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Multiple Belief Change extends the classical AGM framework for Belief Revision introduced by
Alchourron, Gardenfors, and Makinson in the early ’80s. The extended framework includes epis-
temic input represented as a (possibly infinite) set of sentences, as opposed to a single sentence

assumed in the original framework. The transition from single to multiple epistemic input worked
out well for the operation of belief revision. The AGM postulates and the system-of-spheres
model were adequately generalized and so was the representation result connecting the two. In
the case of belief contraction however, the transition was not as smooth. The generalized pos-

tulates for contraction, which were shown to correspond precisely to the generalized partial meet

model, failed to match up to the generalized epistemic entrenchment model. The mismatch was
fixed with the addition of an extra postulate, called the limit postulate, that relates contraction by
multiple epistemic input to a series of contractions by single epistemic input. The new postulate
however creates problems on other fronts. Firstly, the limit postulate needs to be mapped into
appropriate constraints in the partial meet model. Secondly, via the Levi and Harper Identities,
the new postulate translates into an extra postulate for multiple revision, which in turn needs
to be characterized in terms of systems of spheres. Both these open problems are addressed in
this paper. In addition, the limit postulate is compared with a similar condition in the literature,
called (K*F), and is shown to be strictly weaker than it. An interesting aspect of our results
is that they reveal a profound connection between rationality in multiple belief change and the
notion of an elementary set of possible worlds (closely related to the notion of an elementary class
of models from classical logic).
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1. INTRODUCTION

Since the publication of the celebrated AGM article in 1985,[Alchourron et al. 1985],1

Belief Revisionhas grown to be a central area of research inKnowledge Representation.
Belief Revision studies the process by which a rational agent changes her initial belief set
in the light of new information.

In the original formal framework developed in [Alchourron et al. 1985], the new informa-
tion is modeled as asingle logical sentenceϕ and two types of belief change are studied;
belief revision, after which the whole area took its name,2 and beliefcontraction. More
recent work generalized this framework to include epistemic input encoded as a (possibly
infinite) set of logical sentencesΓ, thus introducing the processes ofmultiple revisionand
multiple contraction(see [Fuhrmann and Hansson 1994], [Peppas 1996], [Zhang andFoo
2001], [Peppas 2004]).

The transition to multiple epistemic input was not without complications and some impor-
tant questions remain unanswered. In this article we address three of the most challenging
open problems in multiple belief change. All three problemsrelate to well known con-
ditions that reduce multiple revision and contraction to a series of sentence-revisions and
sentence-contractions respectively.3

To describe the three problems in more detail, some background is necessary. The process
of belief revision is defined as the type of rational belief change for which the epistemic
input needs to be incorporated into the agent’s initial belief setK, possibly at the expense
of some of the original beliefs inK. In belief contraction on the other hand, the epistemic
input represents information that needs to be removed from the initial belief setK. Once
again, beliefs different from the epistemic input may also be affected in the process.

Belief revision and contraction have been described both axiomatically and constructively,
in what is now known as theAGM paradigm. In terms of axiomatic models, the so-called
AGM postulatesfor revision and contraction are widely acknowledged to have captured
much of what is the essence of these two types of belief change. Among constructive
models, the three most popular ones are thesystem of spheres model, the partial meet
model, and theepistemic entrenchmentsmodel. The system of spheres model is used to
construct revision functions, while the other two are used in contraction. Representation
results have been established that prove the equivalence between the AGM postulates and
the corresponding constructions (see [Peppas 2008] for a recent survey on Belief Revision).

As noted above, the AGM paradigm has recently been extended to include multiple epis-
temic input. The AGM postulates for revision have been modified accordingly, [Lindstrom
1991], and so was the corresponding system of spheres model,[Peppas 2004]. In the
case of belief contraction, things were more complicated asthere are at least three differ-
ent ways of interpreting the contraction of a belief setK by a set of sentencesΓ, known

1Named so after the initials of its authors,Carlos Alchourron, Peter Gardenfors, andDavid Makinson.
2To distinguish the research area from the process, we shall use the capitalized termBelief Revisionfor the former
and the same term in lower case letter (i.e.belief revision) for the latter.
3We shall often refer to the original AGM revision and contraction operators as sentence-revision and sentence-
contraction, to distinguish them from their multiple counterparts.
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aspackage contraction, choice contractionandset contraction, [Fuhrmann and Hansson
1994], [Zhang and Foo 2001]. In this article we consider onlythe third and most recent
generalization of contraction.

Set contraction is defined as the process of rationally contractingK to make itconsistent
with the epistemic inputΓ (notice the difference in aim with sentence contraction). Zhang
and Foo, [Zhang and Foo 2001], proposed a generalization of the AGM postulates for set
contraction and considered corresponding generalizations of the constructive models for
contraction. In the case of the partial meet model things worked out well. Generalizing the
epistemic entrenchment model however proved more challenging. A new structure called a
nicely ordered partitionwas introduced for this purpose which however didn’t quite match
up to the postulates: the functions constructed from nicelyordered partition are aproper
subset of those satisfying the postulates for set contraction. The mismatch was fixed with
the introduction of an extra postulate, called thelimit postulatefor set contraction, which
associates contraction by a set of sentencesΓ with contractions byfinite subsets ofΓ (the
symbol⊆ f below stands forfinite subset; i.e. C ⊆ f D means thatC is a finite subset ofD):

(−̇LP) K−̇Γ =
⋃

A⊆ f Γ

⋂
B⊆ f Cn(Γ) K−̇(A∪ B)

With the addition of (̇−LP), Zhang and Foo obtained an exact match between the postulates
for set contraction and the functions induced from nicely ordered partitions, and provided
arguments in support of the intuitive appeal of the new postulate.

However the introduction of (̇−LP) generates gaps on other fronts. Firstly, condition (−̇LP)
needs to be mapped into appropriate constraints in the partial meet model. This is an
important open problem already identified in [Zhang and Foo 2001].

Secondly, because of the close relation between contraction and revision via the Levi and
Harper Identities (see section 8 below), the limit postulate for set contraction gives rise to
a corresponding extra postulate for multiple revision:

(*LP) K ∗ Γ =
⋃

A⊆ f Γ

⋂
B⊆ f Cn(Γ) K ∗ (A∪ B)

Like (−̇LP), the new postulate (*LP) creates the need for extra constraints on systems of
spheres. Formulating these conditions and proving their equivalence to (*LP) is still an
open problem.

A third open problem in multiple belief change is the relationship between (*LP) and an-
other very similar condition also reducing multiple revision to sentence revision proposed
and studied in [Peppas 1996], [Peppas 2004]:4

(K*F) K ∗ Γ =
⋂

A⊆ f Γ
((K ∗ A) + Γ)

Our aim in this paper is to address all three open problems mentioned above.We formulate
constraints for the partial meet and system of spheres models which characterize precisely

4In condition (K*F),+ denotes the operation ofexpansion, i.e. union followed by logical closure – see section 2
for details)
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the postulates (̇−LP) and (*LP) respectively. Moreover, we prove that (K*F) isstrictly
stronger than (*LP) by explicitly constructing a multiple revision function that violates
the former but satisfies the latter. These results, together with the ones in [Zhang and Foo
2001] and [Peppas 2011], complete the picture of the effects that the limit postulate(s) have
on the multiple belief change landscape.

The article is structured as follows. In the next section we introduce the necessary nota-
tion and terminology. In section 3 we review the postulates for multiple revision and the
associated system of spheres model. In section 4 we compare conditions (*LP) and (K*F).
In section 5 we present our system-of-spheres characterization of (*LP) and we prove that
(*LP) is strictly weaker than (K*F). Next we turn to set contraction. We introduce the rele-
vant background in section 6, and in section 7 we present our partial-meet-characterization
of (−̇LP). Section 8 contains some concluding remarks.

2. PRELIMINARIES

Throughout this paper we shall be working with a formal languageL governed by a logic
which is identified by its consequence relation⊢. Very little is assumed aboutL and⊢. In
particular,L is taken to be closed under all Boolean connectives, and⊢ has to satisfy the
following properties:

(i) ⊢ ϕ for all truth-functional tautologiesA (supraclassicality).

(ii) If ⊢ (ϕ→ y) and⊢ ϕ, then⊢ y (modus ponens).

(iii) ⊢ is consistent, i.e.0 ϕ ∧ ¬ϕ.

(iv) ⊢ satisfies the deduction theorem, that is,{ϕ1, ϕ2, . . . , ϕn} ⊢ y iff ⊢ ϕ1∧ϕ2∧ . . .

∧ϕn → y.

(v) ⊢ is compact.

For afiniteset of sentencesA = {ϕ1, . . . , ϕn}, of L we shall use∧A to denote the conjunction
of all elements ofA, i.e. the sentenceϕ1 ∧ · · · ∧ ϕn. For a set of sentencesΓ of L, Cn(Γ)
denotes the set of all logical consequences ofΓ, i.e. Cn(Γ) = {ϕ ∈ L: Γ ⊢ ϕ}. WheneverA
is afinitesubset ofΓ, we writeA ⊆ f Γ.

A theory K of L is any set of sentences ofL closed under⊢, i.e. K = Cn(K). We shall
denote the set of all theories ofL byKL. A theoryK of L is complete iff for all sentences
ϕ ∈ L, ϕ ∈ K or ¬ϕ ∈ K. We shall denote the set of all consistent complete theoriesof
L byML. In the context of Belief Revision, consistent complete theories play the role
of possible worldsand therefore we shall use the two terms interchangeably. For a set of
sentencesΓ of L, [Γ] denotes the set of all consistent complete theories ofL that containΓ.
Often we shall use the notation [ϕ] for a sentenceϕ ∈ L, as an abbreviation of [{ϕ}]. For a
theoryK and a set of sentencesΓ, we shall denote byK+Γ the closure under⊢ of K∪Γ, i.e.
K + Γ = Cn(K ∪ Γ). For a sentenceϕ ∈ L we shall often writeK + ϕ as an abbreviation of
K + {ϕ}. For two sets of sentencesΓ,∆, we defineΓ ⊢ ∆ iff Γ ⊢ δ for all δ ∈ ∆. Finally, the
symbols⊤ and⊥will be used to denote an arbitrary (but fixed) tautology and contradiction
of L respectively.
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3. MULTIPLE BELIEF REVISION REVIEW

Multiple belief revision was defined in [Lindstrom 1991], asa function∗ : KL×2L 7→ KL,
mapping〈K, Γ〉 to K ∗ Γ, that satisfies the following postulates:

(K ∗ 1) K ∗ Γ is a theory ofL.

(K ∗ 2) Γ ⊆ K ∗ Γ.

(K ∗ 3) K ∗ Γ ⊆ K + Γ.

(K ∗ 4) If K + Γ , L thenK + Γ ⊆ K ∗ Γ.

(K ∗ 5) K ∗ Γ ⊢⊥ iff Γ ⊢⊥.

(K ∗ 6) If Cn(Γ) = Cn(∆) thenK ∗ Γ = K ∗ ∆.

(K ∗ 7) K ∗ (Γ ∪ ∆) ⊆ (K ∗ Γ) + ∆.

(K ∗ 8) If (K ∗ Γ) + ∆ , L then (K ∗ Γ) + ∆ ⊆ K ∗ (Γ ∪ ∆).

The above postulates are a straightforward generalizationof the AGM postulates for sen-
tence revision (i.e. revision by a single sentenceϕ rather than asetof sentenceΓ). The
reader is referred to [Gardenfors 1988] and [Peppas 2008] for a detailed discussion on the
motivation of these postulates.

To improve readability, in this article we shall ignore the limiting cases of revising by an
empty or an inconsistent set, and we assume that the epistemic inputΓ is always anon-
emptyandconsistentset of sentences.

It turns out that (K ∗ 1) - (K ∗ 8) are satisfied not by one, but by a whole family of revision
functions. This family can be constructed with the aid of a structure called asystem of
spheresintroduced in [Grove 1988] originally for sentence revision, but later generalized
in [Peppas 2004] for multiple revision.

Given a theoryK, Grove defines a system of spheresS centered on [K], to be a collection
of subsets ofML, the elements of which are calledspheres, that satisfies the following
conditions:

(S1) S is totally ordered with respect to set inclusion.

(S2) The smallest sphere inS is [K]; that is [K] ∈ S, and ifU ∈ S then [K] ⊆ U.

(S3) ML ∈ S (and thereforeML is the largest sphere inS).

(S4) For every consistentϕ ∈ L, there is a smallest sphere inS intersecting [ϕ].

A system of spheresS is essentially a preorder on possible worlds (alias, consistent com-
plete theories) representing comparative plausibility: the closer a world is to the center
of the system [K] the more plausible it is. With this reading in mind, Grove proposed
an intuitive construction of sentence revision functions based on systems of spheres (see
condition (S*) below) and proves that his method is sound andcomplete with respect to
the AGM postulates for sentence revision. Peppas, [Peppas 2004], later generalized this
result for multiple revision. The generalization however required two further constraints
on systems of spheres. The first constraint is a straightforward generalization of (S4):
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(SM) For every nonempty consistentΓ ⊆ L, there exists a smallest sphere inS,
denotedc(Γ), intersecting [Γ].

The second constraint relates the notion of anelementaryset of possible worlds, inspired
by the notion of an elementary class of models from classicallogic (see [Chang and Keisler
1991]), and adequately adjusted in the present context. In particular, we shall say that a
setV of consistent complete theories iselementaryiff V = [

⋂
V].5 In other words,V is

elementary if no world outsideV is compatible with the theory
⋂

V. As shown in [Peppas
et al. 1995], not all sets of consistent complete theories are elementary; in fact for every
languageL with infinitely many logical equivalent classes, there are infinitely many non-
elementary subsets ofML. Condition (SD) below requires that in a system of spheresS,
the spheres are so arranged that the setc(Γ) ∩ [Γ] is always elementary:

(SD) For every nonempty consistentΓ ⊆ L, c(Γ) ∩ [Γ] is elementary.

Although initially it strikes us as a technical condition, (SD) can also be understood intu-
itively once we consider the special role of the setc(Γ) ∩ [Γ] in belief revision. Notice that
under the intended reading ofS, the setc(Γ) ∩ [Γ] contains the most plausibleΓ-worlds,
which in turn are the very worlds used in the system-of-spheres construction of revision
functions:

(S*) K ∗ Γ =
⋂

(c(Γ) ∩ [Γ])

Condition (S*) defines the result of revision as the theory corresponding to the most plau-
sible worlds compatible with the epistemic input. This is precisely the method proposed
by Grove in [Grove 1988] and later generalized by Peppas in [Peppas 2004]. In view of
(S*) let us now re-examine (SD). Consider a nonempty consistent set of sentencesΓ and
suppose that, contrary to (SD), there is a worldz compatible with

⋂
(c(Γ) ∩ [Γ]), that is

not in c(Γ) ∩ [Γ]. This entails thatz < c(Γ). Hencez is strictly less plausible than all
worlds inc(Γ) ∩ [Γ]. So when revising byΓ we end up with a belief set compatible with a
“sub-optimal” (i.e. not maximally plausible)Γ-world; putting it differently, the epistemic
loss induced from the revision byΓ is over and above what is necessitated byΓ itself. This
is clearly in violation with one of the defining features of rationality in belief revision,
known as theprinciple of minimal change, which loosely speaking, dictates that epistemic
loss should be minimized during this process. Hence the needfor (SD).

We shall say that a system of spheresS is well rankediff in addition to (S1) - (S4), it
satisfies the conditions (SM) and (SD). In [Peppas 2004] it was shown that the functions
produced by well ranked systems of spheres are precisely those satisfying the postulates
(K ∗ 1) - (K ∗ 8) for multiple revision mentioned above:

Theorem 1. [Peppas 2004]. Let K be a theory and S a well ranked system of spheres
centered on[K]. The function∗ defined from S via (S*) satisfies (K∗ 1) - (K ∗ 8).

5If V = ∅, we define
⋂

V = L, from which is follows that the empty set is elementary.
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Theorem 2. [Peppas 2004]. Let K be a theory and∗ a multiple revision function satis-
fying (K∗ 1) - (K ∗ 8). There exists a well ranked system of spheres S centered on[K] such
that (S*) is satisfied.

4. COMPARING (*LP) WITH (K*F)

Having reviewed the necessary background on multiple revision, let us now turn to the
open problems mentioned in the introduction, starting withthe relationship between the
conditions (*LP) and (K*F), repeated below:

(*LP) K ∗ Γ =
⋃

A⊆ f Γ

⋂
B⊆ f Cn(Γ) K ∗ (A∪ B)

(K*F) K ∗ Γ =
⋂

A⊆ f Γ
((K ∗ A) + Γ)

Both these conditions can be viewed as methods of reducing multiple revision to sentence
revision (since revision by a finite setA is equivalent to revision by the sentence∧A).
Moreover in [Zhang and Foo 2001] it was shown that in the presence of (K*1) - (K*8),
(*LP) is equivalentto the condition (rLP) below, which at first sight looks very similar to
(K*F):

(rLP) K ∗ Γ = (
⋂

A⊆ f Cn(Γ)(K ∗ A)) + Γ

The two conditions look very similar indeed. In fact there are only two differences between
(K*F) and (rLP). Firstly, in (rLP) the initial belief setK is revised by all finite subsets of
theclosureof Γ, whereas in (K*F) only the finite subsets ofΓ itself as used. Secondly, in
(rLP) this series of sentence revisions is first intersectedand then expanded byΓ, whereas
in (K*F) it’s the other way around (the result of each sentence revision is first expanded by
Γ and then all expanded theories are intersected). These two differences, however small as
they may appear, suffice to make (K*F) strictly stronger than (rLP), and thereforestrictly
stronger than (*LP).

Our first result shows that (K*F) entails (*LP). We break downthe proof into a lemma and
a corollary since the lemma will be used independently laterin the article.6

Lemma 1. Let K be a theory,Γ ⊆ L a nonempty consistent set of sentences, and∗ a
multiple revision function satisfying (K*1) - (K*8). If there is a C⊆ f Γ such that K∗C is
consistent withΓ, then K∗ Γ =

⋃
A⊆ f Γ

⋂
B⊆ f Cn(Γ) K ∗ (A∪ B).

Proof. Assume that there is aC ⊆ f Γ such thatK ∗ C is consistent withΓ. Then from
(K ∗ 7), (K ∗ 8) we derive thatK ∗ (C ∪ Γ) = (K ∗C) + Γ, which again by (K ∗ 6) entails
thatK ∗ Γ = (K ∗C) + Γ.

Consider now anyϕ ∈ K ∗Γ. Thenϕ ∈ (K ∗C)+Γ and consequently, by compactness, there
is aD ⊆ f Γ such that (∧D → ϕ) ∈ K ∗C. Moreover, sinceΓ is consistent with (K ∗C), D

6Alternatively, we can use (rLP) as an intermediate to establish the same result.
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is also consistent with (K ∗C). Hence by (K ∗ 7) - (K ∗ 8), K ∗ (C∪ D) = (K ∗C) + D and
consequentlyϕ ∈ K ∗ (C ∪ D). Now call A the setC ∪ D. It is not hard to verify that for
anyB ⊆ f Cn(Γ), K ∗ (A∪ B) = (K ∗A)+ B.7 Consequently, sinceϕ ∈ K ∗A, it follows that
ϕ ∈ K ∗ (A∪B). SinceB was chosen arbitrarily, this entails thatϕ ∈

⋂
B⊆ f Cn(Γ)(K ∗ (A∪B)),

which in turn implies thatK ∗ Γ ⊆
⋃

A⊆ f Γ

⋂
B⊆ f Cn(Γ)(K ∗ (A∪ B)).

For the converse, letϕ be any sentence in
⋃

A⊆ f Γ

⋂
B⊆ f Cn(Γ)(K ∗ (A ∪ B)). Then there is a

A ⊆ f Γ such thatϕ ∈ K ∗ (A∪ B) for all B ⊆ f Cn(Γ). Consequently,ϕ ∈ K ∗ (A∪C). Next
notice that, sinceK ∗ C is consistent withΓ, it is also consistent withA, and therefore by
(K ∗ 7) - (K ∗ 8), K ∗ (A∪C) = (K ∗C) + A, which again entailsϕ ∈ (K ∗C) + Γ. Hence,
from K ∗ Γ = (K ∗C) + Γ we derive thatϕ ∈ K ∗ Γ as desired.

Corollary 1. Let K be a theory of L, and∗ a multiple revision function satisfying (K*1)
- (K*8). If ∗ satisfies (K*F) then it also satisfies (*LP).

Proof. Assume that∗ satisfies (K*F), and letΓ be any nonempty consistent set of sen-
tences. By (K ∗5), K ∗Γ is consistent, and therefore sinceK ∗Γ =

⋂
A⊆ f Γ

((K ∗A)+Γ), there
is at least oneA ⊆ f Γ, such thatK ∗ A is consistent withΓ. Then by Lemma 1,∗ satisfies
(*LP).

Our next result shows that the converse is not true; i.e. (K*F) isstrictly strongerthan (*LP).
Theorem 3 below proves this through the construction of a well ranked system of spheres
whose induced multiple revision function is shown to satisfy (*LP) but violate (K*F).

Theorem 3. There exists a consistent theory K and a multiple revision function∗ satis-
fying (K*1) - (K*8), such that∗ satisfies (*LP) but violates (K*F) at K.

Proof. For the purpose of this proof (and only for this proof), we shall fix the details of
the languageL as follows: we takeL to be a propositional language withinfinitely many
propositional variables denotedp0, p1, p2, . . .. DefineT0, T1, T2, . . ., to be the following
theories:

T0 = Cn({p0, p1, . . .})
T1 = Cn({p1, p2, . . .})
T2 = Cn({p2, p3, . . .})

...

T j = Cn({p j, p j+1, . . .})
...

We setK = T0 and defineS to be the following system of spheres centered at [K] (see
Figure 1):

S = {[Ti ] : i ∈ N0} ∪ {ML}
8

7Notice thatK ∗ A= (K ∗C) + D, and sinceK ∗C is consistent withΓ, it follows thatK ∗ A is consistent withB,
which by (K ∗ 7) - (K ∗ 8) entails thatK ∗ (A∪ B) = (K ∗ A) + B.
8By N0 we denote the set of all non-negative integers; i.e.N0 = {0,1, 2, 3, . . .}.
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Fig. 1. (*LP); (K*F)

We will show thatS is a well ranked system of spheres, and moreover that the multiple
revision function∗ induced byS satisfies (*LP) but violates (K*F).

Starting with the well-rankness ofS, notice that from its construction, it is straightforward
to verify that conditions (S1) - (S3) are true. Next for (SM),let Γ be an arbitrary nonempty
consistent set of sentences. If none of [Ti ] (with i ∈ N0) intersects [Γ] then (SM) is trivially
true. Assume therefore that for somej ∈ N0, [T j] ∩ [Γ] , ∅. Since there are only finitely
many spheres inS smaller than [T j ] (namely, [T0], [T1], . . . [T j−1]), it follows that there is
a smallest sphere inS intersecting [Γ]; thus (SM) is true, and therefore (S4) is also true
(notice that (SM) entails (S4)). For (SD), notice thatall spheres inS are (by construction)
elementary. Hence for all nonempty, consistent sets of sentencesΓ, c(Γ) is elementary, and
thereforec(Γ) ∩ [Γ] is also elementary as desired.

For (*LP), let Γ be a nonempty consistent set of sentences. We distinguish between two
cases:c(Γ) , ML andc(Γ) = ML. Starting with the first case, assume thatc(Γ) , ML.
Then there is aj ∈ N0 such thatc(Γ) = [T j]. Consequently, there are onlyfinitely many
spheres smaller thanc(Γ) in S. Moreover notice that for allA ⊆ f Cn(Γ), c(A) ⊆ c(Γ) and
therefore, there is aZ ⊆ f Cn(Γ) such thatc(A) ⊆ c(Z), for all A ⊆ f Cn(Γ). Next we show
thatc(Z) = c(Γ). Assume towards contradiction thatc(Z) ⊂ c(Γ). Thenc(Z)∩ [Γ] = ∅, and
therefore by compactness and sincec(Z) is elementary, it follows that there is aB ⊆ f Cn(Γ)
such that

⋂
c(Z) ⊢ ¬(∧B). This again entails thatc(Z) ⊂ c(B∪ Z), contradicting our initial

assumption aboutZ. Hencec(Z) = c(Γ), and given that [Γ] ⊆ [Z] it follows that K ∗ Z is
consistent withΓ. Then, from Lemma 1 we derive (*LP).

Consider now the second case wherec(Γ) = ML. If there is aZ ⊆ f Cn(Γ) such that
c(Z) = ML, then clearlyK ∗ Z is consistent withΓ and, like before, (*LP) follows from
Lemma 1. Assume therefore thatc(A) ⊂ ML for all A ⊆ f Cn(Γ). Notice that since
c(Γ) = ML, (S*) entails thatK ∗ Γ = Γ. We will prove (*LP) by proving the equivalent
condition (rLP). This in turn is done by showing that, under the assumptions of the case,
all sentencesϕ in

⋂
A⊆ f Cn(Γ) K ∗ A are tautologies.

ACM Transactions on Computational Logic, Vol. 0, No. 0, 01 2011.
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Assume towards contradiction that for someϕ ∈
⋂

A⊆ f Cn(Γ) K ∗ A, there is a worldz ∈ ML

that falsifiesϕ; i.e. z ⊢ ¬ϕ. Let p j be the propositional variable with the highest index
in ϕ, and letu be the world that agrees withz on p0, p1, . . . , p j and satisfies all remaining
variablesp j+1, p j+2, . . .; i.e. for all 0 ≤ i ≤ j, u ⊢ pi iff z ⊢ pi , andu ⊢ pi for all i > j.
Clearly u ⊢ ¬ϕ. Next observe thatu falsifies at least one ofp0, . . . , p j. For assume that
u ⊢ pi , for all 0 ≤ i ≤ j. Thenu = T0 = K, and consequentlyϕ < K, which again entails
thatϕ <

⋂
A⊆ f Cn(Γ) K ∗A.9 This of course contradicts our initial assumption aboutϕ. Hence

there is a propositional variable in{p0, . . . , p j}, falsified byu. Let pm be the maximun
such variable; i.e.u ⊢ ¬pm with 0 ≤ m ≤ j, andu ⊢ pi for all i > m. Notice that since
c(Γ) =ML, Γ is inconsistent withTm. Hence by compactness, there is anl ∈ N0 such that
Γ ⊢ ¬(pm ∧ · · · ∧ pm+l). Call B the singleton{¬pm ∨ · · · ∨ ¬pm+l}. It is not hard to see that
c(B) = [Tm+1] and therefore [K ∗B] = [Tm+1] ∩ [¬pm∨ · · · ∨¬pm+l ]. This again entails that
u ∈ [K ∗ B], and therefore, since¬ϕ ∈ u, ϕ < K ∗ B. Consequently,ϕ <

⋂
A⊆ f Cn(Γ) K ∗ A,

contradicting our initial assumption aboutϕ. Hence all sentencesϕ in
⋂

A⊆ f Cn(Γ) K ∗ A are
tautologies, and consequently (

⋂
A⊆ f Cn(Γ) K ∗A)+Γ = Γ. Given that, under the assumptions

of the case,K ∗ Γ = Γ, we derive that (rLP) is satisfied, and consequently so is (*LP).

We conclude the proof by showing that∗ violates (K*F) at K. Let Γ be the setΓ =
{¬p0,¬p1, . . .}. Clearly c(Γ) = ML. Let A be any finite subset ofΓ, and letpk be the
propositional variable with the highest index inA. It is not hard to see thatc(A) = [Tk+1],
and thereforepk+1 ∈ K∗A. This again entails thatΓ is inconsistent withK∗A, and therefore
(K ∗A)+Γ =⊥. Given thatA was chosen arbitrarily, it follows that

⋂
A⊆ f Γ

((K ∗A)+Γ) ⊢⊥.
On the other hand, sinceΓ is consistent, from (K ∗ 5) it follows thatK ∗ Γ 0⊥. Hence
K ∗ Γ ,

⋂
A⊆ f Γ

((K ∗ A) + Γ), violating (K*F).

We conclude this section with an alternative way to approachthe relationship between
(K*F) and (*LP).10

Zhang and Foo define
⋃

A⊆ f Γ

⋂
B⊆ f Cn(Γ) K ∗ (A ∪ B) as thelower limit of the set family

{K ∗ A : A ⊆ f Γ}. Hence (*LP) esentially equates multiple revision byΓ with the lower
limit of the set family{K ∗ A : A ⊆ f Γ}. It is natural to consider the other side of the coin
as well; i.e. the condition that equates multiple revision with theupper limitof the same
set family (also defined in [Zhang and Foo 2001]):

(u*LP) K ∗ Γ =
⋂

A⊆ f Γ

⋃
B⊆ f Cn(Γ) K ∗ (A∪ B)

It turns out that (K*F) entails (u*LP) as well:

Lemma 2. Let K be a theory of L, and∗ a multiple revision function satisfying (K*1) -
(K*8). If ∗ satisfies (K*F) then it satisfies (u*LP).

Proof. Assume that∗ satisfies (K*F). LetΓ be nonempty consistent set of sentences. From
(K*F) it follows that there is aC ⊆ f Γ such thatΓ is consistent withK ∗C. Then by (K*6)

9To see this simply observe thatp0 ∨ ¬p0 (like any other tautology) belongs toCn(Γ), and moreoverK =
K ∗ {p0 ∨ ¬p0}. Therefore sinceϕ < K, it follows thatϕ <

⋂
A⊆ f Cn(Γ) K ∗ A.

10We are grateful to the reviewer for pointing out this alternative approach.
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- (K*8) we derive that (K ∗C)+Γ = K ∗ Γ. Moreover it is not hard to see that for anyB ⊆ f

Cn(Γ), B is consistent withK∗C and thereforeK∗(C∪B) = (K∗C)+B⊆ (K∗C)+Γ = K∗Γ.
Hence

⋃
B⊆ f Cn(Γ) K ∗(C∪B) ⊆ K ∗Γ and consequently,

⋂
A⊆ f Γ

⋃
B⊆ f Cn(Γ) K ∗(A∪B) ⊆ K ∗Γ.

For the converse, letϕ be any sentence inK ∗ Γ. Then, sinceK ∗ Γ = (K ∗ C) + Γ, by
compactness we derive that there is a∆ ⊆ f Γ such that ((∧∆) → ϕ) ∈ K ∗ C. Consider
now any finite subsetA of Γ. Clearly,A∪ ∆ is consistent withK ∗ C, and therefore from
(K*7) - (K*8) we derive thatK ∗ (A∪C ∪ ∆) = (K ∗C) + (A∪ ∆), which in turn implies
thatϕ ∈ K ∗ (A∪ C ∪ ∆). Hence, for anyA ⊆ f Γ, ϕ ∈

⋃
B⊆ f Cn(Γ) K ∗ (A∪ B). Therefore

ϕ ∈
⋂

A⊆ f Γ

⋃
B⊆ f Cn(Γ) K ∗ (A∪B), and consequently,K ∗Γ ⊆

⋂
A⊆ fΓ

⋃
B⊆ f Cn(Γ) K ∗ (A∪B).

According to Corollary 1 and Lemma 2, whenever (K*F) is true,both (*LP) and (u*LP)
are true. Therefore another way to prove Theorem 3 would be toshow that there is a
multiple revision function satisfying (*LP) but not (u*LP). To this end, one can utilize a
counterexample from [Zhang and Foo 2001] showing that thereis a set contraction function
−̇ satisfying (̇−LP) for which the lower limit of the family{K−̇A : A ⊆ f Γ} is different from
the upper limit. To this result, one can apply the Levi identity (with some adjustments) to
get the desired conclusion. The advantage of our proof for Theorem 3 over this alternative
line of reasoning is that in our proof we provide an explicit system-of-spheres construction
that differentiates (*LP) from (K*F), thus helping to get a better grasp of the essence of the
two conditions.

5. THE LIMIT POSTULATE IN THE SYSTEM OF SPHERES MODEL

How would (*LP) look like in the realm of systems of spheres? In the previous section we
showed that (*LP) is strictly weaker that (K*F), so perhaps the system-of-spheres charac-
terization of (K*F) is a good place to start with.

Let K be a theory,S a system of spheres centered on [K], and ∗ the revision function
induced fromS via (S*). In [Peppas 2004] it was shown that∗ satisfies (K*F) iff S satisfies
the following condition:

(SF) For allQ ⊆ S,
⋃

Q is elementary.

How can (SF) be weakened to match (*LP)? An obvious way to weaken (SF) would be to
require only individual spheres ofS (and not arbitrary unions of them) to be elementary.
This is essentially what condition (EL) below says, except that it restricts the elementarity
request toproperspheres ofS.

By a proper sphere we mean any sphereV ∈ S that contains at least one world outside
all spheres smaller thanV. More precisely, for a sphereV ∈ S, we define thecoreof V,
denotedVc, to be setVc =

⋃
{U ∈ S : U ⊂ V}. We shall say that a sphereV ∈ S is proper

iff V , Vc. Notice that a non-proper sphereU is a degeneratesphere as far as multiple
revision is concerned, in the sense that there is no set of sentencesΓ such thatU = c(Γ). It
is easy to show that all such non-proper spheres can be removed from a system of spheres
S without affecting the induced multiple revision function. Hence the restriction to proper
spheres in condition (EL) below:
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(EL) All proper spheres inS are elementary.

Condition (EL) is a natural constraint on a system of spheresS that can be justified along
similar lines to (SD).11 Intuitively a proper sphereV of S can be understood as a “fallback”
position that the agent can retreat to if her initial belief setK is challenged (see for example
[Rott 2004]). All possible worlds outsideV are strictly less plausible than those inV.
Suppose now thatV is not elementary. Then the agent’s fallback theoryK′ =

⋂
V admits

a worldz that is strictly less plausible than what is necessitated bythe her retreat toV (i.e.
z ∈ [K′] and yetz < V); clearly an undesired side-effect.

Unfortunately, despite its intuitive appeal, there is a mismatch between (EL) and (*LP):

Lemma 3. There exists a consistent theory K and a well ranked system ofspheres S
centered on[K] such that S satisfies (EL) and yet the multiple revision function ∗ induced
from S violates (*LP).

Proof. LetL be the language produced from the boolean connectives over the propositional
variablesq, p0, p1, p2, . . .. Define the theoriesY0, Y1, Y2, . . . as follows:12

Y0 = Cn({q, p0, p1, . . .})
Y1 = Cn({q, p1, p2, . . .})

...

Yj = Cn({q, p j, p j+1, . . .})
...

Let K = Y0 and defineS to be the system of spheresS= {[Yi ] : i ∈ N0}∪{ML}. It is not hard
to verify thatS is indeed a well ranked system of spheres centered at [K] (the argument
is exactly the same as the one in the proof of Theorem 3). Moreover by construction, all
spheres inS are elementary and therefore (EL) is satisfied. Next we show that the revision
function∗ induced fromS at K violates (*LP).

Let Γ be the setΓ = {¬q ∨ ¬p0,¬q ∨ ¬p1,¬q ∨ ¬p2, . . .}. It is not hard to verify that
[Γ] = [¬q]∪ [{¬p0,¬p1,¬p2, . . .}]. Hence, the smallest sphere intersectingΓ isML, which
by construction, is also the smallest sphere intersecting [¬q], i.e. c(Γ) = c(¬q) = ML.
Consequently,q < K ∗ Γ. To prove that∗ violates (*LP) it suffices to show thatq ∈
⋃

A⊆ f Cn(Γ) K ∗ A (this would violate (rLP) which as already stated, is equivalent to (*LP)).

Consider any finite subsetA of Cn(Γ). Then by compactness there exist finitely many
variablespi1, pi2, . . . , pin with i1 < i2 < · · · < in, such that{¬q ∨ ¬pi1 ,¬q ∨ ¬pi2, . . .,
¬q ∨ ¬pin} ⊢ A, or equivalently,¬q ∨ (¬pi1 ∧ ¬pi2∧ . . . ∧¬pin) ⊢ A. It is not hard to
see that the theoryYin+1 is compatible with¬q∨ (¬pi1 ∧ ¬pi2∧ . . . ∧¬pin) and therefore it
is also compatible withA. Consequently the smallest sphere intersecting [A] is no larger

11Notice that (EL) entails (SD).
12Y0, Y1, Y2, . . . are essentially extensions by the new variableq, of the theoriesT0, T1, T2, . . . respectively in the
proof of Theorem 3.
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than [Yin+1]; i.e. c(A) ⊆ [Yin+1]. Given that, by construction, all worlds in [Yin+1] satisfy
q we then derive thatq ∈ K ∗ A. SinceA was chosen arbitrarily, it then follows that
q ∈
⋃

A⊆ f Cn(Γ) K ∗ A. Hence (rLP) is violated, and consequently so is (*LP).

The above result proves that “vanilla” (EL) is not sufficient to characterize (*LP) while
on the other hand (SF) is too strong. The notion of an elementary set of worlds however
remains central to the characterization. What is needed is something in between (EL) and
(SF) (with a twist).

First one definition. LetK be a theory andS a system of spheres centered on [K]. We shall
say that a sphere inV is finitely reachablein S iff there exists a consistent sentenceϕ ∈ L
such thatc(ϕ) = V.

Consider now the following restrictions on a system of spheresS, whereV is an arbitrary
sphere inS:

(R1) If V is finitely reachable thenV is elementary.

(R2) If V is finitely reachable thenVc is elementary.

(R3) If Vc
, V then [

⋂
Vc] ⊆ V.

Condition (R1) is a weaker version of (EL) since it requires only finitely reachable spheres
to be elementary. Similarly, (R2) is a weaker version of (SF): only collections of spheres
strictly smaller from a finitely reachable one are required to have an elementary union.

The last condition, (R3), is perhaps the most interesting ofthe three. Although it may not
be apparent at first sight, (R3) is also a weaker version of (SF). Let V be a non-finitely-
reachable sphere and consider the principle case whereV is different from its coreVc.
Moreover letzbe any world in [

⋂
Vc]. Where canzbe placed in the system of spheresS?

Condition (SF) confines the location ofz to Vc. Condition (R3) on the other hand is not
as strict. It allowsz to move away fromVc as long as it doesn’t go beyond V; i.e. V is a
boundary that no

⋂
Vc-world can pass. Hence althoughVc may not be elementary as (SF)

would require, it is, in a sense,almostelementary since any “runaway” world (i.e. any
world in [

⋂
Vc] − Vc) doesn’t go that far away after all; it stays withinV.

Conditions (R1) - (R3) turn out to be the system-of-spheres counterpart of (*LP):

Theorem 4. Let K be a theory, S a well-ranked system of spheres centered at [K], and
∗ the multiply revision function induced from S at K via (S*). Then∗ satisfies (*LP) iff S
satisfies (R1) - (R3).

Proof.

(⇒ )

Assume that (*LP) holds. We show that (R1) - (R3) are satisfied.
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Starting with (R1), suppose towards contradiction that there is a sphereV ∈ S that is
finitely reachable but not elementary. Then there is any ∈ L such thatc(y) = V and there
is a worldz ∈ [

⋂
V] − V. DefineΓ to be the setΓ = {x ∨ y ∈ L : x ∈ z}. We derive a

contradiction by showing that¬y < K ∗ Γ and yet¬y ∈
⋂

A⊆ f Cn(Γ) K ∗ A (which of course
violates (rLP) and therefore it violates (*LP)).

It is not hard to verify that [Γ] = [y] ∪ {z} and therefore, sincez < V, c(Γ) = V = c(y). This
again entails that¬y < K ∗ Γ.

For the second part of the argument, consider an arbitrary finite subsetA of Cn(Γ). By
compactness there existx1, · · · xn ∈ zsuch that{(x1 ∨ y) ∧ · · · ∧ (xn ∨ y)} ⊢ A and therefore
{y∨ (x1 ∧ · · · ∧ xn)} ⊢ A. DefineB to be the setB = {x1, · · · , xn}. Clearly then,B ⊆ f z and
c(A) ⊆ c(B). Now observe that to prove¬y ∈ K ∗ A it suffices to show thatc(B) ⊂ V.13

Clearly, sinceB ⊆ f zandz ∈ [
⋂

V], there is aB-world in V and thereforec(B) ⊆ V. Hence
from z < V we derive thatz < c(B) ∩ [B], and consequently from (SD) it follows thatz
contradictsK ∗ B. Therefore there is aϕ ∈ z such that¬ϕ ∈ K ∗ B. Consider now the
setB ∪ {ϕ}. Clearly B ∪ {ϕ} ⊆ f z, and therefore, given thatz ∈ [

⋂
V], c(B ∪ {ϕ}) ⊆ V.

Moreover, since¬ϕ ∈ K ∗ B it follows thatc(B) ⊂ c(B∪ {ϕ}). Consequently,c(B) ⊂ V, as
desired. This again, as mentioned above, proves that¬y ∈ K ∗ A.

We have thus shown that¬y < K ∗ Γ and yet for all finite subsetsA of Cn(Γ), ¬y ∈ K ∗ A.
This clearly violates (rLP) and therefore it violates (*LP). Hence (R1) is satisfied.

For (R2), letV be any finitely reachable sphere inS. Then for some consistentϕ ∈ L,
c(ϕ) = V. Assume towards contradiction that the core ofV is not elementary and conse-
quently there is az ∈ [

⋂
Vc] such thatz < Vc. Let∆ be the set∆ = {ϕ ∨ x : x ∈ z}. It is not

hard to verify that [∆] = [ϕ] ∪ {z}, and thereforec(∆) = c(ϕ), which by the construction of
∆ entails that¬ϕ < K ∗ ∆. Then by (rLP) it follows that there is a finite subsetA of Cn(∆)
such that¬ϕ < K ∗ A, which again entails thatc(ϕ) ⊆ c(A). Moreover, by the construction
of ∆ and compactness we derive that there is ax ∈ z, such that{ϕ ∨ x} ⊢ A. Therefore
c(ϕ) ⊆ c(A) ⊆ c({ϕ∨ x}). This again entails thatV ⊆ c({x}). Hence all worlds in the core of
V are¬x-worlds and therefore¬x ∈

⋂
Vc. This however contradicts our assumption that

z ∈ [
⋂

Vc]. Hence (R2) holds.

Finally for (R3), assume on the contrary that there is a sphereV ∈ S such thatVc ⊂ V and
yet for somez ∈ [

⋂
Vc], z < V. Let w be any world inV − Vc and letΓ be the set,Γ =

{x ∨ y : x ∈ w andy ∈ z}. It is not hard to see that [Γ] = {w, z} and thereforec(Γ) = V,
which again entailsK ∗ Γ = w.

Next we show that
⋂

A⊆ f Cn(Γ) K ∗ A ⊆ Cn(Γ). Assume on the contrary that there is a
ϕ ∈
⋂

A⊆ f Cn(Γ) K ∗ A such thatϕ < Cn(Γ). By (rLP) andK ∗ Γ = w we derive thatϕ ∈ w.
Therefore, sinceϕ < Cn(Γ), from the construction ofΓ it follows that¬ϕ ∈ z. Applying
(rLP) atK ∗ z we get,K ∗ z= z= z+

⋂
B⊆ f z K ∗ B. Therefore from¬ϕ ∈ z it follows that

there is aB ⊆ f z such thatϕ < K ∗ B. Notice that sinceB ⊆ f z andz ∈ [
⋂

Vc], there
is at least oneB-world in Vc, and consequentlyc(B) ⊂ V = c(Γ). This, combined with
the fact thatc(B) is elementary – recall that we have already shown (R1) – gives us that
Γ contradicts

⋂
c(B). Hence by compactness there is ay ∈ Cn(Γ) such that¬y ∈

⋂
c(B).

13For in this case,c(A) ⊂ V = c(ϕ), and therefore all worlds inc(A) entail¬y.
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Consider now the sentence (∧B) ∨ y. Clearly (∧B) ∨ y ∈ Cn(Γ). Moreover it is not hard
to verify that, because¬y ∈

⋂
c(B), c({(∧B) ∨ y}) = c(B), and thereforeK ∗ {(∧B) ∨ y} =

K ∗ B. Henceϕ < K ∗ {(∧B) ∨ y}, which however contradictsϕ ∈
⋂

A⊆ f Cn(Γ) K ∗ A. Thus
⋂

A⊆ f Cn(Γ) K ∗ A ⊆ Cn(Γ) as desired.

From
⋂

A⊆ f Cn(Γ) K ∗ A ⊆ Cn(Γ) we get thatΓ +
⋂

A⊆ f Cn(Γ) K ∗ A = Cn(Γ), and given that
Cn(Γ) ⊂ w = K ∗ Γ, we deriveΓ +

⋂
A⊆ f Cn(Γ) K ∗ A ⊂ K ∗ Γ, which of course contradicts

(rLP). Thus (R3) is satisfied.

(⇐ )

Assume that (R1) - (R3) are true and letΓ be an arbitrary nonempty consistent set of sen-
tences. Ifc(Γ) is finitely reachable, then by (R2), the core ofc(Γ), call it V, is elementary.
Hence by compactness there is aA ⊆ f Cn(Γ) such that¬(∧A) ∈

⋂
V. This again entails

thatc(A) = c(Γ), which again entails thatK ∗ A is consistent withΓ, and consequently by
Lemma 1, (*LP) holds.

Assume therefore thatc(Γ) is not finitely reachable. First we show thatK ∗ Γ ⊆ Γ +
⋂

A⊆ f Cn(Γ) K ∗A, or equivalently that [Γ] ∩ [
⋂

A⊆ f Cn(Γ) K ∗A] ⊆ [K ∗Γ]. Given that [K ∗Γ] =
c(Γ) ∩ [Γ], it suffices to show that [

⋂
A⊆ f Cn(Γ) K ∗ A] ⊆ c(Γ). Notice that allΓ-worlds

in c(Γ) are outside its core; i.e.c(Γ)c ⊂ c(Γ). Moreover it is not hard to verify that
[
⋂

A⊆ f Cn(Γ) K ∗ A] = [
⋂

(
⋃

A⊆ f Cn(Γ)[K ∗ A])]. Next observe that, sincec(Γ) is not finitely
reachable inS, c(A) ⊂ c(Γ) for all A ⊆ f Cn(Γ). Then given that, by (SD),c(A) ∩ [A] is
elementary, [K ∗ A] is always a subset of the core ofc(Γ), and consequently,

⋃
A⊆ f Cn(Γ)[K ∗

A] ⊆ c(Γ)c. This again entails that [
⋂

(
⋃

A⊆ f Cn(Γ)[K ∗ A])] ⊆ [
⋂

c(Γ)c] and therefore by
(R3), [

⋂
A⊆ f Cn(Γ) K ∗ A] ⊆ c(Γ) as desired. This proves thatK ∗ Γ ⊆ Γ +

⋂
A⊆ f Cn(Γ) K ∗ A.

To conclude the proof we also need to show the converse. Consider therefore any sentence
y in Γ +

⋂
A⊆ f Cn(Γ) K ∗ A. By compactness there is ax ∈ Cn(Γ) such that (x → y) ∈

⋂
A⊆ f Cn(Γ) K ∗ A. We next show that all worlds inc(Γ) satisfy (x → y). Assume towards

contradiction that there is a (x ∧ ¬y)-world in c(Γ). Then, since we have assumed that
c(Γ) is not finitely reachable inS, c({x ∧ ¬y}) ⊂ c(Γ), which again entails by (R1) that
⋂

c({x∧ ¬y}) contradictsΓ. Consequently, by compactness, there is aϕ ∈ Cn(Γ) such that
¬ϕ ∈

⋂
c({x∧¬y}). Consider now the sentenceϕ∨ (x∧¬y). Clearlyϕ∨ (x∧¬y) ∈ Cn(Γ)

and moreoverc({ϕ∨ (x∧¬y)}) = c({x∧¬y}). From this it follows thatK ∗ {ϕ∨ (x∧¬y)} =
K ∗ {x ∧ ¬y}, and therefore, (x ∧ ¬y) ∈ K ∗ {ϕ ∨ (x ∧ ¬y)}, which of course contradicts
(x→ y) ∈

⋂
A⊆ f Cn(Γ) K ∗ A. Hence (x→ y) ∈

⋂
c(Γ) and thereforey ∈ K ∗ Γ as desired.

The last result of this section relates to condition (EL). Asalready noted, neither (K*F)
nor (*LP) corresponds precisely to (EL). Yet condition (EL)is an intuitive constraint on
systems-of-spheres and therefore a question that naturally poses itself is to identify its
multiple-revision counterpart.

Let Γ,∆ ⊆ L be any two nonempty and consistent sets of sentences. We defineΓ ∨ ∆ to be
the setΓ ∨ ∆ = {x∨ y ∈ L: x ∈ Γ andy ∈ ∆}. Consider condition (*CM) below:

(*CM) If ( K ∗ (Γ∨∆))+ Γ ⊢ ⊥ then there is aA ⊆ f Γ such that (K ∗ (A∨∆))+A ⊢ ⊥.

Condition (*CM) can be thought of the counterpart ofcompactnessin the context of mul-
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tiple belief revision. Essentially (*CM) says that ifΓ is less plausible than∆ (as indicated
by the fact thatΓ is inconsistent withK ∗ (Γ∨∆)), then there is a finite subsetA of Γ that is
less plausible than∆ (i.e. A is inconsistent withK ∗ (A∨∆)). Theorem 5 shows that (*CM)
is an exact axiomatization of (EL).

Theorem 5. Let K be a theory, S a well-ranked system of spheres centered at [K], and
∗ the multiply revision function induced from S at K via (S*). Then∗ satisfies (*CM) iff S
satisfies (EL).

Proof.

(⇒ )

Assume∗ satisfies (*CM) and letV be any proper sphere inS. If V is empty orV = ML

then clearlyV is elementary. Assume therefore that∅ , V ⊂ ML, and letz be any world
outsideV; i.e. z ∈ ML−V. To prove thatV is elementary it suffices to show thatz < [

⋂
V].

SinceV is proper, there is a worldw ∈ V − Vc (recall thatVc denotes the core ofV),
or in other words,c(w) = V. Thenc(w) ⊂ c(z) and consequently,z is inconsistent with
K ∗(z∨w). By (*CM) we then derive that there is anA ⊆ f zsuch thatA is inconsistent with
K ∗ (A ∨ w), which again entails thatc(w) ⊂ c(A). Consequently, all worlds inV contain
¬(∧A), or equivalently,¬(∧A) ∈

⋂
V. Hence, sinceA ⊆ f z, we derive thatz < [

⋂
V] as

desired.

(⇐ )

Assume thatS satisfies (EL) and letΓ,∆ ⊆ L be any two nonempty and consistent sets of
sentences. Moreover assume thatΓ is inconsistent withK ∗ (Γ ∨ ∆). Given that [Γ ∨ ∆] =
[Γ] ∪ [∆], it is not hard to verify thatc(Γ ∨ ∆) = c(∆) ⊂ c(Γ). Moreover, notice that since
K ∗ (Γ ∨ ∆) is consistent,c(∆) − c(∆)c is nonempty and thereforec(∆) is proper. Hence
by (EL), c(∆) is elementary. Consequently, [

⋂
c(∆)] ∩ [Γ] = ∅. By compactness we then

derive that there is anA ⊆ f Γ such that¬(∧A) ∈
⋂

c(∆). Consider now that the setA∨ ∆.
Clearly,c(A∨ ∆) = c(∆) ⊂ c(A). Therefore,A is inconsistent withK ∗ (A∨ ∆) as desired.

6. SET CONTRACTION REVIEW

So far we have addressed two of the three open problems mentioned in the introduction.
The rest of the paper is devoted to the third problem; i.e. to provide a characterization of
(−̇LP) in the partial meet model. In this section we review the necessary literature on set
contraction and the partial meet model, and the next sectioncontains our representation
result for (̇−LP).

Zhang and Foo, [Zhang and Foo 2001], define set contraction asa function−̇ : KL×2L 7→

KL, mapping〈K, Γ〉 to K−̇Γ, that satisfies the following postulates:

(K−̇1) K−̇Γ is a theory ofL.

(K−̇2) K−̇Γ ⊆ K.
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(K−̇3) If Γ is consistent withK thenK−̇Γ = K.
(K−̇4) If Γ is consistent, thenΓ is consistent withK−̇Γ.
(K−̇5) If ϕ ∈ K andΓ ⊢ ¬ϕ thenK ⊆ (K−̇Γ) + ϕ.
(K−̇6) If Cn(Γ) = Cn(∆) thenK−̇Γ = K−̇∆.
(K−̇7) If Γ ⊆ ∆ thenK−̇∆ ⊆ (K−̇Γ) + ∆.
(K−̇8) If Γ ⊆ ∆ and∆ is consistent withK−̇Γ, thenK−̇Γ ⊆ K−̇∆.

We note the different aims of set contraction and AGM sentence contraction:in the first
case the initial belief setK is contracted in order tobecome consistentwith the epistemic
input (encoded as a set of sentencesΓ), while in the latter,K is contracted so that itfails to
entail the epistemic input (represented as a single sentenceϕ).

Like with multiple revision, we shall focus only on set contraction bynonempty and con-
sistentsets of sentences.

The constructive model for set contraction we shall consider herein is thepartial meet
model. This model is based on the notion of aremainderof a belief set. More precisely, let
K be a theory andΓ a nonempty consistent set of sentences. Aremainderof K with respect
to Γ, also called aΓ-remainderfor short, is any maximal subset ofK that is consistent with
Γ, [Zhang and Foo 2001]; the set of allΓ-remainders is denoted byK y Γ. By RK we
shall denote the set of all remainders ofK with respect to any nonempty consistentΓ; i.e.
RK =

⋃
{KyΓ : ∅ , Γ ⊆ L andΓ 0 ⊥}.

Consider now a preorder4 in RK . For any nonempty set of remaindersΦ ⊆ RK , by
max4(Φ) we shall denote the maximal elements ofΦ with respect to4, i.e. max4(Φ) =
{H ∈ Φ : for all D ∈ Φ, D 4 H}. When the underlying preorder4 is understood from the
context, we shall drop the index4 from max.

A preorder4 on RK essentially encodes preference between remainders with the better
remainders appearing higher in the preorder. Given this reading, the partial meet model
defines the (set) contraction ofK by Γ as the theory resulting from the intersection of the
bestΓ-remainders:

(SC) K−̇Γ =
⋂

max(KyΓ)

It turns out that the functions induced by (SC) are a supersetof those satisfying the pos-
tulates for set contraction (K−̇1) - (K−̇8). To obtain anexactmatch between the two, two
extra constraints are needed on4. The first guarantees that the setmax(K y Γ) is always
well defined:

(4 1) KyΓ has a maximal element.

For the second constraint we need an extra definition. We define theclosureof a set of
remaindersΦ ⊆ RK , denotedJΦK, to be the setJΦK = {H ∈ RK :

⋂
Φ ⊆ H}. The second

constraint on4 requires thatmax(KyΓ) is always equal to its closure:

(4 2) max(KyΓ) = Jmax(KyΓ)K.
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In [Zhang and Foo 2001], it was shown that contraction functions generated from total
preorders4 satisfying (4 1) - (4 2) via (SC), coincide precisely with the class of func-
tion satisfying the postulates (K−̇1) - (K−̇8).14 In addition to these results, Zhang and
Foo proved that the well known relationships between sentence revision and contraction,
described by the Levi and Harper Identities (see [Gardenfors 1988]), also hold (with ade-
quate modifications) between multiple revision and set contraction. In particular, consider
the following conditions:

K ∗ Γ = (K−̇Γ) + Γ (Generalized Levi Identity)

K−̇Γ = K ∩ (K ∗ Γ) (Generalized Harper Identity)

It was shown in [Zhang and Foo 2001] that every set contraction function satisfying (K−̇1)
- (K−̇8), induces via the Generalized Levi Identity a multiple revision function satisfying
(K ∗ 1) - (K ∗ 8); conversely, every multiple revision function satisfying (K ∗ 1) - (K ∗ 8),
produces via the Generalized Harper Identity a set contraction function satisfying (K−̇1)
- (K−̇8). In fact, the relationship between multiple revision andset contraction is even
stronger: for any set contraction function−̇, the successive application of the Generalized
Levi and Harper Identities leads us back to−̇ itself.15 The same is true for multiple revi-
sion: starting with a multiple revision function∗ one makes a full circle back to∗ when
successively applying the Generalized Harper and Levi Identities.

A final result reported in [Zhang and Foo 2001] on the relationship between multiple re-
vision and set contraction is related to the limit postulate(s). Consider any set contraction
function−̇ and let∗ be the multiple revision function produced froṁ− via the Generalized
Levi Identity. Zhang and Foo proved that∗ satisfying (∗LP) iff −̇ satisfies (̇−LP).

We conclude our review of set contraction with a final note on the relationship between set
contractions and preorders on remainders. Observe that foreach set contraction function
−̇ there is in principle more than one preorder on remainders4 corresponding tȯ− via
(SC). To see this notice that the location of the initial belief setK in 4 is irrelevant as far
as the induced set contraction function−̇ is concerned: ifK ∈ K y Γ thenK is theonly
remainder inK y Γ and thereforeK−̇Γ = K regardless ofK’s location in4. Hence for a
given preorder4 in RK , there is a whole family of preorders4′, that differ from4 only
in the relative location ofK, all of which give rise to the same set contraction function
−̇. We shall callcanonicalthe member of this family that placesK at the very top. More
precisely, we shall say that a preorder4 in RK is canonicaliff it is total, it satisfies (41) -
(42), and moreover, for allK′ ∈ RK , K′ 4 K. Based on the preceding discussion it is not
hard to verify that canonical preorders suffice to generateall set contraction functionṡ−
satisfying (K−̇1) - (K−̇8). Hence assuming canonicity for4 comes at no cost to generality,
and this is what we will do in the next section to simplify the presentation of our results.

14To be precise, the results in [Zhang and Foo 2001] were statedslightly differently. Most importantly, in the
original version, condition (4 1), connectivity, reflexivity, and totality of4 were all tacitly assumed; only (4 2)
was stated explicitly. Nevertheless, the two versions are equivalent.
15The proof is not explicitly stated in [Zhang and Foo 2001] butit follows immediately from the proof of Propo-
sition 4.14.
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7. THE LIMIT POSTULATE IN THE PARTIAL MEET MODEL

In the partial meet model, remainders play a role similar to that of possible worlds in the
system of spheres model. This view is further supported by the following result.

Lemma 4. Let K be a theory. For any remainder H∈ RK there is a possible world
z ∈ ML such that H= K ∩ z. Conversely, for any z∈ ML, K ∩ z ∈ RK .

Proof. Let H be any remainder inRK . Then there is a nonempty consistent set of sentences
Γ such thatH ∈ KyΓ. If H = K then for anyz ∈ [K], H = K ∩ z. Assume therefore that
H , K. By definition,H is consistent withΓ, and therefore there exists at least one world
z ∈ [H] ∩ [Γ]. Clearly, sinceH ⊆ K andz ∈ [H], H ⊆ K ∩ z. Moreover notice thatK ∩ z is
a subset ofK that is consistent withΓ. SinceH is amaximalsuch subset ofK, it follows
thatK ∩ zcan not be larger thanH. ThusH = K ∩ zas desired.

For the second part of the lemma, letz ∈ ML be any possible world. CallH the theory
H = K ∩ z. We show thatH ∈ Ky z. ClearlyH is a subset ofK that is consistent withz.
Hence all we need to show is thatH is a maximal such subset. This however follows easily
from the construction ofH: for any sentencey ∈ (K − z), ¬y ∈ z, and thereforeH ∪ {y} is
inconsistent withz.

Given this strong connection between possible worlds and remainders, it should not be
surprising that the partial-meet characterization of (−̇LP) resembles that of (*LP) in the
system of spheres model.

First some extra definitions and notations. LetK be a theory and4 a preorder inRK . We
shall say that a remainderH ∈ RK is finitely accessible(with respect to4) iff there is a
consistent sentenceϕ ∈ L such thatH is maximalin Ky {ϕ} with respect to4. Moreover,
for any remainderH ∈ RK , by H4 we denote the set of all remainders that are greater or
equal toH (wrt 4); i.e. H4 = {D ∈ RK : H 4 D}. Similarly, for the strict part of416 we
defineH≺ to be the setH≺ = {D ∈ RK : H ≺ D}. Consider now the following conditions:

(PM1) If H is finitely accessible thenJH4K ⊆ H4.

(PM2) If H , K andH is finitely accessible thenJH≺K ⊆ H≺.

(PM3) If H , K thenJH≺K ⊆ H4.

To understand the intuition behind (PM1) - (PM3) one needs tolook at the analogy between
a worldz in a system of spheresS on one hand, and a remainderH in a preorder4 on the
other. Given the connection between worlds and remainders as expressed by Lemma 4, it
is not hard to see that a connection emerges between the smallest sphereV containingz,
andH4: each set contains the items (worlds and remainders respectively) that are more
or equally plausible toz andH respectively. With this reading in mind, it is not hard to

16The strict part≺ of a preorder4 is defined as follows:x ≺ y iff x 4 y andy 64 x.
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see that conditions (PM1) - (PM3) are directly analogous to conditions (R1) - (R3) and
therefore can be justified on the same grounds.

A final note before presenting our last representation result. Like its analogue for multiple
revision, condition (̇−LP) – repeated below for convenience – is equivalent to a simpler
condition (cLP):

(−̇LP) K−̇Γ =
⋃

A⊆ f Γ

⋂
B⊆ f Cn(Γ) K−̇(A∪ B)

(cLP) K−̇Γ = (K ∩Cn(Γ)) +
⋂

A⊆ f Cn(Γ) K−̇A

In [Zhang and Foo 2001] it was shown that, in the presence of postulates (K−̇1) - (K−̇8), for
set contraction, conditions (−̇LP) and (cLP) are equivalent; this equivalence, like Lemma 4,
will be used extensively in the proof of our final result. Equally useful will be the following
two corollaries that are immediate consequences of Lemma 4:

Corollary 2. Let K be a theory, and H,H′ two distinct remainder inRK . If H ′ , K,
then H* H′.

Corollary 3. Let K be a theory, H a remainder inRK , andΓ a nonempty consistent set
of sentences such that K+ Γ ⊢ ⊥. If Γ is consistent with H, then H∈ KyΓ.

Theorem 6 below addresses the last open problem mentioned inthe introduction. It pro-
vides a characterization of (−̇LP) in the partial meet model:

Theorem 6. Let K be a theory and4 a canonical preorder inRK . The set contraction
function−̇ defined from4 by means of (SC) satisfies (−̇LP) iff 4 satisfies (PM1) - (PM3).

Proof.

(⇒ )

Assume thaṫ− satisfies (̇−LP), and thus the equivalent condition (cLP). Since4 is canoni-
cal, from [Zhang and Foo 2001] it follows that−̇ also satisfies (K−̇1) - (K−̇8).

For (PM1), assume thatH is finitely accessible and letϕ be a consistent sentence inL such
that H ∈ K y ϕ. If H = K thenH4 = {K} and therefore (PM1) trivially holds. Assume
therefore thatH , K. Then¬ϕ ∈ K. Moreover assume towards contradiction that there
is a D ∈ RK such that

⋂
H4 ⊆ D andD ≺ H. By Lemma 4, there is a worldz such that

[D] = [K] ∪ {z} andz < [K]. Consider now the setΓ = {ϕ ∨ y : y ∈ z}. We will derive
the desired contradiction by showing that on the one hand¬ϕ < K−̇Γ and yet on the other
hand¬ϕ ∈

⋂
A⊆ f Cn(Γ) K−̇A (thus contradicting (cLP)).

To show¬ϕ < K−̇Γ it suffices to show thatH ∈ max(KyΓ). Clearly sinceH is consistent
with ϕ, it is also consistent withΓ, and therefore by Corollary 3,H ∈ KyΓ. Consider now
any H′ ∈ K y Γ. If ¬ϕ < H′ then, by Corollary 3,H′ ∈ K y ϕ and therefore, sinceH is
maximal inK y ϕ, H′ 4 H. Suppose on the other hand that¬ϕ ∈ H′. Given thatH′ is
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consistent withΓ, it is not hard to verify that in this caseH′ + Γ = z, and therefore from
Lemma 4 it follows thatH′ = D. Consequently once again we derive thatH′ 4 H. Hence
no remainder inKyΓ is strictly greater thanH which makesH maximal inKyΓ. Since
H does not contain¬ϕ it then follows that¬ϕ < K−̇Γ.

For the second part of the argument, consider anyA ⊆ f Cn(Γ), and letE be any remainder
in max(K y A). We show that¬ϕ ∈ E. If E = K this is clearly true. Assume therefore
that E , K, which again entails that¬(∧A) ∈ K. SinceH is consistent withΓ it is also
consistent withA, and therefore (by Corollary 3),H ∈ KyA, which again entailsH 4 E.
Recall thatD ≺ H and therefore,D < max(Ky A). Sincemax(K y A) is closed (because
of the completeness of4), this entails that there is ay ∈

⋂
max(K y A) such thaty < D.

Hence, one can easily verify,¬y ∈ z. Given thatz |= A it follows that¬((∧A) ∧ ¬y) < D.
From

⋂
H4 ⊆ D we then derive that for someG ∈ H4, ¬((∧A) ∧ ¬y) < G, and therefore

G ∈ K y (A ∪ {¬y}). Consider now anyG′ ∈ max(K y (A ∪ {¬y}). By the construction
of G it follows thatH 4 G 4 G′. Moreover, sinceG′ is consistent withA, by Corollary 3
it follows thatG′ ∈ K y A. Yet, sincey ∈

⋂
max(K y A) andG′ is compatible with¬y,

we derive thatG′ < max(K y A). Putting together the above it follows thatH 4 G′ ≺ E,
and thereforeH ≺ E. SinceH is maximal inKyϕ this entails thatE contains¬ϕ. Since
E was chosen arbitrarily, it follows that all remainders inmax(K y A) contain¬ϕ and
therefore¬ϕ ∈ K−̇A. SinceA was chosen as an arbitrary finite subset ofCn(Γ) it follows
that¬ϕ ∈

⋂
A⊆ f Cn(Γ) K−̇A. Earlier however we have shown that¬ϕ < K−̇Γ. Combined

with (cLP) we derive a contradiction.

For (PM2), letH ∈ RK be a finitely accessible remainder different fromK, and letD ∈ RK

be such thatD 4 H. We will show thatD < JH≺K.

If D ≺ H this follows trivially from (PM1) proved above (observe that JH4K ⊆ JH≺K).
Assume therefore thatH 4 D. Next we show that there is a finite set of sentencesA such
thatD ∈ max(KyA) (i.e. D is finitely accessible).

SinceH is finitely accessible, there is a consistentϕ ∈ L, such that¬ϕ ∈ K and H ∈
max(Kyϕ). If ¬ϕ < D then from Corollary 3, andH 4 D, it follows thatD ∈ max(Kyϕ),
and thereforeD is also finitely accessible. Assume therefore¬ϕ ∈ D. SinceD ∈ RK , by
Lemma 4, there is az ∈ ML − [K] such that [D] = [K] ∪ {z}. It is not hard to verify that
D is theonly remainder inK y z. DefineΓ to be the setΓ = {ϕ ∨ x : x ∈ z}. Clearly
Γ is inconsistent withK and consistent with bothH andD. Therefore from Corollary 3,
H,D ∈ K y Γ. We next show thatD is maximal inK y Γ. Consider anyH′ ∈ K y Γ.
If ¬ϕ < H′ then from Corollary 3,H′ ∈ K y ϕ and thereforeH′ 4 H. Hence from
H 4 D and transitivity,H′ 4 D. On the other hand, if¬ϕ ∈ H′, then the consistency of
H′ with Γ entails thatH′ is consistent withz, and thereforeH′ ∈ K y z. Given thatD
is the only remainder inK y z, it follows that H′ = D and reflexivity entails that, once
again,H′ 4 D. HenceD is indeed maximal inK y Γ, and therefore, fromD 4 H, so is
H. Given that¬ϕ < H, this entails that¬ϕ < K−̇Γ. From (cLP) it then clearly follows that
¬ϕ <

⋂
A⊆ f Cn(Γ) K−̇A. Hence there is aA ⊆ f Cn(Γ) such that¬ϕ < K−̇A. This setA is the

one that makesD finitely accessible. Indeed, since¬ϕ < K−̇A, there is aH′ ∈ max(KyA)
such that¬ϕ < H′. Moreover, sinceD is consistent withΓ, D is also consistent withA and
therefore by Corollary 3,D ∈ K y A. Finally, sinceH′ is consistent withϕ, Corollary 3
entails thatH′ ∈ Kyϕ, and thereforeH′ 4 H 4 D. Hence, by transitivity,D is maximal in
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KyA as desired.

Consider now anyE ∈ H≺. From D 4 H we derive thatD ≺ E. Then, sinceD ∈
max(K y A), we derive that¬(∧A) ∈ E. SinceE was chosen arbitrarily, it follows that
¬(∧A) ∈

⋂
H≺. Given thatD is consistent withA we then derive thatD < JH≺K as desired.

For (PM3), assume towards contradiction that there areH,D ∈ RK such thatH , K,
⋂

H≺ ⊆ D, andD < H4. Clearly thenD ≺ H ≺ K. Moreover, from Lemma 4 it follows
that there existz, u ∈ ML − [K] such that [H] = [K] ∪ {z} and [D] = [K] ∪ {u}. DefineΓ
to be the setΓ = {x ∨ y : x ∈ z andy ∈ u}. We will derive the desired contradiction by
shown that there is a sentenceϕ ∈ K−̇Γ such thatϕ < ((K ∩Cn(Γ))+

⋂
A⊆ f Cn(Γ) K−̇A) (thus

contradicting (cLP)).

It is not hard to verify thatK y Γ = {D,H} and therefore, sinceD ≺ H, K−̇Γ = H.
Hence, sinceH * D (by Corollary 2), there is aϕ ∈ K−̇Γ such thatϕ < D. With the
aid of Lemma 4 it is not hard to see that the only remainder inRK compatible withu is
D, i.e. K y u = {D}, and thereforeK−̇u = D. Hence fromϕ < D and (cLP) it follows
that ϕ < (K ∩ u) +

⋂
B⊆ f u K−̇B. Consequently by compactness, for anyA ⊆ f K ∩ u,

(∧A → ϕ) <
⋂

B⊆ f u K−̇B. Consider an arbitrary suchA ⊆ f K ∩ u. Then there is a
B ⊆ f u such that (∧A → ϕ) < K−̇B. SinceD is compatible withu, it is also compatible
with B, and therefore¬(∧B) < D. Hence, from

⋂
H≺ ⊆ D we derive that there is an

E ∈ H≺ such thatE is compatible withB. This again entails that all maximal elements
of K y B are inH≺. Consider now anyE ∈ max(K y B). ClearlyH ≺ E and sinceE is
finitely accessible, by (PM1) – which we have already shown tobe true – we derive that
E4 = JE4K and therefore

⋂
E4 * H. Hence there is ay ∈

⋂
E4 such thaty < H. Since

all remainders inE4 containy andE is a maximalB-remainder, it is not hard to see that
max(Ky {(∧B)∨¬y}) =max(KyB). ThereforeK−̇{(∧B)∨ ¬y} = K−̇B and consequently,
(∧A→ ϕ) < K−̇{(∧B) ∨ ¬y}. We are only one step away from contradiction. Notice that
sincey ∈

⋂
E4, it follows y ∈ K and therefore fromy < H we derive that¬y ∈ z and

consequently (∧B)∨¬y ∈ Cn(Γ). Hence (∧A→ ϕ) <
⋂

C⊆ f Cn(Γ) K−̇C. SinceA was chosen
as an arbitrary finite subset ofK ∩u, we derive thatϕ < ((K ∩u)+

⋂
A⊆ f Cn(Γ) K−̇A. Finally,

sinceCn(Γ) ⊆ u it clearly follows thatϕ < ((K ∩Cn(Γ)) +
⋂

A⊆ f Cn(Γ) K−̇A. This, together
with ϕ ∈ K−̇Γ, contradicts (cLP).

(⇐ )

Assume that4 satisfies (PM1) - (PM3). IfΓ is compatible withK then clearlyK−̇Γ = K
and for allA ⊆ f Cn(Γ), K−̇A = K, from which (cLP) trivially follows. Assume therefore
thatΓ is inconsistent withK. We distinguish between two cases, depending on whether the
elements ofmax(KyΓ) are finitely accessible.

Case-I:

Assume that there is anH ∈ max(KyΓ) such thatH is finitely accessible. To prove (−̇LP),
we first need to show that there is a finite subsetA of Γ such that:
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H ∈ max(KyA) (1)

K−̇Γ = K ∩ (Γ + K−̇A) (2)

Starting with (1), consider any worldz ∈ [
⋂

H≺]. DefineD to be the theoryD = K ∩ z. It
is not hard to verify that, by construction,

⋂
H≺ ⊆ D. Therefore, by (PM2),H ≺ D. Since

H ∈ max(KyΓ) this entails thatD is inconsistent withΓ and therefore, so isz. Sincezwas
chosen arbitrarily, this shows that

⋂
H≺ is inconsistent withΓ. By compactness we then

derive that there is anA ⊆ f Γ such that¬(∧A) ∈
⋂

H≺. Notice that sinceH is consistent
with Γ it is also consistent withA and thereforeH ∈ K yA. Then from¬(∧A) ∈

⋂
H≺ it

follows thatH ∈ max(KyA) as desired.

Next we show thatK−̇Γ = K ∩ (Γ + K−̇A). For LHS ⊆ RHS consider any sentenceϕ in
K−̇Γ. Clearlyϕ ∈ K and therefore it suffices to show thatϕ ∈ Γ + K−̇A. Observe that
sinceH ∈ max(KyA) andH is consistent withΓ, [Γ + K−̇A] , ∅. Let z be any world in
[Γ + K−̇A]. We show thatz ⊢ ϕ. If z ∈ [K] this is trivially true (sinceϕ ∈ K). Assume
therefore thatz < [K]. This entails thatz ∈ [Γ]. DefineD to be the setD = K ∩ z. It is
not hard to see thatD is az-remainder and moreover,K−̇A ⊆ D. Since4 is complete, we
then derive thatD ∈ max(KyA) and consequentlyH 4 D. Moreover, sincez ∈ [Γ], D is
consistent withΓ and therefore, by Corollary 3,D ∈ KyΓ. Hence, fromH 4 D, we derive
that D is a maximalΓ-remainder, and therefore, sinceϕ ∈ K−̇Γ, it containsϕ. Clearly
thenϕ ∈ z and sincez was chosen arbitrarily, it follows that all worlds in [Γ + K−̇A] are
ϕ-worlds and thereforeϕ ∈ Γ + K−̇A. HenceK−̇Γ ⊆ K ∩ (Γ + K−̇A).

For the converse, it suffices to show that [K−̇Γ] ⊆ [K ∩ (Γ + K−̇A)]. Consider any world
z ∈ [K−̇Γ]. Notice that [K ∩ (Γ + K−̇A)] = [K] ∪ [(Γ + K−̇A)]. Hence ifz ∈ [K] we are
done. Assume therefore thatz < [K]. Then there is aϕ ∈ K such that¬ϕ ∈ z. DefineD
to beD = K ∩ z. It is not hard to see thatD is az-remainder and moreover,K−̇Γ ⊆ D.
Then, by the completeness of4, D is a maximalΓ-remainder. This entails, firstly, that
z ∈ [Γ], and secondly thatH 4 D. Then given thatH is also a maximalA-remainder
and moreoverD is consistent withA, we derive (with the aid of Corollary 3) thatD is
a maximalA-remainder. This again entails thatz ∈ [K−̇A]. Hencez ∈ [Γ] ∩ [K−̇A], and
thereforez ∈ [K]∪ [(Γ+K−̇A)] as desired. We have thus shown thatK−̇Γ = K∩ (Γ+K−̇A).

Having proved (1) and (2) we can now proceed with the proof of (−̇LP). We do so by
proving that the left hand side of (−̇LP) is a subset of the right hand side, and vice versa.
StartingLHS ⊆ RHS, let ϕ be any sentence inK−̇Γ. Thenϕ ∈ K and, by (2), for some
B ⊆ f Γ, ((∧B) → ϕ) ∈ K−̇A. Moreover, since, by (1),H is both a maximalA-remainder
andΓ-remainder, it follows thatK−̇A is consistent withΓ. HenceK−̇A is consistent with
B. Then by (K−̇8), K−̇A ⊆ K−̇(A∪ B) and therefore ((∧B) → ϕ) ∈ K−̇(A∪ B). Now let
D be any maximal (A ∪ B)-remainder. By Lemma 4 there exists a (A ∪ B)-world z such
that [D] = [K] ∪ {z}. Since ((∧B) → ϕ) ∈ K−̇(A ∪ B), it follows that ((∧B) → ϕ) ∈ z.
Moreover, by construction,B ⊆ z, and thereforeϕ ∈ z. Given thatϕ is also inK, from
[D] = [K] ∪ {z} we derive thatϕ ∈ D, and sinceD was chosen arbitrarily,ϕ ∈ K−̇(A∪ B).
Next observe that by constructionD is consistent withA and therefore, by Corollary 3, it
is a A-remainder. Hence,D 4 H. Moreover it is not hard to verify thatH is a A ∪ B-
remainder, and therefore fromD 4 H it follows thatH is amaximal A∪B-remainder. This
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entails thatK−̇(A ∪ B) ⊆ H and sinceH is consistent withΓ, we derive thatK−̇(A ∪ B)
is also consistent withΓ. Consequently, by (K−̇8), K−̇(A∪ B) ⊆ K−̇(A∪ B∪C), for any
C ⊆ f Γ. Then sinceϕ ∈ K−̇(A∪ B) we derive thatϕ ∈

⋂
C⊆ f Γ

K−̇(A∪ B∪C). Given that
A∪ B ⊆ f Γ we then derive thatLHS ⊆ RHSas desired.

Conversely, letϕ be any sentence in
⋃

B⊆ fΓ

⋂
C⊆ f Γ

K−̇(B ∪ C). Then for someB ⊆ f Γ,
ϕ ∈
⋂

C⊆ f Γ
K−̇(B∪C). Henceϕ ∈ K−̇(B∪ A). Thereforeϕ ∈ K and moreover, by (K−̇7),

ϕ ∈ (K−̇A) + (A∪ B). Consequently,ϕ ∈ K ∩ ((K−̇A) + Γ), and therefore, by (2),ϕ ∈ K−̇Γ
as desired.

Case-II:

Assume now that no member ofmax(K y Γ) is finitely accessible. Firstly observe that
(K ∩Cn(Γ)) +

⋂
A⊆ f Γ

K−̇A ⊆ K.17 Next we show that (K ∩Cn(Γ)) +
⋂

A⊆ fΓ
K−̇A ⊆ K−̇Γ.

Assume towards contradiction that there is ay ∈ ((K ∩ Cn(Γ)) +
⋂

A⊆ f Γ
K−̇A) such that

y < K−̇Γ. Clearly,y ∈ K. Moreover, sincey ∈ ((K∩Cn(Γ))+
⋂

A⊆ f Γ
K−̇A), by compactness,

there is ax ∈ (K ∩ Cn(Γ)) such that (x → y) ∈
⋂

A⊆ f Γ
K−̇A. Moreover, fromy < K−̇Γ

it follows that there is aH ∈ max(K y Γ), such thaty < H. It is not hard to verify that,
sincex ∈ (K ∩ Cn(Γ)) andH is a Γ-remainder,x ∈ H. ThereforeH is consistent with
x ∧ ¬y and consequently by Corollary 3,H ∈ K y {x ∧ ¬y}. Since we have assumed that
H is not finitely accessible, there is aD ∈ max(K y {x ∧ ¬y}) such thatH ≺ D. This
makesD strictly greater than allΓ-remainders. Next we show that

⋂
D4 is inconsistent

with Γ, or equivalently, that noΓ-world belongs to [
⋂

D4]. Let z be an arbitraryΓ-world.
DefineH′ to be the theoryH′ = K ∩ z. It is not hard to verify thatH′ is aΓ-remainder
and thereforeH′ ≺ D. Moreover, sinceD is finitely accessible, by (PM1) we derive that
D4 is closed, which combined withH′ ≺ D entails that

⋂
D4 * H′. Consequently there

is aψ ∈
⋂

D4 such thatψ < H′. Given the construction ofH′ it follows that¬ψ ∈ z and
thereforez < [

⋂
D4]. Hence we have shown thatΓ is inconsistent with

⋂
D4. Therefore

there is aϕ ∈ Cn(Γ) such that¬ϕ ∈
⋂

D4, which again entails (because of the canonicity
of 4) that¬ϕ ∈ K. Consider now the sentenceϕ∨(x∧¬y). Clearly,¬(ϕ∨(x∧¬y)) ∈ K, and
therefore, by Corollary 3,D ∈ Ky {ϕ∨ (x∧¬y)}, and given that¬ϕ ∈

⋂
D4, it follows that

¬ϕ ∈
⋂

max(Ky {ϕ∨(x∧¬y)}), and therefore (x→ y) < K−̇{ϕ∨(x∧¬y)}. Moreover notice
that{ϕ ∨ (x∧ ¬y)} ⊆ f Cn(Γ). Hence we derive that (x→ y) <

⋂
A⊆ f Γ

K−̇A. This of course
contradicts our initial assumption aboutx→ y. Thus (K ∩Cn(Γ))+

⋂
A⊆ f Γ

K−̇A ⊆ K−̇Γ as
desired.

For the converse, observe that (K ∩Cn(Γ)) +
⋂

A⊆ f Cn(Γ) K−̇A = K ∩ (Γ +
⋂

A⊆ f Cn(Γ) K−̇A),
and therefore, given thatK−̇Γ ⊆ K, it suffices to show thatK−̇Γ ⊆ Γ +

⋂
A⊆ f Cn(Γ) K−̇A,

which in turn is equivalent to [Γ +
⋂

A⊆ f Cn(Γ) K−̇A] ⊆ [K−̇Γ]. Consider therefore an arbi-
trary worldz ∈ [Γ +

⋂
A⊆ f Cn(Γ) K−̇A]. If z ∈ [K] then clearly,z ∈ [K−̇Γ]. Assume therefore

thatz < [K]. DefineH to be the setH = K ∩ z. It is not hard to see thatH is aΓ-remainder
and that [H] = [K] ∪ {z}. Then since [K] ⊆ [

⋂
A⊆ f Cn(Γ) K−̇A] (see footnote 17) and more-

over z ∈ [
⋂

A⊆ f Cn(Γ) K−̇A], we derive that [K] ∪ {z} ⊆ [
⋂

A⊆ f Cn(Γ) K−̇A] and therefore,
⋂

A⊆ f Cn(Γ) K−̇A ⊆ H. To conclude the proof it suffices to show thatH ∈ max(KyΓ).

17By (K−̇2), K−̇A ⊆ K for all A ⊆ f Γ, and therefore
⋂

A⊆ f Γ
K−̇A ⊆ K. Hence (K ∩Cn(Γ)) +

⋂
A⊆ f Γ

K−̇A ⊆ K.
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Assume on the contrary that there is aD ∈ max(K y Γ) such thatH ≺ D. Consider now
any A ⊆ f Cn(Γ). We show that

⋂
D≺ ⊆ K−̇A. If A is consistent withK, then this is

clearly true (recall thatΓ is inconsistent withK and thereforeK ∈ D≺). Assume therefore
that¬(∧A) ∈ K. By Corollary 3,D ∈ K y A. Moreover by the assumption of the case,
D is not finitely accessible, and therefore we derive that while D is a A-remainder, is not
a maximal A-remainder. Hence all maximalA-remainders are inD≺. This again entails
that
⋂

D≺ ⊆ K−̇A. SinceA was chosen arbitrarily, it follows that
⋂

D≺ ⊆
⋂

A⊆ f Cn(Γ) K−̇A.
Notice however that fromH ≺ D and (PM3) we derive that

⋂
D≺ * H, and therefore

⋂
A⊆ f Cn(Γ) K−̇A * H. This of course contradicts our earlier conclusion aboutH. Hence we

have shown thatH ∈ max(K y Γ), which again entails thatK−̇Γ ⊆ H and therefore from
the construction ofH we derive thatz ∈ [K−̇Γ] as desired.

8. SUMMARY AND DISCUSSION

In this article we have addressed three open problems in the multiple belief change litera-
ture. Namely, we provided characterizations of the limit postulates (*LP) and (̇−LP) in the
system-of-spheres and the partial meet models respectively, and we proved that (*LP) is
strictly weaker than (K*F).

These results, together with the ones in [Zhang and Foo 2001]and [Peppas 2011] that relate
the limit postulate to (generalizations of) the epistemic entrenchment model, complete the
picture of the effects that the limit postulate has on all three major constructive models in
Belief Revision. The obtained characterizations reveal a deep connection between the limit
postulate and the notion of anelementaryset of possible worlds.

There is also another side to these results. They provide further insight on the soundness
of the limit postulate. As already stated, the limit postulate was primarily introduced to
close the gap between the postulates (K−̇1) - (K−̇8) for set contraction and the nicely or-
dered partition model. It is important however to assess thelimit postulate independently
of its service to a particular model. Can the limit postulatebe considered a general fea-
ture of rationality in multiple belief change, alongside the AGM postulates? In our view,
the results of this article lead us to a negative answer. One can think of natural situations
where conditions (R1) - (R3) (or alternatively (PM1) - (PM3)) are violated. Consider for
example the system of spheresS in Figure 1, which as we have shown induces a revi-
sion function∗ satisfying (*LP). The two worldsz = Cn({p0,¬p1, p2,¬p3, . . .}) andu =
Cn({¬p0,¬p1,¬p2,¬p3, . . .}) belong to no sphere inS other thanML. Suppose now that
we decide thatz is in fact more plausible thanu and to that affect we introduce an ex-
tra sphereU = (

⋃
i∈N0

[Ti]) ∪ {z} to S. This simple addition breaks down the compliance
with (*LP); the new system of spheres violates (R3) and consequently its induced revision
function violates (*LP).

In our view the results of this article strongly indicate that the limit postulate should be
treated as the identifying condition of an important special case of set contraction (and
multiple revision) functions, rather than a general feature of rational belief change.
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