/ (x A —=y). Clearlyp v (XA =y) € Cn(T)
and moreovec({p V (XA =y)}) = c({XA =y}). From this it follows thaK « {¢ V (XA =y)} =

K =« {X A =y}, and therefore,X A =y) € K = {¢ V (X A =y)}, which of course contradicts
(X =Y) € Nac,cnn K * A Hence k — y) € N ¢(I') and thereforg € K « T as desiredm

The last result of this section relates to condition (EL).&®ady noted, neither (K*F)
nor (*LP) corresponds precisely to (EL). Yet condition (BE)an intuitive constraint on
systems-of-spheres and therefore a question that natyradles itself is to identify its
multiple-revision counterpart.

LetI, A C L be any two nonempty and consistent sets of sentences. We Hefin to be
thesel" v A={xVvyelL: xel andy e A}. Consider condition (*CM) below:

(*CM) If (K« (T'vA))+T+ Lthenthereis @& C; I'such thatK « (AV A))+ Ak L.

Condition (*CM) can be thought of the counterpartomimpactnesi the context of mul-

ACM Transactions on Computational Logic, Vol. 0, No. 0, 01L.20



16 . P. Peppas, C. D. Koutras, and M.-A. Williams

tiple belief revision. Essentially (*CM) says thatlifis less plausible than (as indicated
by the fact thaf" is inconsistent witlK « (I" v A)), then there is a finite subsatof I' that is
less plausible than (i.e. Ais inconsistent withK = (Av A)). Theorem 5 shows that (*CM)
is an exact axiomatization of (EL).

Tueorem 5. Let K be a theory, S a well-ranked system of spheres centéféd zand
« the multiply revision function induced from S at K via (S*hehnx satisfies (*CM) ff S
satisfies (EL).

Proof.

(=)

Assumesx satisfies (*CM) and leY be any proper sphere B. If V is empty orV = M,
then clearlyV is elementary. Assume therefore thlat V c My, and letz be any world
outsideV;i.e.ze M| - V. To prove thaV is elementary it sfiices to show that ¢ [ V].
SinceV is proper, there is a world/ € V — V¢ (recall thatV® denotes the core of),
or in other wordsc(w) = V. Thenc(w) c ¢(2) and consequently, is inconsistent with
K+ (zvw). By (*CM) we then derive that there is aC; zsuch thaiA is inconsistent with
K = (A v w), which again entails that(w) c c(A). Consequently, all worlds ik contain
-(AA), or equivalently—(AA) € (V. Hence, sincé C¢ z, we derive that ¢ [ V] as
desired.

(=)

Assume that satisfies (EL) and |eff, A C L be any two nonempty and consistent sets of
sentences. Moreover assume thad inconsistent withK « (I' v A). Giventhat[ v A] =

[[] U [A], it is not hard to verify that(I" v A) = ¢(A) c ¢(T'). Moreover, notice that since
K = (' v A) is consistentg(A) — ¢(A)° is nonempty and therefoi&A) is proper. Hence
by (EL), c(A) is elementary. Consequently, c(A)] N [I'] = 0. By compactness we then
derive that there is aA C¢ T such that-(AA) € (N c(A). Consider now that the sétv A.
Clearly,c(A Vv A) = ¢(A) c c(A). ThereforeAis inconsistent withK = (A v A) as desired.

[ |

6. SET CONTRACTION REVIEW

So far we have addressed two of the three open problems medtio the introduction.
The rest of the paper is devoted to the third problem; i.e.rewide a characterization of
(~LP) in the partial meet model. In this section we review theassary literature on set
contraction and the partial meet model, and the next sectimiains our representation
result for ¢LP).

Zhang and Foo, [Zhang and Foo 2001], define set contractiarfasction= : % x2-
KL, mappingK, 'y to KT, that satisfies the following postulates:

(K-1) K-Tisatheoryof..
(KZ2) K-ircK.
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(K=3) If I'is consistent withkK thenK-T" = K.

(K=4) If T'is consistent, theh is consistent witlK-T".

(K=5) If ¢ € Kandrl' + =¢ thenK C (K-T) + ¢.

(K=6) If Cn(I') = Cn(A) thenK-T' = K-A.

(KZ7) If T C AthenK=A C (K-T) + A.

(K-8) If T € A andA is consistent wittK-T", thenK-T" € K-A.

We note the dferent aims of set contraction and AGM sentence contractiothe first
case the initial belief séf is contracted in order tbecome consistemtith the epistemic
input (encoded as a set of sentenCgswhile in the latterK is contracted so thatfails to

entailthe epistemic input (represented as a single sentence

Like with multiple revision, we shall focus only on set cattion bynonempty and con-
sistentsets of sentences.

The constructive model for set contraction we shall corrsigein is thepartial meet
model. This model is based on the notion eémainderof a belief set. More precisely, let
K be a theory anfl a nonempty consistent set of sentencegerAainderof K with respect
toT, also called &-remainderfor short, is any maximal subset Kfthat is consistent with
I, [Zhang and Foo 2001]; the set of &lremainders is denoted iy 1 I'. By Rk we
shall denote the set of all remainderskofvith respect to any nhonempty consisténi.e.
R = UKLT: 0T cLandl ¥ L}.

Consider now a preordet in Rx. For any nonempty set of remaindebs C Rk, by
max(®) we shall denote the maximal elementsd®fvith respect tog, i.e. max(®) =
{H e ®:forall D € ®, D < H}. When the underlying preorderis understood from the
context, we shall drop the indekfrom max

A preorder< on Rk essentially encodes preference between remainders vétbetier
remainders appearing higher in the preorder. Given thidingathe partial meet model
defines the (set) contraction Kfby I" as the theory resulting from the intersection of the
bestr-remainders:

(SC) K-T'=NmaxKur)

It turns out that the functions induced by (SC) are a sup@&fstttose satisfying the pos-
tulates for set contractiorK(-1) - (K-8). To obtain arexactmatch between the two, two
extra constraints are needed ©nThe first guarantees that the seaxK 1. I') is always
well defined:

(x1) KdLiTI has a maximal element.
For the second constraint we need an extra definition. We @#fieclosureof a set of
remaindersd C Rk, denoted®], to be the sef®] = {H € Rk : NP < H}. The second

constraint orx requires thamaxK LI') is always equal to its closure:

(x2) maxKwur)=[maxKLuLID)].
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In [Zhang and Foo 2001], it was shown that contraction fuumgigenerated from total
preorders< satisfying K 1) - (< 2) via (SC), coincide precisely with the class of func-
tion satisfying the postulate{1) - (K-8).1* In addition to these results, Zhang and
Foo proved that the well known relationships between seetegvision and contraction,
described by the Levi and Harper Identities (see [Garderif6B88]), also hold (with ade-
guate modifications) between multiple revision and setre@tion. In particular, consider
the following conditions:

K«I=(K-IN+T (Generalized Levi Identity)

K-I'=Kn(K=I) (Generalized Harper Identity)

It was shown in [Zhang and Foo 2001] that every set contraétioction satisfyingK—1)

- (K=8), induces via the Generalized Levi Identity a multipleis@n function satisfying

(K = 1) - (K = 8); conversely, every multiple revision function satisfyi(K = 1) - (K = 8),
produces via the Generalized Harper Identity a set comraéiinction satisfying K-1)

- (K=8). In fact, the relationship between multiple revision @ed contraction is even
stronger: for any set contraction functienthe successive application of the Generalized
Levi and Harper Identities leads us back“tdtself.*> The same is true for multiple revi-
sion: starting with a multiple revision functionone makes a full circle back towhen
successively applying the Generalized Harper and Levitities

A final result reported in [Zhang and Foo 2001] on the relatiop between multiple re-
vision and set contraction is related to the limit postylgteConsider any set contraction
function- and let+ be the multiple revision function produced freavia the Generalized
Levi Identity. Zhang and Foo proved thasatisfying ¢LP) iff - satisfies {LP).

We conclude our review of set contraction with a final notetanrelationship between set
contractions and preorders on remainders. Observe thagfdr set contraction function
~ there is in principle more than one preorder on remaineecsrresponding te- via
(SC). To see this notice that the location of the initial besietK in < is irrelevant as far
as the induced set contraction functieris concerned: iK € K 1T thenK is theonly
remainder inK 1. T and therefor&—I" = K regardless oK’s location in<. Hence for a
given preordek in Rk, there is a whole family of preordesg, that difer from < only

in the relative location oK, all of which give rise to the same set contraction function
~. We shall callcanonicalthe member of this family that placé&sat the very top. More
precisely, we shall say that a preordein Rk is canonicaliff it is total, it satisfies€1) -
(<2), and moreover, for aK’ € Rk, K’ < K. Based on the preceding discussion it is not
hard to verify that canonical preordersisce to generatall set contraction functions
satisfying K-1) - (K=8). Hence assuming canonicity farcomes at no cost to generality,
and this is what we will do in the next section to simplify thegentation of our results.

1470 be precise, the results in [Zhang and Foo 2001] were sHiiglatly differently. Most importantly, in the
original version, condition< 1), connectivity, reflexivity, and totality ok were all tacitly assumed; only(2)
was stated explicitly. Nevertheless, the two versions guévalent.

15The proof is not explicitly stated in [Zhang and Foo 2001] ibéllows immediately from the proof of Propo-
sition 4.14.
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7. THE LIMIT POSTULATE IN THE PARTIAL MEET MODEL

In the partial meet model, remainders play a role similahtt bf possible worlds in the
system of spheres model. This view is further supported éydhowing result.

Lemma 4. Let K be a theory. For any remainder id R there is a possible world
ze M, such that H= K n z. Conversely, for anyeg M, KN ze Rk.

Proof. LetH be any remainder iRk . Then there is a nonempty consistent set of sentences
I'suchthaH € KL T. If H = K then for anyz € [K], H = K n z. Assume therefore that

H # K. By definition,H is consistent witl", and therefore there exists at least one world
ze [H] Nn[I]. Clearly, sinceH ¢ K andz € [H], H € K nz Moreover notice thak n zis

a subset oK that is consistent witli. SinceH is amaximalsuch subset oK, it follows
thatK n zcan not be larger thad. ThusH = K n zas desired.

For the second part of the lemma, i€ M, be any possible world. Cali the theory

H = Knz We show thatH € K 1. z. ClearlyH is a subset oK that is consistent witl.
Hence all we need to show is thdtis a maximal such subset. This however follows easily
from the construction offl: for any sentencg € (K — 2), -y € z and thereforéd U {y} is
inconsistent wittz. |

Given this strong connection between possible worlds anthireders, it should not be
surprising that the partial-meet characterization-dfF) resembles that of (*LP) in the
system of spheres model.

First some extra definitions and notations. Kebe a theory ane a preorder inRx. We
shall say that a remaindét € Ry is finitely accessibléwith respect tox) iff there is a
consistent sentengec L such thatH is maximalin K L {¢} with respect to<. Moreover,

for any remaindeH € Rk, by H< we denote the set of all remainders that are greater or
equal toH (wrt <); i.e. HS = {D € R« : H < D}. Similarly, for the strict part ok® we
defineH~ to be the seH~ = {D € Rk : H < D}. Consider now the following conditions:

(PM1) If H is finitely accessible thefH<] ¢ H<.
(PM2) IfH # K andH is finitely accessible thefH~] € H~.

(PM3)  IfH # K then[H<] € H<.

To understand the intuition behind (PM1) - (PM3) one needsak at the analogy between
a worldzin a system of spheréson one hand, and a remaind¢tin a preordex on the
other. Given the connection between worlds and remaindeegressed by Lemma 4, it
is not hard to see that a connection emerges between theestregherd/ containingz,
andH<: each set contains the items (worlds and remainders regpiggthat are more
or equally plausible t@ andH respectively. With this reading in mind, it is not hard to

16The strict part of a preordek is defined as followsx < yiff x < y andy £ x.
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see that conditions (PM1) - (PM3) are directly analogousaiditions (R1) - (R3) and
therefore can be justified on the same grounds.

A final note before presenting our last representation tekikle its analogue for multiple
revision, condition £LP) — repeated below for convenience — is equivalent to alsimp
condition (cLP):

(=LP)  K-T =Uac,r Nacienn K-(AU B)
(CLP) KT = (KN Cn(D)) + Nac,cnr KA

In [Zhang and Foo 2001] it was shown that, in the presencesifiates K—1) - (K-8), for

set contraction, conditions(P) and (cLP) are equivalent; this equivalence, like Lemma 4
will be used extensively in the proof of our final result. Edyiaseful will be the following
two corollaries that are immediate consequences of Lemma 4:

CoroLLarY 2. Let K be a theory, and HH’ two distinct remainder iRg. If H” # K,
then HZ H’.

CororLary 3. Let K be atheory, H a remainder iR, andI’ a nonempty consistent set
of sentences such thatKI' + L. If T is consistent with H, then ld K iL.T".

Theorem 6 below addresses the last open problem mentiorthd introduction. It pro-
vides a characterization of LP) in the partial meet model:

Tueorem 6. Let K be a theory aneé a canonical preorder irR¢. The set contraction
function— defined fromx by means of (SC) satisfiesl(P) iff < satisfies (PM1) - (PM3).

Proof.

(=)

Assume that- satisfies {LP), and thus the equivalent condition (cLP). Sircis canoni-
cal, from [Zhang and Foo 2001] it follows thatalso satisfies—1) - (K-8).

For (PM1), assume that is finitely accessible and letbe a consistent sentencelirsuch
thatH € K 1L ¢. If H = K thenH~ = {K} and therefore (PM1) trivially holds. Assume
therefore thaH # K. Then-¢ € K. Moreover assume towards contradiction that there
isaD € Rk such that\H< € D andD < H. By Lemma 4, there is a worldsuch that
[D] = [K]U {z} andz ¢ [K]. Consider now the sdt = {p VY :y € z. We will derive

the desired contradiction by showing that on the one hand K-I" and yet on the other
hand-¢ € Nac,cnry K-A (thus contradicting (cLP)).

To show-¢ ¢ K-T it suffices to show thaltl € maxK 1.T'). Clearly sinceH is consistent
with ¢, it is also consistent witlr, and therefore by Corollary 3] € K uI". Consider now
anyH’ € KL T. If -¢ ¢ H’ then, by Corollary 3H’ € K 1 ¢ and therefore, sincH is
maximal inK 1 ¢, H" < H. Suppose on the other hand that € H’. Given thatH’ is
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consistent witH, it is not hard to verify that in this cadé’ + I = z, and therefore from
Lemma 4 it follows thaH’ = D. Consequently once again we derive tHat< H. Hence
no remainder irK LT is strictly greater thaid which makesH maximal inK 1L T. Since
H does not contaimg it then follows that-¢ ¢ K-T..

For the second part of the argument, consideragy Cn(T'), and letE be any remainder
in maxK 1L A). We show that¢ € E. If E = K this is clearly true. Assume therefore
thatE # K, which again entails that(AA) € K. SinceH is consistent witl it is also
consistent withA, and therefore (by Corollary 3H € K 1L A, which again entail$l < E.
Recall thatD < H and thereforeD ¢ maxK 1 A). SincemaxK 1 A) is closed (because
of the completeness &), this entails that there isyae (Y maxK 1 A) such thaty ¢ D.
Hence, one can easily verifyly € z. Given thatz A it follows that=((AA) A =y) ¢ D.
From (M H=< ¢ D we then derive that for sont@ € H<, =((AA) A y) ¢ G, and therefore
G € K1 (AU {~y}). Consider now anys’ € maxK 1L (AU {-y}). By the construction
of G it follows thatH < G < G’. Moreover, sinc&’ is consistent withA, by Corollary 3
it follows thatG” € K 1L A. Yet, sincey € M maxXK 1 A) andG’ is compatible with-y,
we derive thatz’ ¢ maxK 1L A). Putting together the above it follows thdt< G’ < E,
and thereforéd < E. SinceH is maximal inK 1 ¢ this entails thaE contains—¢. Since
E was chosen arbitrarily, it follows that all remaindersnraXK 1L A) contain—¢ and
therefore-~p € K-A. SinceA was chosen as an arbitrary finite subse€aofl) it follows
that—¢ € MNac,cnr) K-A. Earlier however we have shown thap ¢ K-I'. Combined
with (cLP) we derive a contradiction.

For (PM2), letH € Rk be a finitely accessible remaindeffdrent fromK, and letD € Rk
be such thab < H. We will show thatD ¢ [H<].

If D < H this follows trivially from (PM1) proved above (observe tH&l<] < [H<]).
Assume therefore thdd < D. Next we show that there is a finite set of sentengeasich
thatD € maxK L A) (i.e. D is finitely accessible).

SinceH is finitely accessible, there is a consistent L, such that-p € K andH €
maxK 1L ). If —=¢ ¢ D then from Corollary 3, anti < D, it follows thatD € maxK 1 ¢),
and therefor® is also finitely accessible. Assume thereferge D. SinceD € Rk, by
Lemma 4, there is a€ M — [K] such that P] = [K] U {Z. Itis not hard to verify that
D is theonly remainder inK 1 z. Definel to be the sel" = {¢ vV x : X € Z}. Clearly
I" is inconsistent witkK and consistent with bothl andD. Therefore from Corollary 3,
H,D € K L T. We next show thab is maximal inK 1L T'. Consider anyH” € K L T.
If - ¢ H’ then from Corollary 3H’ € K 1L ¢ and thereforeH” < H. Hence from
H < D and transitivity,H” < D. On the other hand, ¢ € H’, then the consistency of
H’ with T entails thatH’ is consistent withg, and therefordd’” € K 1 z Given thatD
is the only remainder il L z, it follows thatH’ = D and reflexivity entails that, once
again,H’ < D. HenceD is indeed maximal irK 1. T', and therefore, fronD < H, so is
H. Given that-¢ ¢ H, this entails thaty ¢ K-I'. From (cLP) it then clearly follows that
—¢ & Nac,cnr) K—A. Hence there is & C; Cn(I') such that-¢ ¢ KA. This setAis the
one that makeb finitely accessible. Indeed, sine@ ¢ KA, there is aH’ € maxK 1L A)
such that¢ ¢ H’. Moreover, sincéd is consistent with', D is also consistent witA and
therefore by Corollary 3D € K 1L A. Finally, sinceH’ is consistent withp, Corollary 3
entails thaH’ € K 1Ly, and thereforél” < H < D. Hence, by transitivityD is maximal in
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K 1L A as desired.

Consider now an\e € H*. FromD < H we derive thatD < E. Then, sinceD €
maxK L A), we derive that-(AA) € E. SinceE was chosen arbitrarily, it follows that
=(AA) € N H=. Given thatD is consistent withA we then derive thad ¢ [H~] as desired.

For (PM3), assume towards contradiction that theretir® € Rx such thatH # K,

A H* ¢ D, andD ¢ H<. Clearly thenD < H < K. Moreover, from Lemma 4 it follows
that there exist, u € M| — [K] such that H] = [K] U {z} and D] = [K] U {u}. Definel'
to be the sef’ = {x vy : x € zandy € u}. We will derive the desired contradiction by
shown that there is a sentenge K- such thatp ¢ ((K N Cn(I)) + Nac,cnry K=A) (thus
contradicting (cLP)).

It is not hard to verify thatk 1 I' = {D,H} and therefore, sinc® < H, K-I' = H.
Hence, sinceH ¢ D (by Corollary 2), there is @ € K-I such thatp ¢ D. With the
aid of Lemma 4 it is not hard to see that the only remaindeRdncompatible withu is

D, i.e. K 1L u = {D}, and therefor&K~u = D. Hence fromp ¢ D and (cLP) it follows
thate ¢ (K N u) + Ngc,u K-B. Consequently by compactness, for ahycs K nu,
(AA - ¢) ¢ Ngc,uK-B. Consider an arbitrary such ¢t K nu. Then there is a
B C¢ usuch that fA — ¢) ¢ K-B. SinceD is compatible withy, it is also compatible
with B, and therefore-(AB) ¢ D. Hence, from\H~ € D we derive that there is an
E € H~ such thatE is compatible withB. This again entails that all maximal elements
of K 1L B are inH=. Consider now anf € maxXK L B). ClearlyH < E and sinceE is
finitely accessible, by (PM1) — which we have already showbddrue — we derive that
E< = [EX] and thereforg\ E< ¢ H. Hence there is § € ( E~ such thaty ¢ H. Since
all remainders irE< containy andE is a maximalB-remainder, it is not hard to see that
maxK 1L {(AB) Vv =y}) = maxXK 1 B). ThereforeK—{(AB) v -y} = K=B and consequently,
(AA = ¢) ¢ K={(AB) v =y}. We are only one step away from contradiction. Notice that
sincey € N EY, it follows y € K and therefore frony ¢ H we derive thatsy € zand
consequentlyAB) v -y € Cn(I'). Hence fA — ¢) ¢ (Ncc,cnr K—C. SinceAwas chosen
as an arbitrary finite subset Kfn u, we derive thap ¢ (K Nu) + Nac,cnry KA. Finally,
sinceCn(I') ¢ u it clearly follows thaty ¢ ((K N Cn(I')) + Nac,cnry K—A. This, together
with ¢ € K=T', contradicts (cLP).

(=)

Assume thak satisfies (PM1) - (PM3). If" is compatible withK then clearlyK-T" = K

and for allA ¢ Cn(I'), K-A = K, from which (cLP) trivially follows. Assume therefore
thatI" is inconsistent withK. We distinguish between two cases, depending on whether the
elements omaxK 1L T') are finitely accessible.

Case-l:

Assume that there is a# € maxK 1.T) such thaH is finitely accessible. To prove-[P),
we first need to show that there is a finite subsef I" such that:
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H e maxK LA) (1)
K-['=Kn ([ +K-A) 2

Starting with (1), consider any worlde [ H<]. DefineD to be the theorfp = KNz It

is not hard to verify that, by constructiofyH~ € D. Therefore, by (PM2)H < D. Since
H € maxK LT) this entails thaD is inconsistent with" and therefore, so & Sincezwas
chosen arbitrarily, this shows thatH= is inconsistent witl". By compactness we then
derive that there is aA C¢ T such that-(AA) € (| H™. Notice that sincéd is consistent
with T it is also consistent wittA and therefordd € K 1L A. Then from—(AA) e N H™ it
follows thatH € maxK 1L A) as desired.

Next we show thak-TI' = K n (' + K-A). ForLHS ¢ RHS consider any sentengein
K-TI'. Clearlyy € K and therefore it sfices to show thap € I' + K-A. Observe that
sinceH € maxK 1 A) andH is consistent witl", [[ + K=A] # 0. Letzbe any world in
[T + K-A]. We show thatz + ¢. If z € [K] this is trivially true (sincep € K). Assume
therefore thar ¢ [K]. This entails that € [I']. DefineD to be the seD = Knz ltis
not hard to see thdd is azremainder and moreovef~A C D. Sincex is complete, we
then derive thaD € maxK 1 A) and consequentlid < D. Moreover, since € [T], D is
consistent witl" and therefore, by Corollary 8 € K uT". Hence, fronH < D, we derive
that D is a maximall-remainder, and therefore, singee K-T, it containsy. Clearly
theny € zand sincez was chosen arbitrarily, it follows that all worlds iff f K-A] are
o-worlds and therefore € I' + K-A. HenceK-I"' € K N ([ + K-A).

For the converse, it $lices to show that{~T'] € [K n (I + K-A)]. Consider any world
z € [K-T]. Notice that K n (I' + K=A)] = [K] U [(T + K-A)]. Hence ifz € [K] we are
done. Assume therefore thag [K]. Then there is @ € K such that-¢ € z. DefineD
to beD = KNz Itis not hard to see thdd is azremainder and moreove{-T" C D.
Then, by the completeness &f D is a maximall-remainder. This entails, firstly, that
z € [I, and secondly thatl < D. Then given thaH is also a maximaA-remainder
and moreoveD is consistent withA, we derive (with the aid of Corollary 3) thd@ is

a maximalA-remainder. This again entails that [K-A]. Hencez € [I'] N [K-A], and
thereforez € [K]U[(I' + K=A)] as desired. We have thus shown tKail" = K N (' + K=A).

Having proved (1) and (2) we can now proceed with the proof-dfR). We do so by
proving that the left hand side of(P) is a subset of the right hand side, and vice versa.
StartingLHS ¢ RHS, let ¢ be any sentence iK-T'. Theny € K and, by (2), for some
B ¢t I, ((AB) — ¢) € K-A. Moreover, since, by (1H is both a maximaA-remainder
andT-remainder, it follows thaK=A is consistent witl". HenceK=A is consistent with
B. Then by K-8), K-A ¢ K-(A U B) and therefore ((B) — ¢) € K-(AU B). Now let
D be any maximal A U B)-remainder. By Lemma 4 there existsAy B)-world z such
that [D] = [K] U {z). Since ((B) — ¢) € K=(A U B), it follows that (\B) — ¢) € z
Moreover, by constructiorB C z, and therefore € z Given thaty is also inK, from
[D] = [K] U {z} we derive thaty € D, and sinceD was chosen arbitrarily; € K-(AU B).
Next observe that by constructi@is consistent withA and therefore, by Corollary 3, it
is a A-remainder. Hencel < H. Moreover it is not hard to verify thatl is aA U B-
remainder, and therefore frob< H it follows thatH is amaximal AJ B-remainder. This
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entails thatK ~(A U B) ¢ H and sinceH is consistent witH", we derive thaK-(A U B)
is also consistent with. Consequently, by-8), K-(AU B) ¢ K-(AuU B U C), for any
C C¢ I'. Then sincep € K—(A U B) we derive that € (Ncc,r K-(AU BU C). Given that
AU B ¢ T we then derive thatHS ¢ RHS as desired.

Conversely, letp be any sentence iQ)gc,r Ncc,r K-=(B U C). Then for someB C T,
¢ € Nee,r K=(BUC). Hencey € K—(BU A). Thereforep € K and moreover, by -7),
¢ € (K-A) + (AU B). Consequentlyy € K N ((K-A) +T), and therefore, by (2} € K-T'
as desired.

Case-ll:

Assume now that no member afaXK 1 I') is finitely accessible. Firstly observe that
(KN Cn()) + Nac,r K=A € K. Next we show that N Cn(T')) + Nac,r K-AC K-T.

Assume towards contradiction that there ig a (K N Cn(I')) + Nac,r K—A) such that

y ¢ K-T. Clearly,y € K. Moreover, sincg € (KNCn(I'))+Nac,r K—A), by compactness,
there is ax € (K N Cn(I')) such that X — y) € Nac,r K-A. Moreover, fromy ¢ K-TI'

it follows that there is & € maxK 1 T'), such thaty ¢ H. It is not hard to verify that,
sincex € (K N Cn(I")) andH is aT-remainderx € H. ThereforeH is consistent with
X A =y and consequently by Corollary B, € K 1L {x A —y}. Since we have assumed that
H is not finitely accessible, there isx € maxK L {x A =y}) such thatH < D. This
makesD strictly greater than all'-remainders. Next we show thatD< is inconsistent
with T, or equivalently, that nd-world belongs to[) D<]. Let zbe an arbitrary-world.
DefineH’ to be the theonH’ = K n z It is not hard to verify thaH’ is aT-remainder
and therefordd’ < D. Moreover, since is finitely accessible, by (PM1) we derive that
D= is closed, which combined with” < D entails that D= ¢ H’. Consequently there
is ay € (D= such thaty ¢ H’. Given the construction dfl’ it follows that—y € zand
thereforez ¢ [ D<]. Hence we have shown thHtis inconsistent with) D<. Therefore
there is ap € Cn(T") such that-¢ € (N D¥, which again entails (because of the canonicity
of <) that—-¢ € K. Consider now the sentenge (xA-y). Clearly,-(¢V(xA-y)) € K, and
therefore, by Corollary 3 € K 1L {¢ v (XA =y)}, and given thatp € N D%, it follows that
—¢ € N maxK 1 {pV(xA-y)}), and thereforex — y) ¢ K—{¢V(XxA-Yy)}. Moreover notice
that{e v (x A =y)} €+ Cn(I'). Hence we derive thak(— y) ¢ (Nac,r K—A. This of course
contradicts our initial assumption about> y. Thus K NCn(I")) + Nac,r K-AC K-T as
desired.

For the converse, observe thit (0 Cn(I')) + Nac,cnry K=A = K N (T + Nac,cnny K=A),
and therefore, given tha-T C K, it suffices to show thaK-T' C T + Nac,cnr) K-A,
which in turn is equivalent tol + Nac,cnr K—Al € [K-T]. Consider therefore an arbi-
trary worldz € [I" + Nac,cnry K—Al. If z€ [K] then clearlyz € [K-T]. Assume therefore
thatz ¢ [K]. DefineH to be the seH = K N z Itis not hard to see that is al'-remainder
and that H] = [K] U {z}. Then sinceK] € [Nac,cnr K—Al (see footnote 17) and more-
overz € [Nac,cnr K—Al, we derive that K] U {Z} C [Nac,cnry K—A] and therefore,
Mac;cnry K—A € H. To conclude the proof it sfices to show thatl € maxK 1.T).

7By (K~2), KA c K for all Ac T, and thereforgac,r K-A € K. Hence K N Cn(I") + Nac,r K-AC K.
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Assume on the contrary that there i®ac maxK 1 I') such thatH < D. Consider now
any A C¢ Cn(l). We show thai D ¢ K-A. If A is consistent withK, then this is
clearly true (recall thal is inconsistent wittK and therefor&k € D). Assume therefore
that—(AA) € K. By Corollary 3,D € K 1L A. Moreover by the assumption of the case,
D is not finitely accessible, and therefore we derive thateilis a A-remainder, is not
a maximal Aremainder. Hence all maxima&remainders are iiD<. This again entails
that() D~ ¢ K—-A. SinceA was chosen arbitrarily, it follows tha) D~ C Nac,cnr K-A.
Notice however that fromH < D and (PM3) we derive thgh)y D< ¢ H, and therefore
Mac;cnry K=A ¢ H. This of course contradicts our earlier conclusion aiduHence we
have shown thati € maxK 1T, which again entails tha€~I" € H and therefore from
the construction oH we derive thaz € [K-TI'] as desiredm

8. SUMMARY AND DISCUSSION

In this article we have addressed three open problems in thigphe belief change litera-
ture. Namely, we provided characterizations of the limistpdates (*LP) and<LP) in the
system-of-spheres and the partial meet models respegctarsdl we proved that (*LP) is
strictly weaker than (K*F).

These results, together with the ones in [Zhang and Foo 20@1]Peppas 2011] that relate
the limit postulate to (generalizations of) the epistermttenchment model, complete the
picture of the fects that the limit postulate has on all three major constreienodels in
Belief Revision. The obtained characterizations revea@epatonnection between the limit
postulate and the notion of &hementaryset of possible worlds.

There is also another side to these results. They providleduinsight on the soundness
of the limit postulate. As already stated, the limit postelleras primarily introduced to
close the gap between the postulates IK- (K-8) for set contraction and the nicely or-
dered partition model. It is important however to assesditthie postulate independently
of its service to a particular model. Can the limit postullageconsidered a general fea-
ture of rationality in multiple belief change, alongside thGM postulates? In our view,
the results of this article lead us to a negative answer. @nehink of natural situations
where conditions (R1) - (R3) (or alternatively (PM1) - (PM38Je violated. Consider for
example the system of spher8sn Figure 1, which as we have shown induces a revi-
sion function= satisfying (*LP). The two worldg = Cn({po, =p1, P2, =ps,...}) andu =
Cn({=po, 7p1, =P2, = Ps3, . . .}) belong to no sphere i8 other thanM,. Suppose now that
we decide thar is in fact more plausible than and to that &ect we introduce an ex-
tra sphereJ = (Uiey,[Ti]) U {2} to S. This simple addition breaks down the compliance
with (*LP); the new system of spheres violates (R3) and cqusatly its induced revision
function violates (*LP).

In our view the results of this article strongly indicatettlt@e limit postulate should be
treated as the identifying condition of an important splecése of set contraction (and
multiple revision) functions, rather than a general featfrrational belief change.
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