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The paper investigates the power of the dynamic complexity classes DynFO, DynQF and DynPROP

over string languages. The latter two classes contain problems that can be maintained using

quantifier-free first-order updates, with and without auxiliary functions, respectively. It is shown
that the languages maintainable in DynPROP are exactly the regular languages, even when allow-
ing arbitrary precomputation. This enables lower bounds for DynPROP and separates DynPROP

from DynQF and DynFO. Further, it is shown that any context-free language can be maintained
in DynFO and a number of specific context-free languages, for example all Dyck-languages, are
maintainable in DynQF. Furthermore, the dynamic complexity of regular tree languages is in-
vestigated and some results concerning arbitrary structures are obtained: There exist first-order

definable properties which are not maintainable in DynPROP. On the other hand, any existential
first-order property can be maintained in DynQF when allowing precomputation.

Categories and Subject Descriptors: F.4.3 [Theory of Computation]: Mathematical Logic and
Formal Languages—Formal Languages

General Terms: Languages, Theory
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1. INTRODUCTION

Traditional complexity theory asks for the necessary effort to decide whether a given input has a
certain property, more precisely, whether a given string is in a certain language. Dynamic complex-
ity, in contrast, asks for the effort to maintain sufficient knowledge to be able to decide whether
the input object has the property after a series of small changes of the object. The complexity
theoretic investigation of the dynamic complexity of algorithmic problems was initiated by Patnaik
and Immerman [?]. They defined the class DynFO of dynamic problems where small changes in
the input can be mastered by formulas of (first-order) predicate logic (or, equivalently, poly-size
circuits of bounded depth, see [?]). More precisely, the dynamic program makes use of an auxiliary
data structure and after each update (say, insertion or deletion) the auxiliary data structure can be
adapted by a first-order formula.

Among others, they showed that the dynamic complexity of the following problems is in DynFO:
reachability in undirected graphs, minimum spanning forests, multiplication, regular languages, and
the Dyck languages Dn. Subsequent work has yielded more problems in DynFO [?] some of which
are LOGCFL-complete [?] and even PTIME-complete [?; ?] (even though the latter are highly
artificial). Other work also considered stronger classes (like Hesse’s result that Reachability in
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Fig. 1. An overview of the main results in this paper.1

arbitrary directed graphs is in DynTC0 [?]), studied notions of completeness for dynamic problems
[?], and elaborated on the handling of precomputations [?].

The choice of first-order logic as update language in [?] was presumably triggered by the hope
that, in the light of lower bounds for AC0, it would be possible to prove that certain problems do not
have DynFO dynamic complexity. As it is easy to show that every DynFO problem is in PTIME,
a non-trivial lower bound result would be that the dynamic complexity of some PTIME problem is
not in DynFO. However, so far there are no results of this kind.

The inability to prove lower bounds has naturally led to the consideration of subclasses of
DynFO. Hesse studied problems with quantifier-free update formulas, yielding DynPROP if the
maintained data structure is purely relational and DynQF if functions are allowed as well [?; ?].
As further refinements, the subclasses DynOR and DynProjections were studied. In [?] separation
results for subclasses of DynPROP were shown and the separation between DynPROP and DynP

was stated as an open problem.
The framework of [?] allows more general update operations and some of the results we mention

depend on the actual choice of operations. Nevertheless, most research has concentrated on inser-
tions and deletions as the only available operations. Furthermore, most work considered underlying
structures of the following three kinds.

Graphs. Here, edges can be inserted or deleted. One of the main open questions is whether
Reachability (aka Transitive Closure) can be maintained in DynFO for directed, possibly cyclic
graphs.

Strings. Here, letters can be inserted or deleted. As mentioned above, [?] showed that regular
languages and Dyck languages can be maintained in DynFO. Later, Hesse proved that the dynamic
complexity of regular languages is actually in DynQF [?].

Databases. The dynamic complexity of database properties were studied in the slightly different
framework of First-Order Incremental Evaluation Systems (FOIES) [?]. Many interesting results
were shown, including a separation between deterministic and nondeterministic systems [?] and
inexpressibility results for auxiliary relations of small arity [?; ?]. However, general lower bounds
have not been shown yet.

Continuing the above lines of research, this paper studies the dynamic complexity of formal lan-
guages with a particular focus on dynamic classes between DynPROP and DynQF. Our main
contributions are as follows (see also Figure ??):

—We give an exact characterization of the dynamic complexity of regular languages: A language
can be maintained in DynPROP if and only if it is regular. This also holds in the presence of
arbitrary precomputed (aka built-in) relations. (Section ??)

—We provide new upper bounds for context-free languages: Every context-free language can be
maintained in DynFO, Dyck languages even in DynQF; Dyck languages with one kind of brackets
in a slight extension of DynPROP, where built-in successor and predecessor functions can be used.
(Section ??)

1In this figure the dynamic complexity classes are allowed to operate with precomputation. Some of the results also
hold without precomputation, for example all results concerning formal languages.
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—As an immediate consequence, we get a separation between DynPROP and DynQF, thereby
also separating DynPROP from DynFO and DynP.

—We investigate a slightly different semantic for dynamic string languages, and we show that also
regular tree languages can be maintained in DynPROP, when allowing precomputation and the
use of built-in functions. (Section ??).

—We also study general structures, and show that (bounded-depth) alternating reachability is not
maintainable in DynPROP. It follows that not all first-order definable properties are maintainable
in DynPROP. On the other hand, we prove that all existential first-order definable properties
are maintainable in DynQF when allowing precomputation. (Section ??)

Related work. We already discussed most of the related work above. A related research area is the
study of incremental computation and the complexity of problems in the cell probe model. Here,
the focus is not on structural (parallel) complexity of updates but rather on (sequential) update
time [?; ?]. In particular, [?; ?] give efficient incremental algorithms and analyse the complexity of
formal language classes based on completely different ideas.

Another area related to dynamic formal languages is the incremental maintenance of schema
information (aka regular tree languages) [?; ?] and XPath query evaluation [?] in XML documents.
Again, the interest is mainly in fast algorithms, less in structural dynamic complexity. Nevertheless,
techniques from dynamic algorithms for string languages also find applications in these settings.

2. DEFINITIONS

Let Σ = {σ1, ..., σk} be a fixed alphabet. We represent words over Σ encoded by word structures,
that is, logical structures W with universe {1 . . . , n}, one unary relation Rσ for each symbol σ ∈ Σ,
and the canonical linear order < on {1 . . . , n}. We only consider structures in which, for each i ≤ n,
there is at most one σ ∈ Σ such that Rσ(i) holds, but there might be none such σ. We write
W (i) = σ if Rσ(i) holds and W (i) = ε if no such σ exists. The size of W is n.

The word w = word(W ) represented by a word structure W is simply the concatenation W (1)◦
· · · ◦ W (n). Notice that, as certain elements in W might not carry a symbol, the actual length
of the string can be less than n. In particular, every word w can be encoded by infinitely many
different word structures. Let [i, j] and ]i, j[ denote the intervals from i to j, respectively, from i+1
to j − 1. For a word structure W and positions i ≤ j in [1, n], we write w[i, j] for the (sub-)string
W (i)◦ · · · ◦W (j). In particular, w[i, i−1] denotes the empty substring between positions i and i−1.

By En we denote the structure with universe {1, .., n} representing the empty string ε (thus in
En all relations Rσ are empty).

2.1 Dynamic Languages and Complexity Classes

In this section, we first define dynamic counterparts of formal languages. Informally, a dynamic
language consists of all sequences of insertions and deletions of symbols that transform the empty
string into a string of a particular (static) language L. Here, the empty string is encoded by En,
for some n, and inserting a symbol σ at position i amounts to adding i to Rσ. Then we define
dynamic programs which keep track of whether the string resulting from a sequence of updates is in
L. Finally, we define complexity classes of dynamic languages. Most of our definitions are inspired
by [?] but, as we consider strings as opposed to arbitrary structures, we try to keep the formalism
as simple as possible.

Dynamic Languages. We will associate with each string language L a dynamic language Dyn(L).
The idea is that words can be changed by a sequence of insertions and deletions of letters and Dyn(L)
is basically the set of update sequences α which turn the empty string into a string in L.

For an alphabet Σ we define the set ∆ := {insσ | σ ∈ Σ} ∪ {reset} of abstract updates. A
concrete update is a term of the form insσ(i) or reset(i), where i is a positive integer. A concrete
update is applicable in a word structure of size n if i ≤ n. By ∆n we denote the set of applicable
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concrete updates for word structures of size n. If there is no danger of confusion we will simply write
“update” for concrete or abstract updates.

The semantics of applicable updates is defined as expected: δ(W ) is the structure resulting from
W by

—setting Rσ(i) to true and Rσ′(i) to false, for σ′ 6= σ, if δ = insσ(i); and

—setting all Rσ(i) to false, if δ = reset(i).

For a sequence α = δ1 . . . δk ∈ ∆+
n of updates we define α(W ) as δk(. . . (δ1(W )) . . .).

Definition 2.1. Let L be a language over alphabet Σ. The dynamic language Dyn(L) is the
set of all (non-empty) sequences α of updates, for which there is an n > 0 such that α ∈ ∆+

n and
word(α(En)) ∈ L. We call L the underlying language of Dyn(L).2

Dynamic Programs. Informally, a dynamic program is a transition system which reads sequences
of concrete updates and stores the current string and some auxiliary relations in its state. It also
maintains the information whether the current string is in the (static) language under consideration.

A program state S is a word structure W extended by (auxiliary) relations over the universe of
W . The schema of S is the set of names and arities of the auxiliary relations of S. We require that
each program has a 0-ary relation ACC.

A dynamic program P over alphabet Σ and schema R consists of an update function φRop(y;x1,
. . . , xk), for every op ∈ ∆ and R ∈ R, where k = arity(R). A dynamic program P operates
as follows. Let S be a program state with word structure W . The application of an applicable
update δ = op(i) on S yields the new state S′ = δ(S) consisting of W ′ = δ(W ) and new relations
R′ = {~j | S |= φRop(i,~j)}, for each R ∈ R. For each n ∈ N and update sequence α = δ1 . . . δk ∈ ∆+

n

we define α(S) as δk(. . . (δ1(S)) . . .). A state S is accepting if S |= ACC, that is, if the 0-ary
ACC-relation contains the empty tuple.3

We say that a dynamic program P recognizes the dynamic language Dyn(L) if for all n ∈ N

and all α ∈ ∆+
n it holds that α(Sn) is accepting if and only if word(α(En)) ∈ L, where Sn denotes

the state with word structure En and otherwise empty relations.

Dynamic Complexity Classes. DynFO is the class of all dynamic languages that are recognized by
dynamic programs whose update functions are definable by first-order formulas. DynPROP is the
subclass of DynFO where all these formulas are quantifier free.

2.2 Extended Dynamic Programs

To gain more insight into the subtle mechanics of dynamic computations, we study two orthogonal
extensions of dynamic programs: auxiliary functions and precomputations.

Dynamic programs with functions. A dynamic program with auxiliary functions P is a dynamic
program over a schema R, possibly containing function symbols, which has, for each σ ∈ Σ and each
function symbol f ∈ R, an update function ψfσ(i;x1, ..., xk), where k = arity(f).

As we are mainly interested in quantifier free update functions for updating auxiliary functions
we restrict ourselves to update functions defined by update terms, such that

—every xi is an update term;

—if f ∈ R is a function and ~t contains only update terms then f(~t) is an update term; and

2There is a danger of confusion as we deal with two kinds of languages: “normal languages” consisting of “normal
strings” and dynamic languages consisting of sequences of updates. We use the terms “word” and “string” only for

“normal strings” and call the elements of dynamic languages “sequences”.
30-ary relations can be viewed as propositional variables: either they contain the empty tuple (corresponding to
TRUE) or not.

ACM Transactions on Computational Logic, Vol. TBD, No. TDB, Month Year.



The Dynamic Complexity of Formal Languages · 5

—if φ is a quantifier free formula (possibly using update terms) and t1 and t2 are update terms,
then ite(φ, t1, t2) is an update term.

The semantics of update terms is straightforward for the first two rules. A term ite(φ, t1, t2)
takes the value of t1 if φ evaluates to true and the value of t2 otherwise.

After an update δ, the auxiliary functions in the new state are defined by the update functions
in the straightforward way. Unless stated otherwise, the functions in the initial state Sn map every
tuple to its first element.

Dynamic programs with precomputations. Sometimes it can be useful for a dynamic algorithm to
have a precomputation which prepares some sophisticated data structure. Such precomputations
can easily be incorporated into the model of dynamic programs.

In [?], the class DynFO+ allowed polynomial time precomputations on the auxiliary relations.
The structural properties of dynamic algorithms with precomputation were further studied and
refined in [?]. In this paper, we do not consider different complexities of precomputations but
distinguish only the cases where precomputations are allowed or not.

A dynamic program P with precomputations uses an additional set of initial auxiliary relations
(and possibly initial auxiliary functions). For each initial auxiliary relation symbol R and each n,

P has a relation Rinit
n over {1, . . . , n}. The semantics of dynamic programs with precomputations

is adapted as follows: In the initial state Sn each initial auxiliary relation R is interpreted by Rinit
n .

Similarly, for initial auxiliary function symbol f and each n, there is a function f init
n over {1, . . . , n}.

Initial auxiliary relations and functions are never updated, that is, P does not have update
functions for them.

The extension of dynamic programs by functions and precomputations can be combined and
gives rise to different complexity classes: For I ∈ {⊥,Rel,Fun} and A ∈ {Rel,Fun}, we denote by
DynC(I,A) the class of dynamic languages recognized by dynamic programs

—without precomputations, if I = ⊥;

—with initial auxiliary relations, if I = Rel;

—with initial auxiliary relations and functions, if I = Fun;

—with (updatable) auxiliary relations only, if A = Rel; and

—with (updatable) auxiliary relations and functions, if A = Fun.

Thus, we have DynFO = DynFO(⊥,Rel) and DynPROP = DynPROP(⊥,Rel). If the base
class DynC is DynPROP or DynFO, DynC(I,A) is clearly monotonic with respect to the order
⊥ < Rel < Fun. In particular,

DynPROP(Rel,Rel) ⊆ DynPROP(Fun,Rel) ⊆ DynPROP(Fun,Fun)

As we are particularly interested in the class DynPROP(⊥,Fun), we also denote it more consisely
by DynQF.

As auxiliary functions can be simulated by auxiliary relations when the update functions are
first-order formulas, we also have DynFO(Rel,Rel) = DynFO(Fun,Fun) and DynFO = DynFO(⊥,Fun).
Thus, in our setting there are only two classes with base class DynFO: the one with and the one
without precomputations.

We also examine the setting where we only allow a specific set of initial auxiliary (numerical)
functions, namely built-in successor and predecessor functions. For each universe size n let succ be
the function that maps every universe element to its successor (induced by the ordering) and the
element n to itself, let pre be the function mapping each element to its predecessor and the element 1
to itself, and let min be the constant (that is, nullary function) mapping to the minimal element 1 in
the universe. Then DynPROP(Succ,Rel) is the class of dynamic languages recognized by dynamic
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programs using quantifier free formulas with initial (precomputed) auxiliary relations, the auxiliary
functions succ, pre and min and updatable auxiliary relations.

Dynamic Programs with initialisation. In some cases, dynamic programs need some weak kind
of precomputation. In these cases, it will be useful to be able to suitably initialize the auxiliary
relations, in particular in settings where no precomputation is allowed. The following lemma shows
that this is indeed possible, if the initialization functions can be defined in the same logic as the
update functions. A dynamic program with initialization is a dynamic program with an additional
quantifier free formula βR(~x), for each auxiliary relation R. The value of each relation R in the
initial state Sn is then determined by βR.

Lemma 2.2. For each dynamic DynPROP- or DynFO-program P with initialization there is an
equivalent program P ′ that does not use initialization.

Proof. The simulating program P ′ uses an additional 0-ary relation I0 which contains the empty
tuple if some update has already occurred. The update formulas of P ′ are obtained from those of P
by replacing each atom of the form R(~x) by (I0 ∧ βR(~x)) ∨ (¬I0 ∧ R(~x)). The update formulas for
I0 are constantly true.

Finally, to simplify presentation, we restrict the update sequences under consideration. An
update sequence is useful if (1) whenever an update reset(z) occurs, the position z carried a symbol
before the update, and (2) whenever an update insσ(z) occurs, the position z was empty (that is,
did not carry a symbol). Restricting the update sequences to useful ones can be done without loss
of generality, as shown in the following lemma. Therefore, when constructing dynamic programs in
the remainder of the paper, we always assume that it only has to deal with useful update sequences.

Lemma 2.3. For every dynamic program P working only on useful update sequences, there exists
an equivalent one P ′ working on all update sequences.

Proof. The program P ′ can simulate P . Indeed, for the reset operation, P ′ can test whether
z was empty before the update, in which case it returns the original value of the updated relation
or function; or, if z carried a symbol, it uses the update functions of P . In the case of an insertion
at a position z for which z already carried a symbol, P ′ can simulate what would happen if in
P consecutively the updates reset(z) and insσ(z) would occur. Technically, this can be achieved
by replacing in all formulas φRinsσ

any occurrence of a relation name R′ by φR
′

reset. These modified
update formulas then compute exactly the relations and functions P would compute after handling
the updates reset(z) and insσ(z).

2.3 Types

We finally introduce the concept of the type of a tuple of elements. Informally, the type of a tuple
captures all information a quantifier free formula can express about a tuple. Let ~i = (i1, . . . , il)
be an l-tuple of elements of a state S and let ϕ be a quantifier free formula using variables from
x1, . . . , xl. We write ϕ[~i] for the formula resulting from ϕ by replacing each xj with ij . For instance,

for ~i = (2, 5, 4) and the atom ϕ = R(x3, x1), we have ϕ[~i] = R(4, 2).
Let the type 〈S,~i〉 of an l-tuple ~i = (i1, . . . , il) in state S be the set of those atomic formulas

ϕ over x1, . . . , xl for which ϕ[~i] holds in S. We also sometimes call 〈S,~i〉 an l-type. A tuple ~i =
(i1, . . . , il) is ordered if i1 < i2 < · · · < il. An ordered type is the type of an ordered tuple.

3. DYNAMIC COMPLEXITY OF REGULAR LANGUAGES

As already mentioned in the introduction, every regular language can be recognized by a DynFO

program [?]; and the full power of DynFO is actually not needed: Every regular language is recog-
nized by some DynQF program [?].

Our first result is a precise characterization of the dynamic languages Dyn(L) with an under-
lying regular language L: They exactly constitute the class DynPROP. Before stating the result
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formally and sketch its proof, we will give a small example to illustrate how regular languages can
be maintained in DynPROP.

Example 3.1. We consider the regular language (a+ b)∗a(a+ b)∗ over the alphabet {a, b}. The
dynamic program maintains one binary relation A containing all pairs (i, j) for which i < j and
there exists k ∈ ]i, j[ such that w[k, k] = a. It further uses a unary relations I containing all j for
which there exists a k < j such that w[k, k] = a and, dually, a unary relation F containing all i for
which there exists a k > i such that w[k, k] = a.

We will state here the update formulas for the three kinds of operations: insa, insb, and reset.
The formulas for the insertion of the symbol b into the string or the deletion of a string symbol are
the same, since the language only distinguishes whether there is an a in the string or not.

After the operation insa(y), the relations can be updated as follows

φAinsa
(y;x1, x2) ≡

[

(y ≤ x1 ∨ y ≥ x2) ∧A(x1, x2)
]

∨
[

x1 < y < x2]

φIinsa
(y;x) ≡

[

y ≥ x ∧ I(y)
]

∨
[

y < x]

φFinsa
(y;x) ≡

[

y ≤ x ∧ F (y)
]

∨
[

y > x]

φACC

insa
(y) ≡ true,

and after the operations insb(y) and reset(y), the relations can be updated as follows

φA
reset/insb

(y;x1, x2) ≡
[

(y ≤ x1 ∨ y ≥ x2) ∧A(x1, x2)
]

∨
[

x1 < y < x2 ∧A(x1, y) ∨A(y, x2)
]

φI
reset/insb

(y;x) ≡
[

y ≥ x ∧ I(y)
]

∨
[

y < x ∧ I(y) ∨A(y, x)
]

φF
reset/insb

(y;x) ≡
[

y ≤ x ∧ F (y)
]

∨
[

y > x ∧ F (y) ∨A(y, x)
]

φACC

reset/insb
(y) ≡ I(y) ∨ F (y).

It is crucial here that A(i, j) refers to the substring from i+1 up to position j−1 (as opposed to i and
j). Otherwise it would not be possible to maintain these auxiliary relations. In the update formula
φA
insa

(y;x1, x2) for example, one can only use the three variables y, x1 and x2 to compute the new
value of A(x1, x2) but needs the knowledge about the string on the intervals ]x1, y[ and ]y, x2[.

As said before, the dynamic languages Dyn(L) with an underlying regular language L exactly
constitute the class DynPROP.

Theorem 3.2. Let L be a language. Then, the following are equivalent:

(a) L is regular.

(b) Dyn(L) ∈ DynPROP.

(c) Dyn(L) ∈ DynPROP(Rel,Rel).

The rest of this section is devoted to proving this theorem. First, in Proposition ?? we show that,
for every regular language L, Dyn(L) ∈ DynPROP (a ⇒ b). Its converse is proven in Proposition ??

(b ⇒ a). As any dynamic language in DynPROP is, by definition, also in DynPROP(Rel,Rel)
(b ⇒ c); it then suffices to extend Proposition ?? to Proposition ??, which states that for every
dynamic language Dyn(L) in DynPROP(Rel,Rel), L is regular (c ⇒ a). Together, these imply
Theorem ??.

Proposition 3.3. For every regular language L, Dyn(L) ∈ DynPROP.

Proof. Let A = (Q, δ, s, F ) be a DFA accepting L. Here, Q is the set of states, δ : Q × Σ → Q
is the transition function, s is the initial state and F is the set of accepting states. As usual, we
denote by δ∗ : Q × Σ∗ → Q the reflexive, transitive closure of δ. Then, w ∈ L(A) if and only if
δ∗(s, w) ∈ F .

The program P recognizing Dyn(L) uses the following relations.
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8 · Wouter Gelade and Marcel Marquardt and Thomas Schwentick

—For any pair of states p, q ∈ Q, a relation

Rp,q = {(i, j) | i < j ∧ δ∗(p,w[i+ 1, j − 1]) = q};

—For each state q, a relation Iq = {j | δ∗(s, w[1, j − 1]) = q}; and

—For each state p, a relation Fp = {i | δ∗(p,w[i+ 1, n]) ∈ F},
where n is the size of the word structure.

As already mentioned in example ??, it is crucial here that Rp,q(i, j) refers to the substring
from position i+ 1 up to position j − 1 (as opposed to j), as will become clear in the following.

Thanks to Lemma ?? we can assume that these relations are initialized as follows.

—Rp,p = {(i, j) | i < j} and Rp,q = ∅, for p 6= q;

—Is = {1, . . . , n} and Iq = ∅, for q 6= s;

—Fp = {1, . . . , n} if p ∈ F and Fp = ∅, otherwise.

We now show how these relations can be maintained. First, for each σ ∈ Σ and p, q ∈ Q, we
have the following update formulas for relations Rp,q:

φ
Rp,q

insσ
(y;x1, x2) ≡

(

y /∈ ]x1, x2[ ∧Rp,q(x1, x2)
)

∨
(

y ∈ ]x1, x2[ ∧
∨

p′,q′∈Q
δ(p′,σ)=q′

Rp,p′(x1, y) ∧Rq′,q(y, x2)
)

,

φ
Rp,q

reset(y;x1, x2) ≡
(

y /∈ ]x1, x2[ ∧Rp,q(x1, x2)
)

∨
(

y ∈ ]x1, x2[ ∧
∨

p′∈Q

Rp,p′(x1, y) ∧Rp′,q(y, x2)
)

.

The formulas for the other relations are along the same lines, e.g., for each σ ∈ Σ and q ∈ Q, and
the relation I we have the following update formula:

φ
Iq

insσ
(y;x) ≡

(

y ≥ x ∧ Iq(x)
)

∨
(

y < x ∧
∨

p′,q′∈Q
δ(p′,σ)=q′

Ip′(y) ∧Rq′,q(y, x)
)

.

Finally, ACC can be updated by the formulas

φACC
insσ

(y) ≡
∨

p′,q′∈Q
δ(p′,σ)=q′

Ip′(y) ∧ Fq′(y) and φACC
reset(y) ≡

∨

p′∈Q

Ip′(y) ∧ Fp′(y).

We next show that the converse of Proposition ?? is also true.

Proposition 3.4. Let Dyn(L) be a dynamic language in DynPROP. Then L is regular.

Proof. The idea of the proof is as follows. We consider a dynamic program P for Dyn(L) and
the situation where, starting from the empty word, the positions of a word are set in a left-to-right
fashion. Since the acceptance of the word by P does not depend on the order of updates used to
produce the word, it suffices to consider this particular sequence of updates. We then show that, for
such update sequences, we can construct a finite automaton which simulates P and thus recognizes
L. It then follows that L is regular.

The three following observations enable us to simulate P by an automaton.

(1) After each update, all tuples of positions that have not been set yet have the same type (cf.
Subsection ??).

ACM Transactions on Computational Logic, Vol. TBD, No. TDB, Month Year.



The Dynamic Complexity of Formal Languages · 9

(2) There is only a bounded number (depending only on the number and the maximal arity of the
auxiliary relations of P ) of different types of such tuples.

(3) The new type of the tuples after one update is uniquely determined by the inserted symbol and
the previous type.

Together these observations will enable us to define a finite automaton for L.
To state these observations more formally, we introduce some notation. We call a set I of

elements of a state S l-indiscernible if all ordered l-tuples over I have the same type. Notice that if
l′ < l < |I| and I is l-indiscernible then I is also l′-indiscernible.

Let P be a DynPROP program recognizing a dynamic language Dyn(L) and let k ≥ 1 be the
highest arity of any auxiliary relation of P . We make the observations above concrete. Recall that
Sn is the state over universe {1, . . . , n} containing both the auxiliary relations and the relations
encoding a word, in which all relations are empty.
Observation 1. Let S be a state that is reached from Sn by insertions and deletions at positions
≤ m, for some m. Then, the set {m+ 1, . . . , n} is k-indiscernible.

Proof. Consider two ordered k-tuples ~j = (j1, . . . , jk) and ~j′ = (j′1, . . . , j
′
k) of elements from

{m + 1, . . . , n}. Let ~i and ~i′ be the tuples (1, . . . ,m, j1, . . . , jk) and (1, . . . ,m, j′1, . . . , j
′
k). We show

by induction on the number of update steps that after every sequence of updates starting in state
Sn and resulting in state S it holds that

〈S,~i〉 = 〈S, ~i′〉.

As this holds for every pair of ordered k-tuples in {m+1, . . . , n} we can conclude that {m+1, . . . , n} is
indeed k-indiscernible. Obviously, in the state Sn the equation holds. Assume now that in some state
S the equation holds and consider one update operation on an element m′ ∈ {1, . . . ,m} resulting

in state S′. Then, 〈S′,~i〉 = 〈S′, ~i′〉 if, for every atom ϕ over the set of variables {x1, ..., xm+k}, it

holds that S′ |= ϕ[~i] if and only if S′ |= ϕ[~i′]. However, the truth values of ϕ[~i] and ϕ[~i′] after
the update are determined by the evaluation in S of a quantifier free formula ψ in which the free
variables are replaced by elements of ~i and ~i′, respectively. As 〈S,~i〉 = 〈S, ~i′〉, S |= ψ[m′;~i] if and

only if S |= ψ[m′; ~i′] and, hence, S′ |= ϕ[~i] if and only if S′ |= ϕ[~i′].

Observation 2. Let S be a state and let l > k. If a set I of at least l elements from S is k-
indiscernible then it is also l-indiscernible. Furthermore, the type of any ordered l-tuple over I is
uniquely determined by the type of its first k elements.

Proof. Suppose I is k-indiscernible. Let ~i = (i1, . . . , il) and ~i′ = (i′1, . . . , i
′
l) be two ordered

l-tuples over I. We show that 〈S,~i〉 = 〈S, ~i′〉, from which it then follows that I is l-indiscernible.
To this end, let R be any relation from S and let k′ be its arity, and let j1, . . . , jk′ ∈ [1, l]. Because
k′ ≤ k and I is k-indiscernible S |= R(ij1 , . . . , ij′k) if and only if S |= R(i′j1 , . . . , i

′
j′
k
). As this holds

for every R and every sequence j1, . . . , jk′ we conclude that indeed 〈S,~i〉 = 〈S, ~i′〉 and thus I is
l-indiscernable.

We next show that the type of an ordered l-tuple ~i = (i1, . . . , il) is determined by the type of
its first k elements i1 to ik. Indeed, the type of ~i only depends on whether S |= R(ij1 , . . . , ij′k), for
every relation R, with arity(R) = k′, and j1, . . . , jk′ ∈ [1, l]. However, as k′ ≤ k, the set {ij1 , . . . , ij′k}

contains at most k different elements and hence as I is k-indiscernable, there is a tuple ~i′ containing
only elements in {1, . . . , k} such that S |= R(ij1 , . . . , ij′k) if and only if S |= R(~i′). Hence, the type

of ~i is determined by that of its first k elements.

Observation 3. Let S1, S
′
1 be states with universes of size n and n′, respectively and m,m′, l ∈ N

such that 〈S1,m, . . . ,m+ l〉 = 〈S′1,m
′, . . . ,m′+ l〉. Let S2 and S′2 be the states resulting from S1 and

S′1 by inserting the same symbol σ at positions m and m′, respectively. Then 〈S2,m+1, . . . ,m+ l〉 =
〈S′2,m

′ + 1, . . . ,m′ + l〉.
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This observation can be proved along the same lines as Observation 1.

The automaton for L is defined as follows. A type τ of ordered k-tuples is allowed if there is
a (not necessarily reachable) state S with elements 1, . . . , k + 1 for which every ordered k-tuple is
of type τ . Let Q be the set of allowed types of ordered k-tuples. For each such type τ and each
symbol σ let δ(τ, σ) be determined as follows: Let S be a state4 with elements ~i = 1, . . . , k + 1
in which every ordered k-tuple is of type τ . Let S′ be the state reached from S after the update
insσ(1). Then δ(τ, σ) is 〈S′, 2, . . . , k+1〉. This new type is also allowed, which can be seen as follows.
Because τ is an allowed type, the set {1, . . . , k+1} was k-indiscernable before the update, and hence
k′-indiscernable for any k′ ≤ k. Therefore also the set {2, . . . , k + 1} has to be k′-indiscernable, for
any k′ ≤ k after the update operation. Now we can add one more element k + 2 and define the
auxiliary relations of all tuples containing k + 2 just like any arbitrary other tuple (not containing
k + 2) with the same ordering on the elements. Let F be the set of types for which ACC holds.
Then A = (Q, δ, τ0, F ), where τ0 is 〈E′k, 1, . . . , k〉. Notice that as the number of k-types is bounded,
A is indeed a finite automaton.

We now argue that L(A) = L. To this end, consider any word w = σ1 · · ·σn, and the associated
update sequence αw = insσ1

(1) · · · insσn
(n). Now, we consider an execution of P on this update

sequence in a universe of size n+ k. Then, word(αw(E′n+k)) = w, and hence αw(E′n+k) |= ACC iff
w ∈ L. Using the observations above it can now be shown that, for any i ∈ [0, n], it holds in state
αw[1,i](E

′
n+k) that (1) the set {i+ 1, . . . , n+ k} is l-indescernable, for any l; and (2) δ(w[1, i], τ0) is

exactly the k-type of the set {i+1, . . . , i+k}, determining the type of the entire set {i+1, . . . , n+k}.
As τ ∈ F iff ACC holds in τ , it follows that w ∈ L(A) iff αw(E′n+k) |= ACC.

Remark 3.5. Proposition ?? can be considered a lower bound result as, of course, for every
non-regular language L, Dyn(L) 6∈ DynPROP.

The proof of Proposition ?? intuitively relies on the fact that, if a string is constructed by
successive insertions in a left-to-right fashion, all remaining string positions cannot be distinguished
before they are updated. Using a Ramsey argument, this idea can be generalized to the setting with
precomputations, thus showing that (relational) precomputations do not increase the expressive
power of DynPROP-programs.

Proposition 3.6. Let Dyn(L) be a dynamic language in DynPROP(Rel,Rel). Then L is regu-
lar.

Proof. The only thing left to prove is that for any language L such that Dyn(L) is recognized
by a DynPROP(Rel,Rel) program, it holds that L is regular. Thus, we extend the technique of the
proof of Proposition ?? to also handle DynPROP programs with precomputations. The proof is a
generalization of that proof by a Ramsey argument.

To this end, let P be a DynPROP(Rel,Rel) program recognizing a dynamic language Dyn(L)
and let k ≥ 1 be the highest arity of any auxiliary or initial auxiliary relation of P . Again, our goal
is to construct a finite automaton for L thus showing that L is regular.

The key to the proof is the following observation.
Observation 1

′
. For each n there is some m such that for every state S over a universe of size m

there is a k-indiscernible set I of size n.

Proof. of Observation 1′: The proof uses a version of Ramsey’s theorem for hypergraphs [?]:
Given a number c of colors and a natural number n there exists a number Rc(n) such that if the
edges of a complete k-hypergraph (all edges are of size k) with Rc(n) vertices are colored with c
colors, then it must contain a complete sub-k-hypergraph with n vertices whose edges are all colored
with the same color.

4The states of P should not be confused with the states of A. We reserve the word ”state” for the former and refer
to the latter as A-states.

ACM Transactions on Computational Logic, Vol. TBD, No. TDB, Month Year.



The Dynamic Complexity of Formal Languages · 11

Let c be the number of different ordered k-types (which only depends on the number and arity
of the initial auxiliary relations). Then m can be chosen as Rc(n). Consider a state S over a universe
of size m. Construct a hypergraph G as follows. As the vertex set use the set of universe elements
and add for every set of elements of size k a k-hyperedge colored with its k-type. This leads to
a complete k-hypergraph for which the vertex set of each complete monocolored sub-k-hypergraph
corresponds to a k-indiscernable set. By Ramsey’s theorem, G must contain a monocolored sub-k-
hypergraph of size at least n and hence S contains a k-indiscernable set I of size n.

To complete the proof of Proposition ?? we only need to consider computations of P which set
the elements of some k-indiscernible set in a left-to-right fashion. The automaton A is constructed
similarly as in the proof of Proposition ??. Now for every string w of some length n there is, by Ob-
servation 1′, an m such that every state over m elements has a k-indiscernible set I = {i1, . . . , in+k}
of size n+k. By considering the left-to-right update sequence δw = insσ1

(i1) · · · insσn
(in) which sets

the word w = σ1 · · ·σn on the elements of I, in a universe of size m, it is easy to show that w ∈ L
if and only if w is accepted by A.

4. DYNAMIC COMPLEXITY OF CONTEXT-FREE LANGUAGES

In the previous section, we have seen that the regular languages are exactly those languages that can
be recognized by a DynPROP program. In this section, we will study the dynamic complexity of
context-free languages. We first show that any context-free language can be maintained in DynFO.
Later, we exhibit languages that can be maintained in DynQF or a weak extension of DynPROP.

Theorem 4.1. Let L be a context-free language. Then, Dyn(L) is in DynFO.

Proof. Let L be a context-free language defined by grammar G = (V, S,D) over an alphabet Σ.
Here, V is the set of non-terminals, S ∈ V is the initial non-terminal, and D is the set of derivation
rules. W.l.o.g. we assume that G is in chomsky normal form, that is, every rule in D is either of
the form U → XY , with X,Y ∈ V ; U → a, with a ∈ Σ; or U → ε. Further, w.l.o.g., we assume
that there is a distinguished non-terminal E ∈ V such that E → ε and for all U ∈ V , U → UE and
U → EU . For U ∈ V , and w ∈ (V ∪ Σ)∗, we write U →∗ w when w can be derived from U . Then,
L(G) = {w | w ∈ Σ∗ ∧ S →∗ w}.

Our dynamic program P recognizing L maintains, for all X,Y ∈ V , the following relation:

RX,Y = {(i1, i2, j1, j2) | [j1, j2] ⊆ [i1, i2] ∧X →∗ w[i1, j1 − 1]Y w[j2 + 1, i2]}

Intuitively, (i1, i2, j1, j2) ∈ RX,Y implies that, assuming Y →∗ w[j1, j2], it follows that X →∗

w[i1, i2]. Notice also that, by our assumptions above, we have X → w[i1, j1 − 1]w[j2 + 1, i2] if and
only if RX,E(i1, i2, j1, j2).

We now state the update formulae. For every σ ∈ Σ and X,Y ∈ V , the update formula for

φ
RX,Y

insσ
(z;x1, x2, y1, y2) is

[y1, y2] ⊆ [x1, x2] ∧ φ1 ∧ φ2 ∧ φ3 ,

where φ1, φ2, and φ3 are defined according to the position of z with respect to the other variables.

—When z lies in the interval [y1, y2] or outside [x1, x2], nothing changes:

φ1 ≡ (z /∈ [x1, x2] ∨ z ∈ [y1, y2]) ∧RX,Y (x1, x2, y1, y2).
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X

U

U1 U2

Z

σ
Y

wx1 · · · wu1 · · · wz · · · wu2 wu2+1 · · · wy1−1 wy2+1 · · · wu3 · · · wx2

Fig. 2. Update of RX,Y after operation insσ(z)

—When z lies in [x1, y1[, the truth value of RX,Y (x1, x2, y1, y2) can be modified. Figure ?? illustrates
this situation.

φ2 ≡ z ∈ [x1, y1[ ∧

∨

Z,U,U1,U2∈V
Z→σ,U→U1U2∈D

∃u1, u2, u3 : u1 ≤ u2 < u3 ∧ u1, u2 ∈ [x1, y1[ ∧ u3 ∈ [y2, x2] ∧

RX,U (x1, x2, u1, u3) ∧RU1,Z(u1, u2, z, z) ∧RU2,Y (u2 + 1, u3, y1, y2).

—When z lies in the interval ]y2, x2[, the situation is very similar to the previous one; and, hence,
φ3 is almost identical to φ2.

For all X,Y ∈ V , the update formula φ
RX,Y

reset is defined very similar as the formula for φ
RX,Y

insσ

above. The only difference is that Z (for which Z → σ ∈ D) is replaced by E (for which E → ε ∈ D).
We finally give the update formulae for the acceptance relation ACC:

ACCinsσ
(z) ≡

∨

Z∈V
Z→σ∈D

RS,Z(min,max, z, z)

and

ACCreset(z) ≡ RS,E(min,max, z, z).

Notice that we have used many abbreviations in the above formulae. However, these can all
easily seen to be definable in first-order logic using the built-in order. In particular, the constants
min and max and the successor function are definable and are hence not precomputed functions as
in other settings considered in this paper.

However, we cannot hope for an equivalence between DynFO and the context-free languages,
as for DynPROP and the regular languages before. This is immediate as, opposed to the class of
context-free languages, DynFO is closed under intersection and complement. Furthermore, non-
contextfree languages can be maintained in DynQF and DynPROP(Succ,Rel). This is because,
in some sense, dynamic programs in the latter classes can count. For any n, let EQUALn be
the language over the alphabet Σ = {a1, . . . , an} containing all strings with an equal number of
occurrences of each symbol ai. Note that EQUALn, for n ≥ 3, is not context-free.

Proposition 4.2. For any n,

(1 ) Dyn(EQUALn) ∈ DynPROP(Succ,Rel); and

(2 ) Dyn(EQUALn) ∈ DynQF.
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Proof. In both cases, we prove the proposition for the language EQUAL2. The general case is
an easy generalization of this proof.
(1) We maintain the language EQUAL2 by implementing a unary counter, which can be done in
DynPROP(Succ,Rel). This counter will count the difference of the number of occurences of the
symbols a1 and a2 in the string. For i ∈ [1, 2], let ♯ai denote the number of ai’s in the current string.
We maintain the following relations:

—Nullary relations (flags) A1 and A2 such that A1 is true if and only if ♯a1 > ♯a2 and A2 is true if
and only if ♯a2 > ♯a1.

—A unary relation C such that C(i) is true if and only if |♯a1 − ♯a2| = i. Hence, as the universe
consists of the elements {1, . . . , n}, at each time C is true for one value i if ♯a1 6= ♯a2 and is false
for all i if and only if ♯a1 = ♯a2.

We give the update functions for these relations only for the case of the insertion of a symbol a1.
The deletion and the insertion of a2 work similarly.

For the update insa1
(x), the flags A1 and A2 can be updated as follows

φA1

insa1
≡ ¬A2 and φA2

insa1
= A2 ∧ ¬C(min).

For the update of C we distinguish three cases:

φCinsa1
(x) ≡ (¬(A1 ∨A2) ∧ x = min) ∨

(A1 ∧ C(pre(x)) ∧ x 6= min) ∨

(A2 ∧ C(succ(x))) .

The acceptance query tests whether both A1 and A2 are false after the update. That is,

φACC
insa1

(x) ≡ ¬φA1

insa1
(x) ∧ ¬φA2

insa1
(x) .

(2) To prove that Dyn(EQUAL2) ∈ DynQF, we will use the same algorithm as before. But, of
course, the previous algorithm makes extensive use of the functions of Succ, which are not available
in DynQF. Instead, we incrementally construct the min, succ, and pre functions, using the power
of DynQF.

Here, we do not require that the constructed min, succ and pre functions are consistent with
the order relation. Instead, min will be the first position where a symbol is inserted, its successor the
second such position etc. At each point in time, succ and pre therefore define a successor function on
those positions that carry a symbol or carried a symbol earlier, which we call the active elements. We
will not give the precise update functions which are necessary to construct these auxiliary functions,
but simply mention the ideas necessary to construct them.

We additionally maintain a unary relation Act, containing all active elements currently included
in the successor function, and a constant (that is, nullary function) max denoting the last element of
the successor ordering. Recall that succ(max) = max and pre(min) = min should hold by definition
of our successor and predecessor functions.

Then, when an update on an element x occurs there are two possibilities. Either Act(x) already
holds in which case nothing has to be changed, or Act(x) does not hold and hence x has to be
added to the successor structure. This is done by setting Act(x), making x the maximal element
and setting the predecessor and successor functions of x, min, and (the old) max corresponding to
the new situation.

We finally argue that the program constructed above still works properly when using these
on-the-fly constructed functions instead of the precomputed ones in Succ. To this end, notice that
there are only two differences. First, the constructed successor functions are not consistent with the
built-in order relation. As the original program does not make use of this order relation, this does
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not make a difference. Second, at any time the constructed successor functions are only defined
on k elements, where k is the number of active elements. However, observe that whenever only k
elements are active, the current string cannot contain more than k symbols, and hence C(i) does
not hold for i > k. It should be noted, however, that C(k) can hold. Therefore, for every update, we
first compute the new successor functions and use these newly computed functions in the updates
of the other relations. This can also done without any problems, and hence we can conclude that
the original program still works correctly.

From Proposition ?? and Theorem ?? one can conclude the following:

Corollary 4.3.

(1 ) DynPROP ( DynPROP(Succ,Rel)

(2 ) DynPROP ( DynQF

One can also get better upper bounds for the Dyck-languages, the languages of properly balanced
parentheses. For a set of opening brackets {(1, ..., (n} and the set of its closing brackets {)1, ..., )n},
the language Dn is the language produced by the context free grammar

S → SS | (1S)1 | ... | (nS)n | ε .

Proposition 4.4. For every n > 0, Dn ∈ DynQF.

Proof. The basic idea is similar to the proof of Theorem ??. We maintain relations R1 and
R2 corresponding to RS,E and RS,S in the terminology of Theorem ??. More precisely, R1(i1, i2)
holds if the current substring w[i1, i2] is well-bracketed. Likewise, R2(i1, i2, j1, j2) holds if the string
w[i1, i2] without the symbols at positions j1, . . . , j2 is well-bracketed. More formally, R2(i1, i2, j1, j2)
holds if and only if S →∗ w[i1, j1 − 1]w[j2 + 1, i2].

Nevertheless, the update formulas in the proof of Theorem ?? make extensive use of existential
quantifiers which are not available in DynQF. In the current proof we therefore replace these
existential quantifiers by functions. To this end, we maintain several additional functions described
below.

As in the proof of Proposition ??(2), we make use of on-the-fly constructed functions min, succ,
and pre, defined at any time on the elements on which an update already occurred in the update
sequence. Then, we associate numbers with elements in this successor function, and let min denote
the number 0, its successor 1, and so on. We denote the number represented by an element v as 〈v〉.
Conversely, the element representing a number l is denoted by 〉l〈.

Now, we define the four auxiliary functions needed to maintain R1 and R2. In the following,
for two positions i1 < i2, we write d(i1, i2) for the number of closing brackets in [i1, i2] minus the
number of opening brackets in [i1, i2]. We write Cl(v) if position v carries a closing bracket and
Op(v) if it carries an opening bracket.

—f→(u, v) =def min{u′ | 〈v〉 ≥ 1 ∧ Cl(u′) ∧ u′ > u ∧ d(u+ 1, u′) = 〈v〉}.
Intuitively, f→(u, v) is the position to the right of u where, for the first time, 〈v〉 many brackets
pending at u could be closed.

—Analogously, f←(u, v) =def max{u′ | 〈v〉 ≥ 1 ∧ Op(u′) ∧ u′ < u ∧ d(u′, u− 1) = −〈v〉}.

—g→(u, v) =def 〉max{d(u+ 1, u′) | u < u′ ≤ v}〈.
Thus, g→(u, v) gives the maximum surplus of closing brackets in a prefix of w[u+1, v]. Intuitively,
this is the maximum number of pending open brackets at u that can be “digested” by w[u+ 1, v].
Note that the value of g→(u, v) might well be 0.

—g←(u, v) =def 〉max{−d(u′, u− 1) | v ≤ u′ < u}〈.

The attentive reader might have noticed that these functions are not always defined for all
combinations of arguments u and v. To this end, for each of them there is an accompanying
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relation, telling which function values are valid. For instance, R→f (u, v) holds if and only if f→(u, v)
is defined.

As some of the update terms in the dynamic program for Dn are slightly involved we present
the formulas by means of update programs in a pseudocode. These update programs (which should
not be confused with the overall dynamic program) get the parameters of the relation or function as
input, can assign (position) values to local variables, use conditional branching and return a function
value (or TRUE or FALSE for relations). We abstain from a formal definition of update programs
but it is straightforward to transform them into update terms by successively replacing each local
variable with its definition.

We now give the update formulas for the different relations and functions. In the update
programs the following subroutine P0 will appear three times in update programs for Dn. Its
meaning will become clear when it is first used.

Subroutine P0

1: {Parameters: x1, x2, y1, y2, i0, j0, z}
2: m := g→(j0, y1 − 1)
3: j1 := f→(j0,m)
4: i1 := f←(i0,m)
5: m′ := g←(y1, j1 + 1)
6: j2 := f→(y2,m

′)
7: if R1(i0 + 1, j0 − 1) AND
R2(i1, j1, i0, j0) AND
R2(j1 + 1, j2, y1, y2) AND
R2(x1, x2, i1, j2) then

8: Return TRUE
9: else

10: Return FALSE

We first give the update program for R2(x1, x2, y1, y2) for insertions of a symbol (l at a position
z. Only the case where z is in the left interval (that is, in [x1, y1 − 1]) is considered. The other case
is symmetric to the insertion of )l into the left interval which will be handled below.

Intuitively, the string is split into four parts each of which has to be well-bracketed:

—The string between i0 = z and the corresponding bracket to the right at j0 (assuming that this is
before y1);

—the maximally bracketed string (from i1 to j1) around z inside [x1, y1 − 1] without [i0, j0];

—the substring starting to the right of j1 and ending at the corresponding (= matching) position
j2 in [y2 + 1, x2]; and

—the remaining string before i1 and after j2.

An illustration can be found in Figure ??(a). If the matching bracket for z is not before y1 the
construction is slightly different (Figure ??(b)):

—The string between z and its matching bracket at j0 in [y2 + 1, x2] has to be well-bracketed; and

—the remaining string consisting of w[x1, z − 1] and w[j0 + 1, x2] has to be well-bracketed.
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]
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(
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Fig. 3. Illustration of the update programs for (a) insertion of ( if the matching bracket is in the left string, (b) if it
is in the right string.

Update R2(x1, x2, y1, y2): insert (l at z
1: if z ∈ [x1, y1 − 1] then

2: i0 := z
3: j0 := f→(z, 1) {find the matching clos-

ing bracket}
4: if j0 < y1 then

5: if R)l
(j0) then

6: P0

7: else

8: Return FALSE
9: else

10: m := g←(y1, z)
11: j0 := f→(y2,m+ 1)
12: if R)l

(j0) AND
R2(z + 1, j0 − 1, y1, y2) AND
R2(x1, x2, z, j0) then

13: Return TRUE
14: else

15: Return FALSE
16: else

17: {Symmetric case z ∈ [y2 + 1, x2]}

Note that the internal variable m is used for a position that is interpreted as a number (encoded
as explained before). Thus, m+ 1 is an abbreviation for succ(m). Likewise, 0 is an abbreviation for
min.

It could be the case that in line 3 no matching bracket is found. In this case the update program
fails and returns FALSE. In the actual function terms this can be handled by using the relation R→f .
We will stick to this convention in the following as well: Whenever a function value is not defined the
value of the update program becomes FALSE (corresponding to undefined values for the function
update programs below).

Next, we describe the update program for the insertion of )l. This case is very similar to the
insertion of (l: The only difference is that j0 is now the position z and i0 is the matching position
to the left. Furthermore, there is no case distinction as j0 is always in the left string.

Update R2(x1, x2, y1, y2): insert )l at z
1: if z ∈ [x1, y1 − 1] then

2: i0 := f←(z, 1)
3: j0 := z
4: P0

5: else

6: {Symmetric case z ∈ [y2 + 1, x2]}

Finally, the following update program handles reset operations. This can be handled just as an
insertion with the difference that there is no string between i0 and j0.
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Fig. 4. Illustration of the update program for f→ under insertion of a closing bracket.

Update R2(x1, x2, y1, y2): reset z
1: if z ∈ [x1, y1 − 1] then

2: i0 := z
3: j0 := z {The empty string w[z+1, z−1]

is well-bracketed...}
4: P0

5: else

6: {Symmetric case z ∈ [y2 + 1, x2]}

The update programs for R1 are similar but easier. We now describe the update programs for
the functions f←, f→, g←, and g→. We only give the update programs for f→ and g→ as f← and
g← are again symmetric. We do not explicitly state the update programs for R→f and R→g as they
are completely analogous to the programs for the functions.

For f→(x,m) we only need to consider the case where m has a corresponding number and is
different from min. The insertion of (l at position z only affects f→(x,m) if x < z < f→(x,m). In
that case, the insertion of z increases d(x,w) by one for all w > z and therefore the previous value
of f→(x,m+ 1) is the new value for f→(x,m).

Update f→(x,m): insert (l at z
1: if z ≤ x then

2: return f→(x,m)
3: else

4: y := f→(x,m)
5: if y < z then

6: y := f→(x,m)
7: else

8: y := f→(x,m+ 1)

Notice that in this program we are using the assumption that z was empty before the insertion
(see Lemma ??). The update of f→(x,m) after the insertion of a closing bracket is slightly more
involved. If x < z < f→(x,m − 1) then the new value is just f→(x,m − 1). Otherwise, we have
to identify the maximal pair of matching brackets around z where the left bracket is to the right of
f→(x,m− 1) (= y). Due to the additional closing bracket at z the right bracket of this pair (y′) is
then the new value for f→(x,m). In case m = 1 we simply replace the role of f→(x,m − 1) by x.
The main case is illustrated by Figure ??.
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Update f→(x,m): insert )l at z
1: if z ≤ x then

2: Return f→(x,m)
3: else

4: if m = 1 then

5: y := x
6: else

7: y := f→(x,m− 1)
8: if y > z then

9: Return y
10: else

11: m′ := g←(z, y + 1)
12: if m′ = 0 then

13: Return z
14: else

15: Return f→(z,m′)

The update program for a reset operation is similar to the insertion of )l in case z carries an
opening bracket and simpler if z carries a closing bracket.

Update f→(x,m): reset z
1: if z carries a closing bracket then

2: y := f→(x,m)
3: if y < z then

4: Return y
5: else

6: Return f→(x,m+ 1)
7: else

8: if z ≤ x then

9: return f→(x,m)
10: else

11: if m = 1 then

12: y := x
13: else

14: y := f→(x,m− 1)
15: if y > z then

16: Return y
17: else

18: m′ := g←(z, y + 1)
19: Return f→(z,m′ + 1)

Next, we give the update programs for g→(x, y). The first one handles the insertion of an
opening bracket and also the reset for closing brackets.

Update g→(x, y): insert (l at z
1: if z ≤ x OR z > y then

2: Return g→(x, y)
3: m := g→(x, y)
4: v := f→(x,m)
5: if v < z then

6: Return m
7: else

8: Return m− 1

The next one handles insertion of closing brackets.
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Update g→(x, y): insert )l at z
1: if z ≤ x OR z > y then

2: Return g→(x, y)
3: m := g→(x, y)
4: v := f→(x,m)
5: if v > z then

6: Return m+ 1
7: m′ := g←(z, v)
8: if m′ = 0 then

9: Return m+ 1
10: if f→(z,m′) ≤ y then

11: Return m+ 1
12: else

13: Return m

The last update program takes care of reset of opening brackets.

Update g→(x, y): reset (l at z
1: if z ≤ x OR z > y then

2: Return g→(x, y)
3: m := g→(x, y)
4: v := f→(x,m)
5: if v > z then

6: Return m+ 1
7: m′ := g←(z, v)
8: if f→(z,m′ + 1) ≤ y then

9: Return m+ 1
10: else

11: Return m

Finally, we give the update formulas for the acceptance relation ACC. To this end, we maintain
two additional constants (0-ary functions) first and last. Here, first will denote the first element (first
according to the given order, not the constructed successor functions) which has been updated, and,
similarly, last denotes the last such element. Hence, at any time w[1,first − 1] = w[last + 1, n] = ε.
These functions can easily be maintained. We give the update formulas for the acceptance relation
again in our usual formalism:

φACC
insσ

(z) ≡ φR1

insσ
(z;φfirst

insσ
(z), φlast

insσ
(z))

and

φACC
reset(z) ≡ φR1

reset(z;φ
first
reset(z), φ

last
reset(z)).

That is, the string is valid if and only if R1(first, last) holds after the update has occurred. This
completes the description of the update programs. The correctness proof is tedious but straightfor-
ward.

We expect the result to hold for a broader class of context-free languages which has yet to
be pinned down exactly. It is even conceivable that all deterministic or unambiguous context-free
languages are in DynQF.

We next strengthen the above result for the Dyck language with only one kind of bracket, that
is, D1. Here, auxiliary functions are not needed if built-in successor and predecessor functions are
given.

Proposition 4.5. D1 ∈ DynPROP(Succ,Rel)

Proof. In [?] it was shown that D1 is maintainable in DynFO using the so-called ”level trick”.
To each position i of the string, a number L(i) (the level) is assigned such that L(i) is equal to
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the number of opening brackets minus the number of closing brackets in the substring w[1..i]. The
string is in D1 if and only if there every position has a positive level and the level of the last position
in the string equals 0.

In the following program we maintain a data structure, called a ringlist, capable of storing a
set of elements. Technically, a ringlist is the edge relation of a directed graph that is a circle. For
instance, the set {a, b, c} can be stored by the edge relation {(a, b), (b, c), (c, a)}.

The DynPROP(Succ,Rel)-program for D1 will maintain for all pairs (i, j) of positions in the
string and for each number l ∈ {−n, . . . ,−2,−1, 0, 1, 2, . . . , n} a ringlist of all positions k ∈ {i, . . . , j}
of level l. For this purpose, we use the following relations:

—L0(i, j, ·, ·) is a 4-ary relations containing the ringlist of all string positions of level 0. That is,
L0(i, j, a, b) holds when (a, b) is an edge in the ringlist for positions i and j and level 0. We also
denote this ringlist by L0(i, j).

—L+(i, j, l, ·, ·) and L−(i, j, l, ·, ·) are 5-ary relations containing ringlists for the positive and negative
level l and −l. Similarly, we denote these ringlists by L+(i, j, l) and L−(i, j, l).

—F0(i, j) holds if L0(i, j) is not empty.

—F+(i, j, l) and F−(i, j, l) hold when L+(i, j, l) and L−(i, j, l) are not empty.

—Fmax0(i) holds when F0(i, n) holds, where n is the universe size (remember that we do not have
a constant for the maximal element).

—Fmax−(i, l) and Fmax+(i, l) hold when F−(i, n, l) and F+(i, n, l) hold.

—Min0(i, j, k) (respectively, Max0(i, j, k)) holds if and only if k is the minimal (respectively, maxi-
mal) element of the ringlist L0(i, j).

—Min+(i, j, l, k), Min−(i, j, l, k), Max+(i, j, l, k) and Max−(i, j, l, k) are the corresponding relations
for the ringlist of the other levels beside 0.

—Last0 is a nullary relation which holds when the level of the last position is 0.

—Last−(l) and Last+(l) store the level of the last position.

Initially, for all i and j, F0(i, j), Fmax0(i), Last0, Min0(i, j, i) and Max0(i, j, j) are true and

L0(i, j, a, b) = (a, b ∈ {i, .., j} ∧ b = succ(a)) ∨ (a = j ∧ b = i).

Thanks to Lemma ??, we can assume these initializations to take place before the computation of
the program.

We can maintain these relations because of the following observation: After an update oper-
ation on some position x in the string, the level of all succeeding positions increases or decreases
simultaniously by 1.

Thus, when we for instance insert a ( at position x, then a position is of level l after the update
if it either comes before x and had level l before the update, or if it is x or comes after x and had
level l − 1 before the update.

So, to construct the new ringlist for a level l after an update at a position x one has to merge the
ringlist for the position between i and pre(x) of level l and the one for position between x and j of
level l+1 or l−1. In order to do this, only the relations around the update position x, its two borders
i and j and the minimal and maximal element (relative to the ordering) of the considered ringlists
have to be changed. We will show that it is possible to express these updates using quantifier free
formulas.

Let us first consider the update function for L0(i, j) and the operation ins((x). Here, the levels
of all positions from x to n have to increase by one. The update formulas for the relations L− and
L+ are along the same line, and the ones for the update operations ins)(x) and reset(x) are also very
similar. For readability, we use case distinctions and state the formulae for each case separately.
They can easily be put together in one (quantifier free) formula.
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—If x does not lie in the interval [i, j] then nothing happens: L0(i, j) remains the same.

—If x = i then the whole list has to be increased by one, so

φL0

ins(
(x; i, j, a, b) ≡ L−(i, j, 1, a, b).

Here, the constant 1 is not included as a nullary function but can be accessed via succ(min).

—Else, if x ∈ [succ(i), j], then he lists L0(i,pre(x), ·, ·) and L−(x, j, 1, ·, ·) have to be merged. Here,
the emptiness-relations F0(i,pre(x)) and F−(x, j, 1) come into play. Indeed, if one of the cor-
responding ringlists is empty, the other ringlist just has to be copied. If both are empty, then
L0(i, j, ·, ·) has to be empty after the update. Only if both F0(i,pre(x)) and F−(x, j, 1) are false,
the following formula applies:

φL0

ins(
(x; i, j, a, b) ≡ a < b < x ∧ L0(i,pre(x), a, b) ∨

a < x ≤ b ∧ (Max0(i,pre(x), a) ∧ Min−(x, j, 1, b)) ∨

x ≤ a < b ∧ L−(x, j, 1, a, b) ∨

b < a ∧ (Min0(i,pre(x), b) ∧ Max−(x, j, 1, a))

Similar to the level-relations L0, L− and L+ we only give the update formulae for F0(i, j) after
the update operation ins((x). The formulas for the other emptiness-relations F− and F+ and for the
other kind of update operations are similar.

—If x does not belong to [i, j], then F0(i, j) stays the same.

—If x = i then

φF0

ins(
(x; i, j) ≡ F−(i, j, 1)

because the whole ringlist L−(i, j, 1, ·, ·) was shifted to L0. Hence, if L− was empty before the
update operation then, after the update, L0 is empty.

—In the third case, if x ∈ [succ(i), j] then F0(i, j), is non-empty if either L0(i,pre(x), ·, ·) or
L−(x, j, 1, ·, ·) was non-empty before the update operation. So

φF0

ins(
(x; i, j) ≡ F0(i,pre(x)) ∨ F−(x, j, 1).

The relations Fmax0, Fmax− and Fmax+ can be maintained in a similar way.

Next, we show how to maintain the relation Min0(i, j, k) after the update operation ins((x).
Again, three cases have to be distinguished.

—If x /∈ [i, j] then nothing changes.

—If x = i, then

φMin0

ins(
(x; i, j, k) ≡ Min−(i, j, 1, k)

—Else, we have to check whether the list L0(i,pre(x), ·, ·) is empty. If it is empty, then the minimum
has to be taken from the list L−(x, j, 1). Otherwise, its minimum remains the same. So, we have
the following formula for the third case:

φMin0

ins(
(x; i, j, k) ≡ ( F0(i,pre(x)) ∧ Min0(i,pre(x), k)) ∨

(¬F0(i,pre(x)) ∧ Min−(x, j, 1, k))

Again, the relations Max0, Min−, Min+, Max+ and Max− can be updated similarly. The last
relations which have to be updated are Last0, Last− and Last+. However, their change does not
depend on the position of the actual update operation, but only on the type of the inserted or deleted
symbol. In fact they only have to count the difference between the number of opening and closing
brackets in the string. The maintenance of these relations is straightforward. For example after the
insertion of an opening bracket we have

φLast0
ins(

(x) ≡ Last−(1) .
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Now only the acceptance of a string has to be detected. The string is accepted if and only if,
after the update, the level of the last position equals 0 and the ringlist of level -1 is empty. We only
have to check the level -1, and not all negative levels. Indeed, if there is a position with level less
then -1 there also has to be a position which has level -1. So, for instance for the update ins(, the
update formula for ACC is

φACC
ins(

(x) ≡ ¬φ
Fmax−

ins(
(x;min, 1) ∧ φLast0

ins(
(x) .

So, whereas built-in relations do not increase the expressive power of DynPROP, already the
three simple functions succ, pre and min allow the maintenance of non-regular languages.

5. VARIATIONS

Alternative Semantics. Following [?], we have introduced in Section ?? dynamic languages in which
it is both allowed to insert or change labels at positions in the string and to delete elements at
positions. In a universe of size n, one can thus create all strings of length smaller or equal than n.

However, one can also consider the setting in which each position in the string must at any time
be assigned a symbol. Although this setting is less “dynamic”, it has the advantage that a word
is always associated with its canonical logical structure. This can be achieved by starting with an
initial structure in which each symbol is already assigned a symbol, and subsequently only allowing
labels to be changed (and not deleted).

More formally, we assign to every language L a dynamic language Dyn-alt(L) as follows. For a
distinguished initial symbol a ∈ Σ and n ∈ N, let Ean be the word structure in which Ra(i) is true,
for all i, and Rσ is empty, for all σ 6= a. Further, ∆n = {insσ | σ ∈ Σ}. Then, Dyn-alt(L) = {(n, δ) |
δ ∈ ∆+

n ∧ word(δ(Ean)) ∈ L}5.
Proposition ?? shows that the situation is less appealing than in the original semantics. In par-

ticular, there are regular languages which cannot be maintained without precomputation; and with
precomputation all regular, but also non-regular, languages can be maintained. Here, MIDDLE =
{wbw′ | |w| = |w′|} is the language over the alphabet Σ = {a, b} which contains all strings whose
middle element is b, which is clearly not regular.

Proposition 5.1.

(1 ) Dyn-alt(L((aa)∗)) /∈ DynPROP

(2 ) For any regular language L, Dyn-alt(L) ∈ DynPROP(Rel,Rel)

(3 ) Dyn-alt(MIDDLE) ∈ DynPROP(Rel,Rel)

Proof. (1) Let L = L((aa)∗). Let n be any positive even integer, and δ = insa(1). Then,
word(δ(Ean)) ∈ L, and word(δ(Ean+1)) /∈ L. Hence, (n, δ) ∈ Dyn-alt(L) and (n+ 1, δ) /∈ Dyn-alt(L).
We show that for any program P ∈ DynPROP, (n, δ) ∈ L(P ) if and only if (n+1, δ) ∈ L(P ), which
implies the proposition.

First, notice that (n, δ) ∈ L(P ) if and only if San |= φACC
insa

(1), and, correspondingly, (n+ 1, δ) ∈

L(P ) if and only if San+1 |= φACC
insa

(1). However, these two questions can be decided in an identical

manner: Take φACC
insa

, replace any occurrence of Ra by true and any occurence of a relation symbol

different from Ra by false, and evaluate the obtained boolean formula. Hence, San |= φACC
insa

(1) if and

only if San+1 |= φACC
insa

(1), which concludes the proof.

5Notice that Dyn(L) consists only of update sequences δ, whereas Dyn-alt(L) contains tuples (n, δ). This change is
necessary as the membership of a word of a language under the current semantics can depend both on the size of the
initial structure n, and the update sequence δ.
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(2) As seen in the previous proof, DynPROP program without precomputation are not capable of
maintaining all regular languages. The reason for this is that the initial string is an, for some n,
whereas the initial string was empty in the original semantics. Then, when the computation starts,
the DynPROP program did not have the chance to initialize its data structures according to an

and is immediately lost.
However, when allowing precomputation, we can simply reuse the program P defined in the

proof of Proposition ??. Indeed, the only difference is in the initialization of the relations. Whereas
they could be initialized by quantifier free formulas when the initial string was empty, we now have
to use the power of precomputations to initialize them. In particular, for a language L accepted by
automaton A = (Q, δ, s, F ) they should be initialized as follows:

—Rp,q = {(i, j) | i < j ∧ (p, aj−i−1, q) ∈ δ};

—Iq = {i | (s, ai−1, q) ∈ δ}; and

—Fp = {i | (p, an−i, qf ) ∈ δ, for some qf ∈ F}.

From the correctness of the program of Proposition ?? and this precomputation, the correctness
of this modified program immediately follows.

(3) The dynamic program P maintaining Dyn-alt(MIDDLE) will make use of the precomputed unary
relation M containing the middle element of the structure, if the universe size is odd. Formally, for
n ∈ N, M init

n = {⌈n/2⌉ | n is odd}. The program P only needs to maintain the acceptance relation,
which can be done as follows:

φACC
insa

(x) ≡ ACC ∧ ¬M(x)

and

φACC
insb

(x) ≡ ACC ∨M(x).

Notice that, contrary to Theorem ??, Proposition ?? does not allow to infer lower bounds for
DynPROP(Rel,Rel) under the current semantics. However, if we consider the class of languages
with neutral elements, this becomes possible again. We say that a language L has a neutral element
a if for all w,w′ ∈ Σ∗ it holds that ww′ ∈ L if and only if waw′ ∈ L. If a language has at least one
neutral element, we assume that the initial symbol for its dynamic algorithm is one of these neutral
elements.

A straigthforward generalization of Theorem ?? yields the following proposition which implies,
for instance, that Dyn-alt(L) /∈ DynPROP(Rel,Rel) for all non-regular languages L which have a
neutral element.

Proposition 5.2. Let L be a language which has a neutral element. Then, the following are
equivalent:

(1 ) L is regular;

(2 ) Dyn-alt(L) ∈ DynPROP; and

(3 ) Dyn-alt(L) ∈ DynPROP(Rel,Rel).

Proof. As (2) ⇒ (3) follows by definition, it suffices to show (1) ⇒ (2) and (3) ⇒ (1).

(1) ⇒ (2): Let L be a regular language with neutral element and A be the minimal DFA accepting
L. Then, the DynPROP program P , accepting Dyn(L), constructed in the proof of Proposition ??

accepts exactly Dyn-alt(L).
It should be clear that the correctness of the update functions of P carries over immediately

to the current setting. To see that also the initialization of the different relations is correct, notice
that, as A is minimal and a is a neutral element, (q, a, p) ∈ δ if and only if q = p, for all states p
and q of A. Since word(Ean) = an it follows that the different relations are properly initialized.
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(3) ⇒ (1): Let L be a language such that Dyn-alt(L) is accepted by a DynPROP(Rel,Rel) program
P . We show that L is regular by constructing a finite automaton accepting L. Again, this can be
done almost identically as in the proof of implication (3) ⇒ (1) in Theorem ??. The key point to
notice is that a position which is labeled a in the current semantics can intuitively be seen as an
empty, that is, not-labeled, position in the original semantics because a is a neutral element.

Therefore, we proceed in two steps. First, completely ignoring the symbol a, we create the
automaton A exactly as in the proof of Theorem ??. Denote Σ \ {a} by Σa. Then, as before, it can
be shown that L(A) = L ∩ Σ∗a, that is, A accepts all strings in L that do not contain an a. As a is
a neutral element of L, it holds that L =

⋃

w=σ1···σn∈L(A) L(a∗σ1a
∗ · · · a∗σna

∗). Hence, the desired

automaton A′, with L(A′) = L, can be obtained from A by adding the transition (q, a, q) to A, for
all states q of A.

Regular Tree Languages. We now investigate the dynamic complexity of the regular tree languages.
To this end, we define dynamic tree languages. A tree t over an alphabet Σ is encoded by a logical
structure T with as universe the first n elements of the list (1, 11, 12, 111, 112, 121, 122, . . .), for some
n ∈ N, and consisting of (1) one unary relation Rσ, for each symbol σ ∈ Σ; (2) a constant root,
denoting the element 1; and (3) binary relations L-child and R-child, containing all tuples (u, u1)
and (u, u2), respectively.

The updates are terms insσ(u) and reset(u), setting and resetting the label of node u in T ,
exactly as in the string case. So, the logical structure T is a fixed balanced binary tree in which
the labels can change. Then, the tree t encoded by T is the largest subtree of T whose root is
the element 1 and in which all nodes are labelled with an alphabet symbol. Hence, a node of T is
included in t if it, and all its ancestors, carry an alphabet symbol.

Exactly as for the word languages, for a tree language L, we let Dyn(L) be the set of update
sequences leading to a tree t ∈ L. A dynamic program works on a dynamic tree language as it does
on a dynamic language. We then obtain the following result.

Proposition 5.3. Let L be a regular tree language. Then, Dyn(L) ∈ DynPROP(Fun,Rel).

Proof. We first introduce some notation. For a node u of T , let subtreeuT be the largest subtree
of T whose root is u and in which all nodes are labelled with an alphabet symbol. Hence, T encodes
the tree subtreeroot

T . Further, for a tree t, we denote its set of nodes by nodes(t), and for u ∈ nodes(t),
labt(u) denotes the label of u in t.

The program will make use of the following precomputed relations and functions on T :

—a binary relation Anc, such that Anc(x, y) holds if x is an ancestor of y;

—a binary funtion lca, such that lca(x, y) = z if z is the least common ancestor of x and y;

—a unary function parent such that parent(u) = v if L-child(v, u) or R-child(v, u); and parent(u) =
u, if u = root;

—unary functions l-child and r-child such that l-child(u) = v if L-child(u, v) and l-child(u) = u,
otherwise; and r-child(u) = v if R-child(u, v) and r-child(u) = u, otherwise.

Let L be a regular (binary) tree language, and A = (Q, δ, (qIσ)σ∈Σ, F ) be a bottom-up deter-
ministic tree automaton accepting L, with δ : Q × Q × Σ → Q the (complete) transition function.
A run of a A on a tree t is a mapping ρ : nodes(t) → Q such that (1) for all leaf nodes u of
t, ρ(u) = qIσ, where labt(u) = σ; and (2) for all non-leaf nodes u, with children u1, u2, we have
δ(ρ(u1), ρ(u2), lab(u)) = ρ(u). If ρ(root) = q, we say that ρ is a run of A on t to q. A tree t is
accepted if there is a run of A on t to qf , for some qf ∈ F .

We denote by subtreeut the subtree of t rooted at u and by subtreeu,vt the subtree of t with root
u which contains all descendants of u but no descendants of v. When t is clear from the context, we
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omit it as a subscript. For such a tree subtreeu,v, we are also interested in runs which assign a state
p to the new leaf node v, not necessarily consistent with the label of v, and are valid runs otherwise.
Thus, a function ρ : nodes(subtreeu,vt ) → Q is a run of A on subtreeu,vt [v → p] to q if and only if
ρ(u) = q, ρ(v) = p, and ρ is a valid run of A on subtreeu,vt , except that p = qIlab(v) does not have to
hold.

Before giving the relations we will maintain, we define a few subformulas which will be used
several times in the subsequent definitions and formulas.

Anc-self(x, y) ≡ Anc(x, y) ∨ x = y;

Epsilon(x) ≡
∧

σ∈Σ

¬Rσ(x); and

Leaf(x) ≡ (l-child(x) = x ∨ r-child(x) = x ∨ (Epsilon(l-child(x)) ∧ Epsilon(r-child(x))).

Our dynamic program will maintain the following relations:

—Con = {(x, y) | Anc-self(x, y)∧∀z with Anc-self(x, z)∧Anc(z, y), Rσ(z) is true, for some σ ∈ Σ};

—Rq = {x | there is a run of A on subtreex to q}; and

—Rq1,q2 = {(x1, x2) | there is a run of A on subtreex1,x2 [x2 → q2] to q1}.

That is, the relation Con expresses that elements x and y are connected in T , that is, that all
nodes on the path from x to y, except possibly y itself, carry an alphabet symbol. The relation Rq
contains all nodes x for which there is a run on subtreex to q; and (x1, x2) ∈ Rq1,q2 intuitively holds
if, assuming there is a run on subtreex2 to q2, then there is a run on subtreex1 to q1.

First of all, by Lemma ??, we can assume that these relations are initialized correctly as follows:

—Con = {(x, x)};

—for all q ∈ Q, Rq = ∅; and

—for all q1, q2 ∈ Q, Rq1,q2 = ∅ if q1 6= q2, and Rq1,q2 = {(x, x)}, otherwise.

We now give the update formulae for the different relations. First, the relation Con can easily
be maintained. For all σ ∈ Σ,

φCon
insσ

(y;x1, x2) ≡
[

¬(Anc-self(x1, y) ∧ Anc(y, x2)) ∧ Con(x1, x2)
]

∨
[

Con(x1, y) ∧ (Con(l-child(y), x2) ∨ Con(r-child(y), x2))
]

φCon
reset(y;x1, x2) ≡ ¬(Anc-self(x1, y) ∧ Anc(y, x2)) ∧ Con(x1, x2).

Before giving the update formulae for Rq and Rq1,q2 we define a formula which will be used
several times. For p ∈ Q and σ ∈ Σ, the following formula intuitively says that “if node x is labeled
σ, then there is a run on subtreex to p”:

φpσ(x) ≡
[

(Leaf(x) ∧ qIσ = p
]

∨
[

¬Leaf(x) ∧
∨

p1,p2∈Q
δ(p1,p2,σ)=p

(Rp1(l-child(x)) ∧Rp2(r-child(x)))
]

.

We can now give the different update formulae for the insert operation. For each σ ∈ Σ and
q ∈ Q, the relation Rq can be updated as follows:

φ
Rq

insσ
(y;x) ≡

[

¬(Anc-self(x, y) ∧ Con(x, y)) ∧Rq(x)
]

∨
[

Anc-self(x, y) ∧ Con(x, y) ∧
∨

p∈Q

(φpσ(y) ∧Rq,p(x, y)
]

.
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The update formula for Rq1,q2 is similar but more involved. It is defined as follows:

φ
Rq1,q2

insσ
(y;x1, x2) ≡ Anc-self(x1, x2) ∧ φ

Con
insσ

(y;x1, x2) ∧ (φ1 ∧ φ2 ∧ φ3 ∧ φ4 ∧ φ5),

where φ1 to φ5 are formulas defined according to the position of y with respect to x1 and x2:

—If y does not occur in subtreex1,x2 after insσ(y), or y = x2, then the truth value of Rq1,q2(x1, x2)
is not changed:

φ1 ≡ (¬Con(x1, y) ∨ Anc-self(x2, y)) ∧Rq1,q2(x1, x2).

—Let lca(x2, y) = z. If y = z and x2 is a left descendant of y, that is, Anc-self(l-child(y), x2), we
can determine the state p of z and use this information to decide whether Rq1,q2(x1, x2):

φ2 ≡ y = z ∧ Anc-self(l-child(y), x2)∧
∨

p,p1,p2∈Q
δ(p1,p2,σ)=p

(Rp1,q2(l-child(y), x2) ∧Rp2(r-child(y)) ∧Rq1,p(x1, y)).

—Else if y = z, and x2 is a right descendant of y, then φ3 is almost identical to φ2.

—Else if y 6= z and y is a left descendant of z, then:

φ4 ≡ y 6= z ∧ Anc-self(l-child(z), y) ∧
∨

p∈Q

(

φpσ(y)∧

∨

r,r1,r2∈Q,σ
′∈Σ

δ(r1,r2,σ
′)=r

[

Rσ′(r) ∧Rr1,p(l-child(z), y) ∧Rr2,q2(r-child(z), x2) ∧Rq1,r(x1, z)
]

)

.

—Else if y 6= z and y is a right descendant of z, then φ5 is almost identical to φ4.

We now give the different formulae for the reset operation. Again, we first define a subformula
which will be used several times. The following formula intuitively says that “if node y is reset, and

y′ is its parent, then there is a run on subtreey
′

to p”:

ψp(y, y′) ≡
∨

σ∈Σ
p=qI

σ

Rσ(y
′)∧

[

(l-child(y′) = y ∧ Epsilon(r-child(y′))) ∨ (r-child(y′) = y ∧ Epsilon(r-child(y′)))
]

.

We can now define the different formulae for the reset operation. For all q ∈ Q,

φ
Rq

reset(y;x) ≡
[

¬(Anc-self(x, y) ∧ Con(x, y)) ∧Rq(x)
]

∨
[

Anc(x, y) ∧
∨

p∈Q

ψp(y,parent(y)) ∧Rq,p(x,parent(y))
]

.

Again, the formula φ
Rq1,q2
reset is similar but more involved:

φ
Rq1,q2
reset (y;x1, x2) ≡ Anc-self(x1, x2) ∧ ¬(Anc-self(x1, y) ∧ Anc(y, x2)) ∧ Con(x1, x2) ∧ (φ1 ∨ φ2 ∨ φ3).

Notice that if any of these conditions is not satisfied then Rq1,q2(x1, x2) cannot hold after
reset(y). The formulas φ1, φ2 and φ3 depend on the possible remaining positions of y w.r.t. x1 and
x2. We only have to distinguish three cases here, as opposed to five before, because we do not have
to consider the case lca(y, x2) = y. Indeed, if lca(y, x2) = y, resetting y disconnects x1 from x2.

—If y does not occur in subtreex1,x2 , then the truth value of Rq1,q2(x1, x2) is not changed:

φ1 ≡ (¬Con(x1, y) ∨ Anc-self(x2, y)) ∧Rq1,q2(x1, x2).
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—Let lca(x2, y) = z and parent(y) = y′. If y 6= z and y is a left descendant of z, then

φ4 ≡ y 6= z ∧ Anc-self(l-child(z), y) ∧
∨

p∈Q

(

ψp(y, y′)∧

∨

r,r1,r2∈Q,σ
′∈Σ

δ(r1,r2,σ
′)=r

[

Rσ′(z) ∧Rr1,p(l-child(z), y′) ∧Rr2,q2(r-child(z), x2) ∧Rq1,r(x1, z)
]

)

.

—If y 6= z and y is a right descendant of z, the formula φ3 is almost identical to φ2.

Finally, the update formulae for the acceptence relation depend only on the new value of the
relations Rq, for q ∈ Q. That is, for all σ ∈ Σ,

φACC
insσ

(x) =
∨

q∈F

φ
Rq

insσ
(x, root)

and

φACC
reset(x) =

∨

q∈F

φ
Rq

reset(x, root).

6. BEYOND FORMAL LANGUAGES

The definitions given in Section ?? only concern dynamic problems for word structures. Following [?],
we now extend these definitions to arbitrary structures. To this end, let γ be a vocabulary containing
relation symbols of arbitrary arities. We assume that a structure over γ of size n has as universe
{1, . . . , n}. The empty structure over vocabulary γ of size n and only empty relations is denoted
En(γ).

The set of abstract updates ∆(γ) is defined as {insR,delR | R ∈ γ}. A concrete update is a term
of the form insR(i1, . . . , ik) or delR(i1, . . . , ik), where k = arity(R). A concrete update is applicable
in a structure of size n if ij ≤ n, for all j ∈ [1, k]. By ∆n(γ) we denote the set of applicable concrete
updates for structures over γ of size n. For a sequence α = δ1 . . . δk ∈ (∆n(γ))

+ of updates we define
α(A) as δk(. . . (δ1(A)) . . .), where δ(A) is the structure obtained from A by setting R(i1, . . . , ik) to
true if δ = insR(i1, . . . , ik), and setting R(i1, . . . , ik) to false if δ = delR(i1, . . . , ik).

Definition 6.1. Let γ be a vocabulary and F be a set of γ-structures. The dynamic problem
Dyn(F ) is the set of all pairs (n, α), with n > 0 and α ∈ (∆n(γ))

+, such that α(En(γ)) ∈ F . We
call F the underlying static problem of Dyn(F ).

We now explain how a dynamic program operates on a dynamic problem. For a program P ,
there again is a program state S containing the current structure and auxiliary relations, one of
which is ACC, which are updated according to the updates which occur and the update functions of
P . The state S is accepting if S |= ACC. Then, let L(P ) = {(n, α) | α ∈ (∆n(γ))

∗ and α(Sn(γ)) is
accepting}, where Sn(γ) denotes the structure En(γ) extended with empty auxiliary relations.

A program P accepts a problem F if L(P ) = Dyn(F ). If P ∈ C, for some dynamic complexity
class C, we also write Dyn(F ) ∈ C.

Incomparability of FO and DynPROP. As we have seen in the previous sections, when restricted
to monadic input schemas, DynPROP in a sense has the power of MSO. However, we show that if
one binary relation is added, DynPROP cannot even capture first-order logic. This is also true if
we allow the program to use precomputed functions from the set Succ.

Thus, we consider alternating graphs, encoded by the binary edge relation E and two unary
relations A and B that form a decomposition of the set of nodes V into the set of existential and
universal nodes, respectively. Given a node s ∈ V , the set of all reachable nodes Reach(s) is defined
as the smallest set satisfying
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—s ∈ Reach(s);

—if u ∈ A and there is a v ∈ Reach(s) such that (u, v) ∈ E, then u ∈ Reach(s); and

—if u ∈ B and for all v ∈ V with (u, v) ∈ E, we have v ∈ Reach(s), then u ∈ Reach(s).

We define ALT-REACH as the problem, given an alternating graph G = (A,B,E) and two
nodes s and t, is t ∈ Reach(s). Note that ALT-REACH is P-complete (see, for example, [?]).

Proposition 6.2. Dyn(ALT-REACH) /∈ DynPROP(Rel,Rel)

Before proving the proposition, we state a lemma that describes an important property of
DynPROP programs. An update sequence working on k-tuples α is a sequence of updates over the
(abstract) universe {1, ..., k}. Given a k-tuple ~i = (i1, ..., ik), α(~i) denotes the sequence of updates
one obtains when applying the updates on the elements of the k-tuple ~i. So, instead of using the
(abstract) universe element x the element ix should be used. For example, the update insR(1, 4, 2)
results in an update insR(i1, i4, i2).

Lemma 1. Let α be a sequence of updates working on k-tuples. Let P be a DynPROP(Rel,Rel)
program, S a state of P and consider two tuples of elements ~i = (i1, ..., ik) and ~j = (j1, ..., jk) of S
such that 〈S,~i〉 = 〈S,~j〉. Then, 〈α(~i)(S),~i〉 = 〈α(~j)(S),~j〉, that is, the type of ~i after applying α(~i)
and the type of ~j after applying α(~j) are still the same. In particular, the value of the ACC-relation
is the same in α(~i)(S) and α(~j)(S).

Proof. It suffices to consider one update operation δ working on k-tuples. Then the lemma
follows by induction on the length of the update sequence α. Let ι be the tuple of elements in
{1, . . . , k} which form the parameters of δ, and consider any (auxiliary) relation R updated by the
program P on a tuple κ of elements also from {1, . . . , k}. Let ι(~i), ι(~j), κ(~i) and κ(~j) denote the
corresponding tuples in state S. Then, the evaluation of the update formula for R on κ(~i) after
the operation δ with parameters ι(~i) depends only on the type of the elements in κ(~i) ∪ ι(~i). The
same holds for the tuples corresponding to ~j. Since the types 〈S,~i〉 and 〈S,~j〉 are equal, the update
formula evaluates to the same value.

Proof of Proposition ??. We first define a family of alternating graphs G = {Gm | m ∈ N}.
Every graph Gm consists of the following set Vm of nodes:

—two nodes s and t;

—a set of 2m nodes P = {p1, ..., p2m};

—for each subset I of P of size m a node qI , forming the set Q (of size
(

2m
m

)

); and

—for each subset J of Q a node rJ , forming the set R (of size 2|Q|).

All nodes are existential nodes except the nodes in set Q, which are universal. Thus, Am = Vm \Q
and Bm = Q. Further, the following set of edges Em is already present in the graph Gm:

—for each subset I of P of size m, the set of edges {(qI , p) | p ∈ I} and

—for each subset J of Q the set of edges {(rJ , q) | q ∈ J}.

As updates we will only consider insertions of edges from s to nodes in the set R and from nodes in
the set P to t.

We show that no dynamic program can maintain auxiliary relations such that it can incremen-
tally answer, for every n ∈ N, the question whether t is reachable from s in the alternating graph
Gm, starting from Gm and arbitrary precomputation on the auxiliary relations. The proposition
then follows.

We make use of the following two lemmas:

Lemma 2. For every m and every pair of distinct nodes r, r′ ∈ R of Gm, there exists a set I ⊂ P
of size m such that in the graph G′m := (Am, Bm, Em ∪

⋃

p∈I(p, t)), t ∈ Reach(r) and t /∈ Reach(r′).

ACM Transactions on Computational Logic, Vol. TBD, No. TDB, Month Year.



The Dynamic Complexity of Formal Languages · 29

· t

· · · · · · · · · P

· · · · · · · · · · · · Q

· · · · · · · · · · · · · · · R

· s

∃

∃

∀

∃

∃

Fig. 5. An abstract illustration of the graph Gm. Full edges represent edges already present in Gm; dashed ones will
be inserted later.

Proof. Each of the nodes in R corresponds to a (unique) subset of Q. Hence, by definition of
Gm, there is a set I and a node qI ∈ Q which in Gm is reachable from r but not from r′. We show
that the set I ⊂ P is the desired set, that is, for G′m := (Am, Bm, Em ∪

⋃

p∈I(p, t)), it holds that
t ∈ Reach(r) and t /∈ Reach(r′). We note that in G′m, qI is the only node in the set Q such that
t ∈ Reach(qI) because all nodes in Q are universal nodes. But now, as r and r′ are existential nodes,
and r is connected to qI but r′ is not, t ∈ Reach(r) and t /∈ Reach(r′). This concludes the proof.

Lemma 3. The number of possible k-types of a structure with x auxiliary relations of maximal
arity y is bounded by 2x·k

y

.

Proof. A k-type is constructed from a set of atoms R(~j) (where each element in ~j is in [1, k])
by adding either R(~j) or ¬R(~j) to the k-type. Hence, there exist at most 2|atoms| different k-types
where |atoms| denotes the number of different atoms. For one y-ary relation R all atoms of R can
be seen as the set of all y-tuples of elements in ~i. So, one relation of arity y produces ky different
atoms. As there are x different relations, there are at most x · ky atoms, and thus at most 2x·k

y

different k-types.

Now, assume, towards a contradiction, that there exists a dynamic program P for Dyn(ALT-REACH)
in DynPROP(Rel,Rel) that makes use of a auxiliary relations of maximal arity b. For a graph Gm
and node r ∈ R, we consider the tuple Vr := (s, t, r, p1, ..., p2m).

Since

|Q| =

(

2m

m

)

=
m−1
∏

i=0

2m− i

m− i
≥
m−1
∏

i=0

2m

m
= 2m and so |R| ≥ 22m

,

there exists a number m such that |R| is bigger than the number of (2m + 3)-types in any state S
of P . Indeed, by Lemma ?? and since the program can use a+ 6 relations (the auxiliary relations,
the input relations E, A, and B, and the equality, order and ACC relations) of maximal arity b, the

number of (2m+ 3)-types in S is bounded by 2(a+6)·(2m+3)b

. For a large enough value of m, this is
clearly dominated by 22m

. Fix such an m and corresponding graph Gm, and let S be a state P is
in when the current graph is Gm. Then, by the above reasoning, in the set R (of Gm) there must
exist two distinct elements r and r′ such that 〈S, Vr〉 = 〈S, Vr′〉.

According to Lemma ??, there is a set I of m elements in P such that after the insertion of all
edges {(p, t) | p ∈ I} in Gm, t ∈ Reach(r) and t /∈ Reach(r′). Let I = {pi1 , ..., pim} and consider the
two sequences of update operations

α = (insE(pi1 , t), ..., insE(pim , t), insE(s, r))

α′ = (insE(pi1 , t), ..., insE(pim , t), insE(s, r′)).

Notice that α(Gm) yields a graph in which t ∈ Reach(s), whereas t /∈ Reach(s) in α′(Gm). However,
as 〈S, Vr〉 = 〈S, Vr′〉, it follows from Lemma ?? that also 〈α(S), Vr〉 = 〈α′(S), Vr′〉. Hence, P will
either in both cases claim that t ∈ Reach(s) (if ACC holds in 〈α(S), Vr〉) or claim in both cases
that t /∈ Reach(s). We can conclude that there does not exist a DynPROP(Rel,Rel) program for
ALT-REACH.
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This proof can be adapted to show that even with a precomputed successor-function, one cannot
maintain the reachability problem for alternating graphs.

Proposition 6.3. Dyn(ALT-REACH) /∈ DynPROP(Succ,Rel)

In order to prove this we need an observation similar to Lemma ?? for DynPROP(Succ,Rel). For
an element i and a number l, let the l-neighborhood of i, denoted Nl(i), be the following tuple of
elements:

(

prel(i),prel−1(i), ...,pre(i), i, succ(i), ..., succl−1i, succl(i)
)

.

For a tuple of elements ~i, we denote by Nl(~i) the tuple (Nl(min),Nl(i1), ...,Nl(ik)).

Lemma 4. Let α be a sequence of updates working on k-tuples which consists of l updates. For
each DynPROP(Succ,Rel) program P , there exists a number c, depending only on P , such that the
following holds: Let S be a state of P , and ~i = (i1, ..., ik) and ~j = (j1, ..., jk) tuples of elements of S
such that 〈S,Nc·l(~i)〉 = 〈S,Nc·l(~j)〉. Then, 〈α(~i)(S),~i〉 = 〈α(~j)(S),~j〉.

Proof. The c of the lemma is the maximal nesting dephth of the functions succ and pre used in P .
For example the term succ(succ(pre(x))) has nesting depth 3. Let αn be the prefix of length n of the
update sequence α. We will here prove the slightly stronger statement that, assuming the conditions
of the lemma, 〈αn(~i)(S),Nc·(l−n)(~i)〉 = 〈αn(~j)(S),Nc·(l−n)(~j)〉. Then the lemma follows because

N0(~i) = (min,~i). The proof works by induction on n (assuming n < l). For n = 0 the statement is
contained in the condition of the lemma. So, assume the statement holds for n < l, we show that it
still holds for n+ 1. Let δ be the update such that αn+1 = αnδ. Just as in the proof of Lemma ??

consider any (auxiliary) relation R updated by the program P on elements in Nc·(l−(n+1))(~i). The

evaluation of the update formula for R depends only on the type of Nc·(l−n)(~i). This is true because
one can reach other elements in the universe only by using the functions. Since these are nested at
most c times, from any element in Nc·(l−(n+1))(~i) only elements in Nc·(l−n)(~i) can be reached. The

same holds for the tuples corresponding to ~j. As 〈αn(~i)(S),Nc·(l−n)(~i)〉 = 〈αn(~j)(S),Nc·(l−n)(~j)〉,

and αn+1 = αnδ, it follows that 〈αn+1(~i)(S),Nc·(l−(n+1))(~i)〉 = 〈αn+1(~j)(S),Nc·(l−(n+1))(~j)〉.

Proof of Proposition ??. The proof is along the same lines as that of Theorem ??. Assume
that there exists a DynPROP(Succ,Rel) program P for Dyn(ALT-REACH) making use of a aux-
iliary relations of maximal arity b. We will again consider (in a graph Gm) the tuples Vr and Vr′ ,
but now their corresponding (m+ 1)c-neighborhoods N(m+1)c(Vr) and N(m+1)c(Vr′), where c is the
constant of Lemma ?? which only depends on P . Using Lemma ??, we know that in any state S of

P the number of types of these neighborhoods is bounded by 2(a+6)·((2(m+1)c+1)(2m+3+1))b

. Hence
we can again find a number m big enough such that there are distinct r, r′ ∈ R in Gm such that
〈S,N(m+1)c(Vr)〉 and 〈S,N(m+1)c(Vr′)〉. Using the same argument as above and Lemma ??, we get
the desired contradiction.

Remark 6.4. The proofs of the foregoing lemma and proposition depend heavily on the fact that,
with each update operation, the neighborhood of a tuple increases only by a constant term. This is
because the functions pre and succ are complementary in the sense that pre(succ) = succ(pre). So,
the order of their usage is not important. If one allows two independent functions (for example, two
different successor-functions on the universe) the size of the neighborhood possibly doubles after each
operation so the proof of the proposition (based on a counting argument) does not work.

From the proof of the above proposition one can conclude an even stronger statement. The
graphs used in the proof are very restricted in the sense that the length of the longest path is
bounded by a constant. Let ALT-REACHdepth≤d be the alternating reachability problem on graphs
of depth at most d. It is easily seen that ALT-REACHdepth≤d is expressible by a FO-formula, so we
get the following

Theorem 6.5. There exists a problem F ∈ FO such that Dyn(F ) /∈ DynPROP(Succ,Rel).
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On the other hand, the reachability problem on acyclic deterministic directed graphs can be main-
tained in DynPROP [?] but cannot be expressed in FO. So these classes are incomparable.

Using functions to maintain EFO. Next, we exhibit a class of properties which can be maintained
in DynQF with precomputation. An existential first-order (EFO) sentence is a first-order sentence
of the form ∃x1 · · · ∃xkφ(~x), where φ(~x) is a quantifier free formula.

Theorem 6.6. For any EFO-definable problem F , Dyn(F ) ∈ DynPROP(Fun,Fun)

Proof. Let ψ = ∃x1 · · · ∃xkφ(~x) be an EFO-sentence over vocabulary γ. We show that there
exists a DynPROP(Fun,Fun) program P which maintains whether A |= ψ, for any γ-structure A.

We first introduce some notation. A tuple~i = (i1, . . . , il) is disjoint if ij 6= ik, for all j, k ∈ [1, ℓ],
with j 6= k. A disjoint type is the type of a disjoint tuple. For a type τ , let φτ be an EFO sentence
which is satisfied in a structure A if and only if A contains a tuple ~x such that 〈A, ~x〉 = τ .

It is well known and easy to see that for any EFO sentence φ = ∃x1 · · · ∃xkψ(~x), there exists a
set θψ of disjoint ℓ-types, with ℓ ranging from 1 to k, such that ψ is equivalent to

∨

τ∈θ φτ . Note
that if we would not require the types to be disjoint, we would only need to consider k-types, and
not ℓ-types, for all ℓ ≤ k. However, the latter restriction, and corresponding extension, will prove
technically more convenient.

Using the information that A |= φ is completely determined by the set of types θψ realized in A,
we now present our dynamic algorithm. It will maintain the following functions. For every disjoint
ℓ-type τ , with ℓ ≤ k, and set I = {i1, . . . , i|I|} ⊆ {1, . . . , ℓ}, let

f Iτ (x1, . . . , x|I|) = |{(a1, . . . , aℓ) | 〈A,~a〉 = τ ∧ ∀j ∈ [1, |I|] : aij = xj}|

Here, we write I = {i1, . . . , i|I|} such that ij < ij+1, for all j ∈ [1, |I| − 1]. Then, for I = ∅,

f∅τ defines the number of disjoint tuples in A which have type τ . When I = {i1, . . . , i|I|} 6= ∅, and
given ~x = (x1, . . . , x|I|), f

I
τ (~x) defines the number of tuples in A which (1) have type τ and (2) have

at position ij exactly element xj , for all j ∈ [1, |I|].
Notice that the numbers defined by the above functions can become bigger than n, the number

of universe elements, but are always smaller than nk. Hence, every such number can be encoded as a
number with k digits in base n, which is exactly how our functions will encode these numbers. Thus,
for every function f Iτ mentioned above, there are actually k functions f I,1τ , . . . , fI,kτ , each defining
one digit of the desired number defined by f Iτ . For clarity, we use the functions f Iτ instead of the
actual ones encoding their digits.

As we are in the setting where precomputation is allowed, we can assume that the functions are
properly initialized. For any l ∈ [1, k], let τ¬ be the unique l-type containing only negated atoms,
that is, atoms of the form ¬R(~i). Then, for all l-types τ 6= τ¬, set I, and tuple ~x, initially

f Iτ (~x) = 0 ,

and for ~x = (x1, . . . , x|I|) it holds that

f Iτ¬(~x) = 0 if xi = xj , for some i 6= j,

and

f Iτ¬(~x) = (n− |I|) · (n− (|I| + 1)) · · · · · (n− l), otherwise.

We now show how to incrementally maintain these functions. To this end, we give the pre-
computed functions and relations which will be used for the updates. For simplicity, we assume
the universe of size n consists of the elements {0, . . . , n − 1}. Then, there is a constant (0-ary
function) min denoting 0, functions plus and minus such that plus(x, y) = x + y (mod n) and
minus(x, y) = x − y (mod n), and accompanying relations Rplus and Rminus such that Rplus(x, y)
holds if and only if x+ y ≥ n, and Rminus(x, y) holds if and only if x− y < 0. That is, the functions
plus and minus are defined on all parameters and count modulo n. The accompanying relations Rplus

and Rminus contain the additional information saying whether the addition or subtraction indeed
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went above n−1 or below 0. These functions allow to define addition and subtraction on the k-digit
base-n numbers used in the functions. Therefore, we simply perform addition and subtraction on
these numbers in the sequel.

Second, we introduce some additional notation. As before, we write ~x for a tuple of elements,
but abuse notation and also denote the set of elements in ~x by ~x, and, correspondingly, apply
set-theoretic operations on them, for instance, ~x ∪ ~y.

Further, for an integer ℓ, set I = {i1, . . . , i|I|} ⊆ {1, . . . , ℓ}, and tuples ~x = (x1, . . . , x|I|) and ~y,
we let an indexing for ℓ, I, ~x, ~y be a function ind : ~x ∪ ~y → {1, . . . , ℓ} such that for all j ∈ [1, |I|],
ind(xj) = ij . The indexing ind is proper if for all z, z′ ∈ ~x∪ ~y, ind(z) = ind(z′) if and only if z = z′.
Hence, a proper indexing ind associates elements of ~x to their corresponding elements in I, and
associates elements of ~y to elements of {1, . . . , ℓ} such that elements have the same index if and only
if they are equal. Notice that while the fact whether a function ind is an indexing only depends on
I and ℓ, whether it is proper depends on the actual values of ~x and ~y. However, this can easily be
tested by the following formula:

φind(~y, ~x) =
∧

z,z′∈~x∪~y
ind(z)=ind(z′)

z = z′ ∧
∧

z,z′∈~x∪~y
ind(z) 6=ind(z′)

z 6= z′

Given ~x and ~y and a proper indexing ind, we write (~x, ~y)ind for the sequence (u1, . . . , um), for
some m, such that (1) ~u contains every element in ~x ∪ ~y exactly once and (2) ind(ui) < ind(ui+1),
for all i ∈ [1,m− 1]. Hence, ~u is obtained from ~x ∪ ~y by eliminating elements which are equal (and
thus have the same index), and ordering the elements by their index. Further, we write ind(~y) to
denote the tuple (ind(y1), . . . , ind(ym)). Finally, for a type τ , and R(~i) /∈ τ , let τ +R(~i) denote the
type obtained from τ by removing ¬R(~i) and adding R(~i). When ¬R(~i) /∈ τ , τ + ¬R(~i) is defined
similarly by removing R(~i) and adding ¬R(~i).

We are now ready to give the update functions. For clarity, we write the ite(φ, t1, t2) construct
as “if φ then t1 else t2”. Then, for relation symbol R, ℓ-type τ , with ℓ ≤ k, and I ⊆ {1, . . . , ℓ}, let

φ
fI

τ

insR
(~y; ~x) ≡ f Iτ (~x)

+
∑

ind for ℓ,I,~x,~y
R(ind(~y))∈τ

if φind(~y; ~x) then f
I∪ind(~y)
τ+¬R(ind(~y))(~x, ~y)ind else 0

−
∑

ind for ℓ,I,~x,~y
¬R(ind(~y))∈τ

if φind(~y; ~x) then f I∪ind(~y)
τ (~x, ~y)ind else 0

and, similarly,

φ
fI

τ

delR
(~y, ~x) ≡ f Iτ (~x)

+
∑

ind for ℓ,I,~x,~y
¬R(ind(~y))∈τ

if φind(~y; ~x) then f
I∪ind(~y)
τ+R(ind(~y))(~x, ~y)ind else 0

−
∑

ind for ℓ,I,~x,~y
R(ind(~y))∈τ

if φind(~y; ~x) then f I∪ind(~y)
τ (~x, ~y)ind else 0.

Intuitively, both formulas compute the number of tuples with the given type τ in the same
manner: Take the number of tuples which used to have type τ , add those which obtained type τ by
the update, and remove the ones which had type τ , but do not anymore.
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We briefly explain the correctness of these formulas by arguing that after an update insR(~y) for
a tuple ~x the number of tuples which did not have type τ but do after the update is indeed equal to

the number computed on the second line of the update formula φ
fI

τ

insR
(~y; ~x).

Let ~a = (a1, . . . , al) be a disjoint tuple consistent with ~x and I, that is, for all j ∈ [1, |I|],
xj = aij . We denote the structure obtained from A after the update insR(~y) by A′. Now, suppose
〈A,~a〉 6= τ , but 〈A′,~a〉 = τ . This can only hold if ~y ⊆ ~a and thereby the insertion of R(~y) has

changed the type of ~a in A. More precisely, if we define ~k = k1, . . . , km such that for all j ∈ [1,m],

yj = akj
, then 〈A,~a〉 = τ + ¬R(~k) must hold. Notice also that ~k is uniquely defined because ~a is

disjoint. Now ~k, in turn, defines a proper indexing ind on ~x and ~y as follows: for all j ∈ [1, |I|],
ind(xj) = ij (by definition) and for all j ∈ [1,m], ind(yj) = kj . In this manner we can thus associate
a unique proper indexing to all tuples ~a which did not have type τ , but do now. Then, for any

indexing ind, the expression f
I∪ind(~y)
τ+¬R(ind(~y))(~x, ~y)ind defines exactly all such tuples with which ind is

associated. By iterating over all proper indexings we hence count exactly all desired tuples.
Finally, for the acceptance relation we have to check whether there is a tuple in the new structure

which has a type contained in θψ:

φACC
insR

(~y) ≡
∨

τ∈θφ

φ
f∅

τ

insR
(~y) 6= 0 and φACC

delR (~y) ≡
∨

τ∈θφ

φ
f∅

τ

delR
(~y) 6= 0.

7. CONCLUSION

We have studied the dynamic complexity of formal languages and, by characterizing the languages
maintainable in DynPROP as exactly the regular languages, obtained the first lower bounds for
DynPROP. This yields a separation of DynPROP from DynQF and DynFO. We proved that
every context-free language can be maintained in DynFO and investigated the power of functions
for dynamic programs in maintaining specific context-free and non context-free languages.

As a modest extension we also proved a lower bound for DynPROP with built-in successor
functions. Hence, we are now one step closer to proving lower bounds for DynFO, but, of course, a
number of questions arise:

—Can the results on the Dyck languages be extended to show that an entire subclass of the context-
free languages, such as the deterministic or unambiguous context-free languages, can be main-
tained in DynQF?

—We showed that D1 ∈ DynPROP(Succ,Rel). Can it be shown that D2 /∈ DynPROP(Succ,Rel)?

—Can some of the lower bound techniques for DynPROP be extended to DynQF, in order to
separate DynQF from DynFO, or at least from DynP? Is there a context-free language that is
not maintainable in DynQF?
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