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We study the synthesis problem in an asynchronous distributed setting: a finite set of processes interact

locally with an uncontrollable environment and communicate with each other by sending signals – actions

controlled by a sender process and that are immediately received by the target process. The fair synthesis

problem is to come up with a local strategy for each process such that the resulting fair behaviors of

the system meet a given specification. We consider external specifications satisfying some natural closure

properties related to the architecture. We present this new setting for studying the fair synthesis problem

for distributed systems, and give decidability results for the subclass of networks where communications

happen through a strongly connected graph. We claim that this framework for distributed synthesis is

natural, convenient and avoids most of the usual sources of undecidability for the synthesis problem. Hence,

it may open the way to a decidable theory of distributed synthesis.
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1. INTRODUCTION

Synthesis (also known as Church’s problem) is an essential problem in computer sci-
ence, especially in the context of formal methods for the design of systems. It consists
in automatically deriving a system from its specification, hence allowing to produce a
program that is certified to be correct, without any debugging process. Moreover, when
the synthesis algorithm answers that there is no program for this specification, it is
known at an early stage of the development process that the specification is unrealiz-
able, and thus likely to be erroneous.

The initial problem considered by Church [1963] concerned reactive centralized sys-
tems interacting with an uncontrollable environment whose behaviors were described
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by a specification in monadic second order logic (MSO). Its decidability was established
by Büchi and Landweber in [1969] with a game theoretic approach. A simpler solution
has been brought in [Rabin 1972], where it is advocated that, even if the specification
is linear-time, the need to consider all possible behaviors of an uncontrollable envi-
ronment yields a branching-time behavior, which is best described by a tree and thus
amenable to tree automata. This problem is now quite well understood, and current
work aims at defining efficient algorithms towards implementations (see the tools Lily
[Jobstmann and Bloem 2006], Acacia [Filiot et al. 2009] and Unbeast [Ehlers 2011] for
synthesis from LTL specifications, which build on the efficient technique presented in
[Kupferman and Vardi 2005]).

Different extensions of the problem have been studied. Among them, an important
line of research is the synthesis for distributed systems, i.e., systems consisting of sev-
eral communicating processes cooperating against an uncontrollable environment in
order to satisfy the specification. This case is much more involved, and undecidable in
general [Pnueli and Rosner 1990]. An important difficulty inherent to the distributed
setting is the fact that each process has only a partial view of the global system and
decisions about its behavior must be taken based solely on this local knowledge.

When dealing with distributed systems, an important parameter to take into ac-
count is whether the semantics is synchronous (a global clock governs the whole sys-
tem, and at each tick of this clock, all the processes make an action simultaneously), or
asynchronous (each component evolves at its own speed, with synchronization mech-
anisms for communication). In the synchronous semantics, undecidability is quickly
reached, even if a few decidable subclasses have been identified. A bit surprisingly,
more hope is permitted in the asynchronous case, in which the problem stays decid-
able for wider classes of architectures (see the paragraph on the related work for more
details).

Contributions

We consider the synthesis problem for asynchronous distributed systems, and define a
model yielding decidability of this problem when the communication graph of the sys-
tem is strongly connected. It opens the way to a general decidable theory of synthesis
for asynchronous distributed systems.

More precisely, we study systems which communicate via signals. In fact, it is of-
ten considered in distributed asynchronous systems that the different processes syn-
chronize on common actions (rendezvous mechanism). However, this means that two
processes must agree to execute a shared action; for synthesis, it implies that the pro-
cesses must take the same decision, whereas they may have a completely different
view of the global state of the system. Signals are a more convenient and realistic
synchronization mechanism: it can be seen as an asymmetric rendezvous, where only
one of the processes is able to trigger the signal, the other process receives it without
executing any action.

Second, we restrict the specifications to external ones: we say that a specification is
external if it only relates inputs from and outputs to the environment, without any con-
straint on the internal communication actions. Indeed, as we have already advocated
in [Gastin et al. 2009], we believe that external specifications are more natural when
dealing with distributed systems: the communication between the processes can be re-
stricted by the architecture (the communication graph), but not by the specification.
When describing expected behaviors of such a system, one should only be concerned
with the visible external behaviors, and let the processes communicate freely in order
to achieve the specification. Moreover, total specifications can be used to break com-
munication links that exist in the architecture, and thus quickly yields undecidability
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results. For these two reasons, we address the synthesis problem with external speci-
fications.

While writing a specification for a distributed system, one must be cautious and
comply with the nature of the architecture. In asynchronous distributed systems, ex-
ecutions can be seen as partial orders of actions, where two actions occurring on dif-
ferent processes are ordered if there is some causality relation between them. Hence,
the specification can only impose an order between two events on different processes if
there is a causality relating them. To rule out unrealistic constraints, we forbid some
unrealizable causalities between processes. This leads us to express specifications as
semi-traces.

Finally, we introduce fairness conditions in our model and require that the specifi-
cations be met only by the fair executions of the system.

Hence, the inputs of the problem addressed in this article are: an architecture rep-
resented by a communication graph, and a specification given by a semi-trace-closed
language relating input and output actions. The synthesis problem then asks for a lo-
cal program for each process such that any fair run of the global system following these
programs belongs to the specification language, or the answer that no such programs
exist. We obtain decidability of the fair synthesis problem for the whole class of sys-
tems whose communication graph is strongly connected. This is a major improvement,
in particular with respect to the synchronous case where the problem is in general
undecidable for such architectures. We believe that this model will yield decidability
for many more classes of architectures.

As an additional yet orthogonal contribution, we explore some useful properties on
languages closed by semi-commutations: we prove that it can be decided in polyno-
mial space whether a given ω-regular language is closed under semi-commutation,
and we define a natural logic (a fragment of the logic MSO) in which closure un-
der semi-commutation is guaranteed. Similar closure problems have been studied
for partial commutation relations such as Mazurkiewicz traces, see [Muscholl 1996;
Diekert et al. 1995; Peled et al. 1998].

The article is organized as follows: Section 2 defines some notions that will be used
throughout the article. Section 3 presents in details the model we consider and Sec-
tion 4 describes the specifications that will be used. Finally, the decidability results
are presented in Section 5.

A preliminary version of this work appeared in [Chatain et al. 2009].

Related work

We relate our contribution to existing work by presenting the different results obtained
in two categories: results obtained for synchronous systems, and then results obtained
for asynchronous systems.

Synthesis of distributed synchronous systems has been initiated by
Pnueli and Rosner [1990] who proved that the problem was undecidable for LTL

specifications. At the same time, they have identified the subclass of pipeline archi-
tectures – architectures in which processes communicate in a chain – for which the
problem is decidable for LTL external specifications. The following contributions on the
topic considered several variants for the specification. In addition to the specification
language itself (given by a formula in linear or branching time logic, with different
expressive power), another concern is the set of channels (input, output or dedicated
to internal communication ones) the specification is allowed to talk about. Three types
of specifications have thus been given attention to: total, external and local.

— Total specifications may refer to any channel. They are the most general.
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— External specifications are only allowed to relate input and output values and let
the internal communication channels unconstrained.

— Local specifications are Boolean combinations of specifications relating only input
and output values of one process.

In [Kupferman and Vardi 2001], an automata-theoretic approach to solving synthe-
sis for pipe-line architectures (and some variations) is given, and they show that
this case stays decidable for total specifications given as CTL

∗ formulas. To fill the
gap between the undecidable architecture of [Pnueli and Rosner 1990] and the specific
decidable case where the input architecture is a variant of the pipe-line, a uniform
(un)decidability criterion is given in [Finkbeiner and Schewe 2005]: they introduce the
notion of information fork in the architecture as a necessary and sufficient condition for
undecidability of the problem. In [Gastin et al. 2009] it is shown that this criterion is
only valid when the specification given is total: if we restrict to external specifications,
then the cases where the problem is decidable can be expanded: for instance, the syn-
thesis problem becomes decidable for so-called uniformly well-connected architectures.
Madhusudan and Thiagarajan [2001] have considered an extension of the synthesis
problem (the controller synthesis problem) with local specifications. The problem re-
mains undecidable in most cases: it is decidable if and only if it is a sub-architecture
of a pipe-line with inputs at both endpoints.

Early work on synthesis of asynchronous systems concerned cen-
tralized systems [Pnueli and Rosner 1989], and fairness conditions
were included in [Anuchitankul and Manna 1994; Vardi 1995]. In
[Madhusudan and Thiagarajan 2002], the (controller) synthesis problem has been
studied for distributed asynchronous systems, with synchronization on common
actions. Communications with the environment are local to each process, while com-
munication between processes are shared actions (rendezvous) between two processes.
As in our setting, runs can naturally be represented by partial orders of actions, more
specifically by Mazurkiewicz traces [Mazurkiewicz 1977]. When the specification is
trace-closed, (i.e., does not discriminate between two linearizations of the same trace)
the problem is decidable, but only if the processes have a very restricted type of local
memory [Madhusudan and Thiagarajan 2002]: strategies of processes depend only on
the number of inputs received and the value of the last input. Considering external
specifications, as we do in this work, break the undecidability arguments used there.

The synthesis of distributed systems in the general case of µ-calculus specifications
was studied in [Finkbeiner and Schewe 2006], where the processes are allowed to com-
municate through shared variables. Decidability is obtained only when there is a sin-
gle process to control. Indeed, contrary to our setting, they did not impose any closure
property on the specification language which may accept some linearizations of a (par-
tially ordered) behavior and reject other linearizations of the same behavior.

In [Gastin et al. 2004; Madhusudan et al. 2005; Muscholl et al. 2009], it is assumed
that, each time they synchronize on a common action, two processes exchange all the
information they have accumulated on the current behavior. This is different from our
setting (and the other ones discussed above) where processes are assumed to have only
a local view of the behaviors.

Synthesis of asynchronous distributed systems have also been studied in
[ Stefănescu et al. 2003; Baudru 2009] in the restricted case of closed systems, follow-
ing the line of [Emerson and Clarke 1982; Manna and Wolper 1984].

Since dealing with distributed systems implies dealing with imperfect information,
all these works are related to the synthesis of centralized systems with imperfect
information as studied in the branching time setting in[Kupferman and Vardi 1999;
Kupferman and Vardi 2000; Arnold et al. 2003].
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Moreover, for all the variants of the synthesis problem for open systems, the game
setting is as useful as in the centralized case. A specialized version of multiplayer
games named distributed games has been defined in [Mohalik and Walukiewicz 2003]
and allows to reason in a uniform way about synthesis of distributed systems in all
these different frameworks.

2. PRELIMINARIES

An alphabet Σ is a finite set of symbols. A sequence of elements of Σ is a word. If
w = w0w1 . . . wn−1 is a word, n is the length of w, noted |w| = n. If w = w0w1w2 · · · is
infinite, |w| = ω. The word of length 0 is the empty word noted ε. We denote the set of
finite words over Σ by Σ∗, the set of non empty finite words by Σ+ and the set of infinite
words by Σω. We use Σ∞ = Σ∗⊎Σω to denote the set of finite and infinite words over Σ.
For w = w0w1 · · ·wn−1 ∈ Σ∗, w′ = w′

0w
′
1 · · · ∈ Σ∞, the concatenation of w and w′ noted

w ·w′ (or simply ww′) is the word w0w1 · · ·wn−1w
′
0w

′
1 · · · ∈ Σ∞. The set of finite prefixes

of w is defined by Pref(w) = {u ∈ Σ∗ | ∃v, uv = w}. The prefix relation over Σ∞ is a
partial order relation that is denoted ≤: w′ ≤ w if w′ ∈ Pref(w).

The prefix of length i ≤ |w| of a word w ∈ Σ∞ is noted w[i], with the convention that
w[i] = ε if i ≤ 0 and w[i] = w if i ≥ |w|. If u is a prefix of v, the word u−1v is such that
uu−1v = v (i.e., it is the word obtained from v by deleting the prefix u).

For w ∈ Σ∞, we denote by alphinf(w) the set of letters from Σ occurring infinitely
often in w and by alph(w) the set of letters from Σ occurring at least once in w.

3. MODEL

An architecture defines how a set of processes may communicate with each other and
with an (uncontrollable) external environment. An important parameter of the prob-
lem is the type of communications allowed between processes. We are interested in
asynchronous distributed systems, hence it would be natural to use unbounded fifo
channels. However, this leads to infinite state systems, making decidability results
more uncertain to obtain.

A finite model can be obtained by using shared variables: processes can write on
variables that can be read by other processes. But in an asynchronous system, com-
munication is difficult to achieve with shared variables. Assume that process p wants
to transmit to process q a sequence m1,m2, . . . of messages. First, p writes m1 to some
shared variable x. But since processes evolve asynchronously, p does not know when
m1 will be read by q. Hence, some acknowledgement is required from q to p before p may
write m2 to x. Depending on the architecture, this may not be possible. In any cases, it
makes synthesis of distributed programs satisfying a given specification harder.

Hence, we will use point to point communication by signals in the vein of
[Lynch and Tuttle 1989]. Sending a signal is an action but receiving a signal is not.
Instead, all signals sent to some process q are automatically added to its local history,
without requiring actions from q. The system is still asynchronous, meaning that pro-
cesses evolve at different speeds. We are interested in synthesizing local programs,
also called strategies. By local we mean that to decide which action it should execute
next, a process q only knows its current local history, which automatically includes all
signals sent to q in addition to the signals sent by q.

Architectures and runs. Formally, an architecture is defined by a tuple A =
(Proc, E, (Inp)p∈Proc, (Outp)p∈Proc) where (Proc, E) is the directed communication graph
whose nodes are processes and there is an edge (p, q) ∈ E if process p may send sig-
nals to process q. See for example the architecture represented in Figure 1, where
Proc = {1, 2, 3} and where process 1 can send signals to process 2 and process 2 to
process 3. For each process p ∈ Proc, the sets Inp and Outp define input and output
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signals that p may receive from or send to the environment. We assume that all these
sets are pairwise disjoint. We let In =

⋃

p∈Proc Inp and Out =
⋃

p∈ProcOutp be the sets of

input and output signals of the whole system. Let also Γ = In ∪Out. In order to imple-
ment a specification, the processes may choose for each communication link (p, q) ∈ E
a (finite or infinite) set Σp,q of signals that p could send to q. Again, we assume that
these sets are pairwise disjoint and disjoint from Γ. The complete alphabet (of signals)
is then Σ = Γ ∪

⋃

(p,q)∈E Σp,q. The actions in Γ are called external signals whereas the

actions in Σ \ Γ are called internal signals. For each a ∈ Σ we let process(a) be the set
of processes taking part in the execution of a: process(a) = {p} if a ∈ Inp ∪ Outp and
process(a) = {p, q} if a ∈ Σp,q. For p ∈ Proc, we denote by Σp = {a ∈ Σ | p ∈ process(a)}
the set of actions visible to process p and by Σp,C = Outp ∪

⋃

q|(p,q)∈E Σp,q the set of

actions controlled by process p.
A (concrete) run w ∈ Σ∞ of A is then a (finite or infinite) word over Σ.

Strategies. We aim at synthesizing distributed strategies, with local memory. A strat-
egy is a program that controls the behavior of the system, in interaction with uncon-
trollable inputs from an environment. It either proposes the next value to output, or
decides to wait until a new event occurs. A local strategy for process p only depends on
its visible actions, i.e, actions in Σp. Formally, let πp : Σ∗ → Σ∗

p be the projection on Σp.
We define

Definition 3.1. A local strategy for process p is a partial function fp : (Σp)
∗ → Σp,C .

We extend it to words over Σ in the natural way: for w ∈ Σ∗, f̂p(w) = fp(πp(w)).

By a slight abuse of notation, in this article we will simply write fp for f̂p.
A distributed strategy for the system, is a tuple F = (fp)p∈Proc such that fp : Σ∗ →

Σp,C is a local strategy for process p. By abuse of notations, we also use F to de-
note the induced mapping, defined by F : Σ∗ → 2ΣC such that F (w) = {fp(w) | p ∈
Proc, fp(w) is defined}, for w ∈ Σ∗.

Runs compatible with a strategy. Let us fix a distributed strategy F = (fp). We say that
a run w = w0w1 · · · ∈ Σ∞ is an F -run (or is compatible with strategy F , or is F -
compatible) if all controllable events occur according to F , i.e., for all p ∈ Proc, for all
index 0 ≤ i < |w|, if wi ∈ Σp,C , we have wi = fp(w[i]).

A finite run w ∈ Σ∗ is F -maximal if F (w) = ∅.

Example 3.2. Consider the architecture of Figure 1, restricted to the two left-
most processes, where the set of external signals is In1 = {req1}, In2 = {req2},
Out1 = {grant1} and Out2 = {grant2}. We define the strategies f1(w) = grant1 and
f2(w) = grant2 for any w ∈ Σ∗. Then, the runs w ∈ {req1, req2}

ω are indeed F -runs, but
in which the system has no opportunity to grant the requests sent continuously by the
environment. Moreover, runs w ∈ {req1, req2, grant1}

ω are also F -runs, in which only
Process 1 could emit signals, while Process 2 was never scheduled. Without fairness
assumptions, it is impossible to find a strategy for the system such that all compati-

1 2 3
Σ1,2 Σ2,3

In1 In2 In3

Out1 Out2 Out3

Fig. 1. An architecture
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ble runs satisfy a simple request-response specification for each process. However, if
we assume “fair” schedulers for our systems, we can circumvent these pathological
behaviors.

Fairness. Thus, we will restrict our attention to fair runs of the system, which is
defined below with respect to some partition of the set of all controllable actions.

Definition 3.3 (Fair run). Given a partition P of ΣC and a distributed strategy F , a
run w ∈ Σ∞ is (P , F )-fair if, for all C ∈ P , for all prefix v of w, if F (v′) ∩ C 6= ∅ for all
v ≤ v′ ≤ w, then some output from C will be emitted, i.e., alph(v−1w) ∩ C 6= ∅.

This definition is equivalent to saying that, in a fair run, if F (v′)∩Σ′ 6= ∅ for all v ≤ v′ ≤
w, then an infinite number of outputs from C will be emitted, i.e., alphinf(w′) ∩C 6= ∅.

Remark 3.4. The coarsest partition of ΣC will then ensure that, if at some point the
system as a whole is continuously willing to output signals, it will eventually do so.
However, Example 3.2 has shown that this may not be sufficient : with this definition,
it may happen that a run is fair, where one of the processes is continuously enabled,
but never scheduled, if other processes are allowed to output infinitely many signals.
Then, the coarsest partition of ΣC we will consider is {Σp,C | p ∈ Proc}, i.e., a “per
process” fairness notion.

Remark 3.5. A finite run is (P , F )-fair if and only if it is F -maximal: let w ∈ Σ∗ be
a finite F -compatible run. If F (w) 6= ∅ (hence w is not F -maximal), then one can find C
element of the partition such that F (w) ∩ C 6= ∅. However, since w is finite, w cannot
be the prefix of a word w′a with a ∈ C, and w is not (P , F )-fair. Conversely, if w is
F -maximal, then F (w) = ∅ and for all C ∈ P , F (w)∩C = ∅. The run is then (P , F )-fair.

Specifications. The specifications we consider only constrain external actions from Γ,
i.e., actions that reflect communications with the environment. We want the processes
to collaborate freely in order to achieve the specification, hence we do not constrain
internal signals. Specifications will describe observable runs, defined as follows.

Concrete and observable runs. For a (concrete) run w ∈ Σ∞, we define its observable
part by πΓ(w) where all events from Σ \ Γ have been removed.

We now state precisely the synthesis problem we address in this article.

Fair synthesis of asynchronous distributed systems:. Given an architecture A =
(Proc, E, (Inp)p∈Proc, (Outp)p∈Proc) and a specification L ⊆ Γ∞, consider the partition
P = {Σp,C | p ∈ Proc}, and decide whether there exist internal signal sets (Σp,q)(p,q)∈E

and a distributed strategy F such that, for every (P , F )-fair concrete F -run w, we have
πΓ(w) ∈ L. We then say that ((Σp,q)(p,q)∈E , F ) is winning for (A, L).

4. SPECIFICATIONS FOR DISTRIBUTED SYNTHESIS

We explain now that not all specifications are acceptable in our framework, and de-
scribe the properties of the specifications we will restrict to.

4.1. Motivations

We consider here asynchronous systems, hence each process of the system evolves at
its own speed. Then, when a specification requests an order between two events, it
may have different meanings according to their relative positions. When describing the
events occurring on a same process, the order requested by the specification may re-
ally mean sequentiality of events, as in classical temporal specifications on centralized
systems. However, if an order between events on different processes is required, then
it can only come from a causality relation, as no global clock can order these events.
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req

resp

req · resp
req

(a)

req

resp

req

resp

req · resp · req · resp
req · req · resp · resp

(b)

req

resp

req

resp

req

resp

req · resp · req · resp · req · resp
req · req · resp · resp · req · resp
req · req · resp · req · resp · resp
req · req · req · resp · resp · resp
req · resp · req · req · resp · resp

(c)

req

resp

req

resp

req

resp

req req

req · resp · req · resp · req · resp · req∞

req · req · resp · resp · req · resp · req∞

req · req · resp · req · resp · resp · req∞

req · req · req · resp · resp · resp · req∞
. . .req

(d)

Fig. 2. Example of specification

Hence, specifications can be seen as partial orders of events labeled by Γ, where events
occurring on a same process are totally ordered, and events occurring on two different
processes are only ordered when a causality relation exists between them.

Remark 4.1. Concrete runs of our systems can be seen as Mazurkiewicz traces
[Mazurkiewicz 1977], i.e., they can be partitioned in equivalence classes ac-
cording to a partial commutation relation. In that case, the synthesis prob-
lem is undecidable if we allow specification languages that are not trace-closed
[Madhusudan and Thiagarajan 2002]. Here, specifications are external and refer only
to observable runs (projections of concrete runs), which are not Mazurkiewicz traces,
hence the above result does not apply. However, as we will see below, it is still rel-
evant, and in fact crucial, to consider specification languages that are closed under
some semi-commutation relation induced by the architecture.

Example 4.2. Consider an architecture with two processes, one receiving service
requests from a client and the other sending a response: Inc = {request} and Outs =
{response}. Figure 2 shows the different partial orders (and their associated lineariza-
tions) corresponding to a specification requesting the server to answer to up to three
requests and then ignore following requests. Then, when several requests occur, we
require that the same number of responses (up to three) is issued, and the order im-
posed means that a request triggers a response, but no response can occur sponta-
neously. Then, the specification accepts the word req · resp · req · resp, and the word
req · req · resp · resp, in which a second request has been sent before the first response
could be emitted.

Moreover, it would be meaningless for a specification to request a causality relation
between any event on some process p and an input event on a different process q.
Indeed, input events are uncontrollable, it is then unrealistic to expect them to occur
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as a consequence of any other event. Therefore, our specifications will not require a
causal relationship between an event and an input on any another process.

Since runs of the systems are words, the specifications we consider will describe lin-
earizations of the desired partial orders, with the restriction that the original partial
orders contain no causality between an event and an input on another process. For-
mally, our specifications will be languages L ⊆ Γ∞ closed under semi-commutations
[Clerbout and Latteux 1987]: if uabv ∈ L with b ∈ Inq and a /∈ Σq, then there is no
causality from a to b, and ubav ∈ L.

4.2. Semi-commutations and SC-closed specifications

In the following, we will often identify a word w = w0w1 · · · ∈ Σ∞ with the labeled total
order (Pos(w),≤, w) where Pos(w) = {i ∈ N | 0 ≤ i < |w|}, ≤ is the natural order over
N, and w : Pos(w) → Σ is such that w(i) = wi.

Given an alphabet Σ, a semi-commutation relation is an irreflexive binary relation
SC ⊆ Σ × Σ \ {(a, a) | a ∈ Σ}. We denote by SD the semi-dependence relation given
by the semi-commutation relation SC, i.e., SD = Σ × Σ \ SC. We associate with SC a
rewriting relation →SC that is defined by uabv →SC ubav if u ∈ Σ∗, (a, b) ∈ SC, and
v ∈ Σ∞. When w is finite, its semi-commutation closure (i.e., the set of words that can
be derived from w by applying rewriting permutations) is given by the reflexive and
transitive closure →∗

SC of →SC. The set [w] = {w′ ∈ Σ∗ | w →∗
SC w′} is called a semi-

trace [Hung and Knuth 1989; Ochmanski 1989]. However, when w is infinite, this is
not enough. For instance, suppose that (a, b) ∈ SC, and consider (ab)ω. Intuitively, we
would like (ba)ω to be in the semi-commutation closure of (ab)ω, but this cannot be
obtained within a finite number of commutations with →∗

SC. On the other hand, allow-
ing infinitely many commutations should be “controlled” in order to avoid obtaining bω

as a limit of (ab)ω →∗
SC bnan(ab)ω. To define the semi-commutation closure of an infi-

nite word, we rely upon the semi-dependence graph associated with a word w ∈ Σ∗ as
presented in [Diekert 1994], and extended to words in Σ∞:

Definition 4.3. Let w = (Pos(w),≤, w) be a (finite or infinite) word over Σ and SD ⊆
Σ2 a semi-dependence relation. The semi-dependence graph associated with w is the
labeled acyclic graph

G(w) = (Pos(w), Ew , w)

where Ew = {(i, j) ∈ Pos(w)2 | i < j and (w(i), w(j)) ∈ SD}.

The semi-dependence graph associated with w only keeps the order between two
events if this order won’t change in the rewriting process. We can now define the
semi-trace of w, as the set of linearizations of G(w). Formally, we give the following
definition.

Definition 4.4. Let w = (Pos(w),≤, w) and w′ = (Pos(w′),≤, w′) be two words. Then
w ⇒SC w′ if there exists a bijection σ : Pos(w) → Pos(w′) such that for all i, j ∈ Pos(w),

— w′(σ(i)) = w(i),
— and (i, j) ∈ Ew implies σ(i) < σ(j).

We say that w ⇒SC w′ by σ. We let [w]SC = {w′ ∈ Σ∞ | w ⇒SC w′}.

Note that, the relation ⇒SC is reflexive (w ⇒SC w by the identity) and is transitive:
if w ⇒SC w′ by σ and w′ ⇒SC w′′ by σ′ then w ⇒SC w′′ by σ′ ◦ σ.

Remark 4.5. If w ⇒SC w′, then |w| = |w′|. Moreover, the bijection σ is unique.
Indeed, let i ∈ Pos(w) such that w(i) = a. We claim that if i is the position of the k-th
occurrence of a in w, then σ(i) is the position of the k-th occurrence of a in w′. Indeed,
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if i < j and w(i) = w(j), then (i, j) ∈ Ew, which implies that σ(i) < σ(j). The claim
follows.

Remark 4.6. Definition 4.4 is in fact equivalent to the limit extension of a relation
given in [Peled et al. 1998, Definition 1]: w ⇒SC w′ if and only if for all u ≤ w, there
exist v, v′ ∈ Σ∗ such that v′ ≤ w′ and uv →∗

SC v′ and, for all u′ ≤ w′, there exist v, v′ ∈ Σ∗

such that v ≤ w and v →∗
SC u′v′. Since this characterization is not used in this article,

its proof is omitted.

We denote by [L]SC =
⋃

w∈L[w]SC the semi-commutation closure of a language L with
respect to SC. We say that L ⊆ Σ∞ is SC-closed if L = [L]SC. When SC is clear from the
context, we drop the subscript and simply write [L].

We are now ready to define formally the specifications we restrict to for
the distributed synthesis problem. We associate with the architecture A =
(Proc, E, (Inp)p∈Proc, (Outp)p∈Proc) the semi-commutation relation:

SCA = {(a, b) | b ∈ Inp and a /∈ Σp} =
⋃

p∈Proc

(Σ \ Σp)× Inp.

The semi-dependence relation is defined by SDA = (Σ×Σ)\SCA. Observe that Σp×Σp ⊆
SDA for all p ∈ Proc, i.e., the set of actions relative to a process are pairwise dependent.

Definition 4.7. Let A = (Proc, E, (Inp)p∈Proc, (Outp)p∈Proc) be an architecture. SC-
closed specifications for A are languages L ⊆ Γ∞ closed under SCA.

In the next two subsections, we elaborate on semi-commutations and SC-closed spec-
ifications. Since these results are independent from the rest of the article, the reader
can safely go directly to Section 5 where the decidability results are given.

4.3. More on semi-commutations

An important question is to decide whether a given language is closed un-
der SC. This closure problem for ω-regular languages has been studied for
partial commutation relations such as Mazurkiewicz traces, see [Muscholl 1996;
Diekert et al. 1995; Peled et al. 1998]. Other types of closure problems are studied
in [Bouajjani et al. 2001; Cécé et al. 2008; Cano et al. 2011]. These works investigate
classes C of regular languages (of finite words) such that for each language L ∈ C the
closure [L] is still in C. In [Cano et al. 2011], the authors also give conditions on the
semi-commutation (resp. partial commutation) relation and on the class C of regular
languages ensuring that the closure of any language L ∈ C stays regular.

Here we show that one can decide whether an ω-regular language is closed under a
given semi-commutation relation.

THEOREM 4.8. Given an ω-regular language L ⊆ Σ∞ and a semi-commutation
relation SC, we can decide whether L is SC-closed, i.e., whether L = [L]SC.

The proof of this theorem follows the ideas presented in [Peled et al. 1998] about
the closure-problem for partial commutations and other equivalence relations such as
stuttering. We show that some of their results can be obtained even if the relation con-
sidered is not symmetric. Our proof relies on a characterization of ⇒SC using piecewise
extension of →∗

SC: for u, v ∈ Σ∞, we write u →ω
SC v if there are infinite factorizations

u = u0u1u2 · · · , v = v0v1v2 · · · with ui, vi ∈ Σ∗ and ui →∗
SC vi for all i ≥ 0. Note that, if

u, v ∈ Σ∗ then u →ω
SC v if and only if u →∗

SC v. Hence, this definition is really useful for
infinite words in which case we may assume proper factorizations, i.e., ui, vi ∈ Σ+ for
all i ≥ 0.
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Fig. 3. Double Factorization

It is easy to see that u →ω
SC v implies u ⇒SC v. The converse is not true in gen-

eral since the relation →ω
SC is not necessarily transitive. Observe for instance that

abaabaaab . . . ⇒SC babababa . . . while abaabaaab · · · 6→ω
SC babababa . . . . Still, it yields the

following characterization.

LEMMA 4.9 (DOUBLE FACTORIZATION). For all u, v ∈ Σ∞, we have u ⇒SC v if and
only if there exists w ∈ Σ∞ such that u →ω

SC w →ω
SC v.

PROOF. Since ⇒SC is transitive and →ω
SC is contained in ⇒SC, one direction is triv-

ial. Conversely, assume that u ⇒SC v by σ. If u, v ∈ Σ∗ are finite then u →∗
SC v and the

result is trivial. Hence we assume in the following that u, v ∈ Σω.
Write u = a0a1a2 · · · and v = b0b1b2 · · · with ai, bi ∈ Σ for all i ≥ 0. We construct now

inductively infinite factorizations of u and v, see Figure 3.

— Let m0 = 0, v0 = b0 and n0 = σ−1(0), u0 = a0 · · · an0
.

— For i ≥ 0, let mi+1 = 1 + max(σ({0, . . . , ni})), vi+1 = b1+mi
· · · bmi+1

and ni+1 =

max(σ−1({0, . . . ,mi+1})), ui+1 = a1+ni
· · ·ani+1

.

Clearly, mi+1 > mi and ni+1 > ni for all i ≥ 0. Hence we have defined infinite factor-
izations u = u0u1u2 · · · and v = v0v1v2 · · · with ui, vi ∈ Σ+ for all i ≥ 0.

Now, we define the word w and its double factorization, see Figure 3.

— Let U0 = {0, . . . , n0}, X0 = {n0} and Y0 = {0, . . . , n0 − 1}.
— For i ≥ 0, let Ui+1 = {1 + ni, . . . , ni+1}, Xi+1 = Ui+1 ∩ σ−1({0, . . . ,mi+1}) = Ui+1 ∩

σ−1({1 +mi, . . . ,mi+1}) and Yi+1 = Ui+1 \Xi+1.

Now, for all i ≥ 0, we define xi and yi as the subwords of u corresponding to positions
in Xi and Yi respectively. Finally, we let w = x0y0x1y1x2y2 · · · .

CLAIM 4.10. For all i ≥ 0 we have ui →∗
SC xiyi and yixi+1 →∗

SC vi+1.

Indeed, ui is the subword (factor) of u corresponding to positions in Ui = Xi ⊎ Yi. By
definition, we have max(σ(Xi)) ≤ mi < min(σ(Yi)). Since u ⇒SC v by σ, we deduce that
for all j ∈ Xi and k ∈ Yi, either j < k or (ak, aj) ∈ SC. Therefore ui →∗

SC xiyi.
Next, for all i ≥ 0, the subword of u corresponding to positions in Yi ⊎Xi+1 is yixi+1.

We can check that Vi+1 = {1+mi, . . . ,mi+1} = σ(Yi ⊎Xi+1). Hence vi+1 is the subword
of v corresponding to positions in σ(Yi ⊎ Xi+1). Since u ⇒SC v by σ, we deduce that
yixi+1 ⇒SC vi+1 (essentially by σ). Therefore, yixi+1 →∗

SC vi+1 since these two words
are finite. This concludes the proof of the claim.

The claim implies u →ω
SC w and since x0 = v0, we also get w →ω

SC v.

COROLLARY 4.11. A language L ⊆ Σ∞ is SC-closed if and only if it is closed under
→ω

SC: if u ∈ L and u →ω
SC v then v ∈ L.
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To prove Theorem 4.8, we provide an even simpler characterization of SC-closure for
regular languages. We let =−→SC be the reflexive closure of →SC, and write u =−→ω

SC v if
there are infinite factorizations u = u0u1 . . . and v = v0v1 . . . such that ui

=−→SC vi for
all i ≥ 0. The following proposition is reminiscent of [Peled et al. 1998, Theorem 15].

PROPOSITION 4.12. An ω-regular language L ⊆ Σ∞ is SC-closed if and only if it is
closed under =−→ω

SC.

To prove Proposition 4.12, we use the algebraic definition of regular languages. We
recall first some useful definitions and properties. We refer to [Perrin and Pin 2004;
Carton et al. 2008] for more details. Let h : Σ∗ → M be a morphism to some finite
monoid M . Below, we only consider morphisms satisfying h−1(1M ) = {ε}. Two words
u, v ∈ Σ∞ are h-similar, denoted u ∼h v, if we can find infinite factorizations u =
u0u1u2 · · · , v = v0v1v2 · · · with ui, vi ∈ Σ∗ and h(ui) = h(vi) for all i ≥ 0. From the
hypothesis h−1(1M ) = {ε}, we deduce that if u ∼h v then either u, v ∈ Σ∗ are both
finite or u, v ∈ Σω are both infinite. Moreover, if u, v ∈ Σ∗ are finite then u ∼h v if and
only if h(u) = h(v). Note that ∼h is not necessarily transitive on infinite words.

A language L ⊆ Σ∞ is recognized (saturated) by h if u ∈ L and u ∼h v implies
v ∈ L for all u, v ∈ Σ∞. A linked pair of the monoid M is a pair (s, e) ∈ M2 such
that se = s and e2 = e. We recall now the following classical lemma, as presented in
[Carton et al. 2008].

LEMMA 4.13 (RAMSEYAN FACTORIZATION). Let M be a finite monoid and h : Σ∗ →
M be a morphism. Let u0u1u2 · · · ∈ Σ∞ be an infinite factorization with ui ∈ Σ∗ for all
i ≥ 0. There exists a linked pair (s, e) ∈ M2, and there exists 0 < i1 < i2 < · · · such that
h(u0 · · ·ui1) = s and h(u1+ij · · ·uij+1

) = e for all j > 0.

Proof of Proposition 4.12. We fix a finite monoid M and a morphism h : Σ∗ → M
recognizing L.

Since =−→SC⊆→∗
SC, if L is SC-closed then L is closed under →ω

SC by Corollary 4.11,
hence it is also closed under =−→ω

SC.
Conversely, assume that L is not SC-closed, hence not closed under →ω

SC by Corol-
lary 4.11. Consider two words u, v ∈ Σ∞ such that u ∈ L, v /∈ L and u →ω

SC v. Then
we have factorizations u = u0u1 · · · and v = v0v1 · · · with ui, vi ∈ Σ∗ and ui →∗

SC vi for
all i ≥ 0. Consider now a Ramseyan h-factorization of u0u1u2 · · · given by the sequence
0 < i1 < i2 · · · . Let u′

0 = u0 · · ·ui1 and u′
j = u1+ij · · ·uij+1

for j > 0 so that h(u′
0) = s,

h(u′
j) = e for all j > 0, se = s, e2 = e. Let also v′0 = v0 · · · vi1 and v′j = v1+ij · · · vij+1

for
j > 0. Clearly we have u′

j →
∗
SC v′j for all j ≥ 0.

Similarly, considering now a Ramseyan h-factorization for v′0v
′
1v

′
2 · · · we obtain new

factorizations u = u′′
0u

′′
1u

′′
2 · · · and v = v′′0 v

′′
1 v

′′
2 · · · such that u′′

i →∗
SC v′′i for all i ≥ 0,

h(u′′
0) = s, h(v′′0 ) = t, h(u′′

i ) = e and h(v′′i ) = f for all i > 0, (s, e) and (t, f) linked pairs.
Now, since u ∈ L and u ∼h u′′

0(u
′′
1)

ω we get u′′
0(u

′′
1)

ω ∈ L. Also, v /∈ L and v ∼h v′′0 (v
′′
1 )

ω

implies v′′0 (v
′′
1 )

ω /∈ L. However, u′′
0 →∗

SC v′′0 and u′′
1 →∗

SC v′′1 , hence there exists n ≥ 0 such
that both rewritings use at most n steps: u′′

0
=−→n

SC v′′0 and u′′
1

=−→n
SC v′′1 , where =−→n

SC is the
n-th iteration of the relation =−→SC. We deduce that u′′

0(u
′′
1 )

ω ( =−→ω
SC)

n v′′0 (v
′′
1 )

ω . Therefore,
L is not closed under =−→ω

SC.

THEOREM 4.14. Given an ω-regular language L ⊆ Σ∞ described by a Büchi au-
tomaton, and a semi-commutation relation SC, we can decide whether L is SC-closed
in PSPACE with respect to the size of the automaton.

PROOF. We assume that L is given by a Büchi automaton A. We can compute a
Büchi automaton B for the complement L. As in [Peled et al. 1998], it is easy to build
a Büchi automaton C over the alphabet Σ × Σ that recognizes {(u, v) ∈ Σ∞ × Σ∞ |
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u =−→ω
SC v}. Synchronizing A with the first track of C and B with the second track of C,

we obtain a Büchi automaton, denoted A× C ×B, recognizing

(L× Σ∞) ∩ L(C) ∩ (Σ∞ × L) = {(u, v) ∈ L× L | u =−→ω
SC v}.

Then, L is closed under =−→ω
SC if and only if L(A×C×B) is empty. Classical constructions

for the complement yield an automaton B of exponential size. However, in order to
check A×C ×B for emptiness, it is not necessary to construct B first. Since emptiness
reduces to repeated reachability, we can solve the problem in polynomial space with a
non-deterministic procedure. We conclude since PSPACE = NPSPACE.

4.4. MSO for semi-traces.

We introduce a syntactic restriction of the Monadic Second Order Logic (MSO) over
words so that the semantics of any sentence defines a language closed under semi-
commutations. Given an alphabet Γ, two finite sets of variables Var and SetVar, a semi-
commutation relation SC ⊆ Γ×Γ and the corresponding semi-dependence relation SD,
we let MSOacc(SD) be the set of formulas defined by:

ϕ ::= Pa(x) | ¬Pa(x) | x ∈ X | x /∈ X | x = y | x 6= y | x ESD y

| ϕ ∧ ϕ | ϕ ∨ ϕ | ∃x.ϕ | ∀x.ϕ | ∃X.ϕ | ∀X.ϕ

for x ∈ Var, X ∈ SetVar, and a ∈ Γ.
The semantics defines when w, ν |= ϕ, where w = (Pos(w),≤, w) is a (finite or infinite)

word, and ν : Var∪ SetVar → Pos(w) ∪ 2Pos(w) is a valuation such that ν(x) ∈ Pos(w) for
all x ∈ Var and ν(X) ∈ 2Pos(w) for all X ∈ SetVar.

— w, ν |= Pa(x) if w(ν(x)) = a
— w, ν |= ¬Pa(x) if w(ν(x)) 6= a
— w, ν |= x ∈ X if ν(x) ∈ ν(X)
— w, ν |= x /∈ X if ν(x) /∈ ν(X)
— w, ν |= x = y iff ν(x) = ν(y)
— w, ν |= x 6= y iff ν(x) 6= ν(y)
— w, ν |= x ESD y if ν(x) < ν(y) and (w(ν(x)), w(ν(y)) ∈ SD
— w, ν |= ϕ1 ∧ ϕ2 iff w, ν |= ϕ1 and w, ν |= ϕ2

— w, ν |= ϕ1 ∨ ϕ2 iff w, ν |= ϕ1 or w, ν |= ϕ2

— w, ν |= ∃x.ϕ if there is i ∈ Pos(w) such that w, ν[x 7→ i] |= ϕ
— w, ν |= ∀x.ϕ if for all i ∈ Pos(w), w, ν[x 7→ i] |= ϕ
— w, ν |= ∃X.ϕ if there is S ⊆ Pos(w) such that w, ν[X 7→ S] |= ϕ
— w, ν |= ∀X.ϕ if for all S ⊆ V , w, ν[X 7→ S] |= ϕ

Remark 4.15. It is crucial to forbid the negation of a general formula to keep the
fragment closed under semi-commutation. Indeed, let (a, b) ∈ SD and (b, a) /∈ SD, then
L = {ab} is closed under semi-commutation, but L is not, because ba →SC ab and ba ∈ L.

Also, some atomic propositions are redundant since we can express ¬Pa(x) by
∨

b6=a Pb(x) and x 6= y by x ESD y ∨ y ESD x ∨
∨

a∈Γ(Pa(x) ∧ ¬Pa(y)).

Remark 4.16. The reflexive and transitive closure of ESD is given by x ≤SD y =
(x = y) ∨

∨

0<k<|Γ| ∃z1 . . . ∃zk−1.x ESD z1 ESD . . . ESD zk−1 ESD y. Indeed, suppose that

w, ν |= z0 ESD z1 ESD . . . ESD z|Γ| . Necessarily, by the pigeonhole principle, there
are two different variables labeled with the same letter of Γ: 0 ≤ i < j ≤ |Γ| such
that w(ν(zi)) = w(ν(zj)). Then we obtain that w, ν |= z0 ESD . . . ESD zi−1 ESD zj ESD

zj+1 ESD . . . ESD z|Γ|. The remark follows.
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If Γ′ ⊆ Γ is a semi-dependence clique (i.e., for all a, b ∈ Γ′, we have (a, b), (b, a) ∈ SD),
then, when restricted to positions labeled by Γ′, we have ¬(x ESD y) = (x = y) ∨ (y ESD

x). Thus, when restricted to Γ′, MSOacc(SD) has the same expressive power as MSO(<).

To show that the models of a sentence of MSOacc(SD) form a language closed under
SC, we build on the following lemma.

LEMMA 4.17. For all w,w′ ∈ Σ∞ such that w ⇒SC w′ by σ, all ϕ ∈ MSOacc(SD) and
all valuation ν : Var ∪ SetVar → Pos(w) ∪ 2Pos(w), if w, ν |= ϕ, then w′, σ ◦ ν |= ϕ.

PROOF. We show it by induction on the structure of the formula ϕ. Let w =
(Pos(w),≤, w), w′ = (Pos(w′),≤, w′) and σ : Pos(w) → Pos(w′) bijection such that
w ⇒SC w′ by σ.

— Let a ∈ Γ. Then, w, ν |= Pa(x) iff w(ν(x)) = a iff w′(σ ◦ ν(x)) = a (by Definition 4.4)
iff w′, σ ◦ ν |= Pa(x).

— w, ν |= x ∈ X iff ν(x) ∈ ν(X) iff σ(ν(x)) ∈ σ(ν(X)) iff w′, σ ◦ ν |= x ∈ X .
— w, ν |= x = y iff ν(x) = ν(y) iff σ(ν(x)) = σ(ν(y)) iff w′, σ ◦ ν |= x = y.
— The cases ¬Pa(x), x /∈ X and x 6= y follow since the above cases are equivalences.
— w, ν |= x ESD y iff ν(x) < ν(y) and

(

w(ν(x)), w(ν(y)
)

∈ SD. Then, by Definition 4.4,
σ(ν(x)) < σ(ν(y)) and (w′(σ ◦ ν(x)), w′(σ ◦ ν(y))) ∈ SD. Hence, w′, σ ◦ ν |= x ESD y.

— Conjunctions and disjunctions are trivial.
— w, ν |= ∃x.ϕ iff there exists i ∈ Pos(w) such that w, ν[x 7→ i] |= ϕ. Then, by induction

hypothesis, w′, σ ◦ (ν[x 7→ i]) |= ϕ, and w′, (σ ◦ ν)[x 7→ σ(i)] |= ϕ, and then w′, σ ◦ ν |=
∃x.ϕ

— w, ν |= ∀x.ϕ iff for all i ∈ Pos(w), w, ν[x 7→ i] |= ϕ. Then, by induction hypothesis,
w′, σ ◦ (ν[x 7→ i]) |= ϕ for all i ∈ Pos(w), and w′, (σ ◦ ν)[x 7→ σ(i)] |= ϕ. Since σ is
bijective, we get w′, (σ ◦ ν)[x 7→ i] |= ϕ for all i ∈ Pos(w) and then w′, ν |= ∀x.ϕ.

— w, ν |= ∃X.ϕ iff there exists S ⊆ Pos(w) such that w, ν[X 7→ S] |= ϕ. Then, by
induction hypothesis, w′, σ ◦ (ν[X 7→ S]) |= ϕ, and w′, (σ ◦ ν)[X 7→ σ(S)] |= ϕ and then
w′, ν |= ∃X.ϕ.

— w, ν |= ∀X.ϕ iff for all S ⊆ Pos(w), w, ν[X 7→ S] |= ϕ. Then, by induction hypothesis,
w′, σ ◦ (ν[X 7→ S]) |= ϕ for all S ⊆ Pos(w), and w′, (σ ◦ ν)[X 7→ σ(S)] |= ϕ. Again,
since σ is bijective, we get w′, (σ ◦ ν)[X 7→ S] |= ϕ for all S ⊆ Pos(w) and then
w′, σ ◦ ν |= ∀X.ϕ.

We say that a given logic is closed under a semi-commutation relation, if, for all ϕ
sentence of this logic, the set [[ϕ]] = {w ∈ Γ∞ | w |= ϕ} is closed under this semi-
commutation relation. From the preceding lemma, we immediately get the following
proposition.

PROPOSITION 4.18. The logic MSOacc(SD) is closed under SC.

PROOF. Let ϕ ∈ MSOacc(SD) be a sentence and L = [[ϕ]] = {w ∈ Γ∞ | w |= ϕ}. Let
w′ ∈ [L]. Then, by Lemma 4.17, w′ |= ϕ and w′ ∈ L. Hence, L = [L].

From Proposition 4.18, we deduce the following corollary.

COROLLARY 4.19. Given an architectureA = (Proc, E, (Inp)p∈Proc, (Outp)p∈Proc), the
logic MSOacc(SDA) is SC-closed for A.

Remark 4.20. For any process p ∈ Proc, the set Σp is a semi-dependence clique,
then MSOacc(SDA) restricted to p has the same expressive power as MSO(<).

Moreover, when SD = SDA, the reflexive and transitive closure ≤SD of ESD is simply
given by x ≤SD y = (x = y) ∨ (x ESD y) ∨ ∃z.(x ESD z ESD y). Indeed, assume that
w, ν |= x ESD y ESD z ESD t. Let p be such that w(ν(t)) ∈ Σp. If w(ν(x)) ∈ Σp or
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w(ν(t)) ∈ Outp, then w, ν |= x ESD t. Otherwise, w(ν(t)) ∈ Inp and w(ν(x)) /∈ Σp. Since
w, ν |= z ESD t, we have w(ν(z)) ∈ Σp. If w(ν((z)) ∈ Outp then w, ν |= x ESD z and
w, ν |= x ESD z ESD t. If now w(ν(z)) ∈ Inp then w(ν(y)) ∈ Σp too. Then, y being on the
same process as t, we have w, ν |= y ESD t. Hence, w, ν |= x ESD y ESD t.

5. DECIDABILITY RESULTS

In this section we give a necessary condition for the existence of a distributed strategy.
This condition is the existence of a (centralized) strategy implementing the specifica-
tion on a corresponding architecture consisting of a unique process (such architectures
are called singleton architectures). Then we show that it becomes also a sufficient con-
dition for the subclass of architectures having a strongly connected communication
graph: every process can transmit messages to everyone (though maybe not directly).
In the following, we will simply call them strongly connected architectures. This result
allows to conclude that fair synthesis problem is decidable for the subclass of strongly
connected architectures.

5.1. Singleton Architectures

A first step in solving the general problem is to handle the sequential
case. This problem is slightly different from the asynchronous synthesis
of Pnueli and Rosner [1989] (where the communication was through shared variables)
and Madhusudan and Thiagarajan [2002] (where a single process does not evolve
asynchronously with respect to its environment).

For singleton architectures, there is no internal action and then Σ = Γ = In ∪ Out.
We show that the fair synthesis problem for such architectures is decidable. In fact, in
the remainder of the article, we will need a stronger result on singleton architectures.
Hence, Theorem 5.1 states that the synthesis problem is decidable for the singleton
architecture whatever partition of controllable actions is chosen to define the fairness
condition. In that case, the partition is part of the input (A,P , L) of the synthesis
problem: given a singleton architecture A, a specification language L and a partition
P of Out, does there exist a winning strategy for (A,P , L).

THEOREM 5.1. The fair synthesis problem is decidable for singleton architectures,
ω-regular specifications, and any partition of controllable actions.

The rest of this subsection is devoted to the proof of this theorem. As in [Vardi 1995],
the general idea is to reduce the synthesis problem to the emptiness problem for a
suitably constructed tree automaton.

We suppose that the specification is effectively given by a deterministic word au-
tomaton (e.g., with Muller acceptance condition) accepting a regular language L ⊆ Γ∞.
Let P be the partition of controllable actions.

We deal first with the case In = ∅, for which we claim that there is a winning strategy
if and only if L 6= ∅. Indeed, assume that ∅ 6= L ⊆ Out∞ and let w ∈ L. We define the
strategy f on strict prefixes of w by f(v) = a if va ∈ Pref(w). Note that the f -runs are
exactly w itself and its strict prefixes. Now, a strict prefix of w is not f -maximal, hence
not (P , f)-fair. Moreover, we see easily that w is (P , f)-fair. Hence w is the unique
(P , f)-fair f -run and since w ∈ L, the strategy f is winning. Conversely, let f be a
winning strategy. There is a unique f -maximal (P , f)-run w = w0w1w2 · · · defined in-
ductively by wi = f(w[i]) as long as this is defined. If w is finite then w /∈ dom(f), hence
w is (P , f)-fair. If w is infinite, then also w is (P , f)-fair. Since f is winning, we get
w ∈ L 6= ∅. Now, L being effectively given by an automaton, it is decidable to check its
emptiness.

So in the following, we assume In 6= ∅.
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We recall now some notions and notations about trees and tree automata. Given
a finite set X and a set Y , a Y -labeled X-tree, also called (X,Y )-tree, is a (partial)
function t : X∗ → Y whose domain is prefix-closed, in which elements of X are called
directions and elements of Y labels. When the function is total, the tree is said to be
complete. A word w ∈ dom(t) defines a node of t and t(w) is its label. The empty word
ε is the root of the tree. A finite branch of t is a node w ∈ dom(t) that is maximal:
wX ∩ dom(t) = ∅. An infinite word w ∈ Xω is a branch of t if all its finite prefixes are
nodes of t: Pref(w) ⊆ dom(t). We denote by Br(t) the set of finite or infinite branches of
t. We define the cumulative label of a node w ∈ dom(t) by t(w) = t(w[0])t(w[1]) · · · t(w).
This is extended to (infinite) branches w ∈ Br(t) by t(w) = t(w[0])t(w[1])t(w[2]) · · · .

A tree automaton over (X,Y )-trees is a tuple A = (Q,X, Y,Q0, δ, α), where Q is a
finite set of states, Q0 ⊆ Q is the set of possible initial states, X and Y are two finite
alphabets, δ ⊆ Q × Y ×

⋃

S⊆X QS is the transition function, and α is the acceptance

condition, which defines a subset of Q∞.
A run tree of A over a tree t : X∗ → Y is another tree ρ : X∗ → Q such that

dom(ρ) = dom(t), ρ(ε) ∈ Q0, and for all w ∈ dom(t) we have (ρ(w), t(w), (ρ(ws))s∈S ) ∈ δ
where S is the set of sons of w: dom(t) ∩ wX = wS. A branch w of ρ is accepting
if ρ(w) ∈ Q∞ satisfies the acceptance condition. The run tree is accepting if all its
branches are accepting.

A tree t is accepted by a tree automaton A if there is an accepting run tree of A

over t. We define L(A) = {t : X∗ → Y | t is accepted by A}. We say that A is empty
(respectively nonempty) if L(A) = ∅ (respectively L(A) 6= ∅).

For a given strategy f , we can gather in a tree the set of f -runs: we call such trees
computation trees. Those are basically (Out∪{#})-labeled Γ-trees, where the direction
of a node represents the last action executed, and its label contains the value the
strategy is willing to play after the finite run represented by the node, or # /∈ Γ if
the strategy does not advise any action (i.e., if f is undefined). Then, each node has as
many sons as there are possible actions for the next step : one son for each input action,
and one for the output action defined by the strategy, if any. The different possible runs
are represented in the branches of the tree.

We will build a tree automaton over computation trees that will accept exactly those
corresponding to winning strategies. For the tree automaton to be able to determine
if runs corresponding to branches are correct, we make explicit the direction of each
node in its label. So we define the labeling alphabet as

X = (Γ ∪ {ι})× (Out ∪ {#}).

Here ι /∈ Γ will be used only at the root since it has no direction. For any letter (a, b) ∈
X , we define the projections π1(a, b) = a and π2(a, b) = b, and we extend this definition
to words over X∞ in the natural way.

Formally, for a strategy f : Γ∗ → Out, we define its computation tree Compf : Γ∗ → X
in the following way:

Compf (ε) =

{

(ι, f(ε)) if f(ε) is defined

(ι,#) otherwise

and, for all w such that Compf (w) is already defined, for all a ∈ In ∪ {f(w)} = In ∪
{π2(Compf (w))} \ {#},

Compf (wa) =

{

(a, f(wa)) if f(wa) is defined

(a,#) otherwise.
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(ι,#)

(a,A) (b, B) (c,#)

(a,A) (b, B) (c,#) (A,#) (a,A) (b, B) (c,#) (B,#) (a,A) (b, B) (c,#)

a b c

a b c A a b c B a b c

Fig. 4. A tree Compf

Example 5.2. Consider a singleton architecture with alphabets In = {a, b, c} and
Out = {A,B}. The strategy f : Γ∗ → Out defined for w ∈ Γ∗ by

f(wa) = A f(wb) = B

is associated with the tree Compf that is partly represented on Figure 4.

Remark 5.3. We can easily show by induction that, for all w ∈ Γ∗, w is an f -run if
and only if w ∈ dom(Compf ). Moreover, an f -run w ∈ Γ∗ is f -maximal if and only if
π2(Compf (w)) = #. We deduce also that, for all w ∈ Γω, w is an f -run if and only if w
is a branch of Compf . Moreover, since In 6= ∅, all branches of Compf are infinite.

We will show that the set of computation trees of winning strategies is regular. To
this end, we define the set WF of well-formed trees t : Γ∗ → X such that

— ε ∈ dom(t) and π1(t(ε)) = ι, moreover if wa ∈ dom(t) and a ∈ Γ then π1(t(wa)) = a,
— for all w ∈ dom(t), we have

dom(t) ∩ wΓ =

{

wIn if π2(t(w)) = #

w(In ∪ {π2(t(w))}) otherwise.

Remark 5.4. The following properties are easy to check:

(1) The set WF is a regular tree language.
(2) If t ∈ WF then, for each w ∈ Br(t), we have π1(t(w)) = ιw.
(3) If f : Γ∗ → Out is a strategy, then Compf ∈ WF is well-formed.

We have seen in Remark 5.3 that f -runs correspond to nodes or branches of Compf .
If the strategy is winning, these f -runs should be either unfair or in the specification
language L ⊆ Γ∞. This will be checked on the label of branches using the following
languages:

UF =
⋃

C∈P

X∗((Γ \ C)× C)ω

SPECinf = {w ∈ Xω | π1(w) ∈ ι(L ∩ Γω)}

SPECfin = {w ∈ Xω | π1(u) ∈ ι(L ∩ Γ∗) for all u ∈ Pref(w)

such that π2(u) ∈ (Out ∪ {#})∗#}
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Clearly the language UF for the unfair runs is ω-regular and since L is ω-regular it
is also easy to see that the languages SPECinf and SPECfin for the runs satisfying the
specification are ω-regular. We deduce that the tree language

T = {t ∈ WF | ∀w ∈ Br(t), t(w) ∈ SPECfin ∩ (UF ∪ SPECinf)}

is regular. Moreover, given a deterministic word automaton (e.g., with Muller accep-
tance condition) for L, we can effectively construct a tree automaton for T . The follow-
ing proposition describes the link between T and the winning strategies for (A,P , L).

PROPOSITION 5.5. We have

T = {Compf | f : Γ∗ → Out is a winning strategy for (A,P , L)}.

PROOF. First, let f : Γ∗ → Out be a winning strategy for (A,P , L). We show that
Compf ∈ T . From Remark 5.4, we already know that Compf ∈ WF is well-formed.

Let v ∈ Br(Compf ) and let w = Compf (v). By Remark 5.3, we know that v ∈ Γω is an
infinite f -run.

If v is (P , f)-fair then v ∈ L since f is winning. From Remark 5.4, we know that
π1(w) = ιv and we deduce that w ∈ SPECinf .

If v is not (P , f)-fair then we find C ∈ P and a prefix v′ of v such that f(v′′) ∈
C for all v′ ≤ v′′ < v and such that v′ contains all the finitely many C-events of v

(alph(v′
−1

v) ∩ C = ∅). We deduce that w ∈ X∗((Γ \ C)× C)ω ⊆ UF.
It remains to show that w ∈ SPECfin. So let u be a finite prefix of w such that its

second component ends with a #: π2(u) ∈ (Out ∪ {#})∗#. Let v′ be the prefix of v
corresponding to u: Compf (v

′) = u. We have π1(u) = ιv′ and π2(Compf (v
′)) = #. By

Remark 5.3 we deduce that v′ is an f -maximal f -run. Hence it is (P , f)-fair and we get
v′ ∈ L since f is winning. Therefore, π1(u) = ιv′ ∈ ι(L ∩ Γ∗) as desired. We deduce that
w ∈ SPECfin.

Conversely, let t ∈ T . We define the strategy f : Γ∗ → Out as follows: for all v ∈ Γ∗,
we let

f(v) =

{

π2(t(v)) if v ∈ dom(t) and π2(t(v)) 6= #

undefined otherwise.

CLAIM 5.6. t = Compf .

We first show that if v ∈ dom(t) ∩ dom(Compf ) then t(v) = Compf (v). For the first
component, we have π1(t(ε)) = ι = π1(Compf (ε)) and if v = v′a then π1(t(v)) =
a = π1(Compf (v)) since t is well-formed and by definition of Compf . For the second
component, if π2(t(v)) = # then f(v) is undefined by definition of f and we obtain
π2(Compf (v)) = # by definition of Compf . Next, if π2(t(v)) = b ∈ Out then f(v) = b by
definition of f and we obtain π2(Compf (v)) = b by definition of Compf .

Second, we show by induction that dom(t) = dom(Compf ). Clearly, ε ∈ dom(t) ∩
dom(Compf ). Let now v ∈ dom(t) ∩ dom(Compf ). Since both Compf and t are well-
formed, we have

dom(Compf ) ∩ vΓ =

{

vIn if π2(Compf (v)) = #

v(In ∪ {π2(Compf (v))}) otherwise,

dom(t) ∩ vΓ =

{

vIn if π2(t(v)) = #

v(In ∪ {π2(t(v))}) otherwise.
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Since t(v) = Compf (v) we deduce that dom(Compf )∩vΓ = dom(t)∩vΓ, which concludes
the proof of the claim.

It remains to show that f is winning. Let first v ∈ Γω be an infinite (P , f)-fair f -
run. From the claim and Remark 5.3 we deduce that v ∈ Br(t). Then, w = t(v) ∈
UF ∪ SPECinf . Assume towards a contradiction that w ∈ UF. Then, we find C ∈ P
such that w ∈ X∗((Γ \ C) × C)ω . We deduce that there is a finite prefix v′ of v such
that v ∈ v′(Γ \ C)ω (hence contains finitely many C-events) and π2(t(v

′′)) ∈ C for all
v′ ≤ v′′ < v. We deduce that f(v′′) ∈ C for all v′ ≤ v′′ < v, a contradiction with v being
(P , f)-fair. Therefore, w ∈ SPECinf and we obtain ιv = π1(w) ∈ ι(L ∩ Γω). Hence, v ∈ L
satisfies the specification.

Let now v ∈ Γ∗ be an f -maximal f -run. From the claim and Remark 5.3, we know
that v ∈ dom(Compf ) = dom(t). Since t is well-formed, we have vInω ⊆ Br(t). Let

v′ ∈ vInω be such a branch. We have w = t(v′) ∈ SPECfin. Now, the word u = t(v) is
a finite prefix of w that ends with t(v). Since v is f -maximal, f(v) is undefined, hence
π2(t(v)) = #. Therefore, π2(u) ∈ (Out ∪ {#})∗# and we deduce that ιv = π1(u) ∈
ι(L ∩ Γ∗). Hence, v ∈ L satisfies the specification.

We have seen that all (P , f)-fair f -run satisfy the specification. Hence, the strategy
f is winning.

We deduce from the above proposition that there exists a winning strategy for
(A,P , L) if and only if the regular tree language T is non-empty. Since we can ef-
fectively construct a tree automaton for T from a deterministic word automaton for
L, and emptiness for tree automata is decidable, we have proved Theorem 5.1. More-
over, if the tree automaton accepts a nonempty language, then we can construct an
accepted regular tree (i.e., with finitely many subtrees). This regular tree has a finite
representation, yielding the existence of a strategy with finite memory.

5.2. Distributed Architectures

We now consider the general case of distributed architectures. We first give a nec-
essary condition for the existence of a distributed strategy for an architecture A =
(Proc, E, (Inp)p∈Proc, (Outp)p∈Proc). For that, we define the singleton architecture A
with a single process and external signals In =

⋃

p∈Proc Inp and Out =
⋃

p∈ProcOutp.

We consider the partition P defined by P = {Outp | p ∈ Proc}. The existence of a

winning strategy for (A,P, L) is a necessary condition for the existence of a winning
strategy and communication alphabets for (A,P , L).

PROPOSITION 5.7. Let L be an ω-regular specification. If there are internal signal
sets and a distributed winning strategy for (A, L) then there is a winning strategy for

(A,P , L).

PROOF. Prima facie, it seems easy to simulate a distributed strategy with a cen-
tralized one. However, we will have to deal with fairness conditions, which requires
some care. Let (Σp,q)(p,q)∈E be internal communication sets used by processes of the
architecture A and let F = (fp)p∈Proc be the distributed winning strategy. Since the
distributed strategy is winning, any F -run that is (P , F )-fair will belong to L. Recall
that P = {Σp,C | p ∈ Proc}.

To simulate the distributed strategy F , the singleton architecture should implement
a fair scheduling of the processes and then play the actions of the different processes
according to this scheduling. For this, we first define for any p ∈ Proc a map rank(fp) :
Σ∗ → N representing the priority associated with process p after a given history on Σ∗.

19



For p ∈ Proc, v ∈ Σ∗ and a ∈ Σ, we define

rank(fp)(ε) =

{

1 if fp(ε) is defined

0 otherwise.

rank(fp)(va) =







rank(fp)(v) + 1 if a 6= fp(v) and fp(va) is defined

1 if a = fp(v) and fp(va) is defined

0 otherwise.

The priority of a process in Proc strictly increases as long as its strategy is defined and
the process is not scheduled. Also, the rank of a process whose strategy is defined is
always strictly greater than the rank of a process whose strategy is not.

In the following, we assume that processes in Proc are totally ordered by a given
relation ≤. For v ∈ Σ∗, we define rank(F )(v) = max{rank(fp)(v) | p ∈ Proc} and
procF (v) = max{p ∈ Proc | rank(fp)(v) = rank(F )(v)}, the maximal process among
those with maximal priority. It defines the process that will be simulated by the sin-
gleton architecture after the prefix v. Observe that, with the definition of rank(fp), the
singleton architecture will not try to simulate a process whose strategy is undefined if
there are other processes enabled.

Recall that the set of signals of A is Γ = In ∪ Out. To simulate F with a strategy
f of the singleton architecture, we need to turn a sequence in Γ∗ (the history avail-
able to the singleton architecture) into one of A that includes internal signals from
(Σp,q)(p,q)∈E .

To this end, for each v ∈ Σ∗, we define the sequence Com(v) of internal communica-
tions triggered by v. Formally Com(v) = u0u1u2 · · · ∈ (ΣC \ Γ)∞ is the maximal word
such that for all i ≥ 0 we have ui = fpi

(v ·u[i]) where pi = procF (v ·u[i]). Notice that for
any prefix u of Com(v) we have Com(v) = u · Com(v · u). The sequence Com(v) is finite
if at the end, all the processes have their rank equal to 0, hence their strategies are all
undefined, or if the strategy of the first process in the priority list is to output a signal
from Out.

We define now the map Φ : Γ∗ → Σ∗, which enriches a sequence v ∈ Γ∗ with the
internal communications obtained using Com in order to get a prefix Φ(v) of an F -
run of A. If the sequence of internal communications advised by Com is finite, it is
entirely inserted. Otherwise, only the first internal communication is inserted. When
Com(u) 6= ε, we denote by FirstCom(u) = Com(u)[1] the first communication action of
Com(u). Formally, the map Φ is defined inductively as follows:

Φ(ε) =

{

Com(ε) if Com(ε) is finite

FirstCom(ε) otherwise

and for v ∈ Γ∗ and a ∈ Γ

Φ(va) =

{

Φ(v)aCom(Φ(v)a) if Com(Φ(v)a) is finite

Φ(v)aFirstCom(Φ(v)a) otherwise.

Since Φ is (strictly) increasing, it can be extended to infinite words w ∈ Γω using the
least upper bound on finite prefixes: Φ(w) =

⊔

v≤w Φ(v) ∈ Σω.

After a sequence of actions v ∈ Γ∗, the singleton architecture decides which output
signal to emit by consulting the distributed strategy F applied to the enriched history
Φ(v) for the top process in the priority list. Formally, the strategy f : Γ∗ → Out of the
singleton architecture is defined for v ∈ Γ∗ and p = procF (Φ(v)) by

f(v) =

{

fp(Φ(v)) if fp(Φ(v)) ∈ Outp
undefined otherwise.
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Hence, the strategy of the singleton architecture is undefined if fp(Φ(v)) is undefined
or if fp(Φ(v)) ∈ Σp,C \Outp.

Below, we fix some (P , f)-fair f -run w ∈ Γ∞ of A. When the environment emits
infinitely many signals, w ∈ Γω and thus Φ(w) ∈ Σω. But if after some point the
environment does not emit signals anymore, then it may happen that the singleton
architecture does not emit any signal either. However, the sequence Com(Φ(w)) may
be infinite, i.e., processes in A may decide to exchange internal communication signals
indefinitely. In that case, Φ(w) is not a (P , F )-fair F -run. This is why the enriched
sequence associated with w is defined by

w′ =

{

Φ(w)Com(Φ(w)) if w is finite

Φ(w) otherwise.

Notice that πΓ(w
′) = w. Moreover, by definition of Φ and Com, we see that w′ is finite

if and only if w is finite and Com(Φ(w)) = ε.
We show that w′ is a (P , F )-fair F -run over A.
We show first that w′ is an F -run. Let v′a < w′ with a ∈ Σp,C for some p ∈ Proc.

Either a is an internal communication and by definition of Φ and Com, we deduce that
a = fp(v

′). Or a ∈ Outp and by definition of Φ, we have that v′ = Φ(v) for some prefix v
of w. Moreover, since w is an f -run, we deduce that a = f(v) = fp(Φ(v)) by definition,
and again, a = fp(v

′). Hence, w′ is indeed an F -run.
We show now that w′ is (P , F )-fair. We distinguish two separate cases, depending on

whether w′ is finite or not.
Suppose first that w′ is finite. Then, w is finite, w′ = Φ(w) and Com(Φ(w)) = ε. By

definition of Com, this implies that fp(Φ(w)) ∈ Outp for p = procF (Φ(w)), or fp(Φ(w)) is
undefined, for all p ∈ Proc. The first case would imply that f(w) ∈ Outp, a contradiction

with w being a (P , f)-fair f -run. Therefore, w′ = Φ(w) is F -maximal, hence (P , F )-fair
by Remark 3.5.

Assume now that w′ is infinite and that w′ is not (P , f)-fair. Let P ⊆ Proc be the
set of processes that are eventually always enabled, but never scheduled: there exists
v′0 < w′ such that for all p ∈ P and all v′0 ≤ v′ < w′, we have fp(v

′) defined and

alph(v′0
−1

w′) ∩ Σp,C = ∅. We get rank(fp)(v
′a) = 1 + rank(fp)(v

′) for all v′0 < v′a < w′

and all p ∈ P . Let p ∈ P be the maximal process (wrt. the assumed total ordering
on processes) such that rank(fp)(v

′
0) = max(rank(fq)(v

′
0))q∈P . We first show that p has

eventually always the highest priority.

CLAIM 5.8. There is v′0 < u′ < w′ such that p = procF (v
′) for all u′ ≤ v′ < w′.

PROOF. Indeed, let q /∈ P . By definition of P , we find vqaq such that v′0 < vqaq < w′

and

— either aq ∈ Σq,C in which case, as shown above, we have aq = fq(vq) and we obtain
rank(fq)(vqaq) ≤ 1,

— or fq(vqaq) is undefined, in which case rank(fq)(vqaq) = 0.

In both cases, rank(fq)(vqaq) ≤ 1 < rank(fp)(vqaq). Therefore, rank(fq)(v
′) <

rank(fp)(v
′) for all vqaq ≤ v′ < w′. We get procF (v

′) 6= q for all vqaq ≤ v′ < w′. Let
u′ =

⊔

q/∈P vqaq. We obtain procF (v
′) ∈ P for all u′ ≤ v′ < w′. By definition of p, we

deduce that procF (v
′) = p for all u′ ≤ v′ < w′.

Now, we show that if process p stays continuously on top of the priority list and none
of its actions are added in w′ then it advises only output signals.

CLAIM 5.9. For all u′ < v′a < w′ we have a ∈ In and fp(v
′a) ∈ Outp.
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PROOF. Let u′ < v′a < w′. Since p = procF (v
′), a ∈ In ∪ Σp,C (by definition of Com

and f ). By hypothesis, a /∈ Σp,C , hence a ∈ In.
Let b ∈ Σ such that v′ab < w′. As above, we get b ∈ In. By definition of Φ, since

a ∈ In ⊆ Γ, FirstCom(v′a) = ε or FirstCom(v′a) = b ∈ Σ\Γ. The second case contradicts
b ∈ In. Hence, FirstCom(v′a) = ε and since fp(v

′a) is defined and p = procF (v
′a), we

deduce fp(v
′a) ∈ Outp.

We are now in a position to derive a contradiction from our assumption that w′ is
not (P , F )-fair. Let u = πΓ(u

′). From the claim above, we deduce that w = πΓ(w
′) =

u · (u′−1
w′). Then, Φ(v) = u′ · u−1v for all u < v ≤ w. Then, again by the claim above,

fp(Φ(v)) ∈ Outp. By the first claim, p = procF (Φ(v)), then, by definition of f , we have

f(v) ∈ Outp. Since the run w is (P , f)-fair, alph(u−1w)∩Outp 6= ∅. Hence, alph(u′−1
w′)∩

Outp 6= ∅, a contradiction.

Therefore, for each f -run w ∈ Γ∞ that is (P , f)-fair, we can construct an F -run
w′ ∈ Σ∞ that is (P , F )-fair and such that w = πΓ(w

′). Since F is a winning strategy,
w = πΓ(w

′) ∈ L. This proves that f is a winning strategy for (A,P , L).

5.2.1. Strongly Connected Architectures. We consider now the class of architectures hav-
ing a strongly connected communication graph: each process can transmit messages
to any other (though maybe not directly). In the following, we will simply call them
strongly connected architectures. We show that for a strongly connected architec-
ture A, when the specification L is SC-closed, the existence of a winning strategy for
(A,P , L) is a sufficient condition for the existence of a distributed strategy over (A, L).
By Proposition 5.7, it is then a necessary and sufficient condition. By Theorem 5.1, we
can then state the following result.

THEOREM 5.10. The fair synthesis problem over strongly connected architectures is
decidable for ω-regular SC-closed specifications.

The proof of the theorem relies on the following proposition.

PROPOSITION 5.11. Let A be a strongly connected architecture, and L an ω-regular
SC-closed specigication. If there is a winning strategy for (A,P, L), then one can define
internal signal sets, and a winning distributed strategy for (A, L). Moreover, if there is a

finite-memory strategy for (A,P, L), then one can construct finite internal communica-
tion sets and a finite-memory distributed strategy for the strongly connected architecture
A.

We want to simulate a run of A in the distributed system A. But the processes only
observe the projections (on Σp) of the actual run, and the (totally ordered) actual run
cannot be rebuilt from its projections on Σp. Since the processes have to simulate the

strategy of the singleton architecture A, they have to guess and agree on an imaginary
totally ordered run that is “compatible” with the actual one: the actual run will be in
the semi-commutation closure of the imaginary run. To do so, we use a token passing
algorithm: we select a cycle in the communication graph and force the processes to
communicate in a sequential way through this virtual ring – note that there may be no
simple cycle, and a process may appear several times in the (virtual) ring. The process
that has the token will simulate the singleton architecture according to the current
imaginary run. While passing the token, it will also transmit enough information to
allow the receiver to extend the imaginary run.

Let f : Γ∗ → Γ be a winning strategy for (A,P , L). We suppose that f is described by
a deterministic automaton with ouput – an automaton without accepting conditions,
and to which we add an output function defined on states. We say that the strategy
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has finite memory if the automaton that computes it is finite (i.e., has a finite number
of states). Let A = (Q,Γ, δ, s0, f) with

— Q the set of states (finite if the strategy has finite memory) and s0 ∈ Q the initial
state,

— δ : Q× Γ → Q the deterministic and complete transition function,
— f : Q → Out the partial map describing the strategy: for v ∈ Γ∗ we have f(v) =

f(δ(s0, v)).

We define for each process p ∈ Proc an automaton with output Ap =

(Qp,Σp, δp, s
p
0, fp) computing the local strategy of process p. To do so, we select a cy-

cle of size n in the architecture. We use the auxiliary function ring defined by

ring : {1, . . . , n} → Proc

It is a surjective map associating each element of the ring to a process of the archi-
tecture. It satisfies the property that (ring(i), ring(i + 1)) ∈ E, for all 1 ≤ i < n and
(ring(n), ring(1)) ∈ E. As already pointed out, ring is not necessarily injective and a
given process may appear several times on the ring.

From their local observations, the different processes will guess an imaginary run of
the singleton architecture, respecting the strategy given by A, such that the actual run
being executed can be obtained by semi-commutation rewritings from this imaginary
run. When a process receives the token, it obtains the current imaginary run and
updates it by appending the sequence of local signals it has received since the last time
it had had the token (in our algorithm, the only communication signals are for token
passing). When the strategy of the singleton architecture is finite-state, the processes
do not need to keep track of all actions that occurred between two token passings
(this would ask for unbounded memory), but need only to compute the corresponding
transition function of A.

Formally, we define the set of states of Ap, for a process p ∈ Proc by

Qp =
(

QQ × {NTok}
)

∪
(

Q×
⋃

i∈ring−1(p)

{Toki,Tok
′
i}
)

where Toki, and Tok′i are flags indicating that the process has the token while simulat-
ing the i-th element of the ring, in which case its internal state is the current state of A
in the imaginary run. If the flag NTok is on, it indicates that the process does not have
the token, in which case it memorizes in its state a transition function of A abstracting
the sequence of actions it has observed.

When a process p does not have the token, it only memorizes the transition function
of the sequences of actions it has received, without emitting any signal. Then, the only
local actions occurring during that time are inputs from the environment. Hence, for
any p ∈ Proc, for any γ ∈ QQ abstracting some input sequence from In∗p, for any a ∈ Inp,
we let

δp((γ,NTok), a) = (γa ◦ γ,NTok) (δ1)

where γa : Q → Q is defined by γa(s) = δ(s, a) for s ∈ Q.
When a process p ∈ Proc has the token, it uses the singleton architecture strategy

to choose the signal to emit. As long as the singleton architecture strategy advises an
action in Outp and process p has not been scheduled, the strategy of process p will be
also to emit this signal. If at some point, the singleton architecture strategy is to output
an action controlled by another process, or is undefined, then process p will try to pass
on the token. Similarly, as soon as process p has been able to emit a signal in Outp,
it will try to transmit the token to the next process. To model the difference between
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the process willing to emit an output signal and the process willing to transmit the
token (and thus, emit an internal signal), we will use respectively flags Toki and Tok′i.
Formally, for all p ∈ Proc, i ∈ ring−1(p), s ∈ Q and a ∈ Inp ∪Outp,

δp((s,Toki), a) =

{

(δ(s, a),Toki) if a ∈ Inp and f(δ(s, a)) ∈ Outp
(δ(s, a),Tok′i) otherwise.

(δ2)

If process p was not scheduled and the strategy of the singleton architecture is still to
emit a signal in Outp then it keeps the token. If process p has been scheduled, or when
the singleton architecture strategy is not in Outp, then p changes its flag to Tok′i in
order to transmit the token.

As soon as a process p wants to pass on the token, it won’t be able to emit any
other signal until it has indeed transmitted the token. Formally, for all p ∈ Proc, i ∈
ring−1(p), for all s ∈ Q and a ∈ Inp

δp((s,Tok
′
i), a) = (δ(s, a),Tok′i). (δ3)

When passing the token on, a process actually sends the current state of the automa-
ton A. To make explicit the process that will receive the signal, and obtain pairwise
disjoint communication alphabets, we add to the state the number in the ring of the
emitting process. So the output function of the automaton Ap is defined as follows: for

all s ∈ Q, i ∈ ring−1(p),

fp(s,Toki) = f(s)

fp(s,Tok
′
i) = (s, i)

Then, for all (p, q) ∈ E, we define the internal communication alphabets by

Σp,q =
⊎

i|p=ring(i)∧q=ring((i mod n)+1)

Q× {i}.

When the process has emitted the signal transmitting the token, it resets its local
state memorizing its local history, and goes back in a state NTok: for all p ∈ Proc,
i ∈ ring−1(p) and s ∈ Q, we define:

δp((s,Tok
′
i), (s, i)) = (id,NTok). (δ4)

where id ∈ QQ is the identity mapping.
The process receiving the token will compute the new current state of A: for γ ∈ QQ,

i ∈ {1, · · · , n}, j = (i mod n) + 1 and p = ring(j),

δp((γ,NTok), (s, i)) =

{

(γ(s),Tokj) if f(γ(s)) ∈ Outp
(γ(s),Tok′j) otherwise.

(δ5)

Finally, the initial state of Ap is given by:

sp0 =







(s0,Tok1) if ring(1) = p and f(s0) ∈ Outp
(s0,Tok

′
1) if ring(1) = p and f(s0) /∈ Outp

(id,NTok) otherwise.

Remark 5.12. We have the following invariant: if Ap is in state (s,Toki) then p =

ring(i), f(s) is defined and fp(s) = f(s) ∈ Outp.

For each p ∈ Proc, we have defined a deterministic (partial) transition function δp :
Qp × Σp → Qp. Then, we define the local strategy fp : Σ∗

p → Σp,C by

fp(v) = fp(δp(s
p
0, v))
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for all v ∈ Σ∗
p. Recall that a local strategy is extended to words over Σ∗ by fp(v) =

fp(πp(v)) for v ∈ Σ∗. Since we will use it quite often, we denote the state reached by Ap

after v ∈ Σ∗ by

sp(v) = δp(s
p
0, πp(v))

that may be undefined if Ap does not have a run over πp(v). With this notation, we

have fp(v) = fp(sp(v)).

In the following, we let Tokp =
⋃

i∈ring−1(p){Toki,Tok
′
i} for p ∈ Proc. If v ∈ Σ∗ is a

finite prefix of a run, we say that p has the token in v if sp(v) ∈ Q× Tokp.
Using these notations, a run w ∈ Σ∞ is an F -run if, for all p ∈ Proc and 0 ≤ i < |w|,

if wi ∈ Σp,C , then wi = fp(w[i]) = fp(sp(w[i])). As expected, such F -runs present good
properties. Observe for instance that at each point of a given F -run, exactly one process
has the token. Moreover, in a (P , F )-fair F -run, at any point, any process is ensured to
get the token eventually. This is formalized in the following lemma.

LEMMA 5.13. Let w ∈ Σ∞ be a (P , F )-fair F -run. Then, for all prefix v of w, for all
process r ∈ Proc, there is v < v′a ≤ w such that r has just received the token in a, i.e.,
a ∈ Σq,r for some q ∈ Proc.

The proof of Lemma 5.13 uses the following claim:

CLAIM 5.14. For all v ≤ w, let p be the process having the token in v. Let i ∈ ring−1(p)
such that sp(v) ∈ Q × {Toki,Tok

′
i}. Let j = (i mod n) + 1 and q = ring(j). Then, there

exists v < v′a ≤ w such that a ∈ Σp,q.

PROOF. Towards a contradiction, assume that alph(v−1w) ∩ Σp,C = ∅. Then, for all

v < v′ ≤ w, p still has the token in v′, and fp(v
′) = fp(sp(v

′)) ∈ Σp,C is defined. Thus w
is not (P , F )-fair, which is a contradiction.

So let a ∈ ΣC such that v < v′a ≤ w and alph(v−1v′) ∩ Σp,C = ∅. By (δ2-δ3) we
deduce that sp(v

′) ∈ Q × {Toki,Tok
′
i}. Since w is an F -run we deduce that a = fp(v

′).

By definitions of fp and fp, we obtain either a ∈ Q × {i} or a ∈ Outp. In the first
case, we are done since Q × {i} ⊆ Σp,q. Otherwise, a ∈ Outp and sp(v

′) ∈ Q × {Toki}.
Then, by (δ2), we obtain sp(v

′a) ∈ Q × {Tok′i} and process p still has the token in v′a.
Hence, as above, we can show that there is b ∈ Σp,C such that v′a < v′av′′b ≤ w and
alph(v′′) ∩ Σp,C = ∅. Here, (δ3) implies that sp(v

′av′′) ∈ Q × {Tok′i}. Since w is an F -
run we deduce that b = fp(v

′av′′) ∈ Q × {i} ⊆ Σp,q, which concludes the proof of the
claim.

Proof of Lemma 5.13. Since ring is surjective, we can apply the claim successively
on all the processes having the token until we reach q = ring(i) when r = ring((i
mod n) + 1). Then, applying the claim a last time allows to conclude.

We show now that F is a winning strategy for (A, L). Let w ∈ Σ∞ be a (P , F )-fair
F -run. We define precisely the imaginary run of the singleton architecture upon which
the processes build their own strategy. For that, we use the following mappings defined
by induction on the finite prefixes of w.

Fix : Σ∗ → Σ∗

Locp : Σ∗ → In∗
p for all p ∈ Proc

We let Fix(ε) = Locp(ε) = ε for all p ∈ Proc, and, for v ∈ Σ∗ and a ∈ Σ,

(F1). if a ∈ Inp∪Outp, and if p has the token at v, then Fix(v ·a) = Fix(v) ·a, Locq(v ·a) =
Locq(v) for all q ∈ Proc.
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(F2). If a ∈ Inp and if p does not have the token at v, then Fix(v·a) = Fix(v), Locp(v·a) =
Locp(v) · a, and Locq(v · a) = Locq(v) for all q 6= p.

(F3). If a ∈ Σp,q then Fix(v·a) = Fix(v)·Locq(v)·a, Locq(v·a) = ε, and Locr(v·a) = Locr(v)
for all r 6= q.

The mapping Fix(v) is increasing, hence we can define w′ =
⊔

v≤w Fix(v). The word w′

is then a reordering of the word w and πΓ(w
′) is the imaginary run of the singleton

architecture.
When the history of actions in the distributed run is v ∈ Σ∗, Fix(v) is the current

prefix of the imaginary run that is used to build the strategy of the process having
the token, while Locp(v) is the sequence of input events process p has received since
the last time it had the token. Hence, Locp(v) memorizes the sequence of events that
process p will append to the imaginary run when it receives the token again. In partic-
ular, if p has the token in v, Locp(v) = ε. Moreover, v is in the semi-commutation closure
of the word formed by Fix(v) concatenated with Πp∈ProcLocp(v). These properties are
formalized in Lemma 5.15.

For v ∈ Σ∗, we define γv ∈ QQ by γε = id, and γv·a = γa◦γv. We establish the following
invariants about the mappings Fix and Locp.

LEMMA 5.15. Let v ∈ Σ∗ and let p be the process having the token in v. Then,

(1) Fix(v) ·
∏

r∈Proc Locr(v) ⇒SC v.

(2) Locp(v) = ε and sp(v) ∈ {δ(s0, πΓ(Fix(v)))} × Tokp,
(3) sr(v) = (δLocr(v),NTok) for all r 6= p.

The proof of this lemma is postponed to the end of the section. We show now that
πΓ(w

′) is indeed an f -run of the singleton architecture, which in addition is (P, f)-fair.

PROPOSITION 5.16. πΓ(w
′) is an f -run.

PROOF. Let ua be a finite prefix of πΓ(w
′) with a ∈ Outp for some p ∈ Proc. Let

u′a be the finite prefix of w′ with πΓ(u
′) = u. Remind that w′ =

⊔

v≤w Fix(v). Since

a ∈ Outp, it has been added to Fix by (F1). Hence, we find a prefix va of w such that

Fix(v) = u′ and Fix(va) = u′a. Since w is an F -run, we have a = fp(v) = fp(sp(v)). Since

a ∈ Outp, we deduce from the definition of fp that a = f(s) and sp(v) = (s,Toki) for

some i ∈ ring−1(p). By Lemma 5.15 (2), s = δ(s0, πΓ(Fix(v))) = δ(s0, πΓ(u
′)) = δ(s0, u).

Hence, a = f(s) = f(u).

PROPOSITION 5.17. πΓ(w
′) is (P , f)-fair.

PROOF. Let p ∈ Proc and u ≤ πΓ(w
′) such that for all u ≤ u′ ≤ πΓ(w

′) we have
f(u′) ∩ Outp 6= ∅ (hence f(u′) ∈ Outp). By construction, w′ =

⊔

v≤w Fix(v) then there

exists v ≤ w such that u ≤ πΓ(Fix(v)) = u′. By Lemma 5.13, we may assume that p
has just received the token in v. By Lemma 5.15, sp(v) ∈ {δ(s0, u

′)} × Tokp. However,

since u ≤ u′ ≤ πΓ(w
′), we have f(δ(s0, u

′)) = f(u′) ∈ Outp. By (δ5), we deduce that
sp(v) = (δ(s0, u

′),Toki) for some i ∈ ring−1(p).
By Lemma 5.13, we know that p will eventually pass the token to process q = ring((i

mod n) + 1). To do so, it has first to visit a state in Q × {Tok′i}. So let v′′a be minimal
such that v < v′′a ≤ w and

sp(v
′′) ∈ Q × {Toki} and sp(v

′′a) = (s,Tok′i) .

By Lemma 5.15 we have s = δ(s0, πΓ(Fix(v
′′a))). Since u ≤ u′ = πΓ(Fix(v)) ≤ u′′a =

πΓ(Fix(v
′′a)) ≤ πΓ(w

′) we have f(s) = f(u′′a) ∈ Outp. By (δ2) we deduce that a /∈ Inp,
i.e., a ∈ Outp. Therefore, alph(u−1πΓ(w

′)) ∩Outp 6= ∅.
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We show now that the observable actual run πΓ(w) is in the semi-trace (or semi-
commutation closure) of πΓ(w

′):

LEMMA 5.18. We have w′ ⇒SC w and πΓ(w
′) ⇒SC πΓ(w).

PROOF. From Lemma 5.15, for all v ≤ w, we have Fix(v) · Πp∈ProcLocp(v) ⇒SC v
with some bijection σv : Pos(Fix(v) · Πp∈ProcLocp(v)) → Pos(v). For v ≤ v′ ≤ w, we have
Fix(v) ≤ Fix(v′) and

σv(i) = σv′(i) for all i ∈ Pos(Fix(v)) (1)

by construction of the unique bijection associated with the rewriting ⇒SC (see Re-
mark 4.5). We let σ : Pos(w′) → Pos(w) be such that

σ(i) = σv(i) for all v ≤ w such that i ∈ Pos(Fix(v)).

By (1), σ is well defined. We first show that σ is a bijection.
Let i, j ∈ Pos(w′) with i < j. Let v ≤ w such that j ∈ Pos(Fix(v)), then i ∈ Pos(Fix(v))

and σ(i) = σv(i) 6= σv(j) = σ(j) since σv is injective.
Let now i ∈ Pos(w) and p ∈ Proc such that w(i) ∈ Σp. By Lemma 5.13, let v be a

prefix of w such that w[i + 1] ≤ v ≤ w and p has the token in v. By Lemma 5.15, we
have Locp(v) = ε and v′ = Fix(v) · Πp∈ProcLocp(v) ⇒SC v with σv. By Definition 4.4, we
have v′(σ−1

v (i)) = v(i) = w(i) ∈ Σp. Since Locr(v) ∈ In∗r and Inr ∩ Σp = ∅ for all r 6= p,
we deduce that σ−1

v (i) ∈ Pos(Fix(v)) ⊆ Pos(w′). Hence, σ(σ−1
v (i)) = σv(σ

−1
v (i)) = i and

σ is surjective.
Then, let i ∈ Pos(w′) and let v be a prefix of w such that i ∈ Pos(Fix(v)) (such a prefix

exists by construction of w′). We have σ(i) = σv(i) ∈ Pos(v). Hence, w(σ(i)) = v(σ(i)) =
Fix(v)(i) = w′(i).

Finally, let i, j ∈ Pos(w′) with (i, j) ∈ Ew′ . Let v be a prefix of w such that i, j ∈
Pos(Fix(v)). Then, σv(i), σv(j) ∈ Pos(v) and (i, j) ∈ EFix(v). Therefore, σ(i) = σv(i) <
σv(j) = σ(j).

We have shown that σ satisfies all requirements of Definition 4.4, hence we obtain
w′ ⇒SC w. Projecting on Γ, we deduce easily πΓ(w

′) ⇒SC πΓ(w).

We can now conclude the proof of Proposition 5.11. By Propositions 5.16 and 5.17,
πΓ(w

′) is a (P , f)-fair f -run. Since f is a winning strategy for (A,P , L), πΓ(w
′) ∈ L.

Since L is an SC-closed specification, by Lemma 5.18, πΓ(w) ∈ L.
To summarize, we have shown that any (P , F )-fair F -run w implements the specifi-

cation given by the language L. Therefore, the strategy F is winning for (A, L). More-
over, if f has finite memory, i.e., if Q is finite, then the automata (Ap)p∈Proc are finite
and the internal communication sets (Σp,q)(p,q)∈E are also finite.

Proof of Lemma 5.15. We show it by induction on the length of v.
If v = ε then Fix(v) = ε and Locr(v) = ε for all r ∈ Proc, so item 1 holds trivially. We

have p = ring(1) and sp(v) = sp0 ∈ {s0} × Tokp, hence 2 holds. Now, for r 6= p we have
sr(v) = sr0 = (id,NTok) and 3 also holds.

Assume now that the lemma holds for some v ∈ Σ∗ and process p having the token
in v. Let a ∈ Σ. We distinguish three cases.

(F1). If a ∈ Inp∪Outp. Then p still has the token in va. By definition, we have Fix(va) =
Fix(v)a and Locr(va) = Locr(v) for all r ∈ Proc.
1. Since Locp(v) = ε and Locr(v) ∈ In∗r for all r ∈ Proc we deduce using the definition
of the semi-commutation relation and the induction hypothesis that

Fix(va) ·
∏

r∈Proc Locr(va) = Fix(v) · a · (
∏

r∈Proc Locr(v))
⇒SC Fix(v) · (

∏

r∈Proc Locr(v)) · a
⇒SC v · a
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2. We have Locp(va) = Locp(v) = ε. Since a ∈ Σp, we have sp(va) =
δp(sp(v), a). By (δ2-δ3) and using the induction hypothesis, we deduce that sp(va) ∈
{δ(δ(s0, πΓ(Fix(v))), a)} × Tokp = {δ(s0, πΓ(Fix(va)))} × Tokp.
3. Let r ∈ Proc with r 6= p. We have Locr(va) = Locr(v) and a /∈ Σr. Hence, sr(va) =
sr(v) = (γLocr(v),NTok) = (γLocr(va),NTok).

(F2). If a ∈ Inq for some q 6= p. Then p still has the token in va. By definition, we have
Fix(va) = Fix(v), Locq(va) = Locq(v)a and Locr(va) = Locr(v) for all r 6= q.
1. By definition of the semi-commutation relation, we have aLocr(v) ⇒SC Locr(v)a
for all r 6= q. We deduce that

Fix(va) ·
∏

r∈Proc Locr(va) = Fix(v) · (
∏

r∈Proc Locr(va))
⇒SC Fix(v) · (

∏

r∈Proc Locr(v)) · a
⇒SC v · a

2. We have Locp(va) = Locp(v) = ε. Since a /∈ Σp, we have sp(va) = sp(v) ∈
{δ(s0, πΓ(Fix(v)))} × Tokp by induction hypothesis. We conclude using Fix(va) =
Fix(v).
3. Let r ∈ Proc with r 6= p, q. We have Locr(va) = Locr(v) and a /∈ Σr. Hence,
sr(va) = sr(v) = (γLocr(v),NTok) = (γLocr(va),NTok).
Now, Locq(va) = Locq(v)a and a ∈ Σq. Hence, sq(va) = δq(sq(v), a). By (δ1) and the
induction hypothesis we get δq(sq(v), a) = (γa ◦ γLocq(v),NTok) = (γLocq(va),NTok).

(F3). Finally, assume that a ∈ Σp,q for some q 6= p. Then q has the token in va. By
definition, we have Fix(va) = Fix(v)Locq(v)a, Locq(va) = ε and Locr(va) = Locr(v)
for all r 6= q.
1. By definition of the semi-commutation relation, we have Locr(v)Locq(v) ⇒SC

Locq(v)Locr(v) for all r 6= q. Moreover, aLocr(va) ⇒SC Locr(va)a for all r ∈ Proc
since Locp(va) = ε = Locq(va). Therefore,

Fix(va) ·
∏

r∈Proc Locr(va) = Fix(v)Locq(v) · a · (
∏

r∈Proc Locr(va))
⇒SC Fix(v)Locq(v) · (

∏

r∈Proc Locr(va)) · a
⇒SC Fix(v) · (

∏

r∈Proc Locr(v)) · a
⇒SC v · a

By induction hypothesis, we have sp(v) ∈ {s}×Tokp with s = δ(s0, πΓ(Fix(v))). Since

a ∈ Σp,q and w is an F -run, we deduce from the definition of fp that sp(v) = (s,Tok′i)

and a = (s, i) for some i ∈ ring−1(p) with q = ring((i mod n) + 1).
2. We have Locq(va) = ε as desired. By induction hypothesis, we have
sq(v) = (γLocq(v),NTok). Hence, sq(va) = δq(sq(v), a) = δq(sq(v), (s, i)).
By (δ5), we get sq(va) ∈ {γLocq(v)(s)} × Tokq. We can conclude since
γLocq(v)(s) = γLocq(v)(δ(s0, πΓ(Fix(v)))) = δ(s0, πΓ(Fix(v))Locq(v)) and πΓ(Fix(va)) =
πΓ(Fix(v))Locq(v).
3. We have Locp(va) = Locp(v) = ε. Using (δ4) we obtain sp(va) = δp(sp(v), a) =
δp(sp(v), (s, i)) = (id,NTok) = (γLocp(va),NTok).
Now, let r ∈ Proc with r 6= p, q. We have Locr(va) = Locr(v) and a /∈ Σr. Hence,
sr(va) = sr(v) = (γLocr(v),NTok) = (γLocr(va),NTok).

Propositions 5.7 and 5.11 allow to state that there is a winning distributed strategy
for (A, L) if and only if there is a winning strategy for (A,P , L), where A is strongly
connected and L an SC-closed ω-regular language. This last problem is decidable by
Theorem 5.1. This concludes the proof of Theorem 5.10.

Moreover, as already remarked, if there is a winning strategy for the singleton archi-
tecture and a regular specification, there is a winning strategy with finite memory. So,
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by Propositions 5.7 and 5.11, if there is a distributed winning strategy for the strongly
connected architecture, then there is a winning strategy with finite memory.

6. CONCLUSION AND FUTURE WORK

In this article, we have defined a new setting for the synthesis problem for distributed
asynchronous systems, and proved that it is decidable for an interesting subclass of
architectures. We believe that using signals in asynchronous systems, and restricting
to SC-closed specifications will help to overcome a lot of the common difficulties that
usually lead to undecidability results.

Future work should generalize our decidability result to larger classes of architec-
tures. The final aim is to obtain decidability in general, with a modular algorithm
working on subarchitectures. With this objective, the next step is to solve the problem
for acyclic architectures, including pipelines and trees.

Other challenging questions arise regarding the specification. We have shown that it
is decidable to check whether a given ω-regular language is SC-closed, but it would also
be interesting to know whether the largest SC-closed subset of an ω-regular language
is still regular. Expressivity of MSOacc(SC) can also be investigated. More precisely, is
any SC-closed ω-regular language definable in MSOacc(SC)?
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