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Constraint Handling Rules (CHR) is a declarative rule-based programming language that has

cut out its niche over the course of the last 20 years. It generalizes concurrent constraint logic

programming to multiple heads, thus closing the gap to multiset transformation systems. Its
popular extension CHR with Disjunction (CHR∨) is a multi-paradigm declarative programming

language that allows the embedding of Horn programs with SLD resolution.

We analyse the assets and the limitations of the classical declarative semantics of CHR∨ and
highlight its natural relationship with linear logic. We furthermore develop two linear logic seman-

tics for CHR∨ that differ in the reasoning domain for which they are instrumental. We show their

idempotence and their soundness and completeness with respect to the operational semantics. We
show how to apply the linear-logic semantics to decide program properties and to reason about

operational equivalence of CHR∨ programs.

Categories and Subject Descriptors: F.3.1 [Theory of Computation]: Logics and Meanings of Programs—
Specifying and Verifying and Reasoning about Programs; F.3.2 [Theory of Computation]: Logics and Meanings
of Programs—Semantics of Programming Languages

General Terms: Languages, Theory, Verification
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1. INTRODUCTION

A declarative semantics is a highly desirable property for a programming language. It
offers a clean theoretical foundation for the language, allows to prove program properties
such as correctness and operational equivalence and guarantees platform independence.
Declarative programs tend to be clearer and more concise as they contain, ideally, only
information about the modeled problem and not about control.

Constraint Handling Rules (CHR) [Frühwirth 1994; 1998; 2009] is a declarative
committed-choice general-purpose programming language developed in the 1990s as a
portable language extension to implement user-defined constraint solvers. Operationally,
it mixes rule-based multiset rewriting over constraints with calls to a built-in constraint
solver. By definition, the built-in solver implements at least a theory of equality. In prac-
tice, it is often a powerful constraint handler for a broad range of constraint domains.
Irrespective of the built-in solver, CHR is Turing complete and it has been shown that un-
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der some reasonable assumption about the buit-in constraint solver, every algorithm can be
implemented in CHR with optimal time complexity [Sneyers et al. 2009]. Hence, it makes
an efficient stand-alone general-purpose programming language.

Constraint Handling Rules with Disjunction (CHR∨) [Abdennadher and Schütz 1998]
extends the inherently comitted-choice formalism of CHR with the possibility to include
don’t-know non-determinism and thus to embed Horn programs. We can justly describe it
as a multi-paradigm declarative programming language. CHR∨ is a popular extension as
CHR is usually implemented in Prolog, where don’t-know non-determinism comes practi-
cally for free.

Owing to their heritage in logic programming and constraint logic programming, CHR
and CHR∨ feature a declarative semantics in classical logic. We have shown, however,
that certain classes of useful CHR programs have a logically inconsistent reading in this
declarative semantics [Betz and Frühwirth 2005]. For others it is at least misleading. Op-
erationally, CHR is a state transition system whereas the classical declarative semantics
considers all states in a derivation as logically equivalent. Hence, the directionality of
the rules, the inherent non-determinism of their execution and any change of state eludes
this declarative semantics. While the don’t-know non-determinism of CHR∨ in particular
is expressed faithfully in the classical declarative semantics, the limitations observed in
CHR carry over to CHR∨ as well. An alternative declarative semantics seems therefore
desirable.

Linear logic is a sub-structural logical formalism [Girard 1987] that has been shown
to bear a close relationship to concurrent committed-choice systems [Miller 1992; Fages
et al. 2001]. We will see that it is well-suited to model the committed-choice rules of
CHR. It furthermore allows a faithful embedding of classical logic, so we can straight-
forwardly embed the constraint theory underlying the built-in constraint solver into linear
logic. Linear logic thus enables us to model the two reasoning mechanisms of CHR in a
single formalism. Moreover, we can encode CHR∨ into linear logic in a way that preserves
its characteristic dichotomy of don’t-know and don’t-care non-determinism.

In this article, we propose a linear-logic semantics for CHR∨ that incorporates all the
features mentioned above. We found the semantics on the intuitionistic segment of linear
logic as it suffices for our purpose while being easier to handle than the full segment. We
propose two variants of the semantics. The first variant is based on introducing proper
axioms in the sequent calculus of linear logic. The second variant is similar to the seman-
tics previously published in Betz [2004], Betz and Frühwirth [2005] and Betz [2007]. The
first formulation allows for considerably more elegant proofs, in particular of its soundness
and completeness. The second formulation allows to perform a broader range of reasoning
tasks. As we formalize and prove the idempotence of both representations, we can use ei-
ther representation according to the respective application. We furthermore investigate the
conditions under which we can apply our semantics to reason about CHR∨ programs. We
identify a segment of CHR∨ where precise reasoning is possible. This segment includes
pure CHR.

This article is structured as follows: In Sect. 2, we recall the syntax and operational
semantics of CHR∨. In Sect. 3, we introduce the intuitionistic segment of linear logic. In
Sect. 4, we develop two linear-logic semantics for CHR∨, we show their idempotence and
their soundness and completeness with respect to the operational semantics. In Sect. 5, we
discuss the conditions under which we can apply the linear-logic semantics to reason about
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
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CHR∨ programs. In Sect. 6, we discuss related work before we conclude in Sect. 7.

2. CONSTRAINT HANDLING RULES WITH DISJUNCTION

In this section, we recall the syntax of Constraint Handling Rules with Disjunction (CHR∨)
and its operational semantics ω∨e .

2.1 The Syntax of CHR∨

A CHR system is a tuple 〈Πu,Πb,F ,V〉, where V is a set of variables, F is a set of
function symbols and Πu,Πb are two sets of predicate symbols called the user-defined and
built-in constraint symbols. From variables and function symbols we build terms in the
usual manner.

An atomic constraint is a predicate of first-order logic. A constraint is a conjunction of
first-order predicates. In CHR, we distinguish two disjoint classes of atomic constraints:
atomic built-in constraints and atomic user-defined constraints, distinguished by the two
sets of constraint symbols. Built-in constraints and user-defined constraints are possibly
empty conjunctions of their respective atomic constraints. A formula built over atomic
constraints using ∧ and ∨ is called a goal1.

The syntax of constraints is summarized in Def. 2.1:

Definition 2.1 Constraint Syntax. Let cb(t̄), cu(t̄) denote an n-ary atomic built-in
or user-defined constraint, respectively, where t̄ is an n-ary sequence of terms:

Built-in constraint: B ::=> | cb(t̄) | B ∧ B′

User-defined constraint: U ::=> | cu(t̄) | U ∧ U′

Goal: G ::=> | cu(t̄) | cb(t̄) | G ∧ G′ | G ∨ G′

> stands for the empty constraint or the empty goal, respectively. The set of built-in
constraints furthermore contains at least falsity ⊥, and syntactic equality �.

For any two goals G,G′, goal equivalence G ≡g G
′ denotes equivalence between goals

with respect to commutativity and associativity of ∧, the neutrality of > with respect to ∧,
and the distributivity of ∧ over ∨. A goal which does not contain disjunctions is called flat.
The set of variables occurring in a goal G is denoted as vars(G).

The goal equivalence relation ≡g does not account for idempotence of ∧ and ∨. It
thus enforces a multiset semantics for conjunctions and disjunctions. For example, cu(t̄) ∧
cu(t̄) .g cu(t̄). (We observe that goal equivalence is thus stronger than logical equivalence.)
Both built-in and user-defined constraints are special cases of flat goals.

Allowing ∧ to distribute over ∨ guarantees that every goal is equivalent to its disjunctive
normal form (DNF). The opposite law of distributivity is not allowed. For example, we
have G1∧ (G2∨G3) ≡G (G1∧G2)∨ (G1∧G3) but G1∨ (G2∧G3) .G (G1∨G2)∧ (G1∨G3).
Thus any finite goal has only a finite number of equivalent representations. Alluding to its
operational meaning, we also refer to ∨ as the split operator.

A CHR program is a set of rules adhering to the following definition:

1The term goal is used in CHR for historical reasons and does not imply that program execution is understood as
proof search. The use of the terms head and body is closer to their use in production rule systems than to their
use in logic programming.
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Definition 2.2 Rule Syntax. (1) A CHR rule is of the form

r @ H1 \ H2 ⇔ G | B

The rule head H1 \H2 consists of the kept head H1 and the removed head H2. Both H1,H2
are user-defined constraints. At least one of them must be non-empty. The guard G is a
built-in constraint. The rule body B is a goal, whereas r serves as an identifier for the rule.

(2) The identifier r can be omitted along with the @. An empty guard G = > can be
omitted along with the |. A rule with an empty kept head H1 can be written as r @ H2 ⇔

G | B. Such a rule is called a simplification rule. A rule where the removed head H2 is
empty can be written as r @ H1 ⇒ G | B. Such a rule is called a propagation rule. A rule
where neither H1 nor H2 is empty is called a simpagation rule.

(3) A variant of a rule r @ H1 \ H2 ⇔ G | B with variables x̄ is of the form (r @ H1 \

H2 ⇔ G | B)[x̄/ȳ] where ȳ is an arbitrary sequence of pairwise distinct variables and [x̄/ȳ]
denotes substitution of the variables in x̄ with those in ȳ.

(4) A CHR∨ program is a set of CHR∨ rules.

While the rule identifier is operationally ignored, we need it to discuss CHR programs
and use it in the definion of the operational semantics.

Example 2.3. The following rules are samples from programs discussed in the follow-
ing section. The predicate symbols leq and min are user-defined constraint symbols, the
infix symbol ≤ is a built-in constraint symbol. By definition, > and � are also built-in
constraint symbols.

rM @ min(x) \ min(y) ⇔ x ≤ y | >
rS @ leq(x, y) ∧ leq(y, x) ⇔ x =̇ y
rT @ leq(x, y) ∧ leq(y, z) ⇒ leq(x, z)
b1 @ bird ⇔ albatross ∨ penguin

Rule rM is a simpagation rule with an atomic user-defined constraint in the kept head and
one in the removed head. The guard is a built-in constraint and the body is empty. Rule
rS has an empty kept head, which makes is a simplification rule. Rule rT is a propagation
rule, since its removed head is empty. The bodies of the two rules hold a built-in constraint
and a CHR constraint, respectively. Rule b1 is a simplification rule with a disjunction /

split operator in the body.

In anticipation of Section 2.2, we point out that in a so-called naı̈ve or “very abstract”
[Frühwirth 2009] operational semantics, propagation rules cause trivial non-termination of
programs because they do not eliminate the pre-conditions of their firings. Hence, precau-
tions have to be taken.

The most common strategy to avoid trivial non-termination consists in keeping a history
of propagation rule firings and preventing redundant rule firings. We refer the reader to
Abdennadher [1997] and Duck et al. [2004] for a discussion of this approach. A more
recent approach [Betz et al. 2010] is based on finite representations of infinite program
states and computations.

While operational semantics based on propagation histories prevail in practice, only
naı̈ve approaches are natural models of linear logic. Furthermore, they are the most general
formulations: This means that (to our knowledge) every operational semantics proposed to
this day is sound with respect to a naı̈ve semantics while termination is usually gained at
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
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the cost of completeness. This makes the naı̈ve approach an adequate low-level abstraction
over concrete CHR implementations to found our semantics upon.

We will therefore found our semantics on top of the semantics ω∨e , a naı̈ve operational
semantics for CHR∨ that we propose in the following section. Applicability of our results
to other operational semantics is recovered by consideration of their soundness and com-
pleteness with respect to ω∨e . For example, standard results guarantee full applicability
for the popular semantics ωr [Duck et al. 2004] at least for the segment of confluent (cf.
Definition 2.21) programs without propagation rules. The majority of example programs
in this paper falls into this category. For a detailled discussion of the relationship between
the various operational semantics, we refer the reader to Frühwirth [2009].

2.2 The Equivalence-Based Semantics ω∨e
In this section, we recall the operational semantics of CHR∨. The operational semantics we
present here is a straightforward extension of the equivalence-based semantics ωe [Raiser
et al. 2009] for pure CHR (without disjunction). We denote it as ω∨e .

Operationally, built-in and user-defined constraints are handled separately. For the han-
dling of built-in constraints, CHR requires a so-called predefined constraint handler or
built-in handler whereas user-defined constraints are handled by the actual user program.
We assume that the predefined solver implements a decidable first-order constraint theory
CT over the built-in constraints.

While decidability may sound like a harsh requirement, it serves as a necessary device
that allows us to identify logical judgements with judgements made by the built-in solver
and disregard solver limitations. If practice, we can assume that CT is the theory that a
specific built-in solver actually decides. For example, it is well-known that the theory of
natural numbers is not decidable. Rather than considering the built-in solver an incomplete
solver over an undecidable theory, we assume that it is a complete solver over a decidable
subset of this theory. We then call this subset CT .

For automated proof search over CHR∨, we get a correct implementation of this CT for
free if the automated prover is founded on the same built-in solver as the CHR∨ implemen-
tation over which we want to reason.

Definition 2.4 Constraint Theory. (1) A coherent theory as a set of axioms of the form

α ::= ∀(∃x̄.G→ ∃x̄′.G′)

where G,G′ are possibly empty flat goals and x, x′ are possible empty sequences of
variables.

(2) A constraint theory CT for a CHR system is a decidable coherent theory over built-in
constraints.

CHR program states are defined as follows:

Definition 2.5 State. (1) A state is a tuple of the form S = 〈G;V〉 where G is a goal
called the store and V is a set of variables called global variables.

(2) A state 〈G;V〉 where G is flat is also called flat.
(3) For a flat state S = 〈U∧B;V〉, where U is a user-defined constraint and B is a built-in

constraint we call U the user-defined store and B the built-in store.
(4) For a flat state S = 〈U ∧ B;V〉, we call

(a) l̄S ::= (vars(U) ∪ vars(B)) \ V the local variables of S and
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
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(b) s̄S ::= l̄S \ vars(U) the strictly local variables of S.
(5) A variant of a flat state S = 〈G;V〉 with local variables l̄S is a state S ′ of the form

S ′ = 〈G[l̄/x̄];V〉, where x̄ is a sequence of pairwise distinct variables that do not occur
in V.

The following definition gives an equivalence relation over states:

Definition 2.6 Equivalence of States. In the following, let U,U′ denote arbitrary user-
defined constraints, B,B′ built-in constraints, G,G′ goals, V,V′ sets of variables. Let x
denote a variable and t denote a term. Equivalence of states, written as · ≡e ·, is the
smallest equivalence relation over states that satisfies all of the following conditions:

(1) (Goal Transformation)

G ≡g G
′ ⇒ 〈G;V〉 ≡e 〈G

′;V〉

(2) (Equality as Substitution)

〈U ∧ x � t ∧ B;V〉 ≡e 〈U [x/t] ∧ x � t ∧ B;V〉

(3) (Application of CT) Let 〈U∧B;V〉, 〈U∧B′;V〉 be flat states with strictly local variables
s̄, s̄′. If CT |= ∃s̄.B↔ ∃s̄′.B′ then:

〈U ∧ B;V〉 ≡e 〈U ∧ B
′;V〉

(4) (Neutrality of Redundant Global Variables)

x < vars(G) ⇒ 〈G; {x} ∪ V〉 ≡e 〈G;V〉

(5) (Equivalence of Failed States) For all goals G,G′ and all sets of variables V,V′:

〈G ∧ ⊥;V〉 ≡e 〈G
′ ∧ ⊥;V′〉

Where there is no ambiguity, we often write ≡ rather than ≡e.

While we generally impose a multiset semantics on constraints, Definition 2.6.3 implic-
itly restores the set semantics for built-in constraints within states. Note also, that some of
the axioms given above only apply to flat states. This limitation will be amended with the
equivalence relation on configurations given in Definition 2.14.

A state with an inconsistent store is called a failed state as formalized in the following
definiton:

Definition 2.7 Failed State. A state S ≡ 〈⊥; ∅〉 is called a failed state. We use S ⊥ =

〈⊥; ∅〉 as the default representative for the set of failed states.

The following lemma states two properties following from Def. 2.6 that have been pre-
sented and proven in Raiser et al. [2009]:

Lemma 2.8 Properties of State Equivalence. The following properties hold in general
for flat states:

(1) (Renaming of Local Variables)

〈G;V〉 ≡ 〈G
[
x/y

]
;V〉

for x < V and y < V and y does not occur in G.
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(2) (Logical Equivalence) If

〈U ∧ B;V〉 ≡ 〈U′ ∧ B′;V′〉

then CT |= (∃l̄.U∧B)↔ (∃l̄′.U′∧B′), where l̄, l̄′ are the local variables of 〈U∧B;V〉, 〈U′∧
B′;V′〉, respectively.

Lemma 2.8.1 allows us to assume without loss of generality that the local variables of
any two specific flat states are renamed apart. Concerning Lemma 2.8.2, note that logical
equivalence of ∃l̄.U∧B and ∃l̄′.U′∧B′ is a necessary but not a sufficient condition for state
equivalence. The linear logic semantics will enable us to formulate a similar condition that
is both necessary and sufficient (cf. Sect. 4.2).

The task of deciding equivalence – and more so: non-equivalence – of states is not
always trivial using the axiomatic definition. We quote Theorem 2.12 which gives a nec-
essary, sufficient, and decidable criterion to decide equivalence of flat states. It uses the
following notion of matching:

Definition 2.9 Matching of Constraints. (1) For an n-ary sequence of variables x̄ =

x1, . . . , xn and an n-ary sequence of terms t̄ = t1, . . . , tn, we write x̄ =̇ t̄ as a short-
hand for x1 =̇ t1 ∧ . . . ∧ xn =̇ tn.

(2) For user-defined constraints U,U′, we define its match as:

match(U,U′) ::=
{
x̄ =̇ t̄ | U[x̄/t̄] ≡g U

′[x̄/t̄]
}

(3) A reduced match rm(U,U′) is a subset of match(U,U′) where for every x̄ =̇ t̄ ∈
match(U,U′) there is a x̄′ =̇ t̄′ ∈ rm(U,U′) such that CT |= x̄ =̇ t̄ → x̄′ =̇ t̄′.

(4) A fully reduced match f rm(U,U′) is a reduced match of U,U′ such that no subset of
f rm(U,U′) is a reduced match.

(5) We furthermore define the matching U =̇ U′ as follows, where f rm(U,U′) is a fully
reduced match of U,U’:

U =̇ U′ ::=
∨

(x̄ =̇ t̄) ∈ f rm(U,U′)

x̄ =̇ t̄

A match is similar to the common notion of unifier. A fully reduced match roughly
corresponds to a most general unifier.

Example 2.10 Matching. Some examples shall illustrate Definition 2.9:

(c(1) =̇ c(1)) = >

(c(x) =̇ c(x)) = >

(c(x) =̇ c(1)) = (x =̇ 1)
(c(x) =̇ d(x)) = ⊥

(c(0) =̇ c(1)) = ⊥

(c(x) ∧ c(y) =̇ c(0) ∧ c(1)) = (x =̇ 0 ∧ y =̇ 1) ∨ (x =̇ 1 ∧ y =̇ 0)

Theoretical papers about CHR and CHR∨ usually assume that syntactic equality � is a
symbol of the underlying logic. We make the handling of equality explicit here, so we can
properly translate it to intutionistic linear logic in the following:

Definition 2.11. For a given CHR system, the equality theory ET is the smallest coher-
ent theory such that for every goal G[x] parametric in a variable x, we have:

ET |= G[x] ∧ x � t → G[t]

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
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The following theorem has been published and proven in [Raiser et al. 2009]. It extends
the criterion CT |= ∃s̄.B ↔ ∃s̄′.B′ of Definition 2.6.3 with a matching U � U′ to express
goal transformation and substitution. We get neutrality of redundant global variables and
equivalence of failed states for free as properties of first-order logic.

Theorem 2.12 Criterion for ≡e. Consider CHR states S = 〈U ∧ B;V〉, S ′ = 〈U′ ∧
B′;V〉 with local variables l̄, l̄′ that have been renamed apart. Then S ≡e S ′ if and only if:

ET,CT |= ∀(B→ ∃l̄′.((U =̇ U′) ∧ B′)) ∧ ∀(B′ → ∃l̄.((U =̇ U′) ∧ B))

A configuration can be thought of as a possibly empty multiset of independent CHR∨

states, denoted as a disjunction.

Definition 2.13 Configuration. (1) A configuration S̄ is either an empty configuration
S̄ = ε or of the form S̄ = S 1 ∨ . . . ∨ S n, where S 1, . . . , S n are states.

(2) A configuration is called flat if it is either empty or of the form S̄ = S 1 ∨ . . . ∨ S n

where S 1, . . . , S n are flat states.
(3) A configuration is called singular if it is either empty or of the form S̄ = S where S is

a state.

The following definition extends the notion of equivalence from flat states to configura-
tions:

Definition 2.14 Equivalence of Configurations. Equivalence of configurations, denoted
as ≡∨, is the smallest equivalence relation over configurations satisfying all of the following
properties:

(1) Commutativity and Associativity:

S̄ ∨ T̄ ≡∨ T̄ ∨ S̄ and (S̄ ∨ T̄ ) ∨ Ū ≡∨ S̄ ∨ (T̄ ∨ Ū)

(2) State Equivalence

S ≡e S ′ ⇒ S ∨ T̄ ≡∨ S ′ ∨ T̄

(3) Neutrality of Failed States:

S ⊥ ∨ T̄ ≡∨ T̄

(4) Split:

〈G1 ∨ G2;V〉 ∨ T̄ ≡∨ 〈G1;V〉 ∨ 〈G2;V〉 ∨ T̄

We denote equivalence classes of configurations by square brackets: [S ] ::= {T | S ≡∨ T }.

From Definition 2.14 follows the following important property:

Property 2.15 Normal Forms of Configurations. (1) Every configuration S̄ has an
equivalent representation S̄ F ≡ S̄ such that S̄ F is flat. We call S̄ F a flat normal
form (FNF) of S̄ .

(2) Every configuration S̄ has an equivalent representation S̄ S ≡ S̄ such that S̄ S is singu-
lar. We call S̄ S a singular normal form (SNF) of S̄ .

The following example shall illustrate the two normal forms:
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
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Example 2.16 Normal Forms. Consider the configurations S̄ F = 〈c(x)∧d(x); ∅〉∨〈c(x)∧
d′(x); ∅〉 and S̄ S = 〈c(x) ∧ (d(x) ∨ d′(x)); ∅〉. While the two configuration are equivalent,
S̄ F is in FNF and S̄ S is in SNF.

The flat normal form of configurations is of special importance as it implicitly extends
properties of flat states, such as variable renaming, to configurations in general. For exam-
ple, we have 〈c(x) ∨ d(x); ∅〉 .e 〈c(y) ∨ d(y); ∅〉, but 〈c(x) ∨ d(x); ∅〉 6≡∨ 〈c(y) ∨ d(y); ∅〉.

We define the notion of local variables of CHR rules, which is necessary for the defini-
tion of the operational semantics:

Definition 2.17 Local Variables in Rules. For a CHR rule r @ H1 \ H2 ⇔ G | B, we
call the set

ȳr = vars(B,G) \ vars(H1,H2)

the local variables of r.

The following definition presents the transition system of CHR∨.

Definition 2.18 Transition System of ω∨e . CHR is a state transition system over equiv-
alence classes of configurations. It is defined by the following transition rule, where
(r @ H1 \ H2 ⇔ G | B) is a variant of a CHR rule whose local variables ȳr are renamed
apart from the variables vars(G,V):

r @ H1 \ H2 ⇔ G | B ET,CT |= ∃(G ∧ G)
[〈H1 ∧ H2 ∧G ∧ G;V〉 ∨ T̄ ] 7→r [〈H1 ∧G ∧ B ∧ G;V〉 ∨ T̄ ]

If the applied rule is obvious from the context or irrelevant, we write transition simply
as 7→. We denote its reflexive-transitive closure as 7→∗.

The required disjointness of the local variables ȳr from all variables occurring in the pre-
transition state outside G enforces that fresh variables are introduced for the local variables
of the rule.

2.3 Properties

When reasoning about programs, we usually refer to the following observables:

Definition 2.19 Observables. Let S be a CHR∨ state, P be a program, and CT be a
constraint theory. We distinguish three sets of observables, where B̄ stands for a disjunction
of built-in constraints:

Computable configuration: CP,CT (S ) ::={[T̄ ] | [S ] 7→∗ [T̄ ]}
Answer: AP,CT (S ) ::={[T̄ ] | [S ] 7→∗ [T̄ ] 67→}
Data-sufficient answer: SP,CT (S ) ::={[〈B̄;V〉] | [S ] 7→∗ [〈B̄;V〉]}

For all three sets, if the respective constraint theory CT is clear from the context or not
important, it may be omitted from the identifier of the respective set. The set SP,CT (S ) \
{[S ⊥]} is called successful answers.

As the transition system does not allow transitions from an empty user-defined store
(nor from failed states), the data-sufficient answers SP,CT (S ) are a subset of the answers
AP,CT (S ) of any state S . The following property follows directly:
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Property 2.20 Hierarchy of Observables. For any state S , program P and constraint
theory CT, we have:

SP,CT (S ) ⊆ AP,CT (S ) ⊆ CP,CT (S )

Confluence is an important property of transition systems. We define it in the usual
manner:

Definition 2.21 Confluence. A CHR∨ program P is called confluent if for arbitrary con-
figurations S̄ , T̄ , Ū such that [S̄ ] 7→∗ [T̄ ] and [S̄ ] 7→∗ [Ū], there exists a configuration V̄
such that [T̄ ] 7→∗ [V̄] and [Ū] 7→∗ [V̄].

Confluence restricts the number of possible answers to a query:

Property 2.22. Let P be a confluent CHR program. Then for every CHR state S , we
have |SP(S )| ∈ {0, 1} and |AP(S )| ∈ {0, 1}, where | · | denotes cardinality.

Proof sketch. We assume that for a state S , configurations T,T ′, and some confluent
program P, we have S 7→∗ T 67→ and S 7→∗ T ′ 67→ and [T ] , [T ′]. Applying Def. 2.21 leads
to a contradiction.

A necessary, sufficent and decidable criterion for confluence has been given for pure
CHR in Abdennadher et al. [1996]. It can straightforwardly be extended to CHR∨.

One of the most significant features of CHR∨ is that it naturally embeds Horn programs
with SLD resolution. The following definition and theorem were published in [Abdennad-
her and Schütz 1998], though we adapted their notation.

Definition 2.23 Horn Embedding. Let p/n be an n-ary Horn predicate, defined by m
clauses of the form

p(t̄i)← Gi

Then its embedding into CHR∨ is defined as

p(x̄)⇔
m∨

i=0

(x̄ � t̄i) ∧Gi

The embedding of a Horn program P is the set of the embeddings of its predicates. We
denote this embedding as P∨.

The following theorem was presented in [Abdennadher and Schütz 1998]. A proof
sketch can be found there. We adapted it to our terminology.

Theorem 2.24. Let H be a Horn program, let P be its embedding in CHR∨ and let p(t̄)
be a predicate. For every succesful leaf 〈>; θ〉 in the SLD tree of p(t̄), there is a state
〈B; vars(t̄)〉 in a computable configuration of 〈p(t̄); vars(t̄)〉 such that

ET,CT |= B↔ (t̄ =̇ t̄θ)

and vice versa.

2.4 Examples

We shall illustrate our definitions with several examples. Example 2.25 presents a well-
known example program:
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
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Example 2.25. We consider the following program which implements a constraint
solver for the partial-order relation. To emphasize that the partial-order relation is a user-
defined constraint here, we denote it with the prefix symbol leq.

Pleq =


rI @ leq(x, y) ∧ leq(x, y) ⇔ leq(x, y)
rR @ leq(x, x) ⇔ >

rS @ leq(x, y) ∧ leq(y, x) ⇔ x =̇ y
rT @ leq(x, y) ∧ leq(y, z) ⇒ leq(x, z)


The following is a sample derivation, starting from an initial state S 0 = 〈a ≤ b∧b ≤ c∧c ≤
a;V〉, where V = {a, b, c}. According to the usual practice, all variables occurring in the
initial state are global. Equivalence transformations are stated explicitly:

〈 leq(a, b) ∧ leq(b, c) ∧ leq(c, a);V〉 (1)
≡ 〈 leq(x, y) ∧ leq(y, z) ∧ leq(c, a) ∧ x � a ∧ y � b ∧ z � c;V〉

7→rT 〈 leq(x, z) ∧ leq(x, y) ∧ leq(y, z) ∧ leq(c, a) ∧ x � a ∧ y � b ∧ z � c;V〉

≡ 〈 leq(a, c) ∧ leq(a, b) ∧ leq(b, c) ∧ leq(c, a);V〉 (2)
≡ 〈 leq(x, y) ∧ leq(y, x) ∧ leq(a, b) ∧ leq(b, c) ∧ x � a ∧ y � c;V〉

7→rS 〈 leq(a, b) ∧ leq(b, c) ∧ x � y ∧ x � a ∧ y � c;V〉

≡ 〈 leq(a, b) ∧ leq(c, b) ∧ a � c;V〉 (3)
≡ 〈 leq(x, y) ∧ leq(y, x) ∧ x � a ∧ y � b ∧ a = c;V〉

7→rS 〈x � y ∧ x � a ∧ y � b ∧ a � c; {a, b, c}〉

≡ 〈a � b ∧ a � c;V〉 67→ (4)

Usually, we do not make equivalence transformations explicit and list only states where
local variables are eliminated as far as possible such as the labeled states (1)-(4). The
derivation is then reduced to:

〈 leq(a, b) ∧ leq(b, c) ∧ leq(c, a);V〉 (1)

7→rT 〈 leq(a, c) ∧ leq(a, b) ∧ leq(b, c) ∧ leq(c, a);V〉 (2)

7→rS 〈 leq(a, b) ∧ leq(b, c) ∧ a � c;V〉 (3)

7→rS 〈a � b ∧ a � c;V〉 67→ (4)

With respect to our observables, we have:

SP,CT (S 0) = AP,CT (S 0) = {[〈>; a � b ∧ a � c; {a, b, c}〉]}

The set CP,CT (S 0) is infinite as the operational semantics ωe allows potentially unlimited
applications of rT .

While a built-in constraint in the guard inhibits rule application when it is not implied
by the program store, a built-in constraint in the rule body can lead to a contradiction in
the store and thus cause a computation to fail. Consider the following computation:

〈 leq(0, 1) ∧ leq(1, 0);V〉 (1)

7→rS 〈0 � 1;V〉 ≡∨ 〈⊥;V〉 (2)
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Example 2.26. The following program computes the minimum of a set, provided the
initial state contains a set of candidates wrapped in unary constraints min. Note that in
contrast to Example 2.25, we now use the the partial-order relation as a built-in constraint.
To emphasize the difference, we use the infix constraint symbol ≤ rather than the prefix
symbol leq in this example:

Pmin =
{

rM @ min(x) \ min(y) ⇔ x ≤ y | >
}

The following is a sample derivation, starting from an initial state S 0 =

〈min(1), min(2), min(3), min(4); ∅〉.

〈min(1) ∧ min(2) ∧ min(3) ∧ min(4); ∅〉 (1)

7→rM 〈min(1) ∧ min(2) ∧ min(3); ∅〉 (2)

7→rM 〈min(1) ∧ min(2); ∅〉 (3)

7→rM 〈min(1); ∅〉 67→ (4)

With respect to our observables, we have SP,CT (S 0) = ∅ and AP,CT (S 0) =

{[〈min(1); ∅〉]}. The set CP,CT (S 0) contains every configuration that can be reached on
the non-deterministic path from S 0 to 〈min(1); ∅〉. Its cardinality is 8.

A guarded rule only fires, if the guard is implied by the store. Consider the following
computation:

〈min(a) ∧ min(b) ∧ min(c) ∧ a ≤ b; {a, b, c}〉 (1)

7→rM 〈min(a) ∧ min(c); {a, c}〉 67→ (2)

Example 2.27. The following program is a minimal example of a knowledge base im-
plemented in CHR∨:

Pbirds =

{
b1 @ bird ⇔ albatross ∨ penguin
b2 @ penguin ∧ flies ⇔ ⊥

}
Using ω∨e , we can construct the following derivation starting from the initial state S 0 =

〈bird ∧ flies; ∅〉:

[〈bird ∧ flies; ∅〉]
7→∨ [〈(albatross ∨ penguin) ∧ flies; ∅〉]
= [〈albatross ∧ flies; ∅〉 ∨ 〈penguin ∧ flies; ∅〉]
7→∨ [〈albatross ∧ flies; ∅〉 ∨ 〈⊥; ∅〉]
= [〈albatross ∧ flies; ∅〉]

With respect to the observables, we have CP(S 0) = {[S 0], [〈(albatross ∨ penguin) ∧
flies; ∅〉], [〈albatross ∧ flies〉]},AP(S 0) = {[〈albatross ∧ flies〉]}, and SP(S 0) = ∅.

3. INTUITIONISTIC LINEAR LOGIC

Linear logic is a substructural logical formalism introduced by Girard [1987]. Unlike
classical logic, linear logic does not allow free copying or discarding of assumptions. It
furthermore features a fine distinction between internal and external choice and a sound
and complete embedding of classical and intuitionistic logic. In this section, we recall the
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intuitionistic fragment of linear logic. It allows for a straightforward, faithful embedding
of intuitionistic logic.

Note that in contrast to the classical case, intuitionistic linear logic is distinguished from
the full fragment of linear logic by the absence of several logical connectives. Hence, the
choice of the intuitionistic fragment comes naturally as the connectives in this fragment
appear most suitable to model CHR∨.

3.1 Definition

We will give the formal definition in terms of a sequent calculus. The calculus is based on
binary sequents of the form

Γ ` α

where Γ is a multiset of formulas (written without braces) called antecedent and α is a
formula called consequent. A sequent Γ ` α represents the fact that assuming the formulas
in Γ, we can conclude α. A sequent is a formalization of logical judgement. We will
therefore call ` the judgement relation.

The sequent calculus is given as a set of inference rules. An inference rule is composed
of zero, one, or several premises and exactly one conclusion. Inference rules without
premises introduce axioms of the system. Most inference rules are dedicated to the intro-
duction of a symbol or connective of the logic and named accordingly. Those that do no
introduce a specific symbol are called structural rules.

A proof tree – or simply: proof – is a finite labeled tree whose nodes are labeled with
sequents such that every sequent node is the consequence of its direct children according
to one of the inference rules of the calculus. A proof tree is called complete if all its leaves
are axioms. We call a sequent Γ ` α valid if there exists a complete proof tree π with Γ ` α
at the root.

The following two structural rules are common to many logical systems. They establish
reflexivity and a form of transitivity of the judgement relation.

α ` α (Identity)
Γ ` α α,∆ ` β

Γ,∆ ` β
(Cut)

The tokens of (intuitionistic) linear logic are commonly considered as representing re-
sources rather than truths. This terminology reflects the fact that assumptions may not be
copied nor discarded freely in linear logic, but must be used exactly once. From a different
point of view, we might say that linear logic consumes assumptions in judgements and is
aware of their multiplicities.

Multiplicative conjunction is distinguished from classical or intuitionistic conjunction
as it lacks idempotence. The conjunction α ⊗ β represents exactly one instance of α and
one instance of β. The atomic formula α represents exactly one instance of α, the con-
junction α ⊗ α exactly two instances. Hence, α is not equivalent to α ⊗ α. Multiplicative
conjunction is introduced by the following inference rules:

Γ, α, β ` γ

Γ, α ⊗ β ` γ
(L ⊗ )

Γ ` α ∆ ` β

Γ,∆ ` α ⊗ β
(R ⊗ )

For a complete picture, note that the term multiplicative refers to the fact that the two
premises of the right-hand introduction rule (R ⊗ ) have distinct antecedents Γ,∆. This in

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



14 · H. Betz and T. Frühwirth

e ` e (Identity)

c ` c (Identity)

!c ` c
(Dereliction) c ` c (Identity)

!c ` c
(Dereliction)

!c, !c ` c ⊗ c
(R ⊗ )

!c ` c ⊗ c
(Contraction)

e( !c, e ` c ⊗ c
(L()

e( !c ` e( c ⊗ c
(R()

!(e( !c) ` e( c ⊗ c
(Dereliction)

Fig. 1. A sample proof tree

in contrast to the additive connectives introduced below, where the premises share the same
context Γ. The constant 1 represents the empty resource and is consequently the neutral
element with respect to multiplicative conjunction.

Γ ` α
Γ, 1 ` α (L1)

` 1 (R1)

Linear implication( allows the application of modus ponens where the preconditions of
a linear implication are consumed on application. For example, the sequent α ⊗ (α( β) `
β is valid whereas α ⊗ (α( β) ` α ⊗ β is not. The following inference rules introduce(:

Γ ` α β,∆ ` γ

Γ, α( β,∆ ` γ
(L()

Γ, α ` β

Γ ` α( β
(R()

The ! (“bang”) modality marks stable facts or unlimited resources, thus recovering
propositions in the classical (or intuitionistic) sense. Like a classical proposition, a banged
resource may be freely copied or discarded. Hence, !α ⊗ !(α ( β) ` !α ⊗ !β is a valid
sequent. Four inference rules introduce the bang: Weakening allows the insertion of ad-
ditional (redundant) assumptions into a judgement. Contraction restores the set semantics
for banged resources. R! affirms that a banged resource always infers its non-banged coun-
terpart. Dereliction completes the recovery of classical and intuitionistic logic by allowing
banged conclusions, provided that all assumptions are banged.

Γ, !α, !α ` β
Γ, !α ` β

(Contraction)
Γ ` β

Γ, !α ` β
(Weakening)

!Γ ` α
!Γ `!α

(R!)
Γ, α ` β

Γ, !α ` β
(Dereliction)

Example 3.1. We can model the fact that one cup of coffee (c) costs one euro (e) as
!(e ( c). A “bottomless cup” is an offer including an unlimited number of refills. We
assume that any natural number of refills is possible. We model this as !(e ( !c). From
this, we may judge that it is possible to get two cups of coffee for one euro: !(e ( !c) `
e( c ⊗ c. Fig. 3.1 gives an examplary proof tree, proving this judgement.

Internal choice means that we can freely choose one out of two options. In classical
(and intuitionistic) logic, internal choice is an aspect of conjunction, as exemplified by the
judgement α ∧ β ` α. This is inherited by the additive conjunction & of linear logic. The
formula α&β expresses an internal choice between α and β, i.e. both sequents α&β ` α
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
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and α&β ` β are valid. Internal choice also means that we cannot choose both options at
the same time. Consequently, α&β ` A ⊗ B is not valid.

Γ, α ` γ

Γ, α&β ` γ
(L&1)

Γ, β ` γ

Γ, α&β ` γ
(L&2)

Γ ` α Γ ` β

Γ ` α&β
(R&)

The > (“top”) is the resource that all other resources can be mapped to, i.e. for every
α, the implication α ( > is a tautology. It is hence the neutral element with respect to
additive conjunction.

Γ ` >
(R>)

External choice means that one out of two alternatives will occur, but we cannot choose
which. External choice is an aspect of classical (and intuitionistic) disjunction. In linear
logic, it is represented by the additive disjunction ⊕. The disjunction α ⊕ β means that
we will get either α or β. Analogous to classical disjunction, we therefore cannot judge
α ⊕ β ` α. However, a formula that is a consequence of both α and β can be optained:
!(α( γ), !(β( γ), α ⊕ β ` γ is valid.

Γ, α ` γ Γ, β ` γ

Γ, α ⊕ β ` γ
(L⊕) Γ ` α

Γ ` α ⊕ β
(R⊕1)

Γ ` β

Γ ` α ⊕ β
(R⊕2)

Analogous to falsity in the classical sense, absurdity 0 is a constant that yields every
other resource. It is the neutral element with respect to ⊕.

0 ` α (L0)

Example 3.2. We assume that, besides coffee, the cafeteria offers also pie (p) at the
price of one euro per piece: !(e ( p). We infer that for one euro, we have the choice
between an arbitrary amount of coffee and a piece of pie: !(e ( !c), !(e ( p) ` e (
(!c&p). Let us furthermore assume that rather than with euros, we can also pay with
dollars (d) at a 1 : 1 ratio: !(d ( !c), !(d ( p). We may infer that either one of one dollar
or one euro buys us a choice between an arbitrary amount of coffee and one pie:

!(e( !c), !(e( p), !(d ( !c), !(d ( p) ` (e ⊕ d)( (!c&p).

We can extend intuitionistic linear logic into a first-order system with the quantifiers ∃
and ∀. Their introduction rules are the same as in classical logic. In the following rules, t
stands for an arbitrary term whereas a stands for a variable that is not free in Γ, α or β:

Γ, α[x/t] ` β
Γ,∀x.α ` β

(L∀)
Γ ` β[x/a]
Γ ` ∀x.β

(R∀)

Γ, α[x/a] ` β
Γ,∃x.α ` β

(L∃)
Γ ` β[x/t]
Γ ` ∃x.β

(R∃)

3.2 Properties of Intuitionistic Linear Logic

The resulting first-order system allows for a sound and complete embedding of intuitionis-
tic first order logic. This is widely considered one of the most important features of linear
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logic. The following translation from intuitionistic logic into intuitionistic linear logic is a
variant of a translation proposed by Negri [1995]:

Definition 3.3. (·)∗ is a translation from formulas of intuitionistic logic to formulas of
intuitionistic linear logic, recursively defined by the following rules:

p(t̄)∗ ::= !p(t̄)
(⊥)∗ ::= 0
(>)∗ ::= 1

(A ∧ B)∗ ::= A∗ ⊗ B∗

(A ∨ B)∗ ::= A∗ ⊕ B∗

(A→ B)∗ ::= !(A∗ ( B∗)
(∀x.A)∗ ::= !∀x.(A∗)
(∃x.A)∗ ::= ∃x.(A∗)

p(t̄) stands for an atomic proposition. The definition is extended to sets and multisets of
formulas in the obvious manner. It has been proven in Negri [1995] that an intuitionistic
sequent (Γ `IL α) is valid if and only if (Γ∗ `ILL α

∗) is valid in intuitionistic linear logic.
We distinguish two sorts of axioms in the sequent calculus. The (Identity) axiom and the

constant axioms (L1), (R1), (L0) and (R>) constitute the logical axioms of intuitionistic
linear logic. All axioms we add to the system on top of these are called non-logical axioms
or proper axioms. We usually use the letter Σ to denote the set of proper axioms.

We express the fact that a judgement Γ ` α is provable using a non-empty set Σ of proper
axioms by indexing the judgement relation with the set of proper axioms: `Σ.

Definition 3.4 Linear-Logic Equivalence. (1) We call two linear-logic formulas α, β
logically equivalent if both α ` β and β ` α are provable. We write this as α a` β.

(2) For any set of proper axioms Σ, we call two linear-logic formulas α, β logically
equivalent modulo Σ if both α `Σ β and β `Σ α are provable. We write this as α a`Σ β.

As a well-behaved logical system, linear logic features a cut-elimination theorem [Girard
1987]:

Theorem 3.5 Cut Elimination Theorem. (1) If a sequent Γ ` α has a proof π that
does not contain any proper axioms, then it has a proof π′ that contains neither proper
axioms nor the (Cut) rule.

(2) If a sequent Γ `Σ α has a proof π containing proper axioms, then it has a proof π′

where the (Cut) rule is only used at the leaves such that one of its premises is an axiom.

A proof without any applications of (Cut) is called cut-free. A proof where (Cut) is only
applied at the leaves is called cut-reduced.

An important consequence of cut elminiation is the subformula property. We quote a
weak formulation of the property, which will suffice for our purpose: Every formula α
in a cut-free proof of a sequent Γ ` β is a subformula of either Γ or β, modulo variable
renaming. In a cut-reduced proof of a sequent Γ `Σ β, every formula α is a subformula of
Γ or β, modulo variable renaming, or there exists a proper axiom (∆ ` γ) ∈ Σ such that α is
a subformula of ∆ or γ, modulo variable renaming.

Another important feature of linear logic is the so-called phase semantics [Girard 1987].
It is a powerful tool to decide provability in linear logic and its subsegments (such as
intuitionistic linear logic). It has been applied successfully to reason in LCC by Fages
et al. [1997] and to CHR by Haemmerlé and Betz [2008].
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The phase semantics interprets linear logic a an algebraic structure. Formulas of linear
logic are mapped to subsets of a monoid and linear-logic connectives are mapped to op-
erations on those sets. The judgement relation ` finally maps to the inclusion relation ⊆
between sets. While the phase semantics is essential for effective applications of the results
published here, recalling it in its entirety is beyond the scope of this paper. We hence refer
the interested reader to Girard [1987] for the phase semantics for full linear logic and to
Fages et al. [1997] for a concise presentation of the phase semantics for intuitionistic linear
logic.

4. A LINEAR-LOGIC SEMANTICS FOR CHR

In this section, we develop the linear-logic semantics for Constraint Handling Rules. We
firstly recall the classical declarative semantics in Sect. 4.1. Then we motivate and present
a linear-logic semantics based on proper axioms in Sect. 4.2. We will henceforth call this
the axiomatic linear-logic semantics for CHR. Its soundness with respect to the operational
semantics is shown in Sect. 4.3. We continue by introducing the notion of state entailment
and using it to formulate and prove the completeness of our semantics in Sect. 4.4. We
show an alternative linear-logic semantics that encodes programs and contsraint theories
into linear logic in Sect. 4.5. We discuss our semantics in Sect. 4.6.

4.1 Analysis of the Classical Declarative Semantics

CHR is founded on a classical declarative semantics, which is reflected in its very syn-
tax. In this section, we recall the classical declarative semantics and discuss its assets and
limitations.

In the following, ∃−x̄ stands for existential quantification of all variables except those
in x̄, where x̄ is a set of variables. The classical declarative semantics is given in the
following table, where (·)† stands for translation to classical logic and ȳr denotes the local
variables of the respective rule:

States: 〈G;V〉† ::= ∃−V.(G)
Rules: (r @ H1 \ H2 ⇔ G | B)† ::= ∀ (G → (H1 → (H2 ↔ ∃ȳr.B)))
Programs: {R1, ...,Rm}

† ::= {R†1, ...,R
†
m}

The following lemma – cited from Frühwirth and Abdennadher [2003] – establishes the
relationship between the logical readings of programs, constraint theories and states.

Lemma 4.1 (Logical Equivalence of States). Let P be a CHR program, CT be a con-
straint theory, and S be a state. Then for all computable states T1 and T2 of S , the follow-
ing holds: P†,CT, ET |= ∀(T †1 ↔ T †2 ).

The declarative semantics of CHR must be distinguished from LP languages in the nar-
rower sense, i.e. declarative languages applying backward reasoning on Horn clauses. Un-
like these, CHR is not founded on the notion of execution as proof search. Declaratively,
execution of a CHR program means stepwise transformation of the information contained
in the state under logical equivalence as defined by the program’s logical reading P† and
the constraint theory CT . Founding CHR on such a declarative semantics is an obvious
choice for several reasons:

Firstly, the notion of execution as proof search naturally implies a notion of search. This
stands in contrast to the committed-choice execution of CHR. Furthermore, the forward-
reasoning approach faithfully captures the one-sided variable matching between rule heads
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and constraints in CHR, as opposed to unification. For example, a CHR state 〈p(x);>; ∅〉
(where x is a variable) does not match with the rule head (p(a) ⇔ . . .) (where a is a
constant) just as we cannot apply modus ponens on a fact ∃x.p(x) and an implication
(p(a) → . . .). In contrast, an LP goal p(x) would be unified with a rule head (p(a) ← . . .),
accounting for the fact that application of the rule might lead to a proof of an instance of
p(x).

4.1.1 Assets. Let us have another look at the program discussed in Example 2.25:

Pleq =


rI @ leq(x, y) ∧ leq(x, y) ⇔ leq(x, y)
rR @ leq(x, x) ⇔ >

rS @ leq(x, y) ∧ leq(y, x) ⇔ x =̇ y
rT @ leq(x, y) ∧ leq(y, z) ⇒ leq(x, z)


We claimed earlier that the rules of the program implement properties of the partial-order

relation. We shall now substantiate this claim. Let us take a look at the logical reading of
the program:

P†leq =


∀x, y. ( leq(x, y) ∧ leq(x, y) ↔ leq(x, y) )
∀x. ( leq(x, x) ↔ > )
∀x, y. ( leq(x, y) ∧ leq(y, x) ↔ x = y )
∀x, y, z. ( leq(x, y) ∧ leq(y, z) → leq(x, z) )


The translations of rR, rR and rT logically express the properties of a partial-order relation.
The translation of rI is a logical tautology and thus redundant to the logical reading. By
Lemma 4.1 it follows that P≤ correctly implements the partial-order relation, i.e. every
state in a computation controlled by P≤ is a logical consequence of the initial state.

Consider furthermore the program from Example 2.27:

P†birds =

{
bird ⇔ albatross ∨ penguin
penguin ∧ flies ⇔ ⊥

}
Its classical semantics looks as follows:

P†birds =

{
( bird ↔ albatross ∨ penguin )
( penguin ∧ flies ↔ ⊥ )

}
We observe that the logical reading nicely captures the theory implemented by Pbirds, in-
cluding the meaning of disjunction.

4.1.2 Limitations. There are, however, several limitations to the classical declarative
semantics of CHR, which shall be discussed in the following:

Directionality. One limitation lies in the fact that the classical declarative semantics
does not capture the inherent directionality of CHR rules. Rather, all states within a com-
putation are considered logically equivalent. Consider e.g. the minimal CHR program

Pab = {a⇔ b}

In this program, we can compute a state 〈b;>; ∅〉 from a state 〈a;>; ∅〉 but not vice versa.
This is not captured in its logical reading (a ↔ b) which e.g. implies (b → a). The
classical declarative semantics cannot be used e.g. to show that the state 〈a;>; ∅〉 is not
computable from state 〈b;>; ∅〉.
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Candidate Elimination. Any program that stepwisely approximates a result by elimi-
nating candidates eludes the classical semantics. Consider the following program from
Example 2.26:

Pmin =
{

rM @ min(x) \ min(y) ⇔ x ≤ y | >
}

On a fixed-point execution, the program correctly computes the minimum of all arguments
of min constraints found in the store at the beginning of the computation. Its logical reading
is unhelpful at best:

P†min = {∀x, y.x ≤ y→ min(x)→ ( min(y)↔ >)}

We encounter similar problems for programs simulating destructive updates.

Deliberate Non-Determinism. Any program that makes deliberate use of the inherent
non-determinism of CHR has a misleading declarative semantics as well. Consider the
following program, which simulates a coin throw in an appropriate probabilistic semantics
of CHR (cf. Frühwirth et al. [2002]). (Note that coin is a variable, head and tail are
constants.)

Pcoin =

{
throw(coin) ⇔ coin =̇ head
throw(coin) ⇔ coin =̇ tail

}
The logical reading of this program implies ∀coin.(coin =̇ head ↔ coin =̇ tail). From
this follows head =̇ tail and – since head and tail are distinct constants – falsity ⊥. The
program’s logical reading is thus inconsistent, trivially implying anything:

P†coin |= ∀x.pig(x)→ flies(x)

Multiplicities. While CHR faithfully keeps track of the multiplicities of constraints, this
aspect eludes the classical semantics. Consider the idempotence rule from Example 2.25,
which removes multiple occurrences of the same constraint:

rI @ leq(x, y) ∧ leq(x, y) ⇔ leq(x, y)

The logical reading of this rule is a tautology, falsely suggesting that the rule is redundant:

r†I = ∀x, y.( leq(x, y) ∧ leq(x, y) ↔ leq(x, y))

In conclusion, the classical declarative semantics is a powerful tool to prove the sound-
ness and a certain notion of completeness of a program that directly implements a logical
theory. This includes theories that involve disjunction. It is not adequate to capture di-
rectionality or updates, or to express the logic behind programs that make deliberate use
of non-determinism or rely on the multiplicities of constraints. It is not suitable to prove
safety conditions, i.e. to show that a certain intermediate or final state cannot be derived
from a certain initial state.

4.2 The Axiomatic Linear-Logic Semantics for CHR

Our linear-logic semantics is based on two observations: Firstly, the difference in behaviour
between built-in and user-defined constraints in CHR resembles the difference between lin-
ear and banged atoms in linear logic. Secondly, the application of simplification rules on
user-defined constraints resembles the application of modus ponens in linear logic. Build-
ing on the first observation, we define an adequate representation of CHR constraints in
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Atomic built-in constraints: cb(t̄)L ::= !cb(t̄)
Atomic user-defined constraints: cu(t̄)L ::= cu(t̄)
Falsity: ⊥L ::= 0
Empty constraint/goal: >L ::= 1
Constraints/goals: (G1 ∧ G2)L ::=GL

1 ⊗ G
L
2

Disjunction within goals: (G1 ∨ G2)L ::=GL
1 ⊕ G

L
2

States: 〈G;V〉L ::=∃−V.GL

Configurations: (S̄ ∨ T̄ )L ::= S̄ L ⊕ T̄ L

Empty configuration: (ε)L ::= 0

Fig. 2. Translation of goals, states, configurations

linear logic. Translation to linear logic will be denoted as (·)L. The translation is summed
up in Fig. 2.

Atomic user-defined and built-in constraints are mapped to atoms and banged atoms,
respectively. Classical conjunction is mapped to multiplicative conjunction for both built-
in and user-defined constraints. This mapping is motivated by the fact that multiplicative
conjunction is aware of multiplicities and has no notion of weakening, thus capturing the
multiset semantics of user-defined constraints. It is also adequate for built-in constraints as
the bangs attached to the atomic built-in constraints restores the set semantics. We observe
the mapping of built-in constraints is equal to the translation quoted in Definition 3.3.

We also follow Definition 3.3 by mapping the empty goal > to 1 and falsity ⊥ to 0.
Is is an obvious choice to map the split connective ∨ to multiplicative disjunction ⊕, as
absurdity 0 is neutral with respect to ⊕ just as failed states are neutral to configurations. The
translation of states is analogous to the classical case, and the translation of configurations
follows from the mapping of ∨ to ⊕.

Proper axioms. The constraint theory CT , the explicit equality theory ET and programs
are translated to proper axioms. Firstly, we define a set of proper axioms encoding the
constraint theory as well as modelling the interaction between equality � and user-defined
constraints.

Definition 4.2 (ΣCT ). For built-in constraints B,B′ and sets of variables x̄, x̄′ such that
CT |= ∃x̄.B→ ∃x̄′.B′, the following is a proper axiom:

∃x̄.BL `ΣCT ∃x̄′.B′L

We denote the set of all such axioms as ΣCT .

Definition 4.3 (Σ�). For goals G,G′ and sets of variables x̄, x̄′ such that ET |= ∃x̄.G→
∃x̄′.G′, the following is a proper axiom:

∃x̄.GL `Σ� ∃x̄′.G′L

is a proper axiom. We denote the set of all such axioms as Σ�.

Definition 4.4 (ΣP). If r @ H1 \ H2 ⇔ G | Bb ∧ Bu is a variant of a rule with local
variables ȳr, the sequent

HL
1 ⊗ HL

2 ⊗ GL `ΣP HL
1 ⊗ ∃ȳr.(BL

b ⊗ BL
u ⊗ GL)

is a proper axiom. For a program P, we denote the set of all axioms derived from its rules
as ΣP.
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CT |= ∃x̄.B→ ∃x̄′.B′

∃x̄.BL `ΣCT ∃x̄′.B′L
(ΣCT )

ET |= ∃x̄.G→ ∃x̄′.G′

∃x̄.GL `Σ� ∃x̄′.G′L
(Σ�)

(r @ H1 \ H2 ⇔ G | B)
[
x/y

]
∈ P

HL
1 ⊗ HL

2 ⊗ GL `ΣP HL
1 ⊗ ∃ȳr .(BL ⊗ GL)

(ΣP)

Fig. 3. The axiomatic linear-logic semantics for CHR∨

The existential quantification of the local variables ȳr corresponds to the fact that these
variables are by definition disjoint from vars(H1,H2,U,B,V), assuring that fresh variables
are introduced for the local variables of the rule. Fig. 3 sums up the three sets of proper
axioms, represented as inference rules.

4.3 Soundness of the Axiomatic Semantics

In this section, we prove the soundness of the axiomatic linear-logic semantics for CHR
with respect to the operational semantics. The proof can be found in the appendix.

Lemma 4.5 (≡⇒a`Σ). (1) Let CT be a constraint theory and Σ = ΣCT ∪ Σ�. For arbi-
trary CHR states S ,T, we have:

S ≡e T ⇒ S L a`Σ T L

(2) For arbitrary configurations S̄ , T̄ , we have:

S̄ ≡∨ T̄ ⇒ S̄ L a`Σ T̄ L

Theorem 4.6 states the soundness of our semantics. The proof can be found in the
appendix.

Theorem 4.6 Soundness. For any CHR∨ program P, constraint theory CT and configu-
rations Ū, V̄,

[Ū] 7→∗ [V̄] ⇒ ŪL `Σ V̄L

where Σ = ΣP ∪ ΣCT ∪ Σ�.

To illustrate Theorem 4.6 presented in Sect. 4.3, we give an example of a CHR∨ deriva-
tion and show that it corresponds to a valid linear logic judgement:

Example 4.7. Let P be the partial-order constraint solver from Example 2.25 and let CT
be a minimal constraint theory. We observe that under P, we have:

[〈 leq(3, a) ∧ a = 3; ∅〉] 7→∗ [〈>; ∅〉]

This corresponds to the judgement 〈3 ≤ a; a = 3; ∅〉L `Σ 〈>;>; ∅〉L or ∃a.(3 ≤ a ⊗ !a =

3) `Σ 1, respectively, where Σ = ΣCT ∪Σ�∪ΣP. The following is a proof of this judgement:

leq(3, x) ⊗ !x � 3 `Σ leq(x, x) ⊗ !x � 3
(Σ�)

leq(x, x) `Σ 1
(ΣP) !x � 3 `Σ!x � 3

(Identity)

leq(x, x), !x � 3 `Σ 1 ⊗ !x � 3
(R⊗)

leq(x, x) ⊗ !x � 3 `Σ 1 ⊗ !x � 3
(L⊗)

leq(3, x) ⊗ !x � 3 `Σ 1 ⊗ !x � 3
(Cut)

1 ⊗ !x � 3 `Σ 1
(ΣCT )

leq(3, x) ⊗ !x � 3 `Σ 1
(Cut)

∃a.( leq(3, a) ⊗ !a � 3) `Σ 1
(L∃)
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The sequent 1 ⊗ !x � 3 ` 1 is a tautology and as such could be derived without proper
axioms, but it is also trivially included in ΣCT .

While the soundness result for our semantics is straightforward, defining completeness
is not quite as simple. Consider the following example:

Example 4.8. In the proof tree given in Example 4.7 we use the following proper axiom
from ΣCT :

1 ⊗ !x � 3 ` 1

This implies:

〈x � 3; {x}〉L `Σ 〈>; ∅〉L

We observe, however, that 〈x � 3; {x}〉 7→∗ 〈>; ∅〉 is untrue.

In the following section, we develop the notion of state entailment and apply this notion
to specify a completeness result.

4.4 Completeness of the Axiomatic Semantics

In this section, we define the notion of entailment and apply it to formulate our theorem
of completeness. We introduce it first for flat states and then extend it to configurations.
We present it alongside various properties that follow from it and will be used in upcoming
sections.

Definition 4.9 Entailment of Flat States. Entailment between flat states, written as ·B ·,
is the smallest partial-order relation over equivalence classes of flat states that satisfies the
following conditions:

(1) (Weakening of the Built-In Store) For states 〈U∧B;V〉, 〈U∧B′;V〉with local variables
s̄, s̄′ such that CT |= ∀(∃s̄.B→ ∃s̄′.B′), we have:

[〈U ∧ B;V〉] B [〈U ∧ B′;V〉]

(2) (Omission of Global Variables)

[〈U ∧ B; {x} ∪ V〉] B [〈U ∧ B;V〉]

Analogously to state entailment, we define a notion of configuration entailment:

Definition 4.10 Entailment of Configurations. Entailment of configurations, denoted as
· I ·, is the smallest reflexive-transitive relation over equivalence classes of configurations
satisfying the following conditions:

(1) Weakening: For any state S and configuration T̄ :

[T̄ ] I [S ∨ T̄ ]

(2) Redundance of Stronger States: For any CHR∨ states S 1, S 2,T such that S 1 B S 2:

[S 1 ∨ S 2 ∨ T̄ ] I [S 2 ∨ T̄ ]

The following property follows from the Definition 4.9 and Definition 4.10:

Property 4.11 (B⇒I). For CHR∨ states S 1, S 2 such that S 1 B S 2:

[S 1 ∨ T̄ ] I [S 2 ∨ T̄ ]
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Proof. [S 1 ∨ T̄ ] I [S 2 ∨ S 1 ∨ T̄ ] = [S 1 ∨ S 2 ∨ T̄ ] I [S 2 ∨ T̄ ]

Theorem 4.12 gives a decidable criterion for state entailment. The criterion requires
that the global variables of the entailed state are contained in the global variables of the
entailing state. This is never a problem, as we may choose representatives of the respective
equivalence classes that satisfy the condition. The proof can be found in the appendix.

Theorem 4.12 Criterion for B. Let S = 〈U;B;V〉, S ′ = 〈U′;B′;V′〉 be CHR states
where the local variables l̄′ of S ′ have been renamed apart from the local variables of S
and where V′ ⊆ V. Then we have:

[S ] B [S ′] ⇔ ET,CT |= ∀(B→ ∃l̄′.((U =̇ U′) ∧ B′))

Lemma A.5 establishes an important relationship between configuration entailment and
state transition. The proof can be found in the appendix.

Lemma 4.13 Exchange of 7→ and I. Let S̄ , Ū, T̄ be configurations. If S̄ I Ū and Ū 7→r

T̄ then there exists a configuration V̄ such that S̄ 7→∗ V̄ and V̄ I T̄ .

The completeness of our semantics is formulated in Theorem 4.14. The proof can be
found in the appendix.

Theorem 4.14 Completeness of the Semantics for CHR∨. Let S̄ , T̄ be configurations,
let P be a program and CT be a constraint theory. If the sequent S̄ L ` T̄ L is provable
in a sequent calculus system with proper axioms Σ = ΣCT ∪ Σ� ∪ ΣP then there exists a
configuration Ū such that S̄ 7→∗ Ū and Ū B T̄ .

The following example illustrates the completeness theorem:

Example 4.15. We consider the partial-order program P given in Example 2.25 and a
minimal constraint theory CT . For Σ = ΣP ∪ ΣCT ∪ Σ�, we have

a ≤ b ⊗ b ≤ c ⊗ c ≤ a `Σ !a � b

which equals:

〈a ≤ b ∧ b ≤ c ∧ c ≤ a;>; {a, b, c}〉L `Σ 〈>; a � b; {a, b}〉L

This corresponds to:

〈a ≤ b ∧ b ≤ c ∧ c ≤ a;>; {a, b, c}〉 7→∗ 〈>; a � b ∧ a � c; {a, b, c}〉 B 〈>; a � b; {a, b}〉

Lemma A.6 and Lemma 4.16 establish the relationship between entailment and logical
judgement. The proofs can be found in the appendix.

Lemma 4.16 (I⇔`). For configurations S̄ , T̄ , we have [S̄ ] I [T̄ ] if and only if S̄ L `Σ T̄ L

where Σ = ΣCT ∪ Σ�.

The following example illustrates Lemma 4.16:

Example 4.17. In Example 4.8, we showed that the following judgement, which does
not correspond to any transition in CHR, is provable in our sequent calculus system:

〈x � 3; {x}〉L `Σ 〈>; ∅〉L

We observe that the two states are connected by the entailment relation:

〈x � 3; {x}〉 B 〈>; ∅〉
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



24 · H. Betz and T. Frühwirth

In the following section, we will show that state entailment precisely covers the discrep-
ance between transitions in a CHR program and judgements in its corresponding sequent
calculus system as exemplified in Example 4.8

4.5 Encoding Programs and Constraint Theories

In the axiomatic linear-logic semantics presented in Sect. 4.2 to Sect. 4.4, only states are
represented in logical judgements. Both programs and constraint theories disappear into
the proper axioms of a sequent calculus system and hence are not objects of logical rea-
soning.

In this section, we show how to encode programs and constraint theories into logical
judgements, enabling us to reason directly about them as well. In Sect. 5.3, we will use
this encoding to decide operational equivalence of programs. As a further benefit, a com-
plete encoding of programs and constraint theories assures the existence of cut-free proofs
for the respective judgements and ensure compatibility with established methods for auto-
mated proof search methods relying on this property.

As usual, (·)L stands for translation into linear logic.

Encoding of Constraint and Equality Theories. The constraint theory CT and the equal-
ity theory ET are encoded according to the translation quoted in Def. 3.3.

Definition 4.18 CT L,ET L. For a constraint theory CT and an equality theory ET their
encodings are given as CT L ::= CT ∗ and ET L ::= ET ∗

Encoding of ΣP. The translation of CHR rules follows the same lines as the encoding of
the CT axioms:

Definition 4.19 (RL,PL). (1) Let R = r @ H1 \ H2 ⇔ G | B be a CHR rule with local
variables ȳr. Then its linear-logic reading RL is defined as:

RL ::=!∀(HL
1 ⊗ HL

2 ⊗ GL ( HL
1 ⊗ ∃ȳr.(BL ⊗ GL))

(2) Let P = {R1, . . . ,Rn} be a CHR program. Then its linear-logic reading PL is defined
as:

PL ::=
⋃
R∈P

RL

For the encoding semantics, the following soundness and completeness theorem holds:

Theorem 4.20 Soundness and Completeness. Let S̄ , T̄ be configurations. There exists a
configuration Ū such that

S̄ 7→∗ Ū and Ū B T̄

in a program P and a constraint theory CT if and only if

PL, ET L,CT L ` ∀(S̄ L ( T̄ L)

As the encoding semantics is logically equivalent to the one proposed in Betz [2007],
Theorem 4.20 also proves the equivalence of the axiomatic linear-logic semantics with that
earlier semantics.

4.6 Discussion

In this section, we shall revisit the limitations of the classical declarative semantics dis-
cussed in Section 4.1 and show how the linear-logic semantics overcomes these limitations.
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Directionality. We showed that the classical declarative semantics does not capture the
inherent directionality of CHR rules:

a⇔ b

The classical declarative semantics cannot be used e.g. to show that the state 〈a;>; ∅〉 is
not computable from state 〈b;>; ∅〉 in this program. On the contrary, in the linear-logic
semantics we have

a `Σ b but b 0Σ a

Candidate Elimination. We also showed that the classical declarative semantics does
not capture candidate generation or destructive updates.

Pmin =
{

rM @ min(x) \ min(y) ⇔ x ≤ y | >
}

Its linear-logic declarative reading faithfully captures the strategy followed by the program:

PL
min = {∀x, y.min(x) ⊗ min(y) ⊗ (!x ≤ y)↔ min(x) ⊗ (!x ≤ y)}

Deliberate Non-Determinism. We furthermore showed that the classical declarative se-
mantics is inadequate to capture deliberately non-deterministic programs:

Pcoin =

{
throw(coin) ⇔ coin =̇ head
throw(coin) ⇔ coin =̇ tail

}
In the classical declarative semantics, the logical reading for the above program is contra-
dictory, i.e. it proves falsity. In the linear-logic semantics, this is not the case: PL

coin 0Σ 0.
Rather, we can show that the non-deterministic choice is mapped to internal choice:

PL
coin a` {∀coin. throw(coin)( (!coin =̇ head)&(!coin =̇ tail)}

Multiplicities. We also showed that in the classical declarative semantics, the logical
reading of the idempotence rule from Example 2.25 is a tautology:

rI @ leq(x, y) ∧ leq(x, y) ⇔ leq(x, y)

In linear logic, this is not the case. Instead, we get a faithful description of its operational
behaviour:

rL
I = ∀x, y.( leq(x, y) ⊗ leq(x, y) ( leq(x, y))

5. LINEAR-LOGIC REASONING IN CHR∨

In this section, we outline how our results can be applied to reason over programs and their
respective observables. In Section 5.1, we discuss the conditions under which we can use
linear logic to reason about CHR∨. In Section 5.2, we discuss the relationship between
the linear-logic semantics and program observables. In Section 5.3, we show how we can
compare the operational semantics of programs by means of their linear-logic semantics.

5.1 Congruence and Equivalence

In this section, we discuss the conditions under which logical equivalence and configura-
tion equivalence coincide and identify a segment of CHR∨ where these conditions apply.
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5.1.1 Limitations of the Linear-Logic Semantics. As we have established equivalence
of states and configurations as a convenient low-level abstraction to reason about CHR∨

computations, we assume that this is also the granularity we desire when we apply linear
logic to reason about CHR∨. On the other hand, the granularity of reasoning over a model
in a logical system is naturally determined by logical equivalence.

Definition 5.1 Congruence of Configurations. Given a constraint theory CT , two con-
figurations S̄ , T̄ are considered congruent if S̄ I T̄ and T̄ I S̄ . Congruence of S̄ and T̄ is
denoted as S̄JIT̄ .

From Lemma 4.16, it follows that congruence of configurations coincides with logical
equivalence over the respective linear-logic readings:

Property 5.2. For arbitrary configurations S̄ , T̄ , we have S̄JIT̄ ⇔ S̄ a` T̄ .

Hence, any reasoning over CHR∨ via the linear-logic semantics is necessarily modulo
congruence. It shows, however, that congruence, does not necessarily coincide with equiv-
elence:

Example 5.3. Consider the configurations S̄ = 〈cu(X)〉 and T̄ = 〈cu(0)〉∨〈cu(X)〉. Since
S̄ I T̄ and T̄ I S̄ , we have S̄JIT̄ . However, the two are not equivalent: S̄ 6≡∨ T̄ .

To emphasize that this is not merely a cosmetic problem, we show that congruence does
not in general comply with rule applications:

Example 5.4 Non-Compliance with Rule Application. By compliance, we mean the
property that for arbitrary configurations S̄ , S̄ ′, T̄ such that S̄ ≡∨ S̄ ′ and S̄ 7→∗ T̄ , there
exists a T̄ ′ such that S̄ ′ 7→ T̄ ′ and T̄ ′ ≡∨ T̄ .

Let S̄ = 〈cu(X)〉 and T̄ = 〈cu(0)〉 ∨ 〈cu(X)〉 be configurations. As 〈cu(0)〉 B 〈cu(X)〉, we
have congruence: S̄JIT̄ . Now consider the following minimal CHR program:

r @ cu(0)⇔ du(0)

We observe that we have T̄ 7→r 〈du(0)〉 ∨ 〈cu(X)〉 whereas S̄ is an answer configuration i.e.
it does not allow any further transition. We thus observe that congruence of configurations
is not in general compliant with rule application.

However, we can make a somewhat weaker statement about the relationship between
congruence and rule application:

Property 5.5 Weak Compliance with Rule Application. Let S̄ , S̄ ′, T̄ be configurations
such that S̄JIS̄ ′. Then S̄ 7→∗ T̄ implies that there exists a T̄ ′ such that S̄ ′ 7→∗ T̄ ′ and
T̄ ′ I T̄ .

Proof. S̄JIS̄ ′ implies S̄ ′ I S̄ . Furthermore, we have S̄ 7→∗ T̄ . Hence, Lemma 4.13
proves S̄ ′ 7→∗ T̄ ′ and T̄ ′ I T̄ .

In order to allow precise logical reasoning over CHR∨, we identify a segment of CHR∨

where congruence and equivalence of configurations coincide.

5.1.2 Compactness and Analyticness. Considering Example 5.4, we observe that we
can construct similar examples for any configuration S̄ of the form S̄ = S 1 ∨ S 2 ∨ S̄ ′

where S 1 B S 2 by postulating a rule r that fires for S 1 but not for S 2. Hence, our strategy
is to explicitly exclude such configurations from consideration. We introduce the notion of
compactness:
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Definition 5.6 Compactness. A configuration S̄ is called compact if it does not have a
flat normal form S̄ ′ = S 1 ∨ S 2 ∨ . . . ∨ S̄ n where S 1 . S ⊥ and S 1 B S 2.

Compactness of a configuration S̄ can straightforwardly be decided by transforming S̄
into a flat normal form S̄ F , removing all failed states from S̄ F and pairwisely verifying
(S i 6 BS j) for all remaining states where i , j.

We extend the compactness property to equivalence classes of configurations in the ob-
vious manner. The following lemma states that compactness guarantees that congruence
and equivalence coincide.

Lemma 5.7. Let S̄ , T̄ be compact configurations such that S̄JIT̄ . Then S̄ ≡∨ T̄ .

Proof. We assume that both S̄ and T̄ are in normal form: S̄ ≡∨ S 1 ∨ . . . ∨ S n, T̄ ≡∨
T1 ∨ . . . ∨ Tm. From Def. 4.10 follows that for every consistent S i, we have a T j such that
S i B T j, and for every consistent T j there is an S i such that T j B S i. It follows that for
every consistent S i, we have T j, S k such that S i BT j BS k. As S̄ is compact, S i BS k implies
i = k and furthermore S i ≡ T j. As T̄ is compact, there is exactly one T j such that S i ≡ T j.
Since every consistent S i has a unique corresponding state T j with S i ≡ T j and vice versa,
Def. 2.14 implies that S̄ ≡∨ T̄ .

We furthermore introduce a well-behavedness property for CHR∨ programs which guar-
antees compactness of derived configurations:

Definition 5.8 Analyticness. (1) A CHR∨ program is called analytic for a class of ini-
tial states S if for any flat state S ∈ S and configuration T̄ such that [S ] 7→∗ [T̄ ], we
have that T̄ is compact.

(2) A CHR∨ program is called generally analytic if for any flat initial state S and config-
uration T̄ such that [S ] 7→∗ [T̄ ], we have that T̄ is compact.

It appears that a large number of CHR∨ programs satisfy this property for their intended
class of initial states. This is due to the fact that an analyticness of a CHR∨ program means
that it explores a search space non-redundantly. (This motivates the term analytic.)

Example 5.9 Analyticness. Consider the following program fragment:

P =


rsrc @ search(x, y) ⇔ leq(x, y) ∨ geq(x, y)
rleq @ leq(x, y) ⇔ lower(x, y) ∨ x � y
rgeq @ geq(x, y) ⇔ greater(x, y) ∨ x � y


Let S 0 = 〈 search(x, y);V〉 and V = {x, y}. We then have:

S 0 7→
∗ 〈 lower(x, y);V〉 ∨ 〈x � y;V〉 ∨ 〈x � y;V〉 ∨ 〈 greater(x, y);V〉

Since 〈x � y;V〉 B 〈x � y;V〉, the final state is non-compact. Hence, P is not analytic for
the initial state S 0.

In contrast, the following program is analytic for the class of initial states of the form
〈 search(t, t′);V〉 where t, t′ are arbitary terms. (This can be proved by building a state
graph).

P′ =


rsrc @ search(x, y) ⇔ lower(x, y) ∨ geq(x, y)
rleq @ leq(x, y) ⇔ lower(x, y) ∨ x � y
rgeq @ geq(x, y) ⇔ greater(x, y) ∨ x � y
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However, the program is not generally analytic, as for example:

〈 search(x, y) ∧ search(x, y);V〉 7→∗ 〈 lower(x, y) ∧ lower(x, y);V〉∨
〈 geq(x, y) ∧ lower(x, y);V〉∨
〈 lower(x, y) ∧ geq(x, y);V〉∨
〈 geq(x, y) ∧ geq(x, y);V〉

and 〈 geq(x, y) ∧ lower(x, y);V〉 B 〈 lower(x, y) ∧ geq(x, y);V〉.

We give a necessary and sufficient criterion for general analyticness of CHR∨ programs:

Lemma 5.10 Criterion for General Analyticness. Let P be a CHR∨ program consist-
ing of rules R1, . . . ,Rn where every rule Ri is of the form r @ H1 \ H2 ⇔ G | (U1 ∧ B1) ∨
. . . ∨ (Um ∧ Bm). The program P is generally analytic if and only if CT 6|= ∃(Bi ∧ B j) for
every i, j ∈ {1, . . . , n}.

Proof. (’⇒’): We assume w.l.o.g. P contains a rule of the form r @ H1 \ H2 ⇔ G |
(U1 ∧ B1) ∨ (U2 ∧ B2) where CT |= ∃(B1 ∧ B2). Then we have:

〈H1 ∧ H2 ∧ H2 ∧G〉 (1)
7→r 〈H1 ∧ U1 ∧ B1 ∧ H2 ∧G〉 ∨ 〈H1 ∧ U2 ∧ B2 ∧ H2 ∧G〉 (2)
7→r 〈H1 ∧ U1 ∧ B1 ∧ U1 ∧ B1 ∧G〉 ∨ 〈H1 ∧ U1 ∧ B1 ∧ U2 ∧ B2 ∧ H2 ∧G〉∨

〈H1 ∧ U2 ∧ B2 ∧ U1 ∧ B1 ∧G〉 ∨ 〈H1 ∧ U2 ∧ B2 ∧ U2 ∧ B2 ∧G〉 (3)

We observe, that the state we reach in step (3) is not compact.
(’⇐’): We assume a single rule application S 7→r T̄ where the applied rule is of the form
Ri = r @ H1 \ H2 ⇔ G | (U1 ∧ B1) ∨ . . . ∨ (Um ∧ Bm) such that CT 6|= ∃(Bi ∧ B j) for
i, j ∈ {1, . . . , n}.

It follows that for every T1 = 〈U1;B1;V1〉,T2 = 〈U2;B2;V2〉 such that T̄ ≡ T1∨T2∨ T̄ ′,
we have CT 6|= ∃(B1 ∧ B2). It follows by Lemma 4.12 that T1 6 BT2.

As the built-in store grows monotonically stronger, correctness for the transitive closure
of 7→ follows by induction. For the reflexive closure it follows from the fact that the state S
is trivially a compact configuration.

We observe that natural analyticsness holds for all CHR programs, i.e. CHR∨ programs
without disjunction.

5.2 Reasoning About Observables

In this section, we show how to apply our results to reason about CHR∨ observables.

5.2.1 Reasoning About Observables in Pure CHR. We define two sets of observables
based on the linear logic semantics, paralleling the observable sets of computable states
and data-sufficient answers.

Definition 5.11. Let P be a pure CHR program, CT a constraint theory, and S an initial
state. Assuming that Σ = ΣP ∪ ΣCT ∪ Σ�, we distinguish two sets of observables based on
the linear logic semantics:

LC
P,CT (S ) ::= {[T̄ ] | S L `Σ T̄ L}

LS
P,CT (S ) ::= {[〈B̄;V〉] | S L `Σ 〈B̄;V〉L}
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In the definition of LS
P,CT (S ), B̄ stands for a disjunction of built-in constraints. If the

constraint theory CT is clear from the context or not important, we write the sets as
LC
P (S ),LS

P (S ).

The following definition and property establish the relationship between the logical ob-
servables LC

P and LS
P and the operational observables CP and SP

Definition 5.12 Lower Closure of I. For any set S of equivalence classes of configura-
tions:

HS ::= {[T̄ ]|∃S̄ ∈ S.[S̄ ] I [T̄ ]}

The following property establishes the relationship between the linear-logic observables
and the ones based on the operational semantics:

Property 5.13 Relationship Between Observables. For a pure CHR program P, a con-
straint theory CT, and an initial state S , we have:

LC
P,CT (S ) = HCP,CT (S )

LS
P,CT (S ) = HSP,CT (S )

Proof. By Theorem 4.6 and Theorem 4.14, we have that S L `Σ T̄ L iff there exists a
configuration Ū such that S L 7→∗ Ū and Ū I T̄ L. Hence LC

P,CT (S ) = HCP,CT (S ). We
recall that by Def. 2.19 SP,CT (S ) is the projection of CP,CT (S ) to configurations with a
representation of the form 〈B̄;V〉 by Def. 5.11, LS

P,CT (S ) and is the projection of LC
P,CT (S )

to those configurations. Therefore, LS
P,CT (S ) = HSP,CT (S ).

From this relationship follow several properties that we can use to reason about the
operational semantics. Firstly, in order to prove that a state S cannot develop into an
empty configuration, it suffices to show that there exists any configuration T̄ , such that [T̄ ]
is not contained in C(S ):

Property 5.14 Deciding Failure. (1) Let P be a program P, let CT be a constraint
theory CT, and let S be a flat state. Then ε ∈ CP,CT (S ) if and only if ε ∈ LC

P,CT (S ).
(2) If P is furthermore confluent, then a computation beginning with S will invariably

fail if and only if ε ∈ LC
P,CT (S ).

Proof sketch. Since ε I S̄ for any S̄ , we have that ε ∈ HCP,CT (S ) if and only if ε ∈
CP,CT (S ). The second property follows from Prop. 2.22.

Secondly, we can guarantee data-sufficient answers for a state S , if we can prove the
empty resource 1 in linear logic. (Remember that 1 is the logical reading of the empty
state 〈>; ∅〉.)

Property 5.15 Deciding Existence of Data-Sufficient Answers. (1) For a program
P, a constraint theory CT, and a flat state S , the state S has at least one data-sufficient
answer if and only if 〈>; ∅〉 ∈ LD

P,CT (S ).
(2) If P is furthermore confluent, S has exactly one data-sufficient answer if and only if

〈>; ∅〉 ∈ LD
P,CT (S ).

Proof sketch. The first property follows from the fact that for any data-sufficient config-
uration 〈B̄;V〉, we have 〈B̄;V〉 I 〈>; ∅〉. The second property follows from Prop. 2.22.
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Finally, if a specific state does not follow in linear logic, it is guaranteed not to follow in
the operational semantics:

Property 5.16 Safety Properties. Consider a program P, a constraint theory CT, a
flat state S and a configuration T̄ . If T̄ < LC

P,CT (S ) then T̄ < CP,CT (S ).

Proof sketch. This follows from the fact that CP,CT (S ) ⊂ LC
P,CT (S ).

Example 5.17. In this example, we implement a recursive descent parser for a context-
free grammar. This is a typical CHR∨ program as it makes use of both don’t-know non-
determinism and multiple heads. Consider the following simple grammar whose start sym-
bol and only non-terminal is S , and a, f are terminal symbols:

S → f S S
S → a

For our recursive descent parser, we wrap the stack into a constraint st and the input into a
constraint inp. The parser for our grammar looks as follows:

Pparse =



rS @ st([S |rs]) ⇔ st([ f , S , S |rs]) ∨ st([a|rs])
rpop−a @ st([a|rs]) ∧ inp([a|ri]) ⇔ st([rs]) ∧ inp([ri])
rpop− f @ st([ f |rs]) ∧ inp([ f |ri]) ⇔ st([rs]) ∧ inp([ri])
r f ail− f @ st([a|rs]) ∧ inp([ f |ri]) ⇔ ⊥

r f ail−a @ st([ f |rs]) ∧ inp([a|ri]) ⇔ ⊥

r f ail−i @ st([]) ∧ inp([i|ri]) ⇔ ⊥

r f ail−s @ st([s|rs]) ∧ inp([]) ⇔ ⊥

racc @ st([]) ∧ inp([]) ⇔ accept


If called with an initial state 〈st([S ]), inp(ri); ∅〉 where ri is a word of the language defined
by our grammar, it will derive a configuration containing at least one final state 〈accept; ∅〉
in flat normal form. If ri is not a word of the grammar, it will invariably fail. (This is a
very standard technique. Hence we do not need to prove it.)

We assume that we use the axiomatic semantics, i.e. we encode the rules, as well as the
constraint and equality theories in a set of axioms Σ. In the following proof, we want to
reason about arbitrary inputs. To this end, we add the symbol x to our terminal symbols
and add the judgement

inp([x|ri]) ` inp([a|ri]) ⊕ inp([ f |ri])

to Σ. We shall refer to it as the arbitrarity axiom. We furthermore assume, that for any
natural number n and for any symbol σ of our grammar, σn is a list [σ,σ, . . . , σ] of length
n and σ0 = [] is an empty list. Hence, ⊕

n∈2N+1

st(S n)

is the additive disjunction of all st constraints whose argument is a list of S ′s with odd
length. We observe that by rule rS , we have:⊕

n∈2N+1

st(S n) `Σ
⊕
n∈2N

st([a|S n]) ⊕ st([ f |S n])
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By adding a multiplicative conjunction with inp([a|ri]) and expanding on the right-hand
side we get:

inp([a|ri]) ⊗
⊕

n∈2N+1

st(S n) `Σ
⊕
n∈2N

(inp([a|ri]) ⊗ st([a|S n])) ⊕ (inp([a|ri]) ⊗ st([ f |S n]))

By rules rpop−a and r f ail−a we then have:

inp([a|ri]) ⊗
⊕

n∈2N+1

st(S n) `Σ
⊕
n∈2N

inp(ri) ⊗ st(S n)

Similarly, we can show for an input beginning with f :

inp([ f |ri]) ⊗
⊕

n∈2N+1

st(S n) `Σ
⊕
n∈2N

inp(ri) ⊗ st([S , S |S n])

Our arbitrarity axiom and factorising inp(ri) gives us:

inp([x|ri]) ⊗
⊕

n∈2N+1

st(S n) `Σ inp(ri) ⊗
⊕
n∈2N

(st(S n) ⊕ st([S , S |S n]))

Due to the idempotence of ⊕, we can merge the disjoint stacks on the right-hand side and
get:

inp([x|ri]) ⊗
⊕

n∈2N+1

st(S n) `Σ inp(ri) ⊗
⊕
n∈2N

st(S n)

Similarly (but with an additional application of r f ail−i) we show:

inp([x|ri]) ⊗
⊕
n∈2N

st(S n) `Σ inp(ri) ⊗
⊕

n∈2N+1

st(S n)

So we can finally conclude:

inp(xm+2) ⊗
⊕

n∈2N+1

st(S n) `Σ inp(xm) ⊗
⊕

n∈2N+1

st(S n)

And then:

inp(xm) ⊗
⊕

n∈2N+1

st(S n) `Σ ⊗
⊕

n∈2N+1

(
inp(xm mod 2) ⊗ st(S n)

)
For m mod 2 = 0 and any n > 0, inp(xm mod 2) ⊗ st(S n) proves 0 by rule r f ail−s:

inp(xm mod 2) ⊗
⊕

n∈2N+1

st(S n) `Σ 0

We now recall either inference rule (R⊕1) or (R⊕2) to remind us that:

st([S ]) `Σ
⊕

n∈2N+1

st(S n)

Hence, for every even natural number m, we have:

inp(xm) ⊗ st([S ]) `Σ 0

By Property 5.14, we then have for every even natural number m:

〈inp(xm) ⊗ st([S ]); ∅〉 7→∗ ε
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That is to say: Every input word whose length is an even number has a failed answer. As
Pparse is furthermore confluent, it will invariably fail. Similarly, if we change the arbitrarity
axiom to

inp([x|ri]) ` inp([a|ri])&inp([ f |ri])

we can show that for every odd m there exists an input of length m for which the computa-
tion invariably fails.

5.3 Comparison of Programs

In this section, we concentrate on the comparison of CHR∨ with respect to program equiv-
alence. We define three notions of operational equivalence, each one corresponding to one
set of observables as introduced in Section 2.2.

Definition 5.18 Operational Equivalence. (1) Two CHR∨ programs P1,P2 are oper-
ationally C-equivalent under a given constraint theory CT if for any state S , we have
CP1,CT (S ) = CP2,CT (S ).

(2) Two CHR programs P1,P2 are operationallyA-equivalent under a given constraint
theory CT if for any state S , we haveAP1,CT (S ) = AP2,CT (S ).

(3) Two CHR∨ programs P1,P2 are operationally S-equivalent under a given constraint
theory CT if for any state S , we have SP1,CT (S ) = SP2,CT (S ).

(4) Two CHR∨ programs P1,P2 are operationally S(S)-equivalent under a given con-
straint theory CT for a class of flat initial states S if for any state S ∈ S, we have
SP1,CT (S ) = SP2,CT (S ).

We will mainly focus on C-eqivalence and S-equivalence. What we callA-equivalence
has been researched extensively in the past (cf. Abdennadher et al. [1999]). It shows in
this section that the linear-logic semantics is not adequate to reason aboutA-equivalence.

Definition 5.19 Logical Equivalence of Programs. Two CHR programs P1,P2 are
called logically equivalent under a given constraint theory CT if ET L,CT L `

⊗
PL

1 �⊗
PL

2 , where the unary operator
⊗

stands for element-wise multiplicative conjunction
and

⊗
PL

1 �
⊗
PL

2 is shorthand for (
⊗
PL

1 (
⊗
PL

2 )&(
⊗
PL

2 (
⊗
PL

1 ).

The following proposition relates C- and S-equivalence.

Proposition 5.20. Operational S-equivalence is a necessary but not a sufficient condi-
tion for C-equivalence.

Proof. To show that S-equivalence is a necessary condition, we assume two C-
equivalent programs P1,P2. For every state S , we have CP1 (S ) = CP2 (S ). As each SPi

is the projection of CPi (S ) to configurations with empty user-defined stores, we also have
SP1 (S ) = SP2 (S ).

To show that S-equivalence is not a sufficient condition, consider the following two
programs:

P1 =

{
a(x) ⇔ b(x)
b(x) ⇔ x � 0

}
P2 =

{
a(x) ⇔ x � 0
b(x) ⇔ x � 0

}
Both programs ultimately map every a(x) and b(x) to x � 0. Hence, they are S-equivalent.
For S = 〈a(x); ∅〉 and T = 〈b(x); ∅〉 we have [T ] ∈ CP1 (S ) but [T ] < CP2 (S ). Hence, the
programs are not C-equivalent.
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We can show that operational C-equivalence implies logical equivalence of programs:

Proposition 5.21. Let P1,P2 be two C-equivalent CHR∨ programs under CT. Then
CT L `

⊗
P1 �

⊗
P2.

Proof. Since P1 and P2 are C-equivalent, we have that CP1 (S ) = CP2 (S ) for all S .
For every rule R = (r @ H1 \ H2 ⇔ G | B) ∈ P2, we have by Def. 2.18: [〈H1 ∧ B ∧
G; x̄〉] ∈ CP2 (〈H1 ∧ H2 ∧G; x̄〉) where x̄ = vars(H1 ∧ H2 ∧G) and then by our hypothesis
[〈H1 ∧ B ∧ G; x̄〉] ∈ CP1 (〈H1 ∧ H2 ∧ G; x̄〉). Therefore, we get CT L `

⊗
PL

1 ( RL.
Applying this to all rules R ∈ P2, we show CT L `

⊗
PL

1 (
⊗
PL

2 . Analogously, we get
CT L `

⊗
PL

2 (
⊗
PL

1 .

The reverse direction does not hold in general as the following example shows:

Example 5.22. Let the constraint theory CT contain at least the theory of natural num-
bers. Compare the following two programs:

P1 =
{

c(x) ⇔ x ≥ 1
}

P2 =

{
c(x) ⇔ >

c(x) ⇔ x ≥ 1

}
The greater-or-equal constraint ≥ is a built-in constraint. Hence, it is translated as (x ≥
1)L =!(x ≥ 1). As !(x ≥ 1) ` 1, we have

⊗
PL

1 a`Σ
⊗
PL

2 . We observe thatSP1 (〈c(x); x〉) =

{〈x ≥ 1; x〉} and SP2 ([〈c(x); {x}〉]) = {[〈x ≥ 1; {x}〉], [〈>; {x}〉]}. As the sets are not equal, P1
and P2 are not operationally S-equivalent and hence, by Prop. 5.20, not C-equivalent.

However, if we restrict ourselves to analytic, confluent programs, we can show that
logical equivalence of programs implies operational S-equivalence:

Proposition 5.23. (1) Let P1,P2 be two confluent CHR∨ programs that are analytic
for a class of initial states S and where CT L `

⊗
PL

1 �
⊗
PL

2 . Then P1,P2 are S(S)-
equivalent.

(2) If P1,P2 are furthermore generally analytic, they are S-equivalent.

Proof. It will suffice to prove the first property as the second is its straightforward exten-
sion to arbitrary initial states: As both P1 and P2 are confluent, we have |SPi,CT (S )| ∈ {0, 1}
for any state S and i ∈ {1, 2}, where | · | denotes cardinality. If |SPi,CT (S )| = 0 then
|HSPi,CT (S )| = 0. Otherwise, |HSPi,CT | ≥ 1. In the former case, our proposition is trivially
true since SPi,CT = ∅. In the following, we assume |SPi,CT | = 1.

Logical equivalence implies that LC
P1,CT (S ) = LC

P2,CT (S ) for all S . Since LS is the pro-
jection of LC to configurations with empty user-defined stores, we also have LS

P1,CT (S ) =

LS
P2,CT (S ) and hence OSP1,CT (S ) = OSP2,CT (S ).
Since |SPi,CT (S )| = 1 for i ∈ {1, 2}, each lower closure OSPi,CT (S ) has a maximum

[M̄i] ∈ OSPi,CT (S ) such that ∀[S̄ ] ∈ OSPi,CT (S ).[M̄i] B [S̄ ] and SPi,CT (S ) = {[Mi]}. As
HSP1,CT (S ) = HSP2,CT (S ), we have M̄1JIM̄2. As both programs are analytic in S, we
furthermore have that M̄1, M̄2 are compact. Hence, we have M̄1 ≡∨ M̄2 and therefore:
SP1,CT (S ) = SP2,CT (S ).

The following example shows that logical equivalence does not imply operational A-
equivalence:

Example 5.24. We consider the program P = {c(x) ⇔ c(x)} and the empty program
P∅ = ∅:
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As the logical reading PL =!∀(c(x) ( c(x)) of P is a logical tautology, it follows that
PL a`Σ P

L
∅

for any Σ. Yet, for S = 〈c(x);>; ∅〉, we haveAP(S ) = ∅whereasAP∅ (S ) = {[S ]}.
ThereforeAP(S ) , AP∅ (S ).

The following final example shows how we can apply the linear-logic semantics to com-
pare Horn programs with committed-choice CHR programs.

Example 5.25. Automatic generation of CHR solvers from Horn programs is a topic
of ongoing research [Abdennadher and Rigotti 2005; Sobhi et al. 2008]. In Sobhi et al.
[2008], a generation method based on the classical declarative semantics was proposed.

As CHR∨ embeds both CHR and Horn programs, the linear logic semantics carries
over to these formalisms as well. Hence, it should be a promising approach to investigate
automatic generation of rule-based solver on the basis of this semantics. In this example,
we show that the linear logic semantics allows us to compare the operational semantics of
Horn programs and CHR programs on a very fine-grained level.

We begin with the following example [Abdennadher and Schütz 1998] of a Horn pro-
gram embedded in CHR∨. It implements a ternary append predicate for lists, where the
third argument is the concatenation of the first two:

H =

{
append(x, y, z) ← x =̇ [ ] ∧ y =̇ z
append(x, y, z) ← x =̇ [h|l1] ∧ z =̇ [h|l2] ∧ append(l1, y, l2)

}
We embed this program into CHR∨ according to Definition 2.23:

P1 =

{
append(x, y, z) ⇔ (x =̇ [ ] ∧ y =̇ z)∨

x =̇ [h|l1] ∧ z =̇ [h|l2] ∧ append(l1, y, l2)

}
The linear-logic reading of the embedded program looks as follows:

PL
1 =

{
!∀x, y, z.(append(x, y, z)( ∃l1, l2, h.(!x =̇ [ ] ⊗ !y =̇ z)⊕

(!x =̇ [h|l1] ⊗ !z =̇ [h|l2] ⊗ append(l1, y, l3)))

}
Secondly, we write a program to implement the append predicate the way it would be
expected in CHR:

P2 =

{
append([ ], y, z) ⇔ y =̇ z
append([h|l1], y, z) ⇔ z =̇ [h|l2] ∧ append(l1, y, l2)

}
The two programs are not per se S-equivalent. Consider their behaviour in case the first
argument of append is bound to anything else than a list. For S 0 = 〈append(3, x, y); ∅〉,
we have SP1 (S 0) = {S ⊥} but SP2 (S 0) = ∅.

Now let us assume that the first argument is always bound to a list. We can model this
by the following formula:

ϕ = ∀(append(x, y, z)( append(x, y, z) ⊗ (!x � [ ] ⊕ ∃h, l.!x � [h|l]))

It shows that CT L, ϕ `
⊗
P1 �

⊗
P2. Hence, under the assumption that the first argu-

ment is always bound to a (non-empty or empty) list, the two programs are operationally
S-equivalent.

Moreover, we observe that ϕ is equivalent to the logical reading of the CHR∨ rule Rϕ:

Rϕ = (r @ append(x, y, z)⇔ append(x, y, z) ∧ (x � [ ] ∨ x � [h|l]))
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Moreover CT L, ϕ `
⊗
P1 �

⊗
P2 implies that CT L ` (

⊗
P1 ⊗ ϕ) � (

⊗
P2 ⊗ ϕ).

Hence, the programs P′1 = P1 ∪ Rϕ and P′2 = P2 ∪ Rϕ are operationally S-equivalent
(without any further assumptions).

6. RELATED WORK

From its advent in the 1980s, linear logic has been studied in relationship with program-
ming languages. Common linear logic programming languages such as LO [Andreoli
and Pareschi 1990], Lolli [Hodas and Miller 1991], LinLog [Andreoli 1992], and Lygon
[James Harland and David J. Pym and Michael Winikoff 1996] rely on generalizations of
backward-chaining backtracking resolution of Horn clauses.

The earliest approach at defining a linear-logic semantics for a committed-choice pro-
gramming language that we are aware of has been proposed in Zlatuska [1993]. The cor-
responding language is indeed a fragment of pure CHR without multiple heads and with
substantial restrictions on the use of built-in constraints. The first approach to a linear logic
semantics for CHR was published in Betz [2004] and shortly after – though independently
– in Bouissou [2005]. Both approaches correspond to the encoding semantics presented in
Sect. 4.5, although the latter presents only translations for rules. An alternative approach
has been investigated by Meister et al. [2007], using transaction logic and mapping CHR
states to databases. Their approach is restricted to the range-restricted ground segment of
CHR as non-ground states do not map naturally do databases.

The linear-logic programming language LolliMon, proposed in López et al. [2005], in-
tegrates backward-chaining proof search with committed-choice forward reasoning. It is
an extension of the aforementioned language Lolli. The sequent calculus underlying Lolli
extended by a set of dedicated inference rules. The corresponding connectives are syntac-
tically detached from Lolli’s own connectives and operationally they are processed within
a monad. The actual committed-choice behaviour comes by the explicit statement in the
operational semantics, that these inference are to be applied in a committed-choice manner
during proof search. With respect to Lolli, committed choice thus comes at the cost of
giving up the general notion of execution as proof search, although it is retained outside
the monad.

The class LCC of linear logic concurrent constraint programming languages [Fages et al.
2001] has a close relationship with CHR, although the former is based on agents whereas
the latter is based on rules. Similar to CHR, LCC languages are non-deterministic and
execution is committed-choice. For the case of pure CHR, our linear-logic semantics can
be considered a straightforward extension of LCC. Unlike CHR∨ however, LCC has no
notion of disjunction.

Furthermore, Fages et al. [2001] have proposed the so-called frontier semantics for LCC,
in which the committed-choice operator is interpreted analogously to the disjunction oper-
ator ∨ in CHR∨. In the linear-logic interpretation of the frontier semantics, it is correspond-
ingly mapped to the multiplicative disjunction ⊕. However, the frontier semantics does not
constitute a distinct programming language but is viewed as a tool to reason about proper-
ties of LCC programs. Hence, committed choice never co-exists with disjunction as in the
linear logic semantics for CHR∨. Rather, the two are viewed as different interpretations of
the same connective for different purposes.

More recently, Simmons and Pfenning [2008] proposed the linear logic-based
committed-choice programming language Linear Logical Algorithms (LLA). LLA distin-
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guishes between linear and persistent propositions. That distinction bears similarities to
the distinction between user-defined and built-in constraints in CHR. However, LLA has
no direct counterpart to the constraint theory CT in CHR. Rather, both types of constraints
are handled by user-programs.

The segment of LLA without persistent propositions corresponds to the segment of CHR
without built-in constraints and where only ground constraints occur. For this, rather re-
stricted segment, programs can be directly translated between the two languages. In these
cases, the linear-logic readings of rules in LLA coincides with the linear-logic semantics
of CHR, i.e. their respective logical readings are logically equivalent.

7. CONCLUSION

In this article, we have presented a detailed analysis of the relationship between linear
logic and CHR∨ (and thus also CHR) and we have shown its applications from reasoning
about program observables to deciding operational equivalence of multi-paradigm CHR∨

programs.
Our first contribution is the definition of a sound and complete linear-logic semantics

for CHR∨. This semantics maps the dualism between don’t-care and don’t-know non-
determinism in CHR∨ to the dualism of internal and external choice in linear logic. Fur-
thermore, we have defined a notion of configuration entailment to characterize the discrep-
ance between state transition and logical judgement. It is a key notion for the study and
the application of our semantics.

We have shown that in the full segment of CHR∨ logical equivalence does not necessar-
ily coincide with configuration equivalence. This makes linear-logic based reasoning over
CHR∨ in general imprecise. However, we have presented a well-behavedness property for
CHR∨ – analyticness – that allows us to identify a segment for which this restriction does
not apply. This segment includes pure CHR, which does not contain disjunction.

As our second main contribution, we have shown how to apply our results to reason
about CHR∨ programs. We have defined sets of linear-logic based observables that corre-
spond with the usual program observables of computable state and data-sufficient answer
by means of state entailment or confguration entailment, respectively. We have presented
criteria to prove various program properties, foremost safety properties, which consist in
the non-computability of a specific state from a certain initial state. Furthermore, we have
given a criterion to prove operational equivalence with respect to data-sufficient answers
for multi-paradigm programs.

As a further contribution, we have for the first time defined a formalization of the oper-
ational semantics of CHR∨ that is based on equivalence classes of configurations. It is an
extension of the equivalence-based semantics for CHR, publiched in [Raiser et al. 2009].

Our results entail a wide range of possible future work. An obvious line of future work
lies in the application of established methods for automated proof search in linear logic
to reason about CHR∨ programs. As significant effort has been put in the current result
on amending the discrepance between linear judgement and the semantics of CHR∨, it
furthermore suggests itself to investigate whether a “purer” formalism to reason about CHR
could be extracted from linear logic that avoids these discrepancies. As suggested by one
of the anonymous reviewers of this paper, another important point for future work is a
comprehensive investigation of the applicability of our results in the context of varying
operational semantics.
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A. LEMMATA AND PROOF DEVICES

In this appendix, we present definitions and lemmas that will be of lesser interest for the
reader but are important for the proofs in Appendix B.

The notion of merging of states is an important tool for the proof of Theorem 4.14. We
define it as follows:

Definition A.1 (· � ·). Let S = 〈G;V〉, S ′ = 〈G′;V〉 be CHR∨ states that share the
same set of global variables and whose local variables are renamed apart. Their merging is
defined as:

S � S ′ ::= 〈G ∧ G′;V〉

The following property assures that we can without loss of generality assume the exis-
tence of S � T for any two states S ,T :

Property A.2. For any CHR∨ states S ,T, there exist states S ′,T ′ where S ≡ S ′,T ≡
T ′ such that S ′ � T ′ exists.

Proof sketch. Lemma 2.8.1 allows to rename the local variables apart, and Def. 2.6.4
allows the union of their respective sets of global variables.

Lemma A.3 states two properties of merging that will be used in upcoming proofs:

Lemma A.3 Properties of · � ·. Let S , S ′,T be CHR states such that both S � T and
S ′ � T exist. The following properties hold:

(1) S B S ′ ⇒ S � T B S ′ � T
(2) S 7→r S ′ ⇒ S � T 7→r S ′ � T

Proof. Lemma A.3.1: We assume w.l.o.g. that the states S , S ′,T share the same set of
global variables. Let S = 〈U ∧ B;V〉, S ′ = 〈U′ ∧ B′;V〉,T = 〈UT ∧ BT ;V〉 with local
vars l̄, l̄′, l̄T . From S B S ′ follows by Thm. 2.12: CT |= ∀(B → ∃l̄′.((U =̇ U′) ∧ B′)). As
UT =̇ UT = >, we get CT |= ∀(B ∧ BT → ∃l̄′.∃l̄T .((U =̇ U′) ∧ (UT =̇ UT ) ∧ B′ ∧ BT ))
which proves S � T B S ′ � T.

Lemma A.3.2: We assume w.l.o.g. that the states S , S ′,T share the same set of global
variables. According to Def. 2.18, there exists a variant of a CHR rule r @ H1 \ H2 ⇔ G |
Bu ∧ Bb, such that S ≡ 〈H1 ∧ H2 ∧U; G ∧B;V〉 and S ′ ≡ 〈H1 ∧ Bc ∧U ∧G ∧ Bb ∧B;V〉.
By Prop. A.2, there exists a state T ′ = 〈U′ ∧B′;V〉 such that T ′ ≡ T whose local variables
are renamed apart from those of S and T . By Def. 2.18, we get S � T 7→r S ′ � T.

Lemma A.4. Let π be a cut-reduced proof of a sequent S̄ L ` T̄ L where S̄ , T̄ are arbitrary
configurations. Any formula α in π is either of the form α = S̄ L

α or of the form α = cb(t̄)
where S̄ α is a configuration and cb(t̄) is an atomic built-in constraint.

Proof sketch. We firstly observe that both the root of π and all proper axioms in Σ are
of the form ŪL

1 ` ŪL
2 where Ū1, Ū2 are configurations. The subformula property hence

guarantees that every formula α in π is a subformula of the logical reading ŪL of some
configuration Ū.

We secondly observe that an atomic subformula of ŪL is either an atomic built-in con-
straint cb(t̄) or an atomic user-defined constraint cu(t̄). Both cases support our claim since
〈cu(t̄); vars(t̄)〉L = cu(t̄) and 〈cu(t̄); vars(t̄)〉 is a singular configuration. We proof the lemma
by induction over the depth of the fomula ŪL.
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It should be noted that the configuration S̄ α is not necessarily unique, i.e. more than one
configuration might map to a specific formula. For example, let formula α = cu(t̄) ⊕ cu(t̄).
We then have 〈cu(t̄)∨ cu(t̄); vars(cu(t̄))〉L = (〈cu(t̄); vars(cu(t̄))〉 ∨ 〈cu(t̄); vars(cu(t̄))〉)L = α.
However, we have by Def. 2.14.4 that S̄ L = T̄ L ⇒ S̄ I T̄ .

Lemma A.5 establishes an important relationship between state transition and entailment
of flat states. We will recur to it to proof Lemma 4.13.

Lemma A.5. Let S ,U,T be CHR states. If S B U and U 7→r T then there exists a state
V such that S 7→r V and V B T.

Proof. Let S = 〈U;B;V〉 and let ȳS , ȳU , ȳT be the local variables of S ,U,T. By defini-
tion, U 7→r T implies that there is a variant of a CHR rule r @ (H1 \ H2 ⇔ G | Bb ∧ Bu)
such that [U] = [〈H1 ∧ H2 ∧ Û; G ∧ B̂; V̂〉] and [T ] = [〈H1 ∧ Bu ∧ Û; G ∧ Bb ∧ B̂; V̂〉].

Now let V = 〈H1 ∧ Bu ∧ Û; G ∧ Bb ∧ B̂ ∧ (U =̇ (H1 ∧ H2 ∧ Û) ∧ B; V̂〉. From [S ] B [U]
follows by Thm. 4.12: CT |= ∀(B→ ∃ȳU .((U =̇ (H1∧H2∧Û))∧G∧B̂)). Assuming w.l.o.g.
that ȳS ∩ ȳU = ∅, we can apply Def. 2.6.3 to get S ≡ 〈U;B∧G∧B̂∧(U =̇ (H1∧H2∧Û));V〉
and then S ≡ 〈(H1 ∧H2 ∧ Û;B∧G∧ B̂∧ (U =̇ (H1 ∧H2 ∧ Û));V〉. According to Def. 2.18,
we have S 7→r V. We apply Def. 4.9 to show that V B T.

Lemma A.6 will be used to prove Lemma 4.16:

Lemma A.6 (B ⇒`). For arbitrary singular configurations S ,T, entailment S B T im-
plies S L `Σ T L for Σ = ΣCT ∪ Σ�.

Proof of Lemma A.6. (’⇐’) Follows from Thm. 4.14 by assuming an empty program
P = ∅. (’⇒’) We proof that all conditions in Def. 4.9 comply with the judgement relation
`: For Def. 4.9.1, CT |= ∀(B → B′) implies that ΣCT contains an axiom B ` B′. Hence,
we can prove ∃−V.U ∧ B ` ∃−V.U ∧ B′. For Def. 4.9.2, it is valid since S L ` ∃x.S L holds
for any S L. Concerning the implicit conditions of a partial order relation, reflexivity and
anti-symmetry hold for the judgement relation ` as well and anti-symmetry is a natural
consequence of Def. 3.4.

B. PROOFS

In this appendix, we present several proofs that have been removed from the main paper
for more clarity.

Proof of Lemma 4.5. (1). We prove that state equivalence S ≡e T implies linear
judgement S `Σ T by showing that every of the conditions given for S ≡e T in Def. 2.6
implies S ` T :

Def. 2.6.1 implies linear judgement since ⊗ is associative, commutative, has the neutral
element 1 and distributes over ⊕. For Def. 2.6.2, linear judgement is guaranteed, as Σ�
allow us to prove ∃−V.U ⊗ x � t ⊗ B `Σ ∃−V.U [x/t] ⊗ x � t ⊗ B. For Def. 2.6.3, it is
similarly guaranteed by ΣCT . Def. 2.6.4 implies linear judgement since the addition or
removal of a global variable not occurring in a state does not change the logical reading of
the state. W.r.t. Def. 2.6.5, linear judgement holds since ϕ ⊗ 0 ` ψ is valid for any ϕ, ψ. All
the above arguments can be shown to apply in the reverse direction as well, thus proving
compliance with the implicit symmetry of · ≡ ·. The implicit reflexivity and transitivity of
state equivalence comply with linear judgement due to the (Identity) and (Cut) rules.

By the symmatry of ≡e, it follows, that S ≡e T also implies T `Σ S .
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



Linear-Logic Based Analysis of Constraint Handling Rules with Disjunction · 41

(2). We consider the properties given in Def. 2.14 – Def. 2.14.1: For all α, β, γ, we have
α ⊕ β a` β ⊕ α and (α ⊕ β) ⊕ γ a` α ⊕ (β ⊕ γ). Def. 2.14.2: The property follows from
(1). Def. 2.14.3: For all α, we have 0 ⊕ α a` α. Def. 2.14.4: For all α, β, γ,V, we have
(∃−V.α ⊕ β) ⊕ γ a` (∃−V.α) ⊕ (∃−V.β) ⊕ γ.

Proof of Theorem 4.6. Let Ū, V̄ be configurations such that Ū 7→r V̄ . According to
Def. 2.18, there exists a variant of a rule with fresh variables (r @ H1 \ H2 ⇔ G | B) and
configurations Ū′ = 〈H1 ∧H2 ∧G∧G;V〉 ∨ T̄ ′, V̄ ′ = 〈Bu ∧H1 ∧ Bb ∧G∧G;V〉 ∨ T̄ ′ such
that Ū′ ≡ Ū and V̄ ′ ≡ V̄ . Consequently, ΣP contains:

HL
1 ⊗ HL

2 ⊗ GL `Σ HL
1 ⊗ ∃ȳr.(BL ⊗ GL)

From which we prove:

∃−V.HL
1 ⊗ HL

2 ⊗ GL ⊗ G `Σ ∃−V.HL
1 ⊗ GL ⊗ BL ⊗ G

The local variables ȳr of r are by Def. 2.18 disjoint from vars(H1,H2,U,B,V). Hence, we
have:

(∃−V.HL
1 ⊗ HL

2 ⊗ GL ⊗ G) ⊕ T̄ L `Σ (∃−V.HL
1 ⊗ GL ⊗ BL ⊗ G) ⊕ T̄ L

This corresponds to Ū′L `Σ V̄ ′L. Lemma 4.5 then proves that ŪL `Σ V̄L. As the judgement
relation `Σ is transitive and reflexive, the relationship can be generalized to the reflexive-
transitive closure Ū 7→∗ V̄ .

Proof of Theorem 4.12. ’⇒’: We show that the explicit axioms of entailment, as well as
the implicit conditions reflexivity, anti-symmetry and transitivity comply with the criterion:

Def. 4.9.1. We assume w.l.o.g. that the strictly local variables of 〈U;B;V〉, 〈U;B′;V〉
are renamed apart. We observe that (U =̇ U) = > is a tautology for any U. Hence, from
CT |= ∀(∃s̄.B → ∃s̄.B′) follows CT |= ∀(∃s̄.B → ∃l̄′.(U =̇ U) ∧ B′), which proves:
CT |= ∀(B→ ∃l̄′.((U =̇ U) ∧ B′))

Def. 4.9.2. Let l̄ be the local variables of 〈U;B; {x} ∪ V〉. For any x we have: CT |=
∀(B→ ∃x.∃l̄.((U =̇ U) ∧ B))

Reflexivity. Let 〈U;B;V〉, 〈U′;B′;V′〉 be CHR states such that [〈U;B;V〉] =

[〈U′;B′;V′〉], i.e. 〈U;B;V〉 ≡ 〈U′;B′;V′〉. Assuming that the local variables l̄, l̄′ have
been named apart, Thm. 2.12 implies CT |= ∀(B→ ∃ȳ′.((U =̇ U′) ∧ B′)).

Anti-Symmetry. Let 〈U;B;V〉, 〈U′;B′;V′〉 be CHR states with local variables l̄, l̄′ such
that CT |= ∀(B → ∃l̄′.((U =̇ U′) ∧ B′)) and CT |= ∀(B′ → ∃l̄.((U =̇ U′) ∧ B)). By
Thm. 2.12, we have that 〈U;B;V〉 ≡ 〈U′;B′;V′〉 and hence [〈U;B;V〉] = [〈U′;B′;V′〉].

Transitivity. Let 〈U;B;V〉, 〈U′;B′;V′〉, 〈U′′;B′′;V′′〉 be CHR states where the local
variables l̄, l̄′, l̄′′have been renamed apart and such that CT |= ∀(B → ∃l̄′.((U =̇ U′) ∧ B′))
and CT |= ∀(B′ → ∃l̄′′.((U′ =̇ U′′) ∧ B′′)). Therefore, CT |= ∀(B → ∃ȳ′.((U =̇ U′) ∧
∃l̄′′.((U′ =̇ U′′) ∧ B′′))). As the sets of local variables are disjoint, we get CT |= ∀(B →
∃l̄′ l̄′′.((U =̇ U′) ∧ (U′ =̇ U′′) ∧ B′′)) and finally

CT |= ∀(B→ ∃l̄′′.((U =̇ U′′) ∧ B′′))

’⇐’: Let S = 〈U;B;V〉, S ′ = 〈U′;B′;V′〉 be CHR states with local variables ȳ, ȳ′ that have
been renamed apart and such that V′ ⊆ V and CT |= ∀(B → ∃ȳ′.((U =̇ U′) ∧ B′)). We
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apply Def. 4.9.1 to infer: S B 〈U; (U � U′) ∧ B′;V〉. By Def. 2.6.2 and Def. 2.6.3, we get
S B 〈U′;B′;V〉. Since V′ ⊆ V, several applications of Def. 4.9.2 give us S B 〈U′;B′;V′〉 =

S ′.

Proof of Lemma 4.13. Firstly, we consider hypothesis with respect to the axioms of con-
figuration entailment (cf. Def. 4.10):

Def. 4.10.1. Assume that [S̄ ] I [S ∨ S̄ ] 7→r [T̄ ]. It follows that either (i) [S ] 7→r [S ′]
and [T̄ ] = [S ′ ∨ S̄ ] or (ii) [S̄ ] 7→r [S̄ ′] and [T̄ ] = [S ∨ S̄ ′]. In case (i), we have [V̄] = [S̄ ]
and [S̄ ] I [T̄ ]. In case (ii), we have [V̄] = [S̄ ′] and [S̄ ] 7→r [S̄ ′] I [S ∨ S̄ ′] = [T̄ ].

Def. 4.10.2. Assume that [S 1∨S 2∨ S̄ ] I [S 2∨ S̄ ] 7→r [T̄ ] where [S 1]B [S 2]. It follows
that either (i) [S 2] 7→r [S ′2] and [T̄ ] = [S ′2 ∨ S̄ ] or (ii) [S̄ ] 7→r [S̄ ′] and [T̄ ] = [S 2 ∨ S̄ ′]. In
case (i), Lemma A.5 proves that there exists an S ′1 such that [S 1] 7→r [S ′1] and [S ′1] B [S ′2].
Hence, we get [V̄] = [S ′1∨S ′2∨ S̄ ] and [S 1∨S 2∨ S̄ ] 7→r [S ′1∨S 2∨ S̄ ] 7→r [S ′1∨S ′2∨ S̄ ] I
[S ′2 ∨ S̄ ] = [T̄ ]. In case (ii), we have [V̄] = [S 1 ∨ S 2 ∨ S̄ ′] and [S 1 ∨ S 2 ∨ S̄ ] 7→r

[S 1 ∨ S 2 ∨ S̄ ′] I [S 2 ∨ S̄ ] = [T̄ ].

For the reflexive closure of these axioms, the hypothesis is true as [S̄ ] = [Ū] implies
[V̄] = [T̄ ]. For their transitive closure, it follows by induction. Hence, the hypothesis holds
for configuration entailment in general.

Proof of Theorem 4.14. To preserve clarity, we will omit the set of proper axioms from
the judgement symbol. Furthermore,D(Ū, V̄) denotes the fact that for configurations Ū, V̄ ,
there exist configurations Ū1, . . . , Ūn for some n such that:

Ū 7→∨ Ū1 7→∨ . . . 7→∨ Ūn I V̄

Entailment Ū I V̄ impliesD(Ū, V̄). We define ·�· as in the proof of Thm. 4.14.
Secondly, we define an operator on formulas analogous to merging on states: For

any two (possibly empty) sequences of variables x̄, ȳ and quantifier-free formulas α, β let
∃x̄.α�∃ȳ.β ::= ∃x̄.∃ȳ.α ⊗ β. We observe that for arbitrary CHR states U,V where U � V
exists, we have UL�VL a` (U � V)L. In the following, we assume w.l.o.g. that all ex-
istentially quantified variables in the antecedent of a sequent occuring in π are renamed
apart. Hence, for every two formulas of the form UL,VL occurring in the antecedent of
one sequent in π, both U � V and UL�VL exist.

We introduce a completion function η, defined by the following table, where S̄ is a
configuration, cb(t̄) is a built-in constraint and Γ ` α is a sequent:

η(S̄ L) ::= S̄ L

η(cb(t̄)) ::= !cb(t̄)
η(α,Γ) ::= η(α)�η(Γ)
η(Γ ` α) ::= η(Γ) ` η(α) for non-empty Γ

η(` α) ::= 1 ` η(α)

From Lemma A.4 follows that for every sequent Γ ` α in π, we have η(Γ ` α) = ŪL ` V̄L

for some configurations Ū, V̄ . We show by induction over the depth of π that for every such
ŪL ` V̄L, we haveD(Ū, V̄).

Base case: In case the proof of S̄ L ` T̄ L consists of a single leaf, it is either an instance
of a (Identity), (R1), or (L0), or a proper axiom (Γ ` α) ∈ (Σ� ∪ ΣCT ∪ ΣP).
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—(Identity), (R1), (L0):

α ` α (Identity)
` 1 (R1) 0 ` α (L0)

In the case of (Identity), we have η(α ` α) = ŪL ` ŪL for some configuration ŪL. In
the case of (R1), we have η(` 1) = ŪL ` ŪL for Ū = 〈>;V〉. As the entailment relation
is reflexive, we have D(Ū, Ū). In the case of (L0), we have η(0 ` α) = ŪL ` V̄L where
Ū ≡ S ⊥. By Def. 2.6, Def. 4.9, and Def. 4.10, we have that ŪL I V̄L and therefore
D(U,V).

—For a proper axiom (Γ ` α) ∈ (Σ� ∪ ΣCT ) we have Γ ` α = ŪL ` V̄L where Ū, V̄ are
singular configurations such that Ū I V̄ and thereforeD(Ū, V̄).

—For a proper axiom (Γ ` α) ∈ ΣP we have Γ ` α = ŪL ` V̄L where Ū, V̄ are singular
configurations such that Ū 7→ V̄ and thereforeD(Ū, V̄).

Induction step: We distinguish thirteen cases according to which is the last inference
rule applied in the proof. Cut reduction implies that it must be one of (Cut), (L1), (L⊗),
(R⊗), (Weakening), (Dereliction), (Contraction), (R!), (L∃), (R∃), (L⊕), (R⊕1), and (L⊕2):

—(L⊗), (Dereliction), (R!): For (Dereliction) and (R!), the banged formula must be an
atomic built-in constraint cb(t̄):

Γ, α, β ` γ

Γ, α ⊗ β ` γ
(L ⊗ )

Γ, cb(t̄) ` β
Γ, !cb(t̄) ` β

(Dereliction)
!Γ ` cb(t̄)
!Γ `!cb(t̄)

(R!)

Since η(α, β) = η(α ⊗ β) and η(!cb(t̄)) = η(cb(t̄)), each of these rule is invariant to the
η-completion of the sequent, thus trivially satisfying the hypothesis.

—(L1):

Γ ` α
Γ, 1 ` α (L1)

We assume that S Γ = 〈GΓ,VΓ〉 is a singular configuration and S̄ α is a configuration such
that S L

Γ
= η(Γ), S̄ L

α = η(α), and D(S Γ, S̄ α). Then by Def. 2.6.3, we have D(UΓ, S α)
where UΓ = 〈GΓ ∧ >,VΓ〉. As UL

Γ
= η(Γ, 1), this proves the hypothesis.

—(Weakening): By Lemma A.4, we have that the introduced formula is of the form !cb(t̄).

Γ ` β

Γ, !cb(t̄) ` β
(Weakening)

We assume that S Γ = 〈GΓ,VΓ〉 is a singular configuration and S̄ β is a configuration such
that S L

Γ
= η(Γ), S̄ L

β = η(β) and D(S Γ, S̄ β). Furthermore, let U = 〈GΓ ∧ cb(t̄);VΓ〉. Since
UL = η(Γ, !cb(t̄)) and U B S Γ, Lemma A.5 proves the hypothesis.

—(Contraction): By the subformula property, we have that the contracted formula is of
the form !cb(t̄).

Γ, !cb(t̄), !cb(t̄) ` β
Γ, !cb(t̄) ` β

(Contraction)

Since 〈U;B ∧ cb(t̄);V〉 B 〈U;B ∧ cb(t̄) ∧ cb(t̄);V〉 we prove the hypothesis analogously
to (Weakening).
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—(R⊗): The subformula property implies that the joined formulas must be singular con-
figurations UL and VL without local variables:

Γ ` UL ∆ ` VL

Γ,∆ ` UL ⊗ VL (R⊗)

Let S Γ, S ∆ be singular configurations such that S L
Γ

= η(Γ), S L
∆

= η(∆). The induction
hypothesis gives us D(S Γ,U) and D(S ∆,V). By Lemma A.3.1 and Lemma A.3.2 we
haveD(S Γ�S ∆,U�S ∆) andD(U�S ∆,U�V). By Lemma A.5, we getD(S Γ�S ∆,U�V).

—(Cut): Since π is a cut-reduced proof and all axioms are of the form UL
1 ` UL

2 , the
eliminated formula must be the logical reading of a singular configuration U:

Γ ` UL UL,∆ ` β

Γ,∆ ` β
(Cut)

Let S Γ, S ∆ be singular configurations and S̄ β a configuration such that S L
Γ

= η(Γ), S L
∆

=

η(∆), and S̄ L
β = η(β). The induction hypothesis gives us D(S Γ,U) and D(U � S ∆, S̄ β).

Applying Lemma A.3, we getD(S Γ�S ∆,U�S ∆). By Lemma A.5, we getD(S Γ�S ∆, S̄ β)
which proves the hypothesis.

—(L∃): In the preconditional sequent, the quantified variable x is by definition replaced
by a fresh constant a that does not occur in Γ, α, or β:

Γ, α [x/a] ` β
Γ,∃x.α ` β

(L∃)

Let U = 〈G [x/a] ;V ∪ {a}〉 be a singular configuration and S̄ β a configuration such that
UL = η(Γ, α [x/a]), S̄ L

β = η(β), and x < V. The definition of state equivalence gives us
U ≡ 〈G∧ x =̇ a;V∪ {a}〉. Furthermore, we have η(Γ,∃x.α) = 〈G,V〉L. By the induction
hypothesis, we have singular configurations U1, . . . ,Un such that U 7→r1 U1 7→

r2 . . . 7→rn

UnBS β where Ui = 〈Gi∧ x =̇ a;V∪{a}〉 for i ∈ {1, . . . , n}. Neither the binding x =̇ a nor
the set of global variables affect rule applicability. Hence, we can construct an analogous
derivation 〈G;V〉 7→r1 U′1 7→

r2 . . . 7→rn U′n where U′i = 〈Gi;V〉 for i ∈ {1, . . . , n}. Since
Un I S̄ β and a must not occur in β, we also have have 〈Gn;V〉 I S̄ β. Therefore, we have
D(〈U;B;V〉, S̄ β). As η(Γ,∃x.α) = 〈G;V〉L, this proves the hypothesis.

—(R∃): By definition, the quantified variable x substitutes an arbitrary term t.

Γ ` β[x/t]
Γ ` ∃x.β

(R∃)

Let S̄ Γ be a configuration and U,V be singular configurations such that S̄ L
Γ

= η(Γ),
UL = η(β [x/t]), and VL = η(∃x.β). By the induction hypothesis we have D(S̄ Γ,U)
for some n. Let V = 〈G;V〉 and U = 〈G [x/t] ; {x} ∪ V〉. We have U ≡ 〈G ∧ x �
t; {x} ∪ V〉 B 〈G ∧ x � t;V〉 B 〈G;V〉 ≡ V , and therefore,D(S̄ Γ,V).

—(L⊕):

Γ, α ` γ Γ, β ` γ

Γ, α ⊕ β ` γ
(L⊕)

Let Gα,Gβ be goals, let S Γ = 〈G;V〉 be a state and let S̄ β be a configuration such that
GL
α = η(α), GL

β = η(β), S L
Γ

= η(Γ) and S̄ L
γ = η(γ). Let furthermore ȳα = vars(Gα)

and ȳβ = vars(Gβ). Hence, η(Γ, α) = 〈G ∧ Gα;V ∪ ȳα〉L, η(Γ, β) = 〈G ∧ Gβ;V ∪ ȳβ〉L,
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and η(Γ, α ⊕ β) = 〈G ∧ (Gα ∨ Gβ);V ∪ ȳα ∪ ȳβ〉L. The induction hypothesis gives us
D(〈G ∧ Gα;V ∪ ȳα〉, S̄ γ) and D(〈G ∧ Gβ;V ∪ ȳβ〉, S̄ γ). By Def. 2.14.4 we have that
η(Γ, α ⊕ β) ≡ 〈G ∧ Gα;V ∪ ȳα〉 ∨ 〈G ∧ Gβ;V ∪ ȳβ〉. Finally by Lemma 4.13, we get
D(〈G ∧ (Gα ∨ Gβ);V ∪ ȳα ∪ ȳβ〉, S̄ γ).

—(R⊕1), (R⊕2):

Γ ` α
Γ ` α ⊕ β

(R⊕1)
Γ ` β

Γ ` α ⊕ β
(R⊕2)

We consider (R⊕1): By the subformula property, there exist configurations S̄ Γ, S̄ α, S̄ β,
such that S̄ L

Γ
= η(Γ), S̄ L

α = η(α), and S̄ L
β = η(β). By the induction hypothesis, we have

D(S̄ Γ, S̄ α). By Def. 4.10.1, we have S̄ α I (S̄ α ∨ S̄ β) and therefore Dn(S̄ Γ, S̄ α ⊕ S̄ β).
(The proof for (R⊕2) works analogously.)

Finally, we haveD(S̄ , T̄ ), i.e. there exist configurations S̄ 1, . . . S̄ n such that:

S̄ 7→ S̄ 1 . . . 7→ S̄ n B T̄

It follows that for Ū = S̄ n, we have S̄ 7→∗ Ū and Ū B T̄ .

Proof of Lemma 4.16. (’⇐’) Follows from Thm. 4.14 by assuming an empty program
P = ∅.
(’⇒’) We consider the axioms for configuration entailment in Def. 4.10: W.r.t. axiom (1),
[T̄ ] I [S ∨ T̄ ] implies T̄ L ` (S ∨ T̄ )L since β ` α ⊕ β. For Def. 4.10.2, [S 1] B [S 2]
implies S L

1 `Σ S L
2 by Lemma A.6. From a proof of S L

1 `Σ S L
2 , we can construct a proof of

S L
1 ⊕ S L

2 ⊕ T̄ L `Σ S L
2 ⊕ T̄ L. As `Σ is furthermore reflexive and transitive, the hypothesis is

reduced to Lemma 4.5.

Proof of Theorem 4.20. We prove Thm. 4.20 by showing that any proof tree in the
axiomatic semantics can be transformed into a proof tree in the encoding semantics and
vice versa. To ensure of clarity, we will omit the set of proper axioms from the judgement
symbol.

Axiomatic to encoding:. We assume a proof π of a sequent S̄ L ` T̄ L in the axiomatic
semantics. We replace every axiom ∃x̄.BL ` ∃x̄′.B′L in ΣCT by a sub-tree proving
CT L,∃x̄.BL ` ∃x̄′.B′L. Analogously, we replace every axiom ∃x̄.GL ` ∃x̄′.G′L in Σ�
by a sub-tree proving ET L,∃x̄.BL ` ∃x̄′.B′L. Similarly, every axiom HL

1 ⊗ HL
2 ⊗ GL `

HL
1 ⊗ ∃−ȳr .(B

L ⊗ GL) in ΣP is replaced with a sub-tree proving PL,HL
1 ⊗ HL

2 ⊗ GL `

HL
1 ⊗ ∃−ȳr .(B

L ⊗ GL). We propagate the thus introduced instances of CT L and PL through-
out the proof tree, thus producing a proof π′ of

CT L, . . . ,CT L, ET L, . . . , ET L,PL, . . . ,PL, S̄ L ` T̄ L

We insert π′ into:
π′

CT L, ET L,PL, S̄ L ` T̄ L
(Contraction)∗

CT L, ET L,PL ` S̄ L ( T̄ L
(R()

CT L, ET L,PL ` ∀(S̄ L ( T̄ L)
(R∀)

Encoding to axiomatic:. Let
⊗

stand for element-wise multiplicative conjunction of a
set and let π be a proof of a sequent CT L,PL ` ∀(S̄ L ( T̄ L) in the encoding semantics.
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For every !∀(∃x̄.BL ( ∃x̄′.B′L) ∈ CT L, we have `Σ!∀(∃x̄.BL ( ∃x̄′.B′L) where Σ =

ΣCT . Hence, there exists a proof πCT of `Σ
⊗

CT L. Similarly, there exist proofs πET of
`Σ

⊗
ET L and πP of `ΣP

⊗
PL.

πP

πET

πCT

π⊗
CT L,

⊗
ET L,

⊗
PL ` ∀(S̄ L ( T̄ L)

(L⊗)∗⊗
ET L,

⊗
PL ` ∀(S̄ L ( T̄ L)

(Cut)⊗
PL ` ∀(S̄ L ( T̄ L)

(Cut)

` ∀(S̄ L ( T̄ L)
(Cut)

S̄ L ` S̄ L
(Identity)

T̄ L ` T̄ L
(Identity)

S̄ L, S̄ L ( T̄ L ` T̄ L
(L()

∀(S̄ L ( T̄ L), S̄ L ` T̄ L
(L∀)∗

S̄ L ` T̄ L
(Cut)

As we can transform the respective proof tree from the axiomatic to the encoding se-
mantics and vice versa, the two representations are equivalent.
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