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This paper explores Herbrand’s theorem as the source of a natural notion of abstract proof object
for classical logic, embodying the “essence” of a sequent calculus proof. We see how to view a

calculus of abstract Herbrand proofs (“Herbrand nets”) as an analytic proof system with syntactic
cut-elimination. Herbrand nets can also be seen as a natural generalization of Miller’s expansion

tree proofs to a setting including cut. We demonstrate sequentialization of Herbrand nets into

a sequent calculus LKH ; each net corresponds to an equivalence class of LKH proofs under
natural proof transformations. A surprising property of our cut-reduction algorithm is that it is

non-confluent, despite not supporting the usual examples of non-confluent reduction in classical

logic.
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1. INTRODUCTION

This paper is part of a program [Robinson 2003; Führmann and Pym 2006; 2007;
Lamarche and Strassburger 2005a; 2005b; Hughes 2006; Bellin et al. 2006] to un-
derstand or uncover the “essence” of proofs in classical logic; the mathematical ob-
jects represented by syntactic proofs. This problem traces its roots back to Hilbert’s
omitted 24th problem [Thiele 2001], which was concerned with “develop(ing) a the-
ory of mathematical proof in general”. Such a theory exists and is well-understood
for intuitionistic logic; it is provided by the Curry-Howard isomorphism and inter-
pretation in cartesian-closed categories [Lambek and Scott 1986]. Understanding
the mathematical theory of classical proof in a similar fashion is still an open
problem. Proofs in standard calculi, like the sequent calculus, do not satisfy as
mathematical objects, because the essence of a proof is hidden by “bureaucracy”:
proofs can differ by inessential matters such as the order of in which inferences are
applied. For this reason, one approach to uncovering the mathematical structure of
proofs is to find “abstract proofs” for classical logic, such that two abstract proofs
differ only if the arguments they embody are different. One important part of the
study of abstract proofs is cut-elimination: given an abstract proof of A implies B,
and an abstract proof of B implies C, is there an algorithm yielding an abstract
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proof of A implies C? Without discussing in detail the background of this problem
(we refer interested readers to the references above), we note that a large part of
the problem of representing this operation comes from the unrestricted power of
weakening in classical sequent calculus: the so-called “Lafont example” (described
in the appendices of [Girard et al. 1989]) uses weakening and cut-elimination as an
essential ingredient of an argument that there is exactly one classical proof of every
theorem. Avoiding this “collapse” is the first hurdle to be overcome in giving an
abstract notion of classical proof with cut-elimination.

Attention in these matters has been paid chiefly to the propositional fragment of
classical logic, but this paper looks instead at first-order logic, for which a notion of
“essence” is already given by one of the fundamental theorems of logic: Herbrand’s
theorem [Herbrand 1930]. In its simplest form, Herbrand’s theorem states that a
formula of first-order logic ∃x.A, where A is quantifier free, is provable if and only
if there exist ground terms M1, . . .Mn such that

� A[x := M1] ∨ · · · ∨A[x := Mn].

This simple form of Herbrand’s theorem gives a counterpart in classical logic to the
existence property of intuitionistic logic: a classical proof of an existential statement
does not consist of a single witness, but a (multi)set of candidate witnesses, plus
a proof that at least one of them is an actual witness. From a given proof of an
existential statement we can extract such a multiset of witnesses, and terms of
the “essence” of proofs, it is the point of view of this paper that two proofs of an
existential statement have the same essential content if and only if they yield the
same multiset of witnesses.

It is well known that a more general “Herbrand’s theorem” for formulae in prenex
normal form follows directly from Gentzen’s cut-elimination theorem [Gentzen
1934], or more properly the midsequent theorem (see for example [Troelstra and
Schwichtenberg 1996]). The midsequent theorem is usually stated in terms of per-
mutability of inference rules, but it can be more succinctly stated as follows:

Theorem 1.1 Midsequent theorem. The cut-free sequent system given in
Fig. 1 is complete for sequents of prenex formulae.

(This statement of the midsequent theorem seems to be novel, although a similar
sequent system containing weakening occurs in [Heijltjes 2010]) A proof of a prenex
formula q1. . . . .qn.B in this calculus yields a set of instantiated versions of B whose
disjunction is a tautology: thus the completeness of this calculus can be seen, in
itself, as a statement of Herbrand’s theorem for prenex formulae. Indeed, a proof
in LKH is, essentially, the same as an Herbrand proof as formulated by Buss [Buss
1995].

It can be argued (see for example [Hetzl et al. 2008]) that all the mathematically
interesting information in a proof in first-order logic is contained in the witnesses
used to instantiate the existential quantifiers, and that all other information in
the proof is irrelevant to that essence. In particular, two proofs differing only by
permuting instances of rules have the same essence. In [Miller 1987], expansion-
tree proofs were introduced as a formalization of this informal notion of essence:
a “Compact Representation of Proofs” in which the inessential details regarding
the order of application of rules is discarded. In this paper, we take expansion-tree
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�
∨
Pi

` P1, . . . , Pn

` Γ, A[x := a]
∀

` Γ,∀x.A

` Γ, A[x := M ]
∃

` Γ, ∃x.A

` Γ, ∃x.A, ∃x.A
C∃

` Γ,∃x.A

Fig. 1. A “midsequent calculus” LKH , sound and complete for prenex classical logic (here the Pi
are quantifier-free formulae)

proofs (for first-order logic) and study them as abstract proof objects in the spirit
of the program mentioned above.

Classical sequent proofs are very badly behaved under unrestricted cut-elimination.
Cut-elimination is neither confluent nor (and this is more serious) strongly normal-
izing, and because of this a proof may in general have infinitely many syntactically
different normal forms, where normal means cut-free. Without a notion of equality
on proofs (which would be given by a good notion of essence) it is difficult to say
whether these different normal forms correspond to genuinely different proofs. On
the other hand, the typical examples of bad behaviour in Gentzen’s system (as de-
tailed in [Girard et al. 1989] and [Girard 1991]) arise where both cut-formulae are
the main formula of a structural rule, leading to critical pairs. Observing LKH ,
we can see that such an opposition of structural rules cannot occur: weakening is
absent, and contraction applies only on existentially quantified formulae. We might
hope, therefore, that cut-elimination in the Herbrand setting is better behaved than
in the general setting — in particular, we cannot form the Lafont example in LKH .

We study this question, in this paper, by considering expansion-tree proofs con-
taining cuts, for the restricted case of first-order logic. These proofs with cuts are
an example of proof nets [Girard 1996], in the sense that they can be studied using
the standard toolkit of techniques for dealing with Linear Logic proof nets [Danos
and Regnier 1989]. We call this calculus of proof nets Herbrand nets. We show that
these nets correspond to proofs in LKH , giving a correctness criterion for Herbrand
nets and a sequentialization theorem. We then develop the theory of cut-elimination
inside the Herbrand nets calculus, showing weak normalization, and demonstrate
a new counterexample to confluence of cut-reduction which does not rely on the
opposition of structural rules in a cut. Since cut-reduction in Herbrand nets lifts
to LKH , the counterexample applies there too, showing that the orientation of
critical pairs in classical logic is not enough to guarantee confluence: one must also
restrict the permutability of inference steps as in the CBV and CBN fragments of
λ̄µµ̃ [Curien and Herbelin 2000], and in LKtq [Danos et al. 1997].

1.1 Related work

Strassburger [Strassburger 2009] has adapted expansion tree proofs to give a notion
of proof net for second-order propositional MLL. Proof objects similar to those
we present here are also studied in Heijltjes (under the name “Forest proofs”)
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[Heijltjes 2010], but from a rather different perspective. We will discuss in depth
the differences in these two pieces of work later: for now we simply state that our
two approaches represent two different ways to repair an intuitive but flawed idea for
cut-elimination in expansion-tree proofs. Similar connections between Herbrand’s
theorem and abstract proof objects for predicate logic were suggested in [Hughes
2006].

2. PRELIMINARY DEFINITIONS

2.1 Prenex formulae of classical first-order logic

A signature Σ = (VS,FS,PS) consists of a countable set VS of variable symbols,
a countable set FS of function symbols, together with a function ar (arity) from
FS to the natural numbers, and a countable set PS of predicate symbols, together
with a function Ar from PS to the natural numbers. A constant of a signature Σ is
a function symbol with arity zero. We will use metavariables x, y, z, a, b to denote
variable symbols, f, g to denote function symbols, and p, q to denote predicate
symbols. The first-order terms of Σ are given by the following grammar:

M ::= x | f(M1, . . .Mar(f)).

Given a term M , the free variables of M (written free(M)) are defined as follows:

free(x) = {x},

free(f(M1, . . .Mn)) = free(M1) ∪ · · · ∪ free(Mn).

An atomic formula is a tuple consisting of a polarity from {+,−}, a predicate
symbol p of arity n, and n terms M1, . . .Mn. We will write an atomic formula
(+, p,M1, . . . ,Mn) as p(M1, . . .Mn), and an atomic formula (−, q,N1, . . . , Nn) as
q̄(N1, . . . Nn).

The quantifier-free formulae (QFFs) are generated from the atomic formulae
using the connectives ∧ and ∨:

P,Q := p(M1, . . .MAr(p)) | p̄(M1, . . .MAr(p)) | (P ∨Q) | (P ∧Q)

Notice that we give no explicit connective for negation; instead we present formulae
in negation normal form. Each formula A has a dual formula Ā defined by De
Morgan duality :

p(M1, . . .Mn) = p̄(M1, . . .Mn) p̄(M1, . . .Mn) = p(M1, . . .Mn)

(P ∨Q) := (P̄ ∧ Q̄), P ∧Q := P̄ ∨ Q̄.

A formula in prenex normal form (or prenex formula for short) is a member of
the following grammar, where x ranges over the variables in VS and P over QFFs:

A ::= P | ∃x.A | ∀x.A

The dual of a prenex formula is defined, as for QFFs, using De Morgan duality:

∀x.A := ∃x.Ā, ∃x.A := ∀x.Ā

The rank of a prenex formula is the number of quantifier instances in its prefix.
The bound and free variables of a prenex formula are defined as usual: we use the
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notation free(A) and bound(A) to denote the sets of free and bound variables of
a formula A. Notice that, because of the way prenex formulae are built, for any
prenex formula A we have free(A) ∩ bound(A) = ∅. We will use the notation
A[x := M ] for the usual notion of substitution of a first-order term M for a variable
x in a formula A.

3. EXPANSION TREES AND αε-FORESTS

As representations of proofs, sequent proofs (for example in LKH) are unsatisfac-
tory in the sense that they lack canonicity. This manifests in the order of appli-
cation of rules; we can find two proofs of the same formula which differ only by
a permutation of two non-interfering rules. Miller’s expansion-trees [Miller 1987]
provide a better notion of abstract proof, where the linear ordering on quantifier
occurrences induced by an LKH derivation is replaced by a dependency relation
induced by quantifier nesting and variable dependencies. An expansion-tree forms
an expansion-tree proof of a prenex formula if the dependency relation induced is
irreflexive: that is, irreflexivity of the dependency relation is a correctness crite-
rion for expansion-tree proofs. Expansion-tree proofs provide a form of abstract
proof only for cut-free proofs, and there is no existing notion of cut-reduction on
expansion-tree proofs. In the following section, we give a reformulation of expan-
sion tree proofs (restricted to the case of first-order prenex formulae), extended to
account for multiple conclusions and the presence of cuts. We call this extended
calculus Herbrand nets, since as we will see they are closely related to Girard’s
proof nets for linear logic. We discuss in the conclusion of the paper the possibility
of extending this generalization to the full range of logics captured by expansion-
tree proofs (including non-prenex formulae and higher-order quantification). In
the presence of cuts, acyclic dependency is not enough to check correctness; in the
section following this one, we will use an adapted form of proof-net correctness to
identify the correct proofs.

3.1 αε terms

In this section we define αε-terms, which consist of the expansion-trees (a refor-
mulation of Miller’s expansion trees for the prenex first-order fragment of classical
logic), cuts, and witnessing terms. These trees will form the basis of the Herbrand
nets we will define later.

Theorem 1 αε terms. Let Σ = (VS,FS,PS) be a signature, and let I be a
countable set of indices. The αε terms t, . . . over (Σ, I) (consisting of the expansion
trees p, . . . , cuts c, . . . , and witnessing terms w, . . . ) are given by the following
grammars:

t := e | w | c

p := S | α[a].e | (w + · · ·+ w)

w := ε[M ].e

c := e ./ e

where S is a nonempty finite set of indices, M is a first-order term over the signa-
ture, a ∈ VS, and (w + · · ·+w) denotes a finite nonempty formal sum (a member
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of the free commutative semigroup over w). A non-cut term is either an expansion
tree or a witnessing term.

Remark 1. Expansion-tree proofs were introduced to give a higher-order analogue
of Herbrand’s theorem (where one cannot rely on Skolem functions or a restriction
to formulae in prenex normal form). Why then do we only consider expansion-trees
for first-order prenex formulae? Our goal is to find abstract proofs which can be seen
as the underlying objects of a sequent calculus, and on which operations such as cut-
reduction can be performed directly, without needing to translate back to the sequent
calculus. This works for prenex formulae, because there is a strong connection
between LKH derivations and expansion trees. This strong connection is lost once
we move to the setting of full first-order logic: a sequent calculus corresponding to
general Herbrand proofs require some deep contraction (contraction of existential
subformulae; this can be seen in Miller’s original paper), about which very little can
be said in terms of structural proof theory; certainly, syntactic cut-elimination for
such a system would be very challenging. For this reason, we concentrate on the
prenex fragment in this paper. We give some perspectives on moving beyond that
fragment in the conclusions of the paper.

The witnessing terms represent the components of (generalized) Herbrand dis-
junctions. We make an explicit distinction between the witnessing term ε[M ].t and
the expansion tree (ε[M ].t). We will refer to a witnessing term not in the scope of
a semigroup + as a naked witness.

Remark 2. The reader might wonder why we have a commutative semigroup
rather than commutative monoid structure on expansion trees: why are we not
allowed to form the empty formal sum as a expansion tree? Nontrivial expansions
(containing more than one witness) correspond to contraction in the sequent cal-
culus: similarly, allowing empty expansions would amount to explicit weakening in
our sequent calculus, and in the proof nets we will form from αε terms. Weakening
is notoriously difficult to handle well in proof nets; in this setting explicit weaken-
ing is not necessary, and we avoid the problems that weakening usually causes for
classical proof nets.

3.2 Typing αε-terms

We now assign types to these terms. Note that a typing judgement t : A should
not be seen as a proof of A, just as a proof-structure in MLL with conclusion Γ is
not a proof of Γ. The type of an expansion tree is always a prenex formula. The
witnessing terms and cuts receive special non-logical types:

Theorem 2. A type over a signature Σ = (VS,FS,PS) is either

(a) A logical type: a formula of classical predicate logic in prenex normal form
over the signature; or

(b) a non-logical type, of which there are two kinds:
i A witness type, written 〈∃x.A〉, where ∃x.A is a formula in prenex normal

form; or
ii A cut type: a pair of dual formulae of classical logic in prenex normal

form, written A ./ Ā.
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i1, . . . in ∈ I

{i1, . . . in} : P

t : A[x := a]

α[a].t : ∀x.A

t : A[x := M ]

ε[M ].t : 〈∃x.A〉

w1 : 〈∃x.A〉, . . . , wn : 〈∃x.A〉

(w1 + · · ·+ wn) : ∃x.A

t : A s : Ā

t ./ s : A ./ Ā

Fig. 2. Typing derivations for αε terms

We will occasionally need to refer to a type without specifying if it is logical or
non-logical: in that case we will use a capital T , reserving A,B, . . . for those types
which are prenex formulae.

We use the witness types to distinguish between a witness, ε[M ].s, which receives
a witness type, and the expansion tree (ε[M ].s), which receives a logical type. We
make this distinction because it will force our proof-nets to have canonical n-ary
contractions. Each non-logical type has an underlying logical type:

Theorem 3. The underlying type of a witness type 〈∃x.A〉 is ∃x.A. The under-
lying type of A ./ Ā is A. The free/bound variables free and bound of a witness/cut
type are the free/bound variables of its underlying type. We define substitution into
witness/cut types in the obvious way

〈∃x.A〉[y := M ] = 〈∃x.A[y := M ]〉

(A ./ Ā)[y := M ] = A[y := M ] ./ Ā[y := M ]

Theorem 4. A typed term is a pair t : T of a term t and a type T , derivable in
the typing system given in Fig. 2.

There are some terms that cannot be typed, for simple reasons. For example, the
term α[a].t ./ α[b].s can never be well-typed: a type for a term beginning with an
α must be a formula of the form ∀x.A, and two such formulae can never be dual.

Example 1. The following is a well-typed term, which will be an important exam-
ple for us for the rest of the paper. Its type is the drinker’s formula(“in every bar,
there is a patron such that, if she drinks, then everyone drinks”): for that reason
we will call it D, the drinker’s term:

D = (ε[c].α[a].{1} + ε[a].α[b].{1}) : ∃x.∀y(Ā(x) ∨A(y))

The construct α[a] should be thought of as binding a: thus we have the notion
of α-bound and α-free variables:
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Theorem 5. Let t : T be a typed term. We define two sets of variables boundα(t : T )
(the variables α-bound in t : T ) and freeα(t : T ) (the α-free variables of t : T ) as
follows:

(a) The variable a is a member of boundα(t : T ) if and only if t has a subterm of
the form α[a].s.

(b) The set freeα(t : T ) is defined as follows:

—freeα(S : P ) = free(P )
—freeα(α[a].t : ∀x.A) = freeα(t : A[x := a]) \ {a}
—freeα(ε[M ].t : 〈∃x.B〉) = freeα(t : B[x := M ]) ∪ free(M)
—freeα((t1 + · · ·+ tn) : ∃x.B) = freeα(t1 : 〈∃x.B〉) ∪ · · · ∪ freeα(tn : 〈∃x.B〉)
—freeα(t ./ s : A ./ Ā) = freeα(t : A) ∪ freeα(s : Ā)

Example 2. For the typed expansion tree t : A below,

t : A = (ε[b].α[a].(ε[a].{1})) : ∃x.∀y.∃z.P (x, y, z, w)

if {x, y, z, w} is the set of free variables of the QFF P (x, y, z, w), then freeα(t : A) =
{b, w} and boundα(t : A) = {a}.

An expansion-tree proof, in the sense of Miller, is a single tree t and proves a
single formula A. We will need to extend this idea to forests of expansion trees, or
more generally, forests of expansion-trees, witnesses and cuts. Such forests of typed
terms will play for us the role of proof-structures; objects which locally have the
structure of a proof, but which might not satisfy our correctness criterion. However,
not every forest of typed terms can be regarded as a proof structure: for example,
the correctness criterion we define will rely on there being at most one subterm of
the form α[a].t for each variable a — that is, we will need a form of eigenvariable
condition. The following definition pins down our notion of proof-structure, the
αε-forests:

Theorem 6. Let F be a forest built from typed terms.

(a) A variable a is α-bound in F (a ∈ boundα(F )) if it is in boundα(t : A), for
some term (t : A) in F .

(b) The variable a is α-free in F (a ∈ freeα(F )) if it is in freeα(t : A), for some
term (t : A) in F , and not α-bound in F .

(c) F is an αε-forest if

i each occurrence of α[a] in F is associated with a unique eigenvariable a,
and

ii for each non-cut root t : A of F , boundα(F ) ∩ free(A) = ∅.

Each αε-forest has a type: the multiset consisting of the types of its non-cut roots.
Given an αε-forest, denote by IndF the set of tautology indices occurring in F .
We consider αε-forests modulo the renaming of eigenvariables, and also modulo the
renaming of tautology indices. We use the notation [a← b] to denote the renaming
of an α-bound variable, and [i← j] for the renaming of an index i.
We use the shorthand (t : T )[a ← b] for t[a ← b] : T [a := b] (note that a may
only appear in T if T is a cut type; otherwise t and t[a ← b] have the same
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type). Define the renaming of a variable in an αε-forest pointwise on its roots: if
F = t1 : T1, . . . , tn : Tn is an αε-forest, then

F [a← b] := (t1 : T1)[a← b], . . . , (tn : Tn) : [a← b]

and

F [i← j] := (t1 : T1)[i← j], . . . , (tn : Tn) : [i← j].

We will use the following notation for renaming a set of variables/indices occurring
in an αε forest:

Theorem 7. Let V = v1, . . . , vn be a set of variable symbols, and I = i1, . . . , im

a set of tautology indices occurring in an αε forest. Let Vi = v1j , . . . , v
n
j be sets

of variable symbols and Ij = i1j , . . . , i
m
j be sets of indices, for j ∈ {0, 1} such that

V0 ∩ V1 = ∅, I0 ∩ I1 = ∅, and such that no member of Vj or Ij occurs in F . Then
define

τj(t) := t[v1 ← v1j ] . . . [vn ← vnj ][i1 ← i1j ] . . . [i
m ← imj ]

Suppose that F is an αε-forest containing a cut α[a].t ./ (ε[M ].s). The intuitive
explanation of the cut is a pending communication: during cut-elimination, the
witness M , will be substituted everywhere for the eigenvariable a.

Theorem 8. Let F be a αε-forest, a a variable with a /∈ boundαF , and M a
term with free(M) ∩ boundα(F ) = ∅. We define an operation [a := M ] (substitute
M for a) on αε-forests F such that a /∈ boundα(F ). On witnessing terms, of the
form ε[N ].t, the substitution applies inside the instantiating first-order term M and
in the remaining subterm t:

ε[N ].t [a := M ] = ε[N [a := M ]].(t[a := M ])

Substitution is pushed past all the other term constructors, as follows:

S[a := M ] = S

(α[d].t)[a := M ] = α[d].(t[a := M ])

(t1 + · · ·+ tn)[a := M ] = (t1[a := M ] + · · ·+ tn[a := M ])

(t ./ s)[a := M ] = t[a := M ] ./ s[a := M ]

Finally, F [a := M ] is defined as the pointwise substitution of M for a in each term
of F .

By induction on the structure of typing derivations, we obtain:

Proposition 3.1. If t can be assigned type T , then t[a := M ] can be assigned
type T [a := M ].

4. HERBRAND NETS

The correctness problem for a class of proof structures is the problem of providing
an algorithm singling out just those structures arising from a sequential derivation
– a correctness criterion. In our setting, this amounts to giving a function from
LKH derivations to αε-forests, and a criterion identifying just those αε-forests
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arising from an LKH derivation. In this section, we define such a criterion, and
prove it has the sequentialization property: from any F satisfying our criterion, we
can recover a sequent derivation yielding F . The techniques we use are, in most
cases, minor variations on standard techniques for first-order MLL without units;
where proofs are more than a few lines long, we present them in Appendix A.

4.1 αε-forests as proof structures

We consider proof structures to be forests with links – a relation on the subtrees of
the forest. The links on an MLL proof net are simply the axiom links connecting
dual atoms. The linking structure on an αε-forest is given using jumps [Girard
1996]. If the variable x appears free in a first-order term M , there is a jump from
each ε[M ] to the alpha node binding x. This jump indicates that, in a sequent
derivation of F , the existential rule introducing the ε[M ] must occur above the
universal rule introducing the α[a] in any sequentialization. Less obviously, we
also need jumps from cuts: if the variable a is free in the type of a cut, then
that cut must occur above the rule binding a. The usual axiom links of proof
nets, linking two dual formulae, are replaced in Herbrand nets by something more
general: the information contained at the leaves of an αε-forest plays the role of
generalized axiom links. This generalization is two-fold: each “tautology link” (each
index appearing in a set at some leaf) may have an arbitrary (finite) number of
conclusions, and (because of contraction) each leaf may be connected to several
such links. We also represent this information with jumps, which behave similarly
to the quantifier jumps. We will call this graph with jumps the dependency graph
of the forest.

Theorem 9. Let F be an αε-forest with the eigenvariable property. The depen-
dency graph Dep(F ) of F is a labelled directed graph whose vertices are:

(a) The occurrences of subterms of F , plus

(b) one tautology node for each tautology index i ∈ IndF , labelled with i.

The edges of Dep(F ) are the edges of F considered as a directed graph (with edges
directed toward the roots), plus the jumps:

—An edge from ε[M ].s to α[a].t whenever a ∈ free(M);

—An edge from t ./ s : A ./ Ā to α[a].u whenever a ∈ free(A)

—An edge from the vertex i to each leaf S of F with i ∈ S.

When drawing the dependency graph, we use red curved arrows to represent
jumps and red labels for the tautology vertices; the black, straight arrows and
black vertices represent the underlying forest structure. We refer to the vertices
of the dependency graph as nodes. The nodes fall into several families; S is a
propositional node, α[a].t an α-node, ε[M ].t an ε-node, and (w1 + · · · + wn) an
expansion node.
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Example 3. The dependency graph of the drinker’s term D is

1

{1} {1}

α[a] α[b]

ε[c] ε[a]

+

∃x.∀y.(Ā(x) ∨A(y))

Example 4. The dependency graph of the αε-forest

{1, 2} : P, {1, 2} : P̄ , P ./ P̄

is

1 2

{1, 2} {1, 2} {1} {2}

./

P P̄ P ./ P̄

The dependency graph induces a relation (which we call dependency) on the
nodes of an αε-forest: we will write t C s when t and s are subtrees of F and there
is a directed path from s to t in the dependency graph of F .

4.2 Correctness

We use a variation on the well-known ACC (ACyclic Connected) criterion [Danos
and Regnier 1989] to define correctness. The criterion as given is exponential (we
can decide in exponential time if a given αε-forest is ACC correct), but it is known
that correctness for this kind of proof-net is actually NL-complete [de Naurois and
Mogbil 2007]. Of course, checking that a given F is an Herbrand net can be much
worse than polynomial, depending on the theory over which we work: in particular,
if there are no non-logical axioms in our theory then checking correctness is co-NP
complete.

The crucial notions in ACC correctness are the switching and the switching graph,
which in our setting are defined for strict typed forests (and not just annotated
sequents) as follows:

Theorem 10. Let F be an αε-forest.

(a) The switched nodes of F are the subterms of the form α[a].t′, (t1 + · · · + tn),
or S. All other nodes of F are unswitched.

11



�
n∨
j=1

Pj

i
{i} : P1, . . . , {i} : Pn

F, t : A[x := a]
∀

F, α[a].t : ∀x.A

F, t : A[x := M ]
∃

F, (ε[M ].t) : ∃x.A

F, t : ∃x.A, s : ∃x.A
C∃

F, t+ s : ∃x.A

F, S : P, T : P
CP

F, S ∪ T : P

F, t : A G, s : Ā
Cut

F, G, t ./ s : A ./ Ā

Fig. 3. LKαε
H : An annotated sequent calculus for prenex classical logic

(b) A switching σ of F is a choice of, for each switched node t of F , exactly one
incoming edge for t in Dep(F ).

(c) The switching graph Fσ of a switching σ is the undirected graph derived from
Dep(F ) by deleting, for each switched node t, all edges coming into t except
that chosen by the switching, and then forgetting directedness of edges.

Theorem 11. an αε-forest F is ACC-correct (or just ACC), if for each switch-
ing σ, Fσ is connected and acyclic.

In addition to checking ACC correctness, we also need to check that the disjunc-
tion of the formulae arising from a tautology index is really a tautology:

Theorem 12. Let F be an αε-forest, and let i be a tautology index appearing in
F . The formula Fi is defined as follows:

Fi =
∨
{A | (S) : A is a propositional node in F, i ∈ S}

Theorem 13. An annotated sequent F is an Herbrand net if is ACC-correct,
has no naked witnesses, and if for each tautology index i in F , we have T � Fi.

Proposition 4.1. (a) F, α[a].t : ∀x.A is ACC correct iff F, t : A[x := a] is ACC
correct and a /∈ freeα(F ).

(b) F, (w1 + · · ·wn) : ∃x.A is ACC correct iff F,w1 : 〈∃x.A〉, . . . wn〈∃x.A〉 is ACC
correct.

(c) F, S : P is ACC correct iff F is ACC correct.

Proof. An easy application of the definition of correctness; in each case, we
add/remove a switched node which is a root. This cannot affect either connected-
ness or cyclicity of the switching graph.

12



4.3 Decorating sequent derivations with terms

To make explicit the connection between sequential proofs and proof nets, we must
give a function from sequent proofs to proof nets. We do this by using αε terms
to decorate the formulae appearing in sequent proofs, similarly to how one may
assign lambda terms to proofs of intuitionistic logic. This annotated LKH is given
in Fig. 3. The rules of annotated LKαε

H operate not on sequents, but on αε-forests
whose types are classical sequents. In order to ensure that the conclusion of a
sequent proof s an αε-forest, we must use eigenvariables strictly : each instance of
the universal quantifier should have a unique associated eigenvariable, and that
eigenvariable should appear free only in the subproof above the rule introducing
that quantifier. We must also insist that each instance of the tautology rule has a
unique index.

Theorem 14. A derivation in LKαε
H is a tree built from rule instances from Fig.

3, with instances of the tautology rule at the leaves. A derivation Φ is strict if

(i) each tautology rule in Φ is labelled with a distinct index i,

(ii) An eigenvariable a does not appear free in the type of any sequent outside the
subproof above the rule introducing α[a].

We write LKαε
H ` F if there is a strict derivation in LKαε

H of F .

Note that case (ii) in the above definition ensures that eigenvariables are used
strictly in the usual sense, and additionally enforces the usual variable restriction
on the rule for the universal quantifier.

Remark 3. The annotated system LKαε
H provides a canonical function from LKH

proofs to αε-forests (modulo renaming of indices). Such a canonical function does
not exist for Robinson’s proof nets [Robinson 2003], owing to the presence of weak-
ening; by working in the absence of weakening, we avoid this problem.

Example 5. Let Σ contain the unary predicate A and a constant symbol c. Recall
the drinker’s term D (Example 1):

D = (ε[c].α[a].{1}+ ε[a].α[b].{1}) : ∃x.∀y(Ā(x) ∨A(y)) (15)

D is the conclusion of the derivation below:

1
{1} : Ā(c) ∨A(a), {1} : Ā(a) ∨A(b)

∀R
{1} : Ā(c) ∨A(a), α[b].{1} : ∀yĀ(a) ∨A(y)

∃R
{1} : Ā(c) ∨A(a), (ε[a].α[b].{1}) : ∃x.∀y(Ā(x) ∨A(y))

∀R
α[a].{1} : ∀y(Ā(c) ∨A(y)), (ε[a].α[b].{1}) : ∃x.∀y(Ā(x) ∨A(y))

∃R
(ε[c]α[a].{1}) : ∃x.∀y(Ā(x) ∨A(y)), (ε[a].α[b].{1}) : ∃x.∀y(Ā(x) ∨A(y))

C∃
(ε[c].α[a].{1} + ε[a].α[b].{1}) : ∃x.∀y(Ā(x) ∨A(y))

(16)

The following result immediately gives completeness of Herbrand nets with respect
to prenex classical logic:

13



Proposition 4.2. The conclusion of any LKαε
H derivation is an Herbrand net.

Proof. By induction on the tree-structure of an LKαε
H proof.

Two derivations in annotated LKαε
H derive the same Herbrand net if and only if

they can be derived from each other by a sequence of natural proof transformations:

Theorem 4.3. If Φ and Ψ are annotated LKαε
H derivations of the same Her-

brand net F , then there is a sequence Φ0 = Φ,Φ1, . . . ,Φn = Ψ of derivations of F
such that Φn differs from Φn+1 by either

—a permutation of two consecutive, non-interfering sequent rules:

—the re-association of two consecutive contraction rules

F, s : ∃x.A, t : ∃x.A, u : ∃x.A
C

F, s+ t : ∃x.A, u : ∃x.A
C

F, s+ t+ u : ∃x.A

−→

F, s : ∃x.A, t : ∃x.A, u : ∃x.A
C

F, s+ u : ∃x.A, t : ∃x.A
C

F, s+ t+ u : ∃x.A
and similarly for contractions on QFFs

—the absorption of a contraction on a QFF into a tautology rule, or its reverse

i
G, {i} : P, {i} : P

C
G, {1} : P

←→ i
G, {i} : P

Proof. Suppose Φ and Ψ are not identical sequent derivations. Then there is a
branch D of Φ on which Ψ does not agree. Let ρ0 be the last rule instance on D,
counting from the root of Φ, for which Φ and Ψ agree, and let ρ′, the first rule on
D on which Φ and Ψ disagree, introduce the term t : A. Assume first (since this
case is easier) that ρ′ is not a contraction. Since Φ and Ψ agree up to ρ, there is a
rule instance ρn above ρ in Ψ introducing t, with rule instances ρ1 . . . ρn−1 between
ρn and ρ. We prove the lemma by induction on the largest such n, for any branch
of Φ. First, suppose that ρn is a universal inference; then it can clearly be moved
below ρn−1. Now suppose ρn is a cut. If ρn−1 is a cut or an existential inference,
then ρn can be moved below ρn−1. If ρn−1 is a universal inference, then it can be
moved above ρn if and only if its eigenvariable a is not free in the main formulae
of ρn. But the corresponding rule to ρn− 1 in Φ appears above ρ′; by strictness
a cannot appear free in the premise of ρ′, and so also cannot appear free in the
premise of ρn. A similar argument works where ρn is an existential inference.

Now suppose that ρ′ is a contraction on an existentially quantified formula, in-
troducing an n-ary expansion t = (w1 + · · ·+wn). We can permute the contraction
inferences in Φ involving the wi’s down until they all occur, in a block, ending with
ρ′ – call this proof Φ′. We can do the same with Ψ, and then apply re-association
and of contractions so that the contraction inferences above t is the same as in
Φ′ – call this proof Ψ′. Φ′ and Ψ′ now agree on a the block of contractions, and
we may apply the induction hypothesis to find a sequence of permutations and
re-associations from Φ′ to Ψ′.

Finally, suppose that ρ′ is a contraction on a QFF. Let S, the term ρ introduces,
be a set containing indices i1, . . . in. As above, permute all the contractions on
ancestors of S down, so they occur in a block above ρ0, both in Φ and in Ψ; call
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these proofs Φ′ and Ψ′. The Herbrand net derived before the block of contractions
is, in both proofs: a context G and then a number of copies of each {ij}; however,
the number of copies of {ij} may be different in the different proofs. Now re-
associate the contractions appearing in Φ′ and Ψ′, so that at first we only perform
contractions of the form

G, {i} : P, {i} : P
C

G, {i} : P
(17)

Call these proofs Φ′′ and Ψ′′. This leads, in both proofs, to a block of contractions
of the kind shown in (17), with conclusion G, {i1} : P, . . . {in} : P , containing
only one copy of P for each tautology index. The contractions of the form shown
in (17) can be pushed towards the tautology links, where they can be removed by
absorbing them into the tautology. This then leaves n− 1 instances of contraction
above ρ0, which can be re-associated so they give the same contraction tree in both
proofs.

4.4 Subnets of Herbrand Nets

We now define an analogue of the notion of subproof for Herbrand nets. While the
definition of subnet is rather easy for MLL− proof nets, the presence of contraction
leads to a less intuitive notion for Herbrand nets.

Theorem 18 Subnet. Let F be an αε-forest which is ACC-correct. A subnet
of F is a subforest G of F closed under dependency (if s ∈ G and s C t then t ∈ G)
which itself satisfies ACC. Each root of G inherits a type from the typing derivation
of the term of which it is a subterm; the type of a subnet is the multiset consisting
of the types of its non-cut roots.

Notice that we do not require that a subnet of an Herbrand net is an Herbrand
net; it might contain naked witnesses, and its indices need not yield tautologies.
For example, Fig. 4 shows three subnets of the drinker’s term, none of which are
Herbrand nets. As another example, consider the following immediate consequence
of the definition of subnet

Proposition 4.4. Let F be an ACC-correct αε-forest, and let {i} be a leaf of
F . Then the subforest consisting of just the node {i} is a subnet of F .

There is a strong connection between subnets of an Herbrand net and subproofs of
its sequentializations, which we will see once we have proved sequentialization.
The largest and smallest subnets containing a particular subterm are of particular
interest:

Theorem 19. Let F be an ACC-correct αε-forest, and let t be a node in F . The
empire e(t) of t in F is the largest subnet of F having t as a root. The kingdom
k(t) of t in F is the smallest subnet having t as a root.

The following is proved in Appendix A:

Corollary 4.5. Every node in F has a kingdom and an empire.

The kingdom of a node has a particular structure:
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{1} {1}

α[a] α[b]

ε[c] ε[a]

+

∃x.∀y.(Ā(x) ∨A(y))

{1} {1}

α[a] α[b]

ε[c] ε[a]

+

∃x.∀y.(Ā(x) ∨A(y))

{1} {1}

α[a] α[b]

ε[c] ε[a]

+

∃x.∀y.(Ā(x) ∨A(y))

Fig. 4. Three subnets of the drinker’s term

Proposition 4.6. Let t be a node of an ACC-correct αε-forest F , and let G, t
be its kingdom. Then the roots of G are either witnesses or cuts.

Proof. By Prop. 4.1, if a root of G has any other form, we can find an ACC-
correct subforest of G, t with t as a root, contradicting minimality of the king-
dom.

The following relation will be the key to our sequentialization and cut-elimination
results.

Theorem 20. Let F be an ACC-correct αε-forest. We define a relation � on
the nodes of F as follows: t� s if t ∈ k(s).

If t is a node of an Herbrand net F , we can think of the nodes s such that s� t
as the inference steps that must occur in any sequent derivation of F above the
rule introducing t.

Proposition 4.7. The relation� is a partial order on the subterms of an ACC-
correct αε-forest.

Proof. See Appendix A.

4.5 Sequentialization

We now establish that every Herbrand net arises as the conclusion of an LKαε
H

derivation. The proof that this is the case will be an induction using the following
measures:

Theorem 21. Let F be an Herbrand net.

(a) The size s(F ) of F is the number of α, ε and ./ nodes in F .

(b) The width w(t) of an expansion node t = (w1 + · · ·+wn) in F is n. The width
w(s) of a propositional node s = S in F is the cardinality of S.

The w-rank w(F ) of an Herbrand net F is
∑
t(w(t) − 1), where t ranges over all

expansion nodes and propositional nodes of F .

We show that all nets may be sequentialized by induction on s(F ) + w(F ). Our
base case is where s(F ) = 0 (in which case w(F ) is also 0):
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Proposition 4.8. If F is an Herbrand net of size 0 (i.e. it contains no α, ε or
./ nodes) it is the conclusion of the tautology rule of LKαε

H .

Proof. Since F contains no ./ nodes, and is a net, it can contain only one
tautology index i. So F has the form {1} : P1, . . . , {1} : Pn, with

∨
Pi a tautology

(since F is an Herbrand net).

In cases of non-zero measure, we look for a rule of LKαε
H whose conclusion is

F and whose premisses are also Herbrand nets – the form of the rules of LKαε
H

guarantees that the measure of each of the premisses is lower than the measure of
the conclusion.

Theorem 22. Let F be an Herbrand net, and let t : A be a root of F . The root t
is a gate of F if and only if there is a rule instance of LKαε

H , with F as conclusion,
with t : A as the active root in the conclusion, and with premisses that are also
Herbrand nets.

If the sequent F contains a formula introduced by a universal inference rule or a
contraction, then that formula is always a gate of F .

Proposition 4.9. Let F be an Herbrand net.

(a) If F = F ′, α[a].t : ∀x.A is an Herbrand net, then G = F ′, t : A[x := a] is also
an Herbrand net.

(b) If F = F ′, s1 + s2 : ∃x.A, then G = F ′, s1 : ∃x.A, s2 : ∃x.A is also an Herbrand
net.

(c) If F = F ′, S1 ∪ S2 : P then G = F ′, S1 : P, S2 : P is also an Herbrand net.

Proof. Follows immediately from Prop. 4.1.

The difficulty lies in knowing when to apply the non-invertible rules of LKαε
H : the

existential rule and the cut-rule. The main work of the rest of this section will be
to show that each Herbrand net has a gate. We will use the notions of kingdom,
empire, and the relation �, defined in the previous section. The backbone of the
proof is the following characterization of the gates of an Herbrand net:

Proposition 4.10. Let F, t : T be an Herbrand net

(a) If t is of the form α[a].t, {w1, . . . wn} or a non-singleton set S, it is a gate.

(b) if t is of the form s1 ./ s2 is a gate if and only if it is �-maximal.

(c) if t is of the form (ε[M ].s) : ∃x.A, it is a gate if and only if ε[M ].s : 〈∃x.A〉 is
�-maximal in F, ε[M ].s : 〈∃x.A〉.

We can immediately see that (a) holds, by Prop. 4.9. Before proving parts (b) and
(c), let us observe that this characterization of gates is enough to show that every
net of nonzero size has a gate:

Proposition 4.11. Let F be an Herbrand net. Either F is the conclusion of
the tautology rule, or it has a gate.

Proof. If F has size zero and width zero, F is a conclusion of the tautology rule.
Now assume that F has nontrivial size/width; by Lemma A.5, � is a partial order
on the nodes of F , so F has at least one �-maximal node t: this node is also, by
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definition, a root of F . If t is a gate, we are done. Suppose that t is not a gate: then
by Proposition 4.10 and Proposition 4.6 it is of the form {i} or (ε[M ].t). Suppose
the former: since F = G, {i} : P has nonzero size, so does G. G is ACC-correct by
Proposition 4.1: thus G has a gate t : A. This is also a gate of F , since t /∈ k({i}).

Finally, suppose that all �-maximal nodes of F are of the form (ε[Mi].si), for
1 ≤ i ≤ n; so

F = G, (ε[M1].s1) : ∃x1.A1, . . . , (ε[Mn].sn) : ∃xn.An
The ACC-correct αε-forest

F ′ = G, ε[M1].s1 : 〈∃x1.A1〉, . . . , ε[Mn].sn〈∃xn.An〉

has an�-maximal node, and it must be ε[Mj ].sj : 〈∃xj .Aj〉, for some j. This node
is also �-maximal in

G, (ε[M1].s1) : ∃x1.A1, . . . , ε[Mj ].sj : 〈∃xj .Aj〉, . . . , (ε[Mn].sn) : ∃xn.An,

(where we have placed a + below all the naked witnesses but ε[Mj ].sj) and so
(ε[Mj ].sj) : ∃xj .Aj is a gate of F .

From this, we derive the main theorem of this section:

Theorem 4.12 Sequentialization. An annotated sequent F is an Herbrand
net if and only if it is the endsequent of an LKαε

H derivation π. We call π a
sequentialization of F .

Proof. One direction is given by Prop. 4.2. For the other direction, proceed by
induction on s(F ) + w(F ). If this measure is zero, F is the conclusion of the tau-
tology rule. Otherwise, F has a gate, and there is a sequent rule which decomposes
F into one or more smaller Herbrand nets, each of which can be sequentialized by
the induction hypothesis.

The following cases of Prop. 4.10 remain to be proved:

Lemma 4.13 Splitting ./. Let F = F ′, t ./ s : A ./ Ā be ACC-correct; then
t ./ s is �-maximal in F iff there is a partition F ′ = F1, F2 such that F1, t : A and
F2, s : Ā are ACC-correct. If, further, F is an Herbrand net, then F1, t : A and
F2, s : Ā are Herbrand nets.

Proof. This is a variation on the standard “splitting tensor” theorem for MLL
proof nets: see Section A for the proof.

Lemma 4.14. Let F = G, (ε[M ].t) : ∃x.A be ACC-correct (resp. an Herbrand
net). Then F ′ = G, t : A[x := M ] is also ACC-correct (resp. an Herbrand net) if
and only if ε[M ].t : 〈∃x.A〉 is �-maximal in F ′′ = G, ε[M ].t : 〈∃x.A〉.

Proof. Suppose that F is ACC-correct, and that F ′ is also ACC-correct, and
suppose for a contradiction that ε[M ].t is a member of k(X) for some other node
X of F ′′. But then consider K ′, the kingdom of X in F ′. K ′ is also a subnet of F ′′,
and smaller than F since it does not contain ε[M ].t. This contradicts minimality
of the kingdom.

Suppose now that F ′′ = G, ε[M ].t : 〈∃x.A〉 is ACC with�-maximal node ε[M ].t :
ε[M ].t : 〈∃x.A〉. We show that F ′ is ACC. Since F ′ is a subgraph of F ′′, all its
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switching graphs are acyclic: we must show that they are also connected. Observe
that free(M) ⊆ freeα(F ). For otherwise, there is a variable a with a ∈ free(M),
a /∈ freeα(F ); then there is a node of F of the form α[a].s, and (ε[M ].t) ∈ k(α[a].s),
contradicting the fact that (ε[M ].t) is a gate. Thus the node ε[M ].t is connected
to each switching graph only by its unique successor in the forest structure of F ′′,
and so removing it cannot disconnect any switching graph.

Finally, notice that F and F ′ have the same leaves, and so each tautology index
in F ′ gives rise to a tautology.

The following will be useful in connecting cut-reduction in Herbrand nets with
cut-reduction in LKαε

H :

Proposition 4.15. Let F be an Herbrand net, and let G be a subnet of F . Then
there is a sequentialization Φ of F containing a subproof which corresponds to G in
the following sense: the α, ε and cut terms of F introduced in the subproof above t
are precisely those which are members of G.

Proof. Sequentialize F , as in the proof of the sequentialization theorem, with
the caveat that no node contained in G cannot be removed: they are not considered
gates of F . The algorithm will fail at the point where the remaining net H to be
sequentialized has no gate to remove: all gates of H must therefore be members of
G, or, in the case of a gate of the form (ε[M ].s), it is possible that only the witness
ε[M ].s is a member of G. Every member of G is, of course, contained in H. On
the other hand, suppose that t is a ε, α or cut node in H. Then t is contained in
the kingdom of some gate s of H: but then t is a member of G, since every gate of
H is a member of G, or of the form (ε[M ].s), where ε[M ].s is a member of G.

5. CUT-ELIMINATION

The cut-free completeness of LKH gives an immediate, but nonconstructive, proof
of cut-elimination for Herbrand nets. In this section we will show a system of
reductions (“Kingdom reduction”) such that any Herbrand net may be transformed
into a cut-free Herbrand net using these reductions.

Cut-reduction in sequent calculus works on subproofs. By analogy, cut-reduction
on Herbrand nets works on subnets. This introduces three complications to the
definition of cut-reduction. First, subnets are not necessarily Herbrand nets, and
so cut-reduction will need to be defined on any ACC-correct αε-forest. Secondly,
while the operation of replacing a subtree of a sequent proof is easy to define, it
is a little harder to define replacing a subnet by its reduct, and in addition we
must check that this replacement preserves correctness. Thirdly, when reducing a
cut, we might have several choices of subnet to duplicate. We choose to always
duplicate the kingdom of the α[a].s term in such a cut: this corresponds, in LKH

(by Lemma 4.15 and Theorem 4.3) to always duplicating the subproof obtained by
first permuting all inferences that can be below the cut.

We turn first to the question of when we may replace a subnet F of an ACC-
correct αε-forest with another ACC-correct αε-forest F ′. We begin by considering
replacing a subterm t of an αε term s : T with another term t′, in such a way that
we preserve typing. Clearly, if t has type R in the typing derivation of s : T , then
replacing t with any other term with type R yields a correct typing derivation. In
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addition, suppose that w is a subterm of s of type 〈∃x.A〉, and that t′ has type ∃x.A.
Then, if w appears in an expansion r = (w+w1+· · ·+wn) (recall that an expansion
is a formal sum, and so we can without loss of generality write w as the first term
in the sum), replacing w by t′ amounts to replacing r by t′+ (w1 + · · ·+wn). That
is, we can replace an expansion tree by any other expansion tree with the same
type, and we can in addition replace a witness of type 〈∃x.A〉 by an expansion of
type ∃x.A.

To replace a subnet F by another subnet F ′ is to replace each term of F by a
corresponding term of F ′. The following gadget will allow us to know when we can
do that while maintaining correctness:

Theorem 23. Let F be an ACC-correct αε-forest. A substitution triple for F is
a triple (F ′, froot, ftaut), where F ′ is an ACC-correct αε-forest, ftaut is a function
from the tautology indices of F ′ to the tautology indices of F such that

F ′i ↔ Fftaut(i).

and froot is a bijection from the non-cut roots of F to the non-cut roots of F ′ such
that either f(t) and t have the same type, or f(t) has type 〈∃x.A〉 and f(t) has type
∃x.A.

Notice that, if F is an Herbrand net, and (F ′, ftaut, froot) is a substitution triple
for F , then F ′ is an Herbrand net. On the other hand, if an αε forest F occurs
as a subnet of an αε forest G, the type-preserving properties of froot allow that we
may replace each root t of F by f(t) in G (provided that the α bound variables of
F ′ do not occur in G: we can guarantee this by alpha-conversion). In the following
lemma, recall that IndF denotes the tautology indices occurring in F :

Lemma 5.1. Let G be an ACC αε-forest, and let F be a subnet of G. Let
(F ′, froot, ftaut) be a substitution triple for F . Let

gtaut : (IndG \ IndF ) ∪ IndF ′ → IndG

be the function defined as follows: gtaut(i) = ftaut(i) if i ∈ IndF ′ , and gtaut(i) = i
otherwise. Let G[F ′/F ] be the αε-forest defined as follows

—Replace each root of F with its image under froot;

—Replace each leaf S of G not in F with its inverse image under gtaut.

Let groot be the obvious function from non-cut roots of G[F ′/F ] to non-cut roots of
G. Then (G[F ′/F ], groot, gtaut) is a substitution triple for G.

Proof. The only difficult detail to check is that G[F ′/F ] is ACC-correct. Sup-
pose that it is not: then there is a switching σ for G[F ′/F ] such that the resulting
switching graph is either disconnected or has a cycle. Suppose that some switching
graph of G[F ′/F ] is disconnected: then since F ′ is ACC correct there must be two
nodes outside of F ′ which lie in separate components of the switching graph, from
which it follows easily that some switching graph of G is disconnected. Suppose
now that some switching graph of G[F ′/F ] has a cycle. Then that cycle cannot
be contained in the subnet F ′ of G[F ′/F ], since F ′ is ACC-correct. So the cycle
passes through the complement of G[F ′/F ] and F ′. Let t′ and s′ be two nodes of
the switching graph G[F ′/F ]σ such that there is a switching path between them
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outside of F ′. Then t′, s′ are either roots of F ′ or tautology indices found in F ′.
Using ftaut and froot we can find corresponding nodes t and s, and a switching
σ′ for F (which chooses t and s if their predecessors are switched, and otherwise
agrees with σ) such that there is a switching path from t to s in G, outside of F .
But, since t and s appear in the switching graph of F , there is also a path from
t to s within F , for any switching. Thus, we find a switching cycle in a switching
graph of G, contradicting that G is ACC-correct.

The substitution triples we are interested in are those that arise from the cut-
reduction operations of communicating a witness and duplicating a subproof, closed
under reducing in a subnet and under composition: we will call these triples
reduction-triples.

Theorem 24 Reduction Triples. The basic reduction triples are the follow-
ing, where F1, α[a].t : ∀x.A and F2, s : ∃x.Ā are ACC forests and

F = F1, F2, α[a].t ./ s : ∀x.A ./ ∃x.Ā :

(i.e., the cut displayed splits F )

(a) (Identity) (F, idroot, idtaut) is a reduction triple for F , where idroot and idtaut

are the identity functions on the non-cut roots/tautology indices of F .

(b) (Communication) if s = ε[M ].s′, then

(F1[a := M ], F2, t[a := M ] ./ s′ : A[x := M ] ./ Ā[x := M ], froot, ftaut)

is a reduction triple for F , where froot and ftaut are the evident bijections
between the roots/indices.

(c) (Duplication) if s is a nontrivial expansion, if we can decompose s into s0 + s1,
and if F1 = w1, . . . wn, G, where the wi are witnesses and G contains only cuts,
then (F ′, froot, ftaut) is a reduction triple for F , where

F ′ = (τ0(w1) + τ1(w1)), . . . , (τ0(wn) + τ1(wn)), τ0(G), τ1(G), F2

τ0(α[a].t) ./ s0 : ∀x.A ./ ∃x.Ā, τ1(α[a].t) ./ s1 : ∀x.A ./ ∃x.Ā

where froot is the evident bijection between non-cut roots of F and F ′, ftaut
maps indices i0, i1 to i if i is duplicated by the reduction, and is the identity
otherwise, and τ0, τ1 are the renaming functions of Definition 7, where V =
freeα(F1, α[a].t) and I is the set of tautology indices in F1, α[a].t

New reduction triples can be built in two ways:

(a) (composition) If (F ′, froot, ftaut) is a reduction triple for F , and (F ′′, f ′root, f
′
taut)

is a reduction triple for F ′, then (F ′′, f ′root ◦ froot, ftaut ◦ f ′taut) is a reduction
triple for F .

(b) (reduction in a subnet) If G is a subnet of F , and (G′, froot, ftaut) is a reduction
triple for K, then (F [G′/G], groot, gtaut), as defined in Lemma 5.1 is a reduction
triple for F .

Lemma 5.2. Every reduction triple is a substitution triple.
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Proof. It is trivial that the identity reduction triple is a substitution triple, and
that the composition of two substitution triples is a substitution triple. A simple
application of the ACC criterion shows that Communication and Duplication yield
substitution triples – notice that in a Duplication triple froot maps naked witnesses
wi to expansions (τ0(wi) + τ1(wi)). Reduction in a subnet preserves the property
of being a substitution triple, by Lemma 5.1.

As an example of the above, we will look at the reduction of a structural cut
(a cut against contraction) in an Herbrand net F which does not split its context.
This corresponds to reducing a cut in the sequent calculus which is not the last rule
in the proof. For this to work, we need to find a subnet G of F containing the cut
to be reduced such that the cut splits G. Such a subnet always exists: we can take
the kingdom of the cut. The following is an immediate consequence of Prop. 4.7:

Proposition 5.3. A node t in an ACC-correct αε-forest F is �-maximal in
k(t).

Now simply recall Lemma 4.13: a cut is splitting if and only if it is �-maximal.
Let X denote the cut to be reduced. Since in X splits k(X), and since all the
roots of k(X) are either naked witnesses or cuts, by Lemma 4.6 there is a basic
reduction triple from k(X) to a net K ′. By a subsequent application of reduction
in a subnet, we can obtain a reduction triple for F embodying a one step of cut-
reduction applied to F . Since this is an important operation on Herbrand nets, we
will take the trouble unpack this definition:

Theorem 25 The duplication reduction Dup. Let G = F, α[a].t ./X (s1+
s2) : A ./ Ā be an Herbrand net. Let K = k(α[a].t), the kingdom of α[a].t in G.
Let V be the variables bound in α binders in K, and I be the tautology nodes in
K. Let the functions τ0 and τ1 be renaming functions as before for the sequences
V and I. Then G Dup-reduces to

Da(F ), α[x0].τ0(t) ./ s0 : A ./ Ā, α[a1].τ1(t) ./ s1 : A ./ Ā,

where Da is a function defined pointwise on the members of F as follows:

Da(S) = τ0(S) ∪ τ1(S)

Da(t ./ s) =

{
Da(t) ./ Da(s) t ./ s /∈ K
τ0(t ./ s), τ1(t ./ s) t ./ s ∈ K

Da(α[a].t) = α[a].Da(t)

Da(t1 + · · ·+ tn) = Da(t1) + · · ·+Da(tn)

Da(ε[M ].t) =

{
(ε[M ].Da(t)) ε[M ].t /∈ K
τ0(ε[M ].t) + τ1(ε[M ].t) ε[M ].t ∈ K

5.1 The principal lemma for partial cut-elimination

In this section we state and prove the following reduction lemma:

Lemma 5.4. Let F = G, t ./ s : A ./ Ā be an ACC-correct αε-forest, where all
cuts appearing in G are of rank 0. Then F has a reduction triple (F ′, froot, ftaut)
such that F ′ contains only cuts of rank 0.
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This is a generalization of the following, which says that we can remove a single
cut of non-zero rank from a net:

Corollary 5.5. Let F = G, t ./ s : A ./ Ā be an Herbrand net, and let G
contain only cuts of rank 0. There is an Herbrand net F ′, with the same type as
F , containing only cuts of rank 0.

Proof. As remarked before, (F ′, froot, ftaut) is a substitution triple for an Her-
brand net F only if F ′ is an Herbrand net of the same type as F .

The proof of the reduction lemma is strikingly close to Gentzen’s original demon-
stration of cut-elimination for the classical sequent calculus, with two adjustments.
These adjustments both arise from the lack of tree structure in a proof. First, we
can no longer speak of the “topmost” cut in a proof; instead, we eliminate cuts
which are potentially topmost:

Theorem 26. Let F be an αε-forest. A cut X is an �-topmost cut of rank n
in F if each cut Y with Y � X has rank < n: in other words, each cut in the
kingdom of X has smaller rank than X.

Second, we cannot use any notion of height as an induction measure: instead we use
a more natural measure of the complexity of a cut: the number of witnesses taking
place in it (its “width”). On the other hand, the proof improves on Gentzen’s in
that there is no need to extend the language of proofs with a multicut rule.

Proof. (Of Lemma 5.1) Our proof proceeds by an induction over three mea-
sures, ordered lexicographically: the first is the size of the ACC-correct αε-forest,
meaning the number of nodes it has. The second is the rank of the unique non-
zero rank cut X appearing in the ACC-correct αε-forest. The final measure is the
“width” of the cut: if the cut-term decorating the cut is α[a].t ./ s, then the width
of the cut is the width of s – otherwise the width of the cut is 0.

Our base case is where all cuts are of rank 0; there is no work to be done, and
we can set F = F ′ and both functions froot and ftaut to be the identity.

Suppose now that X has rank n, but that F is not the kingdom of X. Then we
can find a smaller ACC-correct αε-forest k(X) containing the cut. By the induction
hypothesis, we obtain a reduction triple (K ′, froot, ftaut) for K, where K ′ contains
only cuts of rank zero; by reduction in a subnet we obtain a reduction triple for F
with the required property.

Now suppose that F is the kingdom of X. Then we may write F as

F1, α[a].t ./ s : ∀x.A ./ ∃x.Ā, F2

where F1, α[a].t : A and F2, s : Ā are also ACC, with gates α[a].t and s respectively.
We proceed by case analysis on the structure of s.

If s = (ε[M ].s′), there is a basic reduction triple between F and

E = F1[a := M ], t[a := M ] ./ s′ : A[x := M ] ./ Ā[x := M ], F2

which has measure less than that of F . By the induction hypothesis, there is a
reduction triple (E′, groot, gtaut) for E, where E′ contains no nonzero cuts. By
composition, there is a reduction triple between F and E′.
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Finally, suppose that s has the form ε[M1].s1 + · · ·+ ε[Mn].sn. Since the relation
� is a partial order on the nodes of F , there must be an ε[Mi].si which is �-
minimal among the components of s; then we can write s as ε[Mi].si + s′. There is
a basic reduction triple between F and

E = E′, α[a0].t0 ./Y ε[Mi].si, α[a1].t1 ./Z s
′.

Consider now the kingdom k(Z) of the cut Z in E. Since we picked ε[Mi].si
to be �-minimal among the components of S, it does not appear in k(s′), and
thus does not appear in k(Z). Since ε[Mi].si is not a member of k(Z), neither
is the cut Y . k(Z) is, therefore, an ACC-correct αε-forest of lower measure than
F (it contains a single cut of nonzero rank, with the same rank but lower width
than the cut appearing in F ) and thus by the induction hypothesis there is a re-
duction triple (K ′, groot, gtaut) for k(Z), such that K ′ contains only cuts of rank
zero. By reduction-in-a-subnet, there is an ACC-correct αε-forest E[K ′/k(Z)]
and functions hroot and htaut forming a reduction-triple for E. The ACC-correct
αε-forest E[K ′/k(Z)] now contains a single nonzero-rank cut of width 1: since
ε[Mi].si was not in k(Z), the width of this cut in E[K ′/k(Z)] is the same as that
in E. E[K ′/k(Z)] is thus subject to the induction hypothesis, which yields a triple
(F ′, hroot, htaut) for E[K ′/k(Z)], where F ′ contains pnly cuts of rank 0. We may
now compose these three reduction triples to obtain the required reduction triple
for F .

As a corollary to the principal lemma, we obtain partial cut-elimination.

Theorem 5.6 Partial cut-elimination. Let F be an Herbrand net. There is
an Herbrand net F ′, containing only cuts of rank zero, with the same type as F .

Proof. By induction on the number of nonzero-rank cuts in an Herbrand net
F . If there are none, we are done. Now suppose we may remove the nonzero-rank
cuts from an ACC-correct αε-forest containing n− 1 nonzero-rank cuts, and let F
contain n nonzero-rank cuts. Let X be a �-topmost nonzero-rank cut in F , and
consider k(X), it’s kingdom. By the previous lemma, there is a reduction triple
(K ′, froot, ftaut) for k(X), such that k(X) contains only cuts of rank zero. The
ACC-correct αε-forest F [K ′/k(X)] has the same type as F (since F has no naked
witnesses), but has n − 1 nonzero-rank cuts. Furthermore, by the properties of
substitution triples every tautology index of F [K ′/k(X)] yields a tautology. Thus
F [K ′/k(X)] is an Herbrand net, and we may apply the induction hypothesis to
obtain an Herbrand net containing only cuts of rank zero.

5.2 From Partial to Full cut-elimination

Usually, when one performs partial cut-elimination, it is because the remaining
cuts cannot be eliminated. Here this is not the case: the cuts of rank zero may
very easily be eliminated, but in a way that interferes with the notion of reduction
triple. The reader might suspect that here we find a source of nondeterminism in
the reductions: a term S : P where S has cardinality n > 1, represents an n−1-fold
contraction. Since we may form cuts S ./ T , one might expect to have to make
duplications to reduce these cuts, and to have to choose a direction in which the
cut should be reduced. In fact, for weak normalization we can avoid such issues,
owing to the following lemma:
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Lemma 5.7. Let F = G, S ./ T : P ./ P̄ be an Herbrand net, with G cut-free:
then S and T are disjoint singleton sets.

Proof. A simple application of the correctness that criterion: alternatively, ob-
serve that as F is an Herbrand net it must be the conclusion of an LKαε

H derivation
containing one cut, and thus two branches, each containing precisely one tautology
rule.

Such cuts are easy to eliminate

Lemma 5.8. Let F, {i} ./ {j} be an Herbrand net. Then F [i← j] is an Herbrand
net.

Proof. By induction on the height of a derivation of F, {i} ./ {j} in LKαε
H .

Since the derivation contains a cut, it cannot have height 1 - the minimal height is
2, with the proof having the form

i
{i} : P1, . . . , {i} : Pn, {i} : P

j
{j} : Q1, . . . , {j} : Qm, {j} : P̄

Cut
{i} : P1, . . . , {i} : Pn, {j} : Q1, . . . , {j} : Qm, {i} ./ {j} : P ./ P̄

It follows that
∨
k Pk ∨

∨
lQl is a tautology, and so

{i} : P1, . . . , {i} : Pn, {i} : Q1, . . . , {i} : Qm

is the conclusion of a tautology rule. The remainder of the proof is a simple induc-
tion on the height of a proof, relying on the fact that any other rule in LKαε

H can
be pushed below a cut of the form {i} ./ {j}.

Corollary 5.9. Let F be an Herbrand net containing only cuts of rank 0. Then
there is an Herbrand net F ′ of the same type which is cut-free, which can be obtained
by applying the transformation

Prop : F, {i} ./ {j}; F [i := j]

Proof. By induction on the number of cuts in F . Suppose that we may remove
n−1 cuts of zero rank from a net. Then if F contains n cuts, it in particular contains
one cut of the form {i} ./ {j}, which may be removed by the above lemma. The
remaining proof contains n−1 cuts and so falls under the induction hypothesis.

This is enough to obtain full cut-elimination for Herbrand nets. To write this
theorem in a form which does not mention reduction triples, we use the defined
Dup reduction from Definition 25: this precisely captures the kind of duplications
occurring in the proof of Lemma 5.4. We will call the system of reductions com-
prising Dup, Comm and Prop Kingdom reduction, since at each stage requiring a
duplication only the kingdom (the smallest possible subproof) is duplicated.

Theorem 5.10 Weak Normalization. Let F be an Herbrand net with type
Γ. By applying rules from Fig. 5 we may produce a cut-free Herbrand net F ′, also
with type Γ.

25



Prop : F, {i} ./ {j}; F [i := j]

Comm : F, α[a].t ./ {ε[M ].s}; F [a := M ], t[a := M ] ./ s

Dup : F, α[x].t ./ (s0 + s1) ; Dx(F ), α[x0].τ0(t) ./ s0, α[x1].τ1(t) ./ s1

Fig. 5. Kingdom reduction on Herbrand nets

6. KINGDOM REDUCTION IS NOT CONFLUENT

Unrestricted Gentzen style cut-reduction is very badly behaved on proofs in clas-
sical logic. In particular, cut-reduction is highly non-confluent: the Weakening–
Weakening example, due to Lafont [Girard et al. 1989] constructs, given arbitrary
proofs Φ and Ψ of a sequent Γ, a third proof Φ ∗ Ψ of Γ which reduces to both Φ
and Ψ.

Such an easy counterexample to confluence is hard to reconstruct in Herbrand
nets, as we have no weakening. We cannot even replicate the similar Contraction–
Contraction example of Girard [Girard 1991], since at most one cut formula in
a given nontrivial cut can be the conclusion of a contraction. Our cut-reduction
system contains no critical pairs arising from the direction in which a single cut
is reduced. Nevertheless, the minimal reduction system on Herbrand nets is non-
confluent: the non-confluence arises between, not within, cuts: that is, the choice
we are asked to make is not how to reduce one particular cut, but instead which
cut we should reduce. This section is devoted to an example of this behaviour.

We work over a signature and theory axiomatizing a successor function: Σ =
(X , {0, s}, {iszero}) with 0 a constant, s a unary function symbol, and iszero a unary
relation symbol. The universal axiom set T for this theory consists of the single
open formula ¬iszero(s(x)). Let A be the formula ∃x.∀y.(iszero(x)⇒ iszero(y)), and
let B be the formula ∃z.(¬iszero(s(z))). We give a proof with cuts of the sequent
B,B, containing two cuts on the formula A: depending on the order we reduce the
cuts, we can obtain different witnesses above the two copies of B. Our example
Herbrand net is the following:
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1 2 3

{2} {1} {1} {2} {2} {3} {3} {2}

α[a] α[b] ε[h] ε[g] α[d] α[e]

ε[0] ε[s(a)] + + ε[0] ε[s(d)]

ε[g] + α[g] α[h] + ε[h]

+ ./ ./ +

B A ./ Ā Ā ./ A B

(The grey regions indicate the kingdom of the node α[g]: we will later use this
subnet to begin the elimination of cuts from this net). We leave it as a simple
exercise to check that this is an Herbrand net over Σ, T . To begin, we reduce the
net by a Dup-reduction applied to the left-hand cut, which duplicates the shaded
subnet, the kingdom of the node α[g]. The following net is the result:

{21} {22} {1} {1} {21} {22} {21} {22} {3} {3} {21, 22 }

α[a] α[b] ε[h] ε[h] ε[g1] ε[g2] α[d] α[e]

ε[0] ε[s(a)] + + + ε[0] ε[s(d)]

ε[g1] ε[g2] + + α[g1] α[g2] α[h] + ε[h]

+ ./ ./ ./ +

Notice that the rightmost leaf of the forest in the reduct, labelled {2}, is not in the
kingdom of the cut reduced, but that the tautology index 2 is duplicated by the
reduction: hence, in the reduct, this index is replaced by {21, 22}.
To continue the reduction of this net, we perform four Comm reductions, in which
the ε nodes transmit their first-order terms to the corresponding α nodes. Two sub-
sequent applications of the Prop reduction leave a net with only one cut remaining,
replacing the three tautologies 1, 21 and 22 with a single tautology 1.
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{1} {1} { 1 } {1} {3} {3} {1}

ε[0] ε[s(h)] ε[0] ε[s(h)] α[d] α[e] ε[h]

+ + ε[0] ε[s(d)] +

α[h] +

./

To reduce the remaining cut, we must first duplicate the kingdom of α[h], yielding
two cuts. Eliminating one of those cuts, we arrive at the following net:

{1} {1} {3} {1} {1} {3} {1} {3}

ε[0] ε[s(h)] ε[s(s(d))] ε[0] ε[s(h)] α[d] ε[h] ε[s(d)]

+ + ε[0] +

α[h] +

./

We now communicate the term 0 into the eigenvariable h1:

{1} {1} {3} {1} {1} {3} {1} {3}

ε[0] ε[s(0)] ε[s(s(d))] ε[0]ε[0] ε[s(0)] α[d] ε[0] ε[s(d)]

+ + +

./

One application of Dup, two applications of Comm and two applications of Prop
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result in a cut-free net: intuitively, we substitute both of the terms 0 and s0 for d:

{3} {3} {3} {3}

ε[0] ε[s(0)] ε[s(s(0)))] ε[s(s(s(0))))]

+

{3} {3} {3}

ε[0] ε[s(0)] ε[s(s(0))]

+

We obtain a cut-free proof in which the left-hand conclusion has four witnesses,
and the right-hand conclusion three witnesses. Clearly, by swapping the order in
which the cuts are reduced, we could arrive at a sequence of reductions in which the
left-hand conclusion has three witnesses and the right-hand four witnesses. Thus
Kingdom reduction on Herbrand nets is not confluent.

6.1 The counterexample in sequent calculus

A natural question to ask is whether the phenomenon displayed by the example
in the previous section relies on some property of Herbrand nets, or whether it
can also be exhibited in the sequent calculus. The answer depends, of course, on
what one means by cut-elimination in the sequent calculus. Proposition 4.15 tells
us that every kingdom-duplication step on a net F can be simulated in the sequent
calculus: there is some sequentialization of F such that the relevant kingdom arises
as a subproof. Theorem 4.3 tells us that, given enough permutations, we can freely
move between those sequentializations, and thus carry out the cut-elimination steps
with the sequent calculus. The counterexample given above relies on ambiguity in
the order of the two cuts; in sequent calculus we are forced to choose one cut to
be above the other, while in proof nets both cuts can be “topmost”, in the sense
that neither is contained in the others kingdom. Using the permutations induced
by proof-nets one can always move the cuts past one another, but one does not
need the full set of rule permutations to prove cut-elimination: in particular it is
possible to eliminate all cuts from any LKH derivation without ever permuting a
cut past another cut (by always reducing a cut which is uppermost in the sequent
tree). Whether or not this counterexample can be recreated in sequent calculus
depends, therefore, on which proof-transformations one allows (in particular, freely
moving a cut above another cut is not allowed in LKtq).

7. OTHER KINDS OF REDUCTION

Kingdom duplication took some effort to define. Moreover the notion of kingdom,
while natural, is little known outside the circle of specialists in proof nets. In this
section we address (and reject) two seemingly natural alternatives to duplicating the
kingdom, which would take less machinery to define but which are unsatisfactory
for our purposes.
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7.1 Copying too little: dependent subforests

Given an annotated sequent of the form

F, α[a].t ./ s1 + s2 : A ./ Ā

if we are to copy the subterm α[a].t, to provide two copies to cut against s1 and
s2, we must at least copy the dependent subforest, consisting of all the subterms
t′ such that α[a].t C t′ – how does that reduction behave? Since subnets are also
closed under dependency, we would never copy more than the kingdom, but in
general we copy much less. In addition, since the tautology jumps play no part
in the dependency relation, we can simply drop them, (being sure to replace the
condition on being an Herbrand net with some other tautology checking condition).

Such a reduction was studied by the author, and independently by Heijltjes (and
others before us); it is seductively simple and holds the promise of an elegant ab-
stract representation of classical proofs, but has a fatal flaw: as observed by Heijlt-
jes [Heijltjes 2010], by duplicating dependent subforests we may reduce the example
from the previous section to a forest containing a cut of the form α[a] ./ ε[M(a)],
where there is a jump “across the cut”. Such a “proof” can, of course, never arise as
the annotation of a sequent derivation, due to strictness. This suggests, as is indeed
the case, that the dependent-subforest duplicating reduction does not preserve the
property of being an Herbrand net.

While we rejected this reduction in favour of Kingdom reduction, which preserves
correctness with respect to the sequent calculus, Heijltjes opts in [Heijltjes 2010]
instead to treat cuts with jumps across them as “garbage”, and adds an extra
garbage collection reduction to remove them. Since the structure at tautology
nodes is not needed for dependent subforest duplication, Heijltjes’s “Proof Forests”
can be derived from our αε-forests by forgetting the structure at the leaves. His
correctness criterion is such that (the forgetful projection of) any Herbrand net
is a correct Proof Forest. Moreover, his strategy for weak normalization seems to
yield the same results as Kingdom reduction, since it always reduces an�-topmost
cut (where the kingdom and dependent subforest coincide). Nonetheless, there are
correct Proof Forests containing no “garbage” cuts and yet corresponding to no
sequent-derivation. In the way they behave and are handled, Heijltjes’s forests
are rather similar to Lamarche and Strassburger’s N-nets for propositional classical
logic [Lamarche and Strassburger 2005b]; in both cases, correctness with respect
to sequent-calculus proofs is replaced by a weaker notion of correctness: the gain
is a simpler notion of cut-reduction, but the loss is that there are “correct” proofs
which do not correspond to sequential proofs.

7.2 Copying too much: empires

The very natural concept of kingdom is little-mentioned in the proof-net literature.
The concept of empire, by contrast, appears in almost all introductions to the
theory of proof nets for MLL−, and played a central role in their development.
Moreover, the empire of a node is easy to calculate; for MLL− nets, for example, it
can be calculated in time linear in the size of the net (while calculating the kingdom
is quadratic).

It is natural to ask, therefore, if this more familiar notion can be the basis of a
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1 2 3

{1} {1} {2} {2} {3} {3} {2}

ε[s(s(0))] ε[s(0)] ε[s(s(0))] ε[s(0)]

+ α[g] α[h] + ε[h]

./ ./ +

B ./ B̄ B̄ ./ B B

Fig. 6. A counterexample to strong normalization of Empire reduction

cut-elimination for Herbrand nets. The following counterexample shows this is not
possible. Let the underlying theory be as for the counterexample to confluence, and
let B = ∃z.(¬iszero(z)). In the net shown in Figure 7.1, the shaded subnet is the
copyable part of the empire of α[g]; the largest subnet of the empire of α[g] whose
roots, other than α[g], are all cuts or naked witnesses.

The reader can verify that, if this subnet is copied in the obvious way, and the
resulting Comm/Prop redices reduced, the resulting net contains the original redex
as a subnet, and indeed, it is not hard to prove that this net has no finite sequence
of reductions ending in a cut-free net, if we insist on always duplicating the empire
rather than the kingdom.

8. CONCLUSIONS AND FURTHER WORK

We have shown, in this paper, a system of proof nets for classical first-order logic in
prenex normal form, derived from Herbrand’s theorem. The system has the minimal
set of properties one might expect of a proof system for classical logic — it is sound,
complete, and like Gentzen’s LK it has weakly normalizing cut-elimination. We
hope, of course, for more. Surprisingly, given the restrictions on structural rules,
(and thus the avoidance of the contraction-contraction and weakening-weakening
problems detailed in [Girard 1991]) cut-reduction in this system is not confluent.
We seek, therefore, confluent subsystems. We conjecture, but as yet have no proof,
that minimal reduction is strongly normalizing.

Similar structures to our annotated sequents arise as strategies for Coquand’s
game theoretical treatment of classical arithmetic [Coquand 1995]. Coquand gives
a way to play a strategy containing cuts, which amounts to a non-associative compo-
sition on proofs, and it would be interesting to compare this with the non-confluent
behavior of Kingdom reduction.

We look also to extend our system beyond prenex normal form, first to encompass
a treatment of the propositional connectives. The papers [McKinley 2010; 2011]
gives a multiplicative treatment of classical propositional proof nets which improves
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on [Robinson 2003] by replacing contraction (binary, defined on all formulae) by
expansion (n-ary, defined only on positive formulae). It is possible to extend these
nets, with the work of this paper, to full first-order logic and in addition the presen-
tation of the axioms links can be changed so that both quantifier and axiom jumps
are mediated by the α/ε of the current paper. Higher-order quantifiers could almost
certainly be handled, with weak normalization being established by an adaptation
of the method of reducibility candidates.
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A. SUBNETS OF HERBRAND NETS

The proofs contained in the appendix are very minor variations on the proofs of
similar properties for MLL− proof nets, as presented in [Bellin and van de Wiele
1995]. They are presented here for the sake of completeness.
The subnets of an ACC-correct αε-forest are closed under the following operations:

Proposition A.1. Let G1 and G2 be subnets of an ACC forest.

(a) G1 ∩G2 is a subnet of F if and only if it is nonempty.

(b) If G1 ∩G2 is nonempty, then G1 ∪G2 is a subnet.

Proof. (a) Suppose G = G1 ∩ G2 to be nonempty but not a subnet of F . It
is clearly closed under dependency, so to fail to be a subnet there must be a
switching σ for which Gσ is disconnected. But then either G1σ or G2σ must be
disconnected.

(b) Now suppose that G1 ∩G2 is nonempty, but that G = G1 ∪G2 is not a subnet
of F . Again, there must be a switching σ for which Gσ is disconnected. But
since G = G1 ∩ G2 is nonempty, there is a node t in Gσ present in both G1σ

and G2σ, and thus connected to each node of Gσ.

By Prop. A.1, if the set of subnets having a node t as a root is nonempty, t has
an empire and a kingdom.

Theorem 27. Let F be an ACC-correct αε-forest, t a node of F , and σ a switch-
ing of F . Remove from Fσ the edge from t to its parent in F , if t is not a root.
F (t, σ) is the connected component of this graph containing t.
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Proposition A.2. Let e =
⋂
σ F (t, σ), where σ ranges over all switchings of F

and t is a node of F . Let e(t) be the intersection of e with the nodes of F . e(t) is
a subnet of F , and t is a root of e(t).

Proof. We must first see that e(t) is closed under the dependency relation C.
This is easy to see when passing from an unswitched node to its unique successor.
Suppose now that r is a switched node in e(t), and that one of its immediate C-
successors s is not in e(t). Then there is a switching σ such that r ∈ F (σ, t) and
s /∈ F (σ, t). Thus there is a path p from t to r in Fσ, and a path p′ from the parent
of t to s, also in Fσ. By changing the switching σ to a switching σ′, where r chooses
s and the parent of t chooses t (if the parent of t is switched) and leaving all other
switches unchanged, we obtain a cyclic switching graph F ′σ. Hence e(t) is closed
under dependency.

We next observe that e(t) is an ACC-correct αε-forest: let σ be a switching of
the nodes in e(t), and let σ′ be an extension of that switching to F . The graph
e(t)σ is acyclic; if not there would be a cyclic switching graph of F . To see that
e(t)σ is connected, observe that it is the intersection of two connected graphs.

Suppose now that t is not a root of e(t). Then there is a s in e(t) such that s ≤ t.
Choose a switching σt of F such that whenever r is a switched node with s ≤ r ≤ t,
we choose a switching u for r such that u ≤ t.

Because of these choices, the unique path from t to s in Fσt uses the edge from
t to its parent, and because of this does not provide a path from t to s in F (t, σt).
If s is in e(t), then there is some other path from t to s in Fσt

, but this contradicts
the fact that F is correct (acyclicity of Fσt

).

Proposition A.3. The subnet e(t) is the largest subnet of F having t as a root.

Proof. Suppose otherwise. Let G be a C-closed subforest of F , with t as a root,
which is larger than e(t). Then there is a node Z of G, and a switching σ, such
that Z /∈ F (σ, t). But then there is no path from t to Z in Gσ, and so G is not
ACC correct.

The following technical lemma will be crucial:

Lemma A.4. Let F be an Herbrand net, and let s and t be distinct nodes of F ,
such that t ∈ e(s). Let s′ be the parent of s and t′ the parent of t. Then

s′ ∈ e(t) iff t′ /∈ k(s′)

Proof. We have that

G1 = e(t) ∩ k(s′) G2 = e(t) ∪ k(s′)

are ACC (since G1 is nonempty). If s′ ∈ e(t), t′ ∈ k(s′) then G1 has s′ as a root
and does not contain t′, and so is a subnet with s′ as a root smaller than k(s′) –
contradiction. Similarly, if t′ /∈ e(s), s′ /∈ k(t′) then G2 has t as a root and contains
s′, in contradiction of the definition of empire.

This allows us to show that the relation � is a partial order on the nodes of a
structure.
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Lemma A.5. Let F be an Herbrand net, and let t, s be nodes of F such that
t� s and s� t. Then t = s.

Proof. Suppose that t and s are not the same node. We have that k(t) =
k(t) ∩ k(s) = k(s), by minimality of the kingdom.

(a) If t is an α node, or expansion node, then removing t from k(s) yields a smaller
subnet with s as a root, contradicting minimality of k(s).

(b) If t is an ε node with unique successor t′, then its kingdom is equal to k(t′)∪{t},
and so s ∈ k(t′). This contradicts the previous lemma, which says that s /∈ e(t′).
Similarly for ./ nodes.
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