
Complexities of Horn Description Logics

MARKUS KRÖTZSCH
Department of Computer Science, University of Oxford, United Kingdom
SEBASTIAN RUDOLPH
Institute AIFB, Karlsruhe Institute of Technology, Germany
and
PASCAL HITZLER
Kno.e.sis Center, Wright State University, Dayton OH, USA

Description Logics (DLs) have become a prominent paradigm for representing knowledge in a
variety of application areas, partly due to their ability to achieve a favourable balance between
expressivity of the logic and performance of reasoning. Horn description logics are obtained,
roughly speaking, by disallowing all forms of disjunctions. They have attracted attention since
their (worst-case) data complexities are in general lower than for their non-Horn counterparts,
which makes them attractive for reasoning with large sets of instance data (ABoxes). It is therefore
natural to ask whether Horn DLs also provide advantages for schema (TBox) reasoning, i.e.,
whether they also feature lower combined complexities. This paper settles this question for a
variety of Horn DLs. An example of a tractable Horn logic is the DL underlying the ontology
language OWL RL, which we characterise as the Horn fragment of the description logic SROIQ
without existential quantifiers. If existential quantifiers are allowed, however, many Horn DLs
become intractable. We find that Horn-ALC already has the same worst-case complexity as ALC,
i.e., ExpTime, but we also identify various DLs for which reasoning is PSpace-complete. As a
side effect, we derive simplified syntactic definitions of Horn DLs, for which we exploit suitable
normal form transformations.

Categories and Subject Descriptors: I.2.4 [Knowledge Representation Formalisms and
Methods]: Representation languages; F.2.2. [Analysis of Algorithms and Problem Com-
plexity]: Nonnumerical Algorithms and Problem—Complexity of Proof Procedures; F.4.1 [Math-
ematical Logic and Formal Languages]: Mathematical Logic—Computational Logic

General Terms: Languages, Theory

Additional Key Words and Phrases: description logics, Horn logic, computational complexity

1. INTRODUCTION

One of the driving motivations behind description logic (DL) research is to design
languages which maximise the expressive language features that are available for

Author’s address: M. Krötzsch, Department of Computer Science, University of Oxford, Wolfson
Building, Parks Road, OX1 3QD Oxford, UK, markus.kroetzsch@cs.ox.ac.uk.
This work was supported by EPSRC grant HermiT: Reasoning with Large Ontologies, by the
Deutsche Forschungsgemeinschaft (DFG) under the ExpresST project, and by the National Science
Foundation under award 1017225 III: Small: TROn—Tractable Reasoning with Ontologies.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2012 ACM 1529-3785/2012/0700-0001 $5.00

ACM Transactions on Computational Logic, Vol. V, No. N, January 2012, Pages 1–40.

2 · Markus Krötzsch et al.

knowledge modelling, while at the same time striving for the most inexpensive
languages in terms of computational complexity. A particularly prominent case
in point is the DL-based Web Ontology Language OWL [OWL Working Group
2009], which is a W3C recommended standard since 2004. OWL (more precisely,
OWL DL) is indeed among the most expressive knowledge representation languages
which are also decidable.

Of particular interest for practical investigations are tractable DLs, i.e., DLs
which are of polynomial worst-case time complexity [Grosof et al. 2003; Baader et al.
2005; Calvanese et al. 2007; Krötzsch et al. 2008; Krötzsch 2011]. While not being
Boolean closed, and thus relatively inexpressive, they receive increasing attention as
they promise to provide a good trade-off between expressivity and scalability. This
is also reflected by the fact that the 2009 revision of the OWL standard adopted
several of them as designated important fragments of OWL [Motik et al. 2009].

Many tractable DLs also turn out to be Horn description logics, although this
term has originally been used for Horn-SHIQ only [Hustadt et al. 2005]. These
logical languages are based on the idea of defining Horn logic fragments of DLs.
In first-order logic, Horn clauses are disjunctions of atomic formulae and negated
atomic formulae that contain at most one non-negated atom. Many kinds of rules
in logic programming, and especially Datalog rules, are Horn clauses in this sense.
The relationship with DLs has first been established by the reasoner KAON2, which
translates DL axioms to first-order logic rules, possibly with disjunctions [Motik
and Sattler 2006]. Horn-SHIQ has been obtained as a syntactic characterisation
of SHIQ fragment for which this transformation yields (disjunction-free) Datalog.

Hornness often leads to computational advantages. Reasoning in Datalog, e.g.,
is ExpTime-complete w.r.t. the size of the rule set (combined complexity), and P-
complete w.r.t. the number of ground facts (data complexity). In contrast, adding
disjunctions to Datalog increases combined complexity to NExpTime and data
complexity to (co-)NP. Similar advantages have been observed for Horn DLs. For
example, the data complexity is P for Horn-SHIQ, but (co-)NP for SHIQ. More-
over, all common tractable DLs disallow any “non-Horn” use of disjunctions. Horn
DLs were also shown to yield practical advantages for reasoning, even for algorithms
that do not rely on reductions to Datalog [Motik et al. 2009; Kazakov 2009].

In spite of these encouraging results, Horn DLs are far from being understood
properly. Even a general definition is missing, since the original definition of Horn-
SHIQ is closely related to the reasoning algorithm of KAON2, and does not cover
all features used in modern DLs. Furthermore, even in the cases covered by Horn-
SHIQ, it is not known how Hornness affects the combined complexity of reasoning.
Indeed, reasoning for Horn-SHIQ is known to be in ExpTime (like for SHIQ), but
lower bounds for the combined complexity of reasoning have not been established
yet. Complexities for Horn DLs that are smaller or larger than Horn-SHIQ are
also unknown.

This paper closes these gaps. Its main contributions are:

—In Section 3, we propose Horn-SROIQfree as a basis for defining Horn DLs that
use arbitrary features of SROIQ. We show that our direct syntactic definition
generalises the more complicated conditions used to define Horn-SHIQ.

—In Section 4, we studyRL, the description logic underlying the ontology language
ACM Transactions on Computational Logic, Vol. V, No. N, January 2012.

Complexities of Horn Description Logics · 3

OWL RL. We characterise this logic as the fragment of Horn-SROIQfree without
existential quantifiers, and we show that reasoning is P-complete for this logic.

—In Section 5, we consider Horn DLs that allow only limited forms of existential
quantification of the form ∃R.>, and we show that reasoning in these logics is
PSpace-complete.

—In Section 6, we add full existential quantification to obtain Horn-ALC, and we
show that this makes reasoning ExpTime-hard, in spite of the restrictions that
Horn DLs impose on the use of disjunctions. This shows that the combined com-
plexity of all DLs between Horn-ALC and Horn-SHIQ is ExpTime-complete.

An overview of related work is provided in Section 7, and the results are discussed
in Section 8, where Fig. 16 gives an overview of our main results.

This article is a significantly rewritten and extended compilation of [Krötzsch
et al. 2006a; Krötzsch et al. 2006b; Krötzsch et al. 2007]. Based on our definition
of Horn DLs, further complexity results for Horn-SHOIQ and Horn-SROIQ have
meanwhile been established [Ortiz et al. 2010].

2. PRELIMINARIES AND NOTATION

We generally assume that the reader is familiar with basic description logics, but in
order to make the paper relatively self-contained, we introduce them briefly here.
A gentle first introduction to description logics with pointers to further reading can
be found in [Krötzsch et al. 2012]; a textbook introduction to DLs in the context
of Semantic Web technologies is provided in [Hitzler et al. 2009].

We first define a rather general description logic, called SROIQfree, and then
specialise this definition, throughout the paper, as needed for introducing other
DLs. In essence, SROIQfree is the well-known DL SROIQ without any struc-
tural restrictions regarding simplicity or regularity; readers who are familiar with
SROIQ may thus want to skip Sections 2.1 and 2.2, and concentrate on the syn-
tactic simplifications discussed in Section 2.3.

2.1 Syntax

SROIQfree and all other DLs considered herein are based on three disjoint sets of
individual names I, concept names A, and role names N. We call such a triple
〈I,A,N〉 a DL signature. Throughout this work, we assume that these basic sets
are finite, and consider them to be part of the given knowledge base when speaking
about the “size of a knowledge base.” We further assume N to be the union of
two disjoint sets of simple roles Ns and non-simple roles Nn. Later on, the use of
simple roles in conclusions of logical axioms will be restricted to ensure, intuitively
speaking, that relationships of these roles are not implied by chains of other role
relationships. The reason for this is that, in some cases, simple roles can be used
in axioms where non-simple roles might lead to undecidability.

The approach we take here assumes an a priori declaration of simple and non-
simple role names. A common alternative approach is to derive a maximal set of
simple roles from the structure of a given DL knowledge base. This a posteriori ap-
proach of determining the sets Nn or Ns is more adequate in practical applications,
where it is often not viable to declare simplicity of roles in advance. Especially if
ontologies are dynamic, simplicity of roles may need to be changed over time to suit

ACM Transactions on Computational Logic, Vol. V, No. N, January 2012.

4 · Markus Krötzsch et al.

the overall structure of axioms. For the investigation of theoretical properties, how-
ever, pre-supposing complete knowledge about the names of simple and non-simple
roles can simplify definitions.

Definition 2.1. Consider a DL signature S = 〈I,A,N〉 with N = Ns ∪ Nn.
The set R of SROIQfree role expressions (or simply roles) for S is defined by the
following grammar:

R ::= U | N | N−

where U is called the universal role. The set Rs ⊆ R of all simple role expressions
is defined to contain all role expressions that contain no non-simple role names.
The set Rn of non-simple role expressions is Rn := R \Rs. A bijective function
Inv : R → R is defined by setting Inv(R) := R−, Inv(R−) := R, and Inv(U) := U
for all R ∈ N.

The set C of SROIQfree concept expressions (or simply concepts) for S is
defined by the grammar

C ::= > |⊥ |A | {I} | ∃R.Self | ¬C | (CuC) | (CtC) | ∀R.C | ∃R.C |>nR.C |6nR.C

where n is a non-negative integer.

Concepts are used to model classes while roles represent binary relationships.
In some application areas of description logics, especially in relation to the Web
Ontology Language OWL, “class” is used as a synonym for “concept.” Similarly, it
is also common to use the term “property” as a synonym for “role” in some contexts,
but we will not make use of this terminology here.

Note that, in our formulation, the universal role U is introduced as a constant (or
nullary operator) on roles, and not as a “special” role name. In particular U ∈ Rs.
Treating U as a simple role deviates from earlier works on SROIQ, but it can be
shown that U can typically be allowed in axioms that are often restricted to simple
roles (see Definition 2.4) without leading to undecidability or increased worst-case
complexity of reasoning [Rudolph et al. 2008b].

Parentheses are typically omitted if the exact structure of a given concept expres-
sion is clear or irrelevant. Also, we usually assume a signature and corresponding
sets of concept and role expressions to be given using the notation of Definition 2.1,
mentioning it explicitly only to distinguish multiple signatures if necessary. Using
these conventions, role and concept expressions can be combined into axioms:

Definition 2.2. A SROIQfree RBox axiom is an expression of one of the follow-
ing forms:

—R1 ◦ . . . ◦Rk v R where R1, . . . , Rk, R ∈ R and where R /∈ Rn only if k = 1 and
R1 ∈ Rs,

—Ref(R) (reflexivity), Tra(R) (transitivity), Irr(R) (irreflexivity), Dis(R,R′) (role
disjointness), Sym(R) (symmetry), Asy(R) (asymmetry), where R,R′ ∈ R.

A SROIQfree TBox axiom is an expression of the form C v D or C ≡ D with
C,D ∈ C. A SROIQfree ABox axiom is an expression of the form C(a), R(a, b),
or a ≈ b where C ∈ C, R ∈ R, and a, b ∈ I.
ACM Transactions on Computational Logic, Vol. V, No. N, January 2012.

Complexities of Horn Description Logics · 5

RBox axioms of the form R1◦. . .◦Rk v R are also known as role inclusion axioms
(RIAs), and a RIA is said to be complex if k > 1. Expressions such as Ref(R) are
called role characteristics. TBox axioms are also known as terminological axioms
or schema axioms, and expressions of the form C v D are known as generalised
concept inclusions (GCIs). ABox axioms are also called assertional axioms, where
axioms C(a) are concept assertions, axioms R(a, b) are role assertions, and axioms
a ≈ b are equality assertions.

Many of the above types of axioms can be expressed in terms of other axioms,
so that substantial syntactic simplifications are possible in many DLs. Relevant
abbreviations are discussed in Section 2.3 below. Logical theories in description
logic are called knowledge bases:

Definition 2.3. A SROIQfree RBox (TBox, ABox) is a set of SROIQfree RBox
axioms (TBox axioms, ABox axioms). A SROIQfree knowledge base is the union
of a (possibly empty) SROIQfree RBox, TBox, and ABox.

The above definitions still disregard some additional restrictions that are relevant
for ensuring decidability of common reasoning tasks. The next definition therefore
introduces SROIQ as a decidable sublanguage of SROIQfree.

Definition 2.4. A SROIQ role expression is the same as a SROIQfree role
expression. A SROIQ concept expression C is a SROIQfree concept expression
such that all subconcepts D of C that are of the form ∃S.Self, >nS.E, or 6nS.E
are such that S ∈ Rs is simple.

A SROIQfree RBox is regular if there is a strict (irreflexive) total order ≺ on R
such that

—for R /∈ {S, Inv(S)}, we find S ≺ R iff Inv(S) ≺ R, and
—every RIA is of one of the forms:

R ◦R v R, Inv(R) v R,
R1 ◦ . . . ◦Rk v R, R ◦R1 ◦ . . . ◦Rk v R, R1 ◦ . . . ◦Rk ◦R v R

such that R,R1, . . . , Rk ∈ R, and Ri ≺ R for i = 1, . . . , k.

A SROIQ RBox is a regular SROIQfree RBox that contains role characteristics
of the forms Irr(S), Dis(S, T), and Asy(S) only for simple role names S, T ∈ Ns. A
SROIQ TBox (ABox) is a SROIQfree TBox (ABox) that contains only SROIQ
concept expressions. A SROIQ knowledge base is the union of a SROIQ RBox,
TBox, and ABox. A SROIQ (RBox, TBox, or ABox) axiom is an axiom that
occurs within some SROIQ knowledge base (in the RBox, TBox, or ABox).

A variety of different DLs has been studied, most of which can be described as
sublanguages of SROIQ. Names such as SROIQ are typically (partly) descriptive
in that they encode some of the language constructors available in the language.
The most common letters used in these acronyms are listed in Fig. 1. The name
ALC refers to the simplest DL that is closed under Boolean constructors: it allows
TBoxes and ABoxes that use >, ⊥, ¬, u, t, ∃, and ∀. The letter S denotes the
extension of ALC with transitive roles.

For example, SHIQ is the fragment of SROIQ that does not allow nominals,
and that restricts to RBox axioms of the form Tra(R), S v R, and Sym(R) (which

ACM Transactions on Computational Logic, Vol. V, No. N, January 2012.

6 · Markus Krötzsch et al.

Symbol Expressive Feature Example
I inverse roles R−

O nominals {a}
Q qualified number restrictions 63R.C, >2S.D

H role hierarchies R v T
R role inclusion axioms R ◦ S v T

Fig. 1. Nomenclature for important DL features

Name Syntax Semantics
inverse role R− {〈x, y〉 ∈ ∆I ×∆I | 〈y, x〉 ∈ RI}
universal role U ∆I ×∆I

top > ∆I

bottom ⊥ ∅
negation ¬C ∆I \ CI
conjunction C uD CI ∩DI
disjunction C tD CI ∪DI
nominals {a} {aI}
universal restriction ∀R.C {x ∈ ∆I | 〈x, y〉 ∈ RI implies y ∈ CI}
existential restriction ∃R.C {x ∈ ∆I | for some y ∈ ∆I , 〈x, y〉 ∈ RI and y ∈ CI}
local reflexivity ∃S.Self {x ∈ ∆I | 〈x, x〉 ∈ SI}
qualified number 6nS.C {x ∈ ∆I | #{y ∈ ∆I | 〈x, y〉 ∈ SI and y ∈ CI} ≤ n}

restrictions >nS.C {x ∈ ∆I | #{y ∈ ∆I | 〈x, y〉 ∈ SI and y ∈ CI} ≥ n}

Fig. 2. Semantics of role and concept expressions in SROIQfree for an interpretation I with
domain ∆I

is just syntactic sugar for R− v R and thus covered by HI). We will introduce a
number of further SROIQ fragments later on. Some historic names do not follow
a clear naming scheme, but we still adhere to Fig. 1 when extending such DLs.

2.2 Semantics and Inferencing

The semantics of description logics is typically specified by providing a model the-
ory, from which notions like logical consistency and entailment can be derived in
the usual way. We specify these notions for the most general case of SROIQfree

but they can readily be applied to DLs contained in SROIQfree. The basis for this
approach is the definition of a DL interpretation:

Definition 2.5. An interpretation I for a SROIQfree signature S = 〈I,A,N〉
is a pair I = 〈∆I , ·I〉, where ∆I is a non-empty set and ·I is a mapping with the
following properties:

—if a ∈ I then aI ∈ ∆I ,
—if A ∈ A then AI ⊆ ∆I ,
—if R ∈ N then RI ⊆ ∆I ×∆I .

The mapping ·I is extended to arbitrary role and concept expressions as specified
in Fig. 2, where #S denotes the cardinality on the set S.

The set ∆I is called the domain of I. We often do not mention an interpretation’s
signature S explicitly if it is irrelevant or clear from the context. We can now define
when an interpretation is a model for some DL axiom.
ACM Transactions on Computational Logic, Vol. V, No. N, January 2012.

Complexities of Horn Description Logics · 7

Axiom α Condition for I |= α

R1 ◦ . . . ◦Rn v R RI1 ◦ . . . ◦RIn ⊆ RI
Tra(R) if RI ◦RI ⊆ RI
Ref(R) 〈x, x〉 ∈ RI for all x ∈ ∆I

Irr(S) 〈x, x〉 /∈ SI for all x ∈ ∆I

Dis(S, T) if 〈x, y〉 ∈ SI then 〈x, y〉 /∈ TI for all x, y ∈ ∆I

Sym(R) if 〈x, y〉 ∈ RI then 〈y, x〉 ∈ RI for all x, y ∈ ∆I

Asy(S) if 〈x, y〉 ∈ SI then 〈y, x〉 /∈ SI for all x, y ∈ ∆I

C v D CI ⊆ DI

C(a) aI ∈ CI
R(a, b) 〈aI , bI〉 ∈ RI
a ≈ b aI = bI

◦ in the right column denotes standard composition of binary relations:
RI ◦ TI := {〈x, z〉 | 〈x, y〉 ∈ RI , 〈y, z〉 ∈ TI}

Fig. 3. Semantics of SROIQfree axioms for an interpretation I with domain ∆I

Definition 2.6. Given an interpretation I and a SROIQfree (RBox, TBox, or
ABox) axiom α, we say that I satisfies (or models) α, written I |= α, if the
respective conditions of Fig. 3 are satisfied. I satisfies (or models) a SROIQfree

knowledge base KB, denoted as I |= KB, if it satisfies all of its axioms. In these
situations, we also say that I is a model of the given axiom or knowledge base.

This allows us to derive standard model-theoretic notions as follows:

Definition 2.7. Consider SROIQfree knowledge bases KB and KB′.

—KB is consistent (satisfiable) if it has a model and inconsistent (unsatisfiable)
otherwise,

—KB entails KB′, written KB |= KB′, if all models of KB are also models of KB′.

This terminology is extended to axioms by treating them as singleton knowledge
bases. A knowledge base or axiom that is entailed is also called a logical consequence.

When description logics are applied as an ontology modelling language, it is
important to discover logical consequences. The (typically automatic) process of
deriving logical consequences is called reasoning or inferencing, and a number of
standard reasoning tasks play a central rôle in DLs:

—Inconsistency checking: Is KB inconsistent?
—Concept unsatisfiability: Given a concept C, is there no model I |= KB such that
CI 6= ∅?

—Concept subsumption: Given concepts C,D, does KB |= C v D hold?
—Instance checking: Given a concept C and individual name a, does KB |= C(a)
hold?

Further reasoning tasks are considered as “standard” in some works. Common
problems include instance retrieval (finding all instances of a concept) and clas-
sification (computing all subsumptions between concept names). We restrict our
selection here to ensure that all standard reasoning tasks can be viewed as decision
problems that have a common worst-case complexity for all logics studied within
this paper.

ACM Transactions on Computational Logic, Vol. V, No. N, January 2012.

8 · Markus Krötzsch et al.

Proposition 2.8. The standard reasoning tasks in SROIQfree can be reduced
to each other in linear time, and this is possible in any fragment of SROIQfree

that includes axioms of the form A(a) and A u C v ⊥.
Proof. We find that KB is inconsistent if the concept > is unsatisfiable. C is

unsatisfiable in KB if KB |= C v ⊥. Given a fresh individual name a, we obtain
KB |= C v D if KB ∪ {C(a)} |= D(a). For a fresh concept name A, KB |= C(a)
if KB ∪ {A(a), A u C v ⊥} is inconsistent. This cyclic reduction shows that all
reasoning problems can be reduced to one another.

2.3 Simplifications and Normal Forms

Description logics have a very rich syntax that often provides many different ways
of expressing equivalent statements.

Every SROIQfree GCI C v D can be expressed as > v ¬C tD, i.e., by stating
that the concept ¬C tD is universally valid. In the following, we will often tacitly
assume that GCIs are expressed as universally valid concepts, and we will use
concept expressions C to express axioms > v C. Nonetheless, we still use v
whenever this notation appears to be more natural for a given purpose. Likewise,
we consider C ≡ D as an abbreviation for {C v D,D v C}, and omit ≡ as an
atomic constructor for axioms.

Many DL constructs can be considered as “syntactic sugar” in the sense that
they can readily be expressed in terms of other operators. Examples are found
by applying basic propositional equivalences such as A t B ≡ ¬(¬A u ¬B) or
> ≡ A t ¬A. These simplifications are applicable when dealing with DLs that are
characterised by a set of operators which can freely be combined to form concept
expressions. In this paper, however, we derive more complex syntactic restrictions
to arrive at DLs that are not closed under typical propositional equivalences. We
thus do not exclude any operators from our considerations.

There still are some general simplifications that we can endorse in the sequel,
and which often reduce the number of cases that we need to consider:

—Whenever a DL features counting quantifiers, we use >1R.C instead of ∃R.C,
and 60R.¬C instead of ∀R.C.

—We exploit commutativity and associativity of u, as given by the equivalences
A u B ≡ B u A and A u (B u C) ≡ (A u B) u C, to generally disregard nesting
and ordering of conjuncts. For example, “a concept of the form ∃R.A u C with
C arbitrary” is used to refer to concept expressions B u ∃R.A (C = B) or B u
(B′ u ∃R.A) (C = B u B′). This convention introduces some non-determinism,
e.g., if B′ = ∃R.A in the previous example, but the choice will never be essential
in our arguments.

—We exploit commutativity and associativity of t as in the case of u.
Example 2.9. The GCIs

A1 v ∃R1.B1, (1)
∃R2.A2 v B2, (2)

A3 v ∀R3.B3, (3)
∀R4.A4 v B4 (4)

ACM Transactions on Computational Logic, Vol. V, No. N, January 2012.

Complexities of Horn Description Logics · 9

C pNNF(C)

A, {a}, ∃R.Self,>,⊥ C
D1 uD2 pNNF(D1) u pNNF(D2)

D1 tD2 pNNF(D1) t pNNF(D2)

6nR.D 6nR.¬pNNF(¬D)
>nR.D >nR.pNNF(D)

¬A,¬{a},¬∃R.Self C

¬> ⊥
¬⊥ >
¬(D1 uD2) pNNF(¬D1) t pNNF(¬D2)

¬(D1 tD2) pNNF(¬D1) u pNNF(¬D2)
¬6nR.D pNNF(>(n+ 1)R.D)

¬>nR.D
{
⊥ if n = 0

pNNF(6(n− 1)R.D) if n ≥ 1
¬¬D pNNF(D)

Fig. 4. Positive negation normal form transformations for DL concept expressions (A ∈ A a
concept name, a ∈ I an individual name, R ∈ N a role name, D(i) ∈ C concept expressions)

can be expressed as universally valid concepts that use cardinality restrictions rather
than universal and existential quantifiers as follows:

¬A1 t>1R1.B1, (5)
¬>1R2.A2 tB2, (6)

¬A3 t60R3.¬B3, (7)
¬60R4.¬A4 tB4. (8)

We will make use of a negation normal form transformation in the sequel. While
the standard negation normal form transformation (see, e.g., [Hitzler et al. 2009,
Chapter 5]) normalises the uses of negation in concept expressions, it does often not
contribute significantly to a simplified presentation. The reason is that concepts D
in expressions 6nR.D also occur under a negative polarity, i.e., they behave like
negated subexpressions; see also Section 3. Therefore a modified version, called
positive negation normal form, is more effective for our purposes.

Definition 2.10. A SROIQfree concept expression C is in positive negation nor-
mal form (pNNF) if

—if 6nR.D is a subconcept of C, then D has the form ¬D′, and

—every other occurrence of ¬ in C is part of a subconcept ¬D where D is of the
form ¬A (A a concept name), ¬{a}, or ¬∃R.Self.

Every concept expression C can be transformed into a semantically equivalent
concept expression pNNF(C) that is in positive negation normal form. It is easy to
see that this can be achieved in linear time using the recursive definitions of Fig. 4.

Example 2.11. The positive negation normal forms of the universal concepts of
ACM Transactions on Computational Logic, Vol. V, No. N, January 2012.

10 · Markus Krötzsch et al.

C1 ::= C0 | A | {I} | ∃R.Self | 60R.¬C1 | 61R.¬C0 | >nR.C1 | C1 uC1 | C1 tC0 | C0 tC1

C0 ::= > | ⊥ | ¬A | ¬{I} | ¬∃R.Self | 60R.¬C0 | C0 uC0 | C0 tC0

Fig. 5. Horn-SROIQfree concept expressions in positive negation normal form (n ≥ 1)

Example 2.9 are

¬A1 t>1R1.B1, (9)
60R2.¬¬A2 tB2, (10)

¬A3 t60R3.¬B3, (11)
>1R4.¬A4 tB4. (12)

Role expressions and RBox axioms also allow for a number of simplifications.
Sym(R) and Tra(R) are equivalent to R− v R and R ◦R v R, respectively. Ref(R)
is equivalent to > v ∃R.Self but the latter is not admissible in SROIQ if R is
not simple. As an alternative, Ref(R) can be expressed by {> v ∃S.Self, S v R}
where S is a fresh simple role name. Irreflexivity Irr(S) and asymmetry Asy(S) are
again equivalently expressed by ∃S.Self v ⊥ and Dis(S, Inv(S)), respectively. In
summary, Dis(S, T) is the only role characteristic that is not expressible in terms
of other constructs in most DLs.

Finally, a number of simplifications can be applied to ABox axioms as well. Most
importantly, DLs that support nominals can typically express ABox assertions as
TBox axioms by transforming axioms C(a), R(a, b), and a ≈ b into {a} v C,
{a} v ∃R.{b}, and {a} v {b}, respectively.

3. A HORN FRAGMENT OF SROIQ
We first provide a direct definition of a Horn fragment of SROIQfree, which will
be the basis for the various Horn DLs studied herein. Our definition is motivated
by the DL Horn-SHIQ [Hustadt et al. 2005], and we will show below that it is
indeed a generalisation of the original definition of this logic.

Definition 3.1. A Horn-SROIQfree knowledge base over a DL signature S is a
set of SROIQfree axioms which are

—RBox axioms over S , or
—TBox axioms C v D over S such that pNNF(¬CtD) is a C1 concept as defined
in Fig. 5, or

—ABox axioms C(a), R(a, b), or a ≈ b over S such that pNNF(C) is a C1 concept
as defined in Fig. 5, R ∈ R, and a, b ∈ I.

Note that Fig. 5 exploits some syntactic simplifications as discussed in Section 2,
and in particular that existential and universal restrictions are not mentioned ex-
plicitly. When convenient, we will still use this notation when considering fragments
of Horn-SROIQfree below.

Example 3.2. Of the concept expressions in Example 2.11, (9), (10), and (11)
are of the form C0 t C1 and thus in C1 and in Horn-SROIQfree. In contrast,
(12) has the form C1 tC1 and is not in Horn-SROIQfree. Referring back to the
ACM Transactions on Computational Logic, Vol. V, No. N, January 2012.

Complexities of Horn Description Logics · 11

C|ε = C pol(C, ε) = 1

(¬C)|1p = C|p pol(¬C, 1p) = −pol(C, p)
(C1 2C2)|ip = Ci|p pol(C1 2C2, ip) = pol(Ci, p) for 2 ∈ {u,t}, i ∈ {1, 2}
6nR.C|3p = C|p pol(6nR.C, 3p) = −pol(C, p)
>nR.C|3p = C|p pol(>nR.C, 3p) = pol(C, p)

Fig. 6. Positions in a concept (left) and their polarity (right)

D pl+(D) pl−(D)

⊥ 0 0
> 0 0

A 1 0

¬C pl−(C) pl+(C)d
Ci maxi sgn(pl+(Ci))

∑
i sgn(pl−(Ci))⊔

Ci
∑
i sgn(pl+(Ci)) maxi sgn(pl−(Ci))

>nR.C 1
n(n−1)

2
+ n sgn(pl−(C))

6nR.C n(n+1)
2

+ (n+ 1) sgn(pl−(C)) 1

Fig. 7. Definition of pl+(D) and pl−(D)

original GCIs in Example 2.9, one could therefore say that Horn DLs restrict the
use of universal but not that of existential role restrictions.

The original definition of Horn-SHIQ in [Hustadt et al. 2005] is rather more
complex than the above characterisation, using a recursive function that counts the
positive literals that would be needed when decomposing an axiom into equisat-
isfiable formulae in disjunctive normal form. In the remainder of this section, we
show that our definition leads to the same results. We first recall the definition
from [Hustadt et al. 2005], which requires us to introduce some auxiliary concepts.

Subconcepts of some description logic concept are denoted by specifying their
position. Formally, a position p is a finite sequence of natural numbers, where ε
denotes the empty position. Given a concept C, C|p denotes the subconcept of C
at position p, defined recursively as in Fig. 6 (left). In this paper, we consider only
positions that are defined in this figure, and the set of all positions in a concept C
is understood accordingly. Given a concept C and a position p in C, the polarity
pol(C, p) of C at position p is defined as in Fig. 6 (right). Using this notation, we
can state the following definition of Horn knowledge bases.

Definition 3.3. Let pl+ and pl− denote mutually recursive functions that map a
SHIQ concept D to a non-negative integer as specified in Fig. 7 where sgn(0) = 0
and sgn(n) = 1 for n > 0. We define a function pl that assigns to each SHIQ
concept C and position p in C a non-negative integer by setting:

pl(C, p) =

{
pl+(C|p) if pol(D, p) = 1,
pl−(C|p) if pol(D, p) = −1,

A concept C is Horn if pl(C, p) ≤ 1 for every position p in C, including the empty
position ε. A SHIQ knowledge base KB is Horn if ¬C tD is Horn for each GCI
C v D of KB, and C is Horn for each assertion C(a) of KB.

Example 3.4. Let E(5), E(6), E(7), and E(8) denote the concepts in Example 2.9.
Then we find pl(E(5), ε) = pl(E(6), ε) = pl(E(7), ε) = 1 whereas pl(E(8), ε) = 2.

ACM Transactions on Computational Logic, Vol. V, No. N, January 2012.

12 · Markus Krötzsch et al.

Definition 3.3 corresponds to Definition 1 in [Hustadt et al. 2005], but the latter
refers to ALCHIQ1 instead of SHIQ. The reason is that the elimination procedure
for transitive roles that is considered in [Hustadt et al. 2005] may introduce axioms
that are not Horn in the above sense. However, it turns out that transitive roles –
and SROIQ role chains in general – can also be eliminated without endangering
the Hornness of a knowledge base (see, e.g., [Kazakov 2008]). Hence we can safely
extend the definition to SHIQ.

While suitable as a criterion for checking Hornness of single axioms or knowledge
bases, Definition 3.3 is not particularly suggestive as a description of the class of
Horn knowledge bases as a whole. Indeed, it is not readily clear for which formulae pl
yields values smaller or equal to 1 for all possible positions in the formula. Moreover,
Definition 3.3 is still overly detailed as pl calculates the exact number of positive
literals being introduced when transforming some (sub)formula.

To show that Definition 3.1 is a suitable generalisation of Definition 3.3, we first
observe that Hornness is not affected by transformation to positive negation normal
form.

Lemma 3.5. A SHIQ concept C is Horn according to Definition 3.3 iff its pos-
itive negation normal form pNNF(C) is Horn according to Definition 3.3.

Proof. The result is shown by establishing that the steps of the normal form
transformation in Fig. 4 do not affect the value of pl+. Claim: for every concept C,
we have pl+(C) = pl+(pNNF(C)). This is shown by induction over the structure of
C. The claim clearly holds if C is a concept name, >, or ⊥.

Consider the case that C = ¬(D1 u D2). Then pl+(C) = sgn(pl−(D1)) +
sgn(pl−(D2)) = sgn(pl+(¬D1)) + sgn(pl+(¬D2)). By the induction hypothesis this
equals sgn(pl+(pNNF(¬D1))) + sgn(pl+(pNNF(¬D2))) = pl+(pNNF(¬(D1 u D2))),
as required. The other cases of the induction are similar.

The same could be shown for pl− but this part can be omitted by noting that
the concepts that are transformed in the recursive definition of pNNF are always in
positive positions.

Proposition 3.6. A SHIQ concept C is Horn according to Definition 3.3 iff
it is Horn according to Definition 3.1.

Proof. “⇐” We need to show that pNNF(D) ∈ C1 (pNNF(D) ∈ C0) implies
pl+(D) ≤ 1 (pl+(D) = 0). Focussing on pl+ suffices since subconcepts that occur
with negative polarity within a concept in positive negation normal form are either
atomic or of the form ¬D′ with D′ ∈ C1. By Lemma 3.5, it suffices to show that
D ∈ C1 (D ∈ C0) implies pl+(D) ≤ 1 (pl+(D) = 0). This can be established with
some easy inductions over the structure of C0 and C1.

We first establish the claim for C0. The base cases for SHIQ are concepts D
of the form >, ⊥, and ¬A with A ∈ A. In each case, we have pl+(D) = 0. For
the induction step, assume that the claim holds for concepts D′ and D′′. Case
D = 60R.¬D′: pl+(D) = 0 + sgn(pl−(¬D′)) = sgn(pl+(D′)) = 0. Case D =
D′ u D′′: pl+(D) = max(sgn(pl+(D′)), sgn(pl+(D′′)) = 0. Case D = D′ t D′′:
pl+(D) = sgn(pl+(D′)) + sgn(pl+(D′′)) = 0.

1ALCHIQ is SHIQ without transitivity declarations for roles.

ACM Transactions on Computational Logic, Vol. V, No. N, January 2012.

Complexities of Horn Description Logics · 13

The induction for C1 is similar. We have pl+(D) = 1 for D ∈ A, and pl+(D) = 0
for D ∈ C0 by the above induction. Now consider D′ ∈ C1 with pl+(D′) ≤ 1.
Case D = 60R.¬D′: pl+(D) = 0 + sgn(pl−(¬D′)) = sgn(pl+(D′)) ≤ 1. Case
D = 61R.¬E with E ∈ C0: pl+(D) = 1 + 2 sgn(pl−(¬E)) = 1 + 2 sgn(pl+(E)) =
1 + 0 = 1. Case D = >nR.D′: pl+(D) = 1. The cases for u and t are similar to
the case of C0.

“⇒” By Lemma 3.5, we can again restrict our attention to concepts in positive
negation normal form. We first show that, whenever D in pNNF is such that
pl+(D) = 0, we find that D ∈ C0. The contrapositive – if D /∈ C0 then pl+(D) 6= 0
– can be shown by induction over the structure of D. To this end, we first describe
the sets C̄0 and C̄1 of SHIQ concepts that are not in C0 and C1, respectively:

C̄0 ::= A | 60 R.¬C̄0 | 6nR.¬C | >nR.C | C̄0 uC | C u C̄0 | C̄0 tC | C t C̄0,

C̄1 ::= 60 R.¬C̄1 | 61 R.¬C̄0 | 6(n+ 1) R.¬C | >nR.C̄1 | C̄1 uC | C u C̄1 |
C̄0 t C̄0 | C̄1 tC | C t C̄1,

where n ≥ 1. We begin with the induction for D ∈ C̄0. The claim pl+(D) 6= 0
is immediate for D ∈ A. Now assume D′ ∈ C̄0 with pl+(D′) 6= 0. Case D =
60R.¬D′: pl+(D) = sgn(pl−(¬D′)) = sgn(pl+(D′)) = 1. Case D = 6nR.¬E:
pl+(D) = n(n + 1)/2 + 2 sgn(pl−(¬E)) ≥ 1. Case D = >nR.E: pl+(D) = 1.
Case D = D′ u E: pl+(D) = max(pl+(D′), pl+(E)) ≥ 1. Case D = D′ t E:
pl+(D) = pl+(D′) + pl+(E) ≥ 1. The cases D = E u D′ and D = E t D′ are
similar.

To complete the proof, we show that, whenever D in pNNF is such that pl(p,D) ≤
1 for all positions p of D, we find that D ∈ C1. We use induction to show that
D ∈ C̄1 implies that pl(D, p) > 1 for some position p of D. If D contains a
subconcept E ∈ C̄1 at some positive position p, the claim is immediate from the
induction hypothesis. For the remaining cases, we show the claim for position p = 0.
Assume that D′, D′′ ∈ C̄0. Case D = 61R.¬D′: pl+(D) = 1 + sgn(pl−(¬D′)) =
1 + sgn(pl+(D′)) = 2 since pl+(D′) > 0 has been shown above. Case D = 6(n +
1)R.¬F : pl+(D) = (n+1)(n+2)/2+(n+2) sgn(pl−(¬F)) ≥ 2. Case D = D′tD′′:
pl+(D) = pl+(D′) + pl+(D′′) ≥ 2. This finishes the proof.

The previous result shows that Definition 3.1 is indeed a generalisation of the
original definition of Horn-SHIQ. The extension with nominals and Self expres-
sions may appear natural, but it remains to be shown that it actually leads to
appropriate results. We will not study Horn-SROIQfree as such in the sequel, but
we will rather consider various fragments of this logic.

4. THE TRACTABLE HORN DESCRIPTION LOGIC RL
In this section, we study the fragment of Horn-SROIQfree that is obtained by
disallowing existential quantification (and >n restrictions in general) in the positive
negation normal form used to define Horn DLs. We call this description logic RL
due to its close relation to the OWL RL profile of the Web Ontology Language
[Motik et al. 2009]. It turns out that reasoning in RL is possible in polynomial
time, which is in strong contrast to the ExpTime worst-case complexity that we
establish for slightly more expressive Horn DLs later on.

ACM Transactions on Computational Logic, Vol. V, No. N, January 2012.

14 · Markus Krötzsch et al.

Disallowing existentials as such does not usually lead to such a reduction of
reasoning complexity in DLs, even if disjunctions and negations are excluded as
well. Indeed, the standard reasoning tasks for the description logic FL0, that only
allows the constructors >, ⊥, u, and ∀, are already ExpTime-complete [Baader
et al. 2007]. Our below results thus show that Hornness can significantly reduce
reasoning complexity.

Definition 4.1. A concept C in pNNF is an RL concept if

—C is in C1 of Fig. 5, and
—C contains only concept constructors >, ⊥, u, t, ¬, 6n , ∃R.Self, and {a}.
In other words, RL concepts are pNNF concepts of Horn-SROIQfree that do not
contain >n . The description logic RL supports the following axioms:

—SROIQfree RBox axioms,
—TBox axioms C v D such that pNNF(¬C tD) is an RL concept,
—ABox axioms C(a), R(a, b), and a ≈ b such that pNNF(C) is an RL concept and
R is a SROIQfree role.

Example 4.2. Consider again the GCIs in Example 2.9 and their positive nega-
tion normal forms given in Example 2.11. As noted in Example 3.2, (1), (2), and
(3) are in Horn-SROIQfree. However, the positive negation normal forms of both
(1) and (4) contain >1 constructors and are thus not in RL. The other two GCIs
(2) and (3) are in RL.

In order to show that reasoning for RL is possible in polynomial time, it is useful
to transform axioms into a simpler normal form:

Lemma 4.3. Every RL knowledge base KB can be transformed into an equisat-
isfiable knowledge base KB′ that only contains axioms of the following forms:

—RBox axioms of SROIQfree where all role inclusions are of the form R v S or
R ◦R′ v S for R(′), S ∈ R,

—TBox axioms of one of the following forms:

> v C with C of form A1 or ¬A1,

A v C with C of form A1, A1 t ¬A2, {a},∃R.Self,60R.¬A1, or 61R.¬¬A1,

B v C with C of form ⊥,¬A1,¬A1 t ¬A2,¬{a},¬∃R.Self, or 60R.¬¬A1,

where A,A1, A2 are atomic concepts, and B is an atomic concept or a negated
atomic concept,

—ABox axioms R(a, b), A(a), or a ≈ b with R ∈ R and A ∈ A.

Moreover, the size of KB′ is polynomial in the size of KB.

Proof. Let KB be the given RL knowledge base. Without loss of generality,
we assume that ABox axioms in KB are already of the required form. Indeed, any
axiom C(a) where C is a complex concept can be replaced by axioms X(a) and
X v C for a fresh concept name X. Provided that pNNF(C) is an RL concept as
required, pNNF(¬X t C) = ¬X t pNNF(C) is also an RL concept.

We now construct a set KB′ of axioms in the above forms, such that KB′ and
KB are equisatisfiable. Initially, let KB′ contain the following axioms:
ACM Transactions on Computational Logic, Vol. V, No. N, January 2012.

Complexities of Horn Description Logics · 15

(1) B v > 7→ {}
(2) B v C t Ĉ0 7→ {B v C t ¬X,¬X v Ĉ0}
(3) B v C t Ĉ1 7→ {B v C tX,X v Ĉ1}
(4) B v C u C′ 7→ {B v C,B v C′}
(5) B v 60R.¬Ĉ1 7→ {B v 60R.¬X,X v Ĉ1}
(6) B v 61R.¬Ĉ0 7→ {B v 61R.¬¬X,¬X v Ĉ0}
(7) B v 60R.¬Ĉ0 7→ {B v 60R.¬¬X,¬X v Ĉ0}
(8) R1 ◦ . . . ◦Rk v S 7→ {R1 ◦R2 v T3, T3 ◦R3 v T4, . . . , Tk ◦Rk v S}

C,C′, Ĉ ∈ C; Ĉ0 ∈ C0; Ĉ1 ∈ C1 \C0; with Ĉ, Ĉ0, Ĉ1 not of the form A or ¬A for A ∈ A;
B of the form A or ¬A for A ∈ A; X a fresh concept name; R(i), S ∈ R; Ti fresh role names

Fig. 8. Normal form transformation for RL concepts

—all ABox axioms and RBox axioms of KB,
—for every TBox axiom C v D ∈ KB, the two axioms

X v pNNF(¬C tD) and > v X

where X ∈ A is a fresh concept name.

It is clear that this initial set KB′ is equisatisfiable to KB. The purpose of in-
troducing auxiliary concepts X in TBox axioms is to simplify the normalisation
by reducing the number of distinct cases. TBox and RBox axioms in KB′ are now
normalised by exhaustively applying the transformation rules in Fig. 8, that replace
one axiom with a set of new axioms. The correctness of this transformation follows
by observing that the following remain true throughout the transformation:

(1) KB′ and KB are equisatisfiable.
(2) Every GCI C v D ∈ KB′ is such that C is of the form A or ¬A for some A ∈ A

and D is an RL concept. Moreover, C = ¬A only if D ∈ C0.

Both properties hold initially and are preserved by every rule application, so the
claims follow by induction. Termination in a linear number of steps is immediate
since each transformation rule decomposes a subconcept of the initial set KB′, and
no such concept is ever duplicated.

Finally, it is easy to see that a GCI to which none of the rules is applicable, is
in the required normal form. Complex concepts can only occur on the right-hand
side of GCIs in KB′, and only for constructors t, u, and 6n . Rules (6) to (8) are
exhaustive for 6n since only RL concepts can occur. For rules (2) and (3) we have
exploited commutativity of t to reduce cases as discussed in Section 2.3.

Theorem 4.4. The standard reasoning problems for RL are P-complete.

Proof. Hardness is immediate from the fact that checking entailment in propo-
sitional Horn logic is hard for P [Dantsin et al. 2001]. A propositional Horn logic
clause q1∧ . . .∧ qk → p can be expressed in RL using the GCI Cq1 ∧ . . .∧Cqk → Cp
where Cqi and Cp are concept names, and the left-hand side is considered to be >
if k = 0. With this encoding, the original propositional theory entails a proposition
q if and only if its DL encoding entails > v Cq.

To show membership, we apply Lemma 4.3 to obtain an equisatisfiableRL knowl-
edge base of polynomial size that only contains axioms in normal form. Every such

ACM Transactions on Computational Logic, Vol. V, No. N, January 2012.

16 · Markus Krötzsch et al.

RL knowledge base in normal form can be translated to a semantically equivalent
Datalog program. Here, Datalog refers to function-free and ∃-free Horn logic under
first-order logic semantics (we have no need of considering non-monotonic Datalog
semantics). We allow rules with empty head (interpreted as false) or with empty
body (interpreted as true). ABox axioms R(a, b) and A(a) can be interpreted as
Datalog facts and do not require transformation. Statements a ≈ b can be treated
like ground facts if ≈ is used like a normal predicate, the special properties of which
are axiomatised using a standard equality theory:

→ x ≈ x
x ≈ y → y ≈ x

x ≈ y ∧ y ≈ z → x ≈ z
A(x) ∧ x ≈ y → A(y) for all A ∈ A

R(x, y) ∧ x ≈ z → R(z, y) for all R ∈ N

R(x, y) ∧ y ≈ z → R(x, z) for all R ∈ N

As usual, we omit universal quantifiers when writing Datalog formulae.
GCIs in normal form are also easy to translate. For example, A v A1 t ¬A2 is

expressed by the rule A(x) ∧ A2(x) → A1(x), and ¬A v ¬∃R.Self is expressed by
R(x, x)→ A(x). Axioms of the form A v 61R.¬¬A′ are expressed using ≈:

A(x) ∧R(x, y1) ∧A′(y1) ∧R(x, y2) ∧A′(y2)→ y1 ≈ y2

Similarly, ≈ is used to model nominals, e.g., the GCI A v {a} can be expressed
by A(x) → x ≈ a. All remaining (TBox and RBox) axioms are straightforward to
express in Datalog along these lines. In addition, we need to include all axioms

R(x, y)→ R−(y, x) and R−(x, y)→ R(y, x) for all R ∈ N

to capture the semantics of inverse roles. Overall, it is easy to see that all required
Datalog rules are obtained as (simple syntactic transformations of) the standard
first-order translations of DL axioms (see, e.g., [Hitzler et al. 2009]). Soundness
and completeness of the transformation follow from this observation.

The number of auxiliary axioms for equality and inverse roles are linear in the
size of the knowledge base (which is always an upper bound for the size of the
signature), hence the constructed Datalog program is linear in size. All of the above
types of rules have at most three variables, hence P-completeness of satisfiability
checking follows from the respective result for Datalog programs with a bound on
the number of variables [Dantsin et al. 2001]. The proof is completed by noting that
the reduction of standard reasoning problems to satisfiability checking is possible
in RL according to Proposition 2.8.

Thus, most of the OWL RL ontology language can be captured in our framework
of Horn DLs, with three limitations:

(1) We did not consider datatypes [Motik et al. 2009]. Adding datatypes to DLs
is no major difficulty but requires extended preliminary discussions that are
beyond the scope of this work.

ACM Transactions on Computational Logic, Vol. V, No. N, January 2012.

Complexities of Horn Description Logics · 17

(2) OWL RL provides a special constructor “hasValue” for concept expressions
∃R.{a}, and allows them on the left-hand side of GCIs. This special case could
be allowed above but was omitted for simplicity.

(3) OWL RL supports so-called keys, a form of Datalog rules that can imply the
equality of the elements that are denoted by constant symbols.

The limitations (1) and (2) would largely be overcome when considering additional
concept constructors. This is what is done in the definition of the OWL 2 ontology
language. Regarding (3), keys are no DL axioms, and thus do not fit into the
framework of Horn DLs either, but our above Datalog translation would make it
easy to incorporate them as additional (Horn) Datalog rules. One can therefore
say that OWL RL is, in essence, the Horn fragment of OWL 2 without existential
quantifiers.

Description logics that can faithfully be expressed in Datalog have been called
Description Logic Programs (DLP) [Grosof et al. 2003]. It is not hard to further
extend DLP-like fragments with additional features, provided that they can be
encoded by appropriate Datalog rules. For example, role conjunctions and concept
products as discussed in [Rudolph et al. 2008a; 2008b] could easily be integrated
into this setting as well. Moreover, restrictions regarding regularity of RBoxes or
simplicity of roles are not necessary in DLP.

While it is easy to define and extend DLP-like logics, the property of being
expressible in Datalog as such is not a suitable principle for defining description
logics. Indeed, even under additional restrictions, one can find much larger DLs that
have this property, but that require rather unwieldy syntactic definitions [Krötzsch
et al. 2010]. Hornness, in contrast, appears to be a more natural way of defining
DLP-like logics.

Another insight that we can take from the above is that existential quantification
is, in a sense, the main reason for the computational complexity of Horn DLs.
Indeed, the following sections will confirm that even limited uses of existential
quantifiers lead to higher worst-case complexities of reasoning.

5. PSPACE-COMPLETE HORN DLS: FROM HORN-FL− TO HORN-FLOH−

The description logic FL− is the fragment of ALC that allows >, ⊥, u, ∀, and
unqualified ∃, i.e., concept expressions of the form ∃R.> [Baader et al. 2007]. In
this section, we study a corresponding fragment of Horn-SROIQfree, which we
call Horn-FL−. It turns out that reasoning in this DL is PSpace-complete, and
that this remains true even when further extending the DL with nominals and role
hierarchies.

Some care is needed when imposing the syntactic restrictions of FL− on Horn
DLs. The latter are defined with respect to the positive negation normal form of
universal concepts, which may not be expressible in FL−.

Example 5.1. The GCI A uB v C is in FL− but the corresponding universally
valid concept expression ¬(A uB) t C and its pNNF ¬A t ¬B t C are not.

Disjunction could be included to overcome this issue – the Hornness conditions
restrict its expressive power as done in RL in Section 4 – but then concepts such
as ∀R.¬A t B would be expressible, whereas the corresponding GCI ∃R.A v B

ACM Transactions on Computational Logic, Vol. V, No. N, January 2012.

18 · Markus Krötzsch et al.

F ::= > | ⊥ | A | {I} | ∀R.F | ∃R.> | F u F

F0 ::= > | ⊥ | A | {I} | ∃R.> | F0 u F0

Fig. 9. Grammars for specifying the syntax of Horn-FLOH− axioms

cannot be expressed in FL−. Indeed, including axioms of this form would increase
the complexity of reasoning to ExpTime (see Theorem 6.9). Therefore, we provide
a direct syntactic definition for Horn-FL−:

Definition 5.2. FL− is the fragment of SROIQfree that supports ABox and
TBox axioms using the concept constructors >, ⊥, u, ∀, and ∃R.>. FLOH− is the
extension of FL− with nominals {a} (a ∈ I) and role hierarchies. Since there are
no inverse roles we have R = N.

The description logic Horn-FLOH− allows for the following axioms, where F and
F0 are defined as in Fig. 9:

—role inclusions R v S with R,S ∈ R,
—concept inclusions C v D such that the concepts C ∈ F0 and D ∈ F,
—concept assertions C(a) such that C ∈ F,
—role assertions R(a, b) with R ∈ R,
—equality assertions a ≈ b.

Horn-FL− is the fragment of Horn-FLOH− that does not contain nominals or role
inclusions.

Lemma 5.3. Horn-FLOH− is a fragment of Horn-SROIQfree.

Proof. We must check whether pNNF(¬C tD) ∈ C1 for every Horn-FLOH−
GCI C v D. Indeed, we find that pNNF(¬C) ∈ C0 and D ∈ C1. The latter can
be checked easily by comparing the grammars. To see pNNF(¬C) ∈ C0, note that
the positive negation normal form of negated F0 concepts is given by the following
grammar:

F̄0 ::= ⊥ | > | ¬A | ¬{I} | ∀R.⊥ | F̄0 t F̄0.

This is obtained by computing the positive negation normal form of each part of
the grammar F0, where we use pNNF(¬F0) := F0 for the recursive case. Again, it
is easy to see that this is a sublanguage of C0 as required.

For concept assertion, the result follows again from F ⊆ C1.

Note that, in spite of the lack of general forms of existential restrictions, it is
possible to indirectly express arbitrary positive existentials in Horn-FLOH−.

Example 5.4. The GCI A v ∃R.B can be expressed by the following Horn-
FLOH− axioms using a fresh role name R′:

A v ∃R′.> u ∀R′.B, (13)
R′ v R. (14)

In the following sections, we show that all logics between Horn-FL− and Horn-
FLOH− are PSpace-complete. Adding further SROIQ features to Horn-FLOH−
typically leads to ExpTime-hard logics (see Theorem 6.9).
ACM Transactions on Computational Logic, Vol. V, No. N, January 2012.

Complexities of Horn Description Logics · 19

5.1 Hardness

We directly show that Horn-FL− is PSpace-hard by reducing the halting prob-
lem for polynomially space-bounded Turing machines to checking unsatisfiability
in Horn-FL−.

Definition 5.5. A deterministic Turing machine (TM) M is defined as a tuple
(Q,Σ,∆, q0, QA) where

—Q is a finite set of states,
—Σ is a finite alphabet that includes a blank symbol �,
—∆ ⊆ (Q×Σ)× (Q×Σ× {l, r}) is a transition relation that is deterministic, i.e.,

(q, σ, q1, σ1, d1), (q, σ, q2, σ2, d2) ∈ ∆ implies q1 = q2, σ1 = σ2, and d1 = d2.
—q0 ∈ Q is the initial state, and
—QA ⊆ Q is a set of accepting states.

A configuration ofM is a word α ∈ Σ∗QΣ∗. A configuration α′ is a successor of a
configuration α if one of the following holds:

(1) α = wlqσσrwr, α′ = wlσ
′q′σrwr, and (q, σ, q′, σ′, r) ∈ ∆,

(2) α = wlqσ, α′ = wlσ
′q′�, and (q, σ, q′, σ′, r) ∈ ∆,

(3) α = wlσlqσwr, α′ = wlq
′σlσ

′wr, and (q, σ, q′, σ′, l) ∈ ∆,

where q ∈ Q and σ, σ′, σl, σr ∈ Σ as well as wl, wr ∈ Σ∗. Given some natural
number s, the possible transitions in space s are defined by additionally requiring
that |α′| ≤ s+ 1.

The set of accepting configurations is the least set which satisfies the following
conditions. A configuration α is accepting iff

—α = wlqwr and q ∈ QA, or
—at least one of the successor configurations of α is accepting.

M accepts a given word w ∈ Σ∗ (in space s) iff the configuration q0w is accepting
(when restricting to transitions in space s).

The complexity class PSpace is defined as follows.

Definition 5.6. A language L is accepted by a polynomially space-bounded TM
iff there is a polynomial p such that, for every word w ∈ Σ∗, w ∈ L iff w is accepted
in space p(|w|).

In this section, we exclusively deal with polynomially space-bounded TMs, and
so we omit additions such as “in space s” when clear from the context.

In the following, we consider a fixed TMM denoted as in Definition 5.5, and a
polynomial p that defines a bound for the required space. For any word w ∈ Σ∗, we
construct a Horn-FL− knowledge base KBM,w and show that w is accepted byM
iff KBM,w is unsatisfiable. Intuitively speaking, the elements of an interpretation
domain of KBM,w represent possible configurations ofM, encoded by the following
concept names:

—Aq for q ∈ Q: the TM is in state q
ACM Transactions on Computational Logic, Vol. V, No. N, January 2012.

20 · Markus Krötzsch et al.

(1) Left and right transition rules:
Aq uHi u Cσ,i v ∃S.> u ∀S.(Aq′ uHi+1 u Cσ′,i) with δ = (q, σ, q′, σ′, r), i < p(|w|)−1

Aq uHi u Cσ,i v ∃S.> u ∀S.(Aq′ uHi−1 u Cσ′,i) with δ = (q, σ, q′, σ′, l), i > 0

(2) Memory:
Hj u Cσ,i v ∀S.Cσ,i i 6= j

(3) Failure:
Aq v ⊥ q ∈ QA

The axioms are instantiated for all q, q′∈Q, σ, σ′∈Σ, i, j∈{0, . . . , p(|w|)− 1}, and δ ∈ ∆.

Fig. 10. Knowledge base KBM,w simulating a polynomially space-bounded TM

—Hi for i = 0, . . . , p(|w|)− 1: the TM is at position i on the storage tape
—Cσ,i with σ ∈ Σ and i = 0, . . . , p(|w|)− 1: position i on the storage tape contains
symbol σ

Based on these concepts, elements in each interpretation of a knowledge base
encode certain states of the Turing machine. A role S will be used to encode
the successor relationship between states. The initial configuration for word w is
described by the concept expression Iw:

Iw := Aq0 uH0 u Cσ0,0 u . . . u Cσ|w|−1,|w|−1 u C�,|w| u . . . u C�,p(|w|)−1,

where σi denotes the symbol at the ith position of w.
It is not hard to describe runs of the TM with Horn-FL− axioms, but formulating

the acceptance condition is slightly more difficult. The reason is that in absence of
statements like ∃S.A and ∀S.A in the condition part of Horn-axioms, one cannot
propagate acceptance from the final accepting configuration back to initial con-
figuration. The solution is to provoke an inconsistency as soon as an accepting
configuration is reached. Thus we arrive at the knowledge base KBM,w given in
Fig. 10. The following is obvious from the characterisation given in Definition 3.1.

Lemma 5.7. KBM,w is in Horn-FL−.

Next we need to investigate the relationship between elements of an interpreta-
tion that satisfies KBM,w and configurations of M. Given an interpretation I of
KBM,w, we say that an element e of the domain of I represents a configuration
σ1 . . . σi−1qσi . . . σm if e ∈ AIq , e ∈ HIi , and, for every j ∈ {0, . . . , p(|w|) − 1},
e ∈ CIσ,j whenever

j ≤ m and σ = σj or j > m and σ = �.

Note that we do not require uniqueness of the above, so that a single element might
in fact represent more than one configuration. As we will see below, this does not
affect our results. If e represents a configuration as above, we will also say that e
has state q, position i, symbol σj at position j etc.

Lemma 5.8. Consider some interpretation I that satisfies KBM,w. If some el-
ement e of I represents a configuration α and some transition δ is applicable to α,
then e has an SI-successor that represents the (unique) result of applying δ to α.

ACM Transactions on Computational Logic, Vol. V, No. N, January 2012.

Complexities of Horn Description Logics · 21

Proof. Consider an element e, state α, and transition δ as in the claim. Then
one of the axioms (1) applies, and e must also have an SI-successor. This successor
represents the correct state, position, and symbol at position i of e, again by the
axioms (1). By axiom (2), symbols at all other positions are also represented by all
SI-successors of e.

Lemma 5.9. A word w is accepted by M iff {Iw(c)} ∪ KBM,w is unsatisfiable,
where c some constant symbol.

Proof. Let I be a model of {Iw(c)} ∪ KBM,w. I being a model for Iw(c), cI
clearly represents the initial configuration of M with input w. By Lemma 5.8,
for any further configuration reached by M during computation, cI has a (not
necessarily direct) SI successor representing that configuration.

But then I satisfies axiom (3) only if none of the configurations that are reached
have an accepting state. Since I was arbitrary, {Iw(c)} ∪KBM,w can only have a
satisfying interpretation ifM does not reach an accepting state.

It remains to show the converse: if M does not accept w, there is some inter-
pretation I satisfying {Iw(c)} ∪ KBM,w. We define a canonical interpretation M
as follows. The domain of M is the set of all configurations of M that have size
p(|w|) + 1 (i.e., that encode a tape of length p(|w|), possibly with trailing blanks).
The interpretations for the concepts Aq, Hi, and Cσ,i are defined as expected so
that every configuration is representing itself but no other configuration. Espe-
cially, IMw is the singleton set that contains only the initial configuration. Given
two configurations α and α′, and a transition δ, we define (α, α′) ∈ SM iff there is
a transition δ from α to α′.

It is easy to see that M satisfies the axioms (1) and (2) of Fig. 10. Axiom (3) is
satisfied since, by our initial assumption, none of the configurations reached byM
is in an accepting state.

Theorem 5.10. The standard reasoning problems for Horn-FL− are hard for
PSpace.

Proof. By Lemma 5.9, the word problem for polynomially space-bounded TMs
can be reduced to checking satisfiability of {Iw(c)} ∪KBM,w. The other standard
reasoning problems can be reduced to satisfiability checking by Proposition 2.8. By
Lemma 5.7, KBM,w is in Horn-FL−, and the same is clear for Iw(c). The reduction
is polynomially bounded due to the restricted number of axioms: there are at most
p(|w|)× |∆| axioms of type (1), p(|w|)2× |Σ| axioms of type (2), and |Q| axioms of
type (3).

5.2 Membership

To show that inferencing for Horn-FLOH− is in PSpace, we develop a tableau
algorithm for deciding the satisfiability of a Horn-FLOH− knowledge base. To this
end, we first present a normal form transformation that allows us to restrict our
attention to simple forms of axioms. We then present the tableau construction and
show its correctness, and demonstrate that it can be executed in polynomial space.

Definition 5.11. A FLOH− concept expression C is basic if it is of the form
A ∈ A, {a}, or ∃R.>. The set of all basic concepts is denoted by B, assuming that

ACM Transactions on Computational Logic, Vol. V, No. N, January 2012.

22 · Markus Krötzsch et al.

Ĉ v D̂ 7→ {Ĉ v X,X v D̂} Ĉ uA v B 7→ {Ĉ v X,X uA v B}
⊥ v C 7→ ∅ A v C uD 7→ {A v C,A v D}
C v > 7→ ∅ A v ∀R.Ĉ 7→ {A v ∀R.X,X v Ĉ}

A, B basic concept expressions, >, or ⊥; X a fresh concept name;
C, D concept expressions; Ĉ, D̂ concept expressions that are not basic

Fig. 11. Normal form transformation for Horn-FLOH−

the underlying signature is irrelevant or clear from the context. A Horn-FLOH−
knowledge base is in normal form if it contains only axioms of the following forms

A v C > v C A v ∀R.C
A uB v C A v ⊥ R v S

where A,B,C ∈ B basic concepts (including existential restrictions), R, S role
names, and c, d individual names.

Lemma 5.12. Every Horn-FLOH− knowledge base KB is equisatisfiable to a
Horn-FLOH− knowledge base that contains only axioms in the normal form of
Definition 5.11, and that can be computed in linear time w.r.t. the size of KB.

Proof. ABox axioms C(a) can be expressed as GCIs {a} v C, yielding a GCI of
form F0 v F as in Fig. 9. ABox axioms R(a, b) can be expressed as {a} v ∃R.{b},
which can in turn be expressed as in Example 5.4 using {a} v ∃R′.>u∀R′.{b} and
R′ v R for a new role R′. Assertions a ≈ b can be written as {a} v {b}.

To express arbitrary GCIs, we exhaustively apply the transformation rules in
Fig. 11, where each rule application consists in replacing the axiom on the left-hand
side with the axioms on the right-hand side. It is easy to see that the resulting
axioms are equisatisfiable to the original axioms for each rule, so the result follows
by induction. It is also easy to see that only a linear number of steps are required,
where it must be noted that the rule for A v C uD is only applicable if A is not a
compound term, so that duplicating A leads to a constant increase in size only.

Next, we are going to present a procedure for checking satisfiability of Horn-
FLOH− knowledge bases. In the following we assume without loss of generality
that the DL signature under consideration has at least one individual name.

Definition 5.13. Consider a Horn-FLOH− knowledge base KB in normal form,
with B the set of basic concepts, R the set of roles, and I the set of individual
names. A set of relevant concept expressions is defined by setting

cl(KB) := B ∪
{
∀R.C | R ∈ R, C ∈ B

}
∪
{
>,⊥

}
.

Given a possibly infinite set I of individual names, the set TI of ABox expressions
over cl(KB) and I is defined as follows:

TI :=
{
C(e) | C ∈ cl(KB), e ∈ I

}
∪
{
R(e, f) | R ∈ R, e, f ∈ I

}
.

A tableau for KB is given by a (possibly infinite) set I of individual names and
a set T ⊆ TI , such that I ⊆ I and the conditions in Fig. 12 hold. A tableau is said
to contain a clash if it contains a statement of the form ⊥(e).

ACM Transactions on Computational Logic, Vol. V, No. N, January 2012.

Complexities of Horn Description Logics · 23

(C1) If e ∈ I, then >(e) ∈ T .
(C2) If e ∈ I, then {e}(e) ∈ T .
(C3) If A v C ∈ KB and A(e) ∈ T , then C(e) ∈ T .
(C4) If A uB v C ∈ KB, A(e) ∈ T , and B(e) ∈ T , then C(e) ∈ T .
(C5) If R v S ∈ KB and R(e, f) ∈ T , then S(e, f) ∈ T .
(C6) If {f}(e) ∈ T , then

—C(e) ∈ T iff C(f) ∈ T ,
—R(e, g) ∈ T iff R(f, g) ∈ T , and
—R(g, e) ∈ T iff R(g, f) ∈ T ,
for all C ∈ cl(KB), R ∈ R, and g ∈ I.

(C7) ∃R.>(e) ∈ T iff R(e, f) ∈ T for some f ∈ I.
(C8) If ∀R.C(e) ∈ T , then C(f) ∈ T for all f ∈ I with R(e, f) ∈ T .

Fig. 12. Conditions for a tableau 〈I, T 〉 for KB, with individuals I and ABox expressions T ⊆ TI

Example 5.14. Consider the following knowledge base KB in normal form:

(1) {c} v A (2) A v ∃R.> (3) A v ∀R.B
(4) B v ∃S.> (5) B v ∀S.C (6) B v ∀S.D
(7) C uD v E (8) E v ⊥

Then a tableau 〈I, T 〉 for KB with sets of individuals I = {c, d, e} is given by:

T = {>(c),>(d),>(e), {c}(c), A(c),∃R.>(c),∀R.B(c), R(c, d),

B(d),∃S.>(d),∀S.C(d),∀S.D(d), S(d, e), C(e), D(e), E(e),⊥(e)}.

Another example tableau could be obtained, e.g., by replacing all occurrences of d
in T by c. Both tableaux contain a clash, and indeed there is no clash-free tableau
for KB.

Proposition 5.15. A Horn-FLOH− knowledge base KB is satisfiable iff it has
a clash-free tableau.

Proof. Assume that KB has a clash-free tableau 〈I, T 〉. An interpretation I is
defined as follows. Due to condition (C6) in Fig. 12, we can define an equivalence
relation ∼ on I by setting e ∼ f iff there is some g ∈ I with {{g}(e), {g}(f)} ⊆ T .
The domain I∼ of I is the set of equivalence classes of ∼. The interpretation
function is defined by setting eI = [e]∼, eI ∈ AI iff A(e) ∈ T , and (eI , fI) ∈ RI
iff R(e, f) ∈ T , for all elements e, f ∈ I, concept names A, and role names R. It is
easy to see that I satisfies KB.

For the converse, assume that KB is satisfiable, and that it thus has some model
I. We define a tableau 〈I, T 〉 where I is the domain of I. Further, we set C(e) ∈ T
iff e ∈ CI , and R(e, f) ∈ T iff (e, f) ∈ RI , where C ∈ cl(KB), and R some role
name. Again, it is easy to see that this meets the conditions of Definition 5.13.

As is evident by the Turing machine construction in the previous section, some
Horn-FLOH− knowledge bases may require models to contain an exponential num-
ber of individuals in a single relational path. Indeed, a polynomially space-bounded
TM might require exponentially many steps in every accepting run, e.g., it could
use its tape to store bounded-length binary number, increment the number by 1
in each step, and accept the input when an overflow occurs. The TM encoding of

ACM Transactions on Computational Logic, Vol. V, No. N, January 2012.

24 · Markus Krötzsch et al.

(T1) T := T ∪ {>(e)}
(T2) if e ∈ I is an individual name, T := T ∪ {{e}(e)}
(T3) for each A v C ∈ KB, if A(e) ∈ T then T := T ∪ {C(e)}
(T4) for each A uB v C ∈ KB, if A(e) ∈ T and B(e) ∈ T then T := T ∪ {C(e)}
(T5) for each R v S ∈ KB, do the following:

(T5a) for each f ∈ I, if R(e, f) ∈ T and R(e, f) is not inactive, then T :=

T ∪ {S(e, f)},
(T5b) if ∃R.>(e) ∈ T then T := T ∪ {∃S.>(e)}

(T6) for each {f}(e) ∈ T
(T6a) for each C(f) ∈ T , T := T ∪ {C(e)},
(T6b) for each g ∈ I and each R(f, g) ∈ T , T := T ∪ {R(e, g)}; R(e, g) is

marked inactive,
(T6c) for each g ∈ I and each R(g, f) ∈ T , T := T ∪ {R(g, e)}; R(g, e) is

marked inactive,
(T6d) for each C(e) ∈ T , T := T ∪ {C(f)},
(T6e) for each g ∈ I and each R(e, g) ∈ T , T := T ∪ {R(f, g)}; R(f, g) is

marked inactive,
(T6f) for each g ∈ I and each R(g, e) ∈ T , T := T ∪ {R(g, f)}; R(g, f) is

marked inactive
(T7) for each f ∈ I and R(e, f) ∈ T with R(e, f) not inactive, T := T ∪{∃R.>(e)}
(T8) for each ∀R.C(e) ∈ T and each f ∈ I with R(e, f) ∈ T ,

if R(e, f) is not inactive, then T := T ∪ {C(f)}

(T∃) for each ∃R.>(e) ∈ T , if R(e, f) /∈ T for all f ∈ I then
I := I ∪ {g} and T := T ∪ {R(e, g)}, where g is a fresh individual

Fig. 13. Rules for constructing canonical tableaux for Horn-FLOH− knowledge bases KB

Fig. 10 would then lead to models that represent this exponential run in an expo-
nentially long path of successor elements. Detecting clashes in polynomial space
thus requires special care. In particular, a standard tableau procedure with block-
ing does not execute in polynomial space. Therefore, we first provide a procedural
description of a canonical tableau which will form the basis for our below decision
algorithm.

Definition 5.16. An algorithm that computes a tableau-like structure 〈I, T 〉,
where every role statement in T is marked active or inactive, is defined as fol-
lows. Initially, we set I := I and T := ∅. The algorithm executes the following
steps:

(1) Iterate over all individuals e ∈ I. To each such e, apply rules (T1) to (T8) of
Fig. 13. All inferences that are not explicitly marked inactive are active.

(2) If T was changed in the previous step, go to (1).

(3) Apply rule (T∃) of Fig. 13 to all existing elements e ∈ I, where all inferences
are active.

(4) If T was changed in the previous step, go to (1).

(5) Halt.

Observe that the numbered rules in Fig. 13 correspond to the conditions in
Fig. 12, where the “if” direction of condition (C7) is captured by (T∃). Most
of the rules should thus be intuitive to understand.
ACM Transactions on Computational Logic, Vol. V, No. N, January 2012.

Complexities of Horn Description Logics · 25

The rules (T6) are used to ensure that individuals e satisfying a nominal class
are synchronised with the respective named individual f ∈ I. The six sub-rules are
needed since one generally cannot add {e}(f) to T as e might not be an element
of I. However, role statements that are inferred in this way need not be taken into
account as premises in other deduction rules, since they are guaranteed to have an
active original. Whatever could be inferred using copied role statements and rules
(T5a), (T7), or (T8), can as well be inferred via the active original from which the
inactive role was initially created. Note that this argument involves an induction
over the number of applications of rule (T6).

Rule (T5) is also special. In principle, one could omit (T5b), and use rules (T5a)
and (T7) instead. This inference, however, is the only case where a role-successor
of some individual e might contribute to the classes inferred for e. By providing
rule (T5b), the class expressions containing e can be computed without considering
any role successor, and rule (T7) is essential only when role expressions have been
inferred from ABox statements. In combination with the delayed application of
rule (T∃), this ensures that concepts are indeed inferred by (T5b) rather than by
(T5a)+(T7), which will be exploited in the proof of Lemma 5.24 below.

Also note that the algorithm of Definition 5.16 is not a decision procedure, since
we do not require the algorithm to halt. What we are interested in, however,
is the (possibly infinite) tableau that the algorithm constructs in the limit. The
existence of this limit is evident from the fact that all completion rules are finitary,
and that each rule monotonically increases the size of the computed structure. For
a given knowledge base KB, we write 〈ĪKB, T̄KB〉 to denote the canonical tableau
constructed by the above algorithm from KB, where the subscripts are omitted
when understood.

Example 5.17. The tableau 〈I, T 〉 in Example 5.14 is a canonical tableau for
KB, which is therefore finite in this case.

Proposition 5.18. The canonical tableau 〈ĪKB, T̄KB〉 is a tableau in the sense of
Definition 5.13. Moreover, KB has a clash-free tableau iff 〈ĪKB, T̄KB〉 is clash-free.

Proof. The first part of the claim is easy to verify based on the correspondence
between the conditions of Fig. 12 and the rules of Fig. 13. This also shows the “if”
direction of the second part of the claim.

For the “only if” direction, we show the contrapositive: if 〈ĪKB, T̄KB〉 contains a
clash, then every tableau 〈I, T 〉 contains a clash. To this end, consider an arbitrary
tableau 〈I, T 〉 for KB. We construct a mapping π : ĪKB → I such that, for all e, f ∈
ĪKB, C(e) ∈ T̄KB implies C(π(e)) ∈ T and R(e, f) ∈ T̄KB implies R(π(e), π(f)) ∈ T
(∗). Thus, π is a homomorphism from 〈ĪKB, T̄KB〉 to 〈I, T 〉.

We construct π iteratively by following the construction of 〈ĪKB, T̄KB〉, and we
show that property (∗) holds throughout the construction. We initialise π by setting
π(c) := c for every c ∈ I. This is possible since, by Definitions 5.13 and 5.16, I ⊆ ĪKB
and I ⊆ I. Since T̄KB is initialised to ∅, property (∗) holds.

For the induction step, we consider each rule in Fig. 13. For (T1), (∗) follows
directly from condition (C1). Case (T2) is similar. For (T3), we have A(e) ∈ T̄KB,
so A(π(e)) ∈ T by the induction hypothesis, and (∗) follows from (C3). The cases
(T4), (T5a), (T6), (T7), and (T8) are similar.

ACM Transactions on Computational Logic, Vol. V, No. N, January 2012.

26 · Markus Krötzsch et al.

For (T5b), we have ∃R.>(e) ∈ T̄KB, so ∃R.>(π(e)) ∈ T by the induction hy-
pothesis. By (C7) there is some f ∈ I with R(π(e), f) ∈ T . Thus, by (C5),
S(π(e), f) ∈ T and, again by (C7), ∃S.>(π(e)) ∈ T as required.

For (T∃), we have ∃R.>(π(e)) ∈ T by the induction hypothesis, so there is some
f ′ ∈ I with R(π(e), f ′) ∈ T . Define π(g) := f ′ for the new individual g introduced
in (T∃). Thus R(π(e), π(g)) ∈ T as required.

This finishes the induction. By (∗), we find that ⊥(e) ∈ T̄KB implies ⊥(e) ∈ T .
Since 〈I, T 〉 was arbitrary, this establishes the claim.

The algorithm of Definition 5.16 can be viewed as a “breadth-first” construction
of a canonical tableau. Due to the explicit procedural description of tableau rules,
any role and class expression of the canonical tableau is first computed after a well-
defined number of computation steps.2 Accordingly, we define a total order ≺ on
T̄ by setting F ≺ G iff F is computed before G.

The canonical tableau and the order ≺ are the main ingredients for showing the
correctness of the following non-deterministic decision algorithm. Its definition uses
the following notation.

Definition 5.19. Consider a set T ⊆ TI with TI defined for some set of individuals
I and knowledge base KB as in Definition 5.13.

—Given an element e ∈ I, the set T [e] consists of all ABox expressions in T that
contain e, i.e., T [e] := {τ ∈ T | e occurs in τ}.

—Given elements e, f ∈ I, the set Te 7→f is obtained from T by replacing all occur-
rences of e by f . To simplify notation, (Te 7→f)e′ 7→f ′ is denoted as Te 7→f,e′ 7→f ′ .

Definition 5.20. Consider a Horn-FLOH− knowledge base KB with canonical
tableau 〈Ī , T̄ 〉. A set of individuals I is defined as I := I ∪ {a, b}, where a, b /∈ Ī.
Non-deterministically select one element g ∈ I, and initialise T ⊆ TI by setting
T := {⊥(g)}.

The algorithm repeatedly modifies T by non-deterministically applying one of
the following rules:

(N1) Given any τ ∈ TI , set T := T ∪ {τ}. If τ is a role statement, decide non-
deterministically whether τ is marked inactive.

(N2) If there is τ ∈ T such that τ can be derived from T \ {τ} using one of the
rules (T1) to (T8) in Fig. 13, set T := T \ {τ}. Rules (T6b), (T6c), (T6e),
and (T6f) can only be used if τ is marked inactive.

(N3) If T [a] = {R(e, a)} for some e ∈ I \ {a} such that ∃R.>(e) ∈ T , set T :=
(T \ T [a])b7→a.

(N4) If T = ∅, return “unsatisfiable.”

Intuitively, the non-deterministic algorithm applies rules of the algorithm in Def-
inition 5.16 in reverse order, deleting a conclusion whenever it can be derived from
the remaining statements. The anonymous individuals a and b are used to dynam-
ically represent (various) elements from the canonical tableau. Step (N3) is based

2For this to be true, one must also specify the order for the involved iterations, e.g., by ordering
elements lexicographically and adopting a naming scheme for newly introduced elements. We
assume that such an order was chosen.

ACM Transactions on Computational Logic, Vol. V, No. N, January 2012.

Complexities of Horn Description Logics · 27

{⊥(a)} initialisation
{⊥(a), C(a), D(a), E(a)} (N1)× 3
{C(a), D(a), E(a)} (N2): (T3), (8)
{C(a), D(a)} (N2): (T3), (7)
{C(a), D(a), S(b, a), ∃S.>(b), ∀S.C(b),∀S.D(b), B(b)} (N1)× 5
{D(a), S(b, a), ∃S.>(b), ∀S.C(b),∀S.D(b), B(b)} (N2): (T8)
{S(b, a),∃S.>(b), ∀S.C(b), ∀S.D(b), B(b)} (N2): (T8)
{∃S.>(a), ∀S.C(a), ∀S.D(a), B(a)} (N3)
{∀S.C(a), ∀S.D(a), B(a)} (N2): (T3), (4)
{∀S.D(a), B(a)} (N2): (T3), (5)
{B(a)} (N2): (T3), (6)
{B(a), R(c, a),∃R.>(c),∀R.B(c), A(c), {c}(c)} (N1)× 5

{R(c, a), ∃R.>(c), ∀R.B(c)} (N2): (T8)
{∃R.>(c), ∀R.B(c), A(c), {c}(c)} (N3)
{∀R.B(c), A(c), {c}(c)} (N2): (T3), (2)
{A(c), {c}(c)} (N2): (T3), (3)
{{c}(c)} (N2): (T3), (1)
{} (N2): (T2)

Fig. 14. A possible application of the algorithm of Definition 5.20 to the knowledge base in
Example 5.14

on rule (T∃). The condition that this rule introduces a new element is reflected by
the requirement that R(e, a) is the only statement about a when applying (N3).
Thereafter, a is no longer used, and the statements about b are copied to a.

Example 5.21. Figure 14 shows an application of the algorithm of Definition 5.20
to the knowledge base in Example 5.14. Each line specifies the value of the set T of
the algorithm, followed by the rule that was used to obtain it. For each application
of (N2), we use (T1)–(T8) to specify the respective rule of Fig. 13, and (1)–(7) to
refer to the axioms in Example 5.14 that were used. The algorithm thus computes
T = ∅ and can terminate with rule (N4).

Lemma 5.22. The algorithm of Definition 5.20 can be executed in polynomially
bounded space.

Proof. Since |I|, |B|, and |R| are polynomially bounded by the size of the
knowledge base, so is cl(KB) and thus T .

Lemma 5.23. If there is a sequence of choices such that the algorithm of Defini-
tion 5.20 returns “unsatisfiable” after some finite time, KB is indeed unsatisfiable.

Proof. Assume that the algorithm terminates within finitely many steps, where
each step involves an application of one of the rules (N1) to (N4). We use Tn to
denote the state of the algorithm n steps before termination. In particular, T 0 = ∅.

We claim that for each Tn there are individuals a′, b′ ∈ Ī, such that Tna7→a′, b 7→b′ ⊆
T̄ . This is verified by induction over the number of steps executed by the algorithm.
Since T 0 = ∅, the claim for T 0 holds for any a′, b′ ∈ Ī.

For the induction step, assume that Tna7→a′, b 7→b′ ⊆ T̄ . To show the claim for Tn+1,
we distinguish cases based on the transformation rule that was applied to obtain
Tn from Tn+1:

(N1) Since Tn+1 ⊂ Tn, we conclude Tn+1
a7→a′, b 7→b′ ⊆ T̄ .

ACM Transactions on Computational Logic, Vol. V, No. N, January 2012.

28 · Markus Krötzsch et al.

(N2) Tn+1 = Tn ∪ {τ}, where τ can be derived from Tn by one of the rules
(T1) to (T8). Since those rules have been applied exhaustively in T̄ , we find
Tn+1
a 7→a′, b 7→b′ ⊆ T̄ .

(N3) Tn+1 = Tna7→b∪{R(e, a)} for some e ∈ I\{a} and R ∈ R, where ∃R.>(e) ∈ Tn.
By the induction hypothesis, there are a′, b′ ∈ Ī such that Tna7→a′, b 7→b′ ⊆ T̄ ,
and thus Tn+1 \ {R(e, a)}b7→a′ ⊆ T̄ . Moreover, ∃R.>(e′) ∈ T̄ where e′ := b′ if
e = b, and e′ := e otherwise. Thus, by rule (T∃), there is an individual f ∈ Ī
with R(e′, f) ∈ T̄ , and we find {R(e, a)}a 7→f ⊆ T̄ . Thus, Tn+1

a 7→f,b7→a′ ⊆ T̄ .

Applying the above induction to the initial state {⊥(g)}, we find {⊥(g)}a7→a′, b 7→b′ ∈
T̄ . Hence T̄ does indeed contain a clash and KB is unsatisfiable.

Lemma 5.24. Whenever KB is unsatisfiable, there is a sequence of choices such
that the algorithm of Definition 5.20 returns “unsatisfiable” after some finite time.

Proof. It is not hard to see that active role statements in the canonical tableau
form a tree among the elements that are not in I. The following related properties
are relevant to our proof:

(P1) If there are active role statements R(e, f), S(e′, f) ∈ T̄ with f ∈
Ī \ I, then e = e′.

(P2) If there is an active role statement R(e, f) ∈ T̄ with e ∈ Ī \I, then
f ∈ Ī \ I and f 6= e.

These properties can be verified by an easy induction over the rules of Fig. 13.
Active role statements can only be derived through (T5a) and (T∃), and it is clear
that the required properties are preserved in these cases.

To establish the claim, we specify a possible sequence of choices and show its
correctness. If KB is unsatisfiable, there is some element e ∈ Ī in the canonical
tableau such that ⊥(e) ∈ T̄ . Pick one such e. We use a′ and b′ to denote the
elements of Ī that are currently simulated by a and b. To initialise a′ and b′,
consider some element ? /∈ Ī. If e ∈ I, set a′ := b′ := ?; if e /∈ I, set a′ := e
and b′ := ?. Now the algorithm of Definition 5.20 initialises the set T by setting
T := {⊥(e)}a′ 7→a. Throughout the computation below, the following properties will
be preserved:

(P3) Ta7→a′, b 7→b′ ⊆ T̄ and all role statements in Ta7→a′, b 7→b′ are active
in T̄ .

(P4) a′, b′ /∈ I, i.e., a′, b′ ∈ {?} ∪ Ī \ I.

(P5) If T [b] 6= ∅, then R(b, a) ∈ T [a] ∩ T [b] for some R ∈ R. In
particular, T [b] 6= ∅ implies T [a] 6= ∅.

In other words, a and b are used to represent anonymous elements that are
directly related with an active role statement, and, if used at all, b is necessarily
the predecessor of a. Clearly, (P3) to (P5) hold initially.

Rule (N1) of the algorithm will be used repeatedly to close T under relevant
inferences that are ≺-smaller than some statement τ . Given τ ∈ T̄ , we define:
ACM Transactions on Computational Logic, Vol. V, No. N, January 2012.

Complexities of Horn Description Logics · 29

↓τ =
{
C(f) ∈ T̄ | C(f) � τ, f ∈ I ∪ {a′, b′}

}
a′ 7→a, b′ 7→b

∪{
R(f, g) ∈ T̄ | R(f, g) not inactive,R(f, g)� τ, f, g ∈ I∪{a′, b′}

}
a′ 7→a, b′ 7→b

.

This selects all active elements in T̄ that are ≺-smaller than τ and that can be
represented using the elements from I with the current representation of a′ as a,
and b′ as b. The algorithm now repeatedly executes steps according to the following
choice strategy.

Single Step Choice Strategy. If T [a] is non-empty, let τ ′ be the ≺-largest element
of T [a]a7→a′ . Else, let τ ′ be the ≺-largest element of Ta7→a′,b 7→b′ . By property (P3),
there is some τ ∈ T such that {τ}a7→a′, b 7→b′ = {τ ′} and τ is not inactive. Applying
rule (N1), the algorithm first computes T := T ∪ ↓τ (∗). The algorithm non-
deterministically guesses the rule of Fig. 13 that was used to infer τ ′, and proceeds
accordingly:

—If τ ′ was inferred by one of the rules (T1), (T2), (T3), (T4), (T5a), (T5b), and
(T7), the premises of a respective rule application in T have been computed
in (∗). This is so since the required premises are ≺-smaller and not inactive,
and since they only involve individuals that are also found in τ , i.e., which are
represented by I with the current choice of a′ and b′. Hence the algorithm can
apply rule (N2) to reduce τ .

—If τ ′ was inferred by one of the rules of (T6), then one of the premises used was
of the form {f}(e), and thus f ∈ I. Since τ ′ is not inactive, rules (T6b), (T6c),
(T6e), and (T6f) are not relevant. We distinguish two cases:
—If τ ′ was inferred by rule (T6a) then τ can directly be reduced by applying
rule (N2). The existence of the premises in T follows again from (∗).

—If τ ′ was inferred by rules (T6d), then τ ′ is of the form C(f) and thus T [a] = ∅.
If e ∈ I, then τ can again be reduced by rule (N2). If e /∈ I, set a′ := e and use
rule (N1) to compute T [a] = {{f}(a), C(a)}. Apply (N2) to reduce τ .

—If τ ′ was inferred by rule (T8), then τ ′ = C(g) for some element g, and there is
some element e such that {∀R.C(e), R(e, g)} ⊆ T̄ . We distinguish two cases:
—If g ∈ I, then τ = C(g) and, by (P2), e ∈ I. Thus τ can again be reduced by
rule (N2).

—If g /∈ I, then g ∈ {a′, b′}. Thus, by (P3), T [a] 6= ∅ or T [b] 6= ∅, and therefore
T [a] 6= ∅ by (P5). Hence τ was chosen from T [a], so τ = C(a) and g = a′. By
(P2), e 6= a′.
If e ∈ I, then {∀R.C(e), R(e, a)} ⊆ T by (∗). Use rule (N2) to reduce τ .
Now consider the case e /∈ I. If b′ = ? then set b′ := e and use rule (N1) to
compute T [b] = {∀R.C(b), R(b, a)}. Use rule (N2) to reduce τ . Otherwise, if
b′ 6= ?, then there is some active role statement S(b′, a′) ∈ T̄ by (P5). Thus,
b′ = e by (P1), and rules (N1) and (N2) can be applied as before to reduce τ .

—If τ ′ was inferred by rule (T∃), we have τ ′ = R(e, g) for some newly introduced
element g /∈ I. Thus g ∈ {a′, b′}. By (P3), T [a] 6= ∅ or T [b] 6= ∅, and therefore
T [a] 6= ∅ by (P5). Hence τ was chosen from T [a], i.e., e = a′ or g = a′. If e = a′,
then g /∈ I by (P2), so g = b′, which by (P5) contradicts (P1) or (P2). Thus,
g = a′.

ACM Transactions on Computational Logic, Vol. V, No. N, January 2012.

30 · Markus Krötzsch et al.

Since τ ′ = R(e, a′) is the first statement using a′ in the canonical tableau, it
is the ≺-smallest element in T [a]a 7→a′ . Since τ ′ was chosen to be the ≺-largest
element of T [a]a7→a′ , this implies T [a]a7→a′ = {τ ′} and thus T [a] = {τ}. Thus we
can apply rule (N3) to reduce τ , and we set a′ := b′ and b′ := ?.

It is easy to check that properties (P3) to (P5) are preserved in each of these
steps. Due to (P3), it is also clear that one of the above cases must be applicable
as long as T 6= ∅ (all ABox statements in T̄ were derived by some rule).

Finally, we need to show that the algorithm terminates. This is established by
defining a well-founded termination order. For details on such approaches and the
related terminology, see [Baader and Nipkow 1998]. Now considering T as a mul-
tiset, the multiset-extension of the well-founded order ≺ is a suitable termination
order, which is easy to see since in every reduction step, the element τ is deleted,
and possibly replaced by one or more elements that are strictly smaller than τ .

The above lemmata establish an NPSpace decision procedure for detecting un-
satisfiability of Horn-FLOH− knowledge bases. But NPSpace is known to coincide
with PSpace, and we can conclude the main theorem of this section.

Theorem 5.25. Unsatisfiability of a Horn-FLOH− knowledge base KB can be
decided in space that is polynomially bounded by the size of KB.

Proof. Combine Lemma 5.22, 5.23, and 5.24 to obtain a non-deterministic time-
polynomial decision procedure for detecting unsatisfiability. Apply Savitch’s The-
orem to show the existence of an according PSpace algorithm [Savitch 1970].

Summing up the result from the previous two sections, we obtain the following.

Theorem 5.26. The standard reasoning problems for any description logic be-
tween Horn-FL− and Horn-FLOH− are PSpace-complete.

Proof. Combine Theorem 5.10 and Theorem 5.25.

6. HORN-SHIQ AND OTHER EXPTIME-COMPLETE HORN DLS

Horn-ALC further extends Horn-FL− by allowing arbitrary existential role quan-
tifications instead of only unqualified ones. Note that the step from Horn-FL−
to Horn-ALC is less significant than that from FL− to ALC since the imposed
Hornness restricts the usage of the operators t and ¬ available in ALC.

Definition 6.1. A concept C in pNNF is a Horn-ALC concept if

—C is in C1 of Fig. 5, and
—C contains only concept constructors >, ⊥, u, t, ¬, ∀ and ∃.

The description logic Horn-ALC supports the following axioms:

—TBox axioms C v D such that pNNF(¬C tD) is a Horn-ALC concept,
—ABox axioms C(a), R(a, b), and a ≈ b such that pNNF(C) is a Horn-ALC concept
and R is a SROIQfree role.

This moderate syntactic extension turns out to raise the complexity of stan-
dard reasoning tasks for Horn-ALC to ExpTime, thus establishing ExpTime-
completeness of Horn-SHIQ. Note that inclusion in ExpTime is obvious since
ACM Transactions on Computational Logic, Vol. V, No. N, January 2012.

Complexities of Horn Description Logics · 31

ALC is a fragment of SHIQ which is also in ExpTime [Tobies 2001]. To show
that Horn-ALC is ExpTime-hard, we reduce the halting problem of polynomially
space-bounded alternating Turing machines, defined next, to the concept subsump-
tion problem.

6.1 Alternating Turing Machines

Definition 6.2. An alternating Turing machine (ATM)M is a tuple (Q,Σ,∆, q0)
where

—Q = U ∪̇ E is the disjoint union of a finite set of universal states U and a finite
set of existential states E,

—Σ is a finite alphabet that includes a blank symbol �,
—∆ ⊆ (Q× Σ)× (Q× Σ× {l, r}) is a transition relation, and
—q0 ∈ Q is the initial state.

A (universal/existential) configuration ofM is a word α∈Σ∗QΣ∗ (Σ∗UΣ∗/Σ∗EΣ∗).
A configuration α′ is a successor of a configuration α if one of the following holds:

(1) α = wlqσσrwr, α′ = wlσ
′q′σrwr, and (q, σ, q′, σ′, r) ∈ ∆,

(2) α = wlqσ, α′ = wlσ
′q′�, and (q, σ, q′, σ′, r) ∈ ∆,

(3) α = wlσlqσwr, α′ = wlq
′σlσ

′wr, and (q, σ, q′, σ′, l) ∈ ∆,

where q ∈ Q and σ, σ′, σl, σr ∈ Σ as well as wl, wr ∈ Σ∗. Given some natural
number s, the possible transitions in space s are defined by additionally requiring
that |α′| ≤ s+ 1.

The set of accepting configurations is the least set which satisfies the following
conditions. A configuration α is accepting iff

—α is a universal configuration and all its successor configurations are accepting,
or

—α is an existential configuration and at least one of its successor configurations
is accepting.

Note that universal configurations without any successors here play the rôle of
accepting final configurations, and thus form the basis for the recursive definition
above.
M accepts a given word w ∈ Σ∗ (in space s) iff the configuration q0w is accepting

(when restricting to transitions in space s).

This definition is inspired by the complexity classes NP and co-NP, which are
characterised by non-deterministic Turing machines that accept an input if either
at least one or all possible runs lead to an accepting state. An ATM can switch
between these two modes and indeed turns out to be more powerful than classical
Turing machines of either kind. In particular, ATMs can solve ExpTime problems
in polynomial space [Chandra et al. 1981].

Definition 6.3. A language L is accepted by a polynomially space-bounded ATM
iff there is a polynomial p such that, for every word w ∈ Σ∗, w ∈ L iff w is accepted
in space p(|w|).

ACM Transactions on Computational Logic, Vol. V, No. N, January 2012.

32 · Markus Krötzsch et al.

Fact 6.4. The complexity class APSpace of languages accepted by polynomially
space-bounded ATMs coincides with the complexity class ExpTime.

We thus can show ExpTime-hardness of Horn-SHIQ by polynomially reducing
the halting problem of ATMs with a polynomially bounded storage space to in-
ferencing in Horn-SHIQ. In the following, we exclusively deal with polynomially
space-bounded ATMs, and so we omit additions such as “in space s” when clear
from the context.

6.2 Simulating ATMs in Horn-ALC
In the following, we consider a fixed ATM M denoted as in Definition 6.2, and a
polynomial p that defines a bound for the required space. For any word w ∈ Σ∗,
we construct a Horn-ALC knowledge base KBM,w and show that acceptance of w
by the ATMM can be decided by inferencing over this knowledge base.

In detail, KBM,w depends onM and p(|w|), and has an empty ABox.3 Accep-
tance of w by the ATM is reduced to checking concept subsumption, where one
of the involved concepts directly depends on w. Intuitively, the elements of an
interpretation domain of KBM,w represent possible configurations of M, encoded
by the following concept names:

—Aq for q ∈ Q: the ATM is in state q,
—Hi for i = 0, . . . , p(|w|)− 1: the ATM is at position i on the storage tape,
—Cσ,i with σ ∈ Σ and i = 0, . . . , p(|w|)− 1: position i on the storage tape contains
symbol σ,

—A: the ATM accepts this configuration.

This approach is pretty standard, and it is not too hard to axiomatise a succes-
sor relation S and appropriate acceptance conditions in ALC (see, e.g., [Lutz and
Sattler 2005]). But this reduction is not applicable in Horn-SHIQ, and it is not
trivial to modify it accordingly.

One problem that we encounter is that the acceptance condition of existential
states is a (non-Horn) disjunction over possible successor configurations. To over-
come this, we encode individual transitions by using a distinguished successor re-
lation for each transition in ∆. This allows us to explicitly state which conditions
must hold for a particular successor without requiring disjunction. For the ac-
ceptance condition, we use a recursive formulation as employed in Definition 6.2.
Acceptance is thus propagated backwards from the final accepting configurations.

In the case of ALC, acceptance of the ATM is reduced to concept satisfiability,
i.e., one checks whether an accepting initial configuration can exist. This requires
that acceptance is faithfully propagated to successor states, so that any model of
the initial concept encodes a valid trace of the ATM. Axiomatising this requires
many exclusive disjunctions, such as “The ATM always is in exactly one of its
states Hi.” Since it is not clear how to model this in a Horn DL, we take a dual
approach: reducing acceptance to concept subsumption, we require the initial state
to be accepting in all possible models. Under this approach, we do not need to
ensure that every element of every model represents a unique configuration of the

3The RBox is empty for ALC anyway.

ACM Transactions on Computational Logic, Vol. V, No. N, January 2012.

Complexities of Horn Description Logics · 33

(1) Left and right transition rules:
Aq uHi u Cσ,i v ∃Sδ.(Aq′ uHi+1 u Cσ′,i) with δ = (q, σ, q′, σ′, r), i < p(|w|)− 1

Aq uHi u Cσ,i v ∃Sδ.(Aq′ uHi−1 u Cσ′,i) with δ = (q, σ, q′, σ′, l), i > 0

(2) Memory: (3) Existential acceptance:
Hj u Cσ,i v ∀Sδ.Cσ,i i 6= j Aq u ∃Sδ.A v A for all q ∈ E

(4) Universal acceptance:
Aq uHi u Cσ,i u

d
δ∈∆̃(∃Sδ.A) v A q ∈ U , x ∈ {r | i < p(|w|)− 1} ∪ {l | i > 0}

∆̃ = {(q̃, σ̃, q′, σ′, x) ∈ ∆ | q̃ = q and σ̃ = σ}
Rules are instantiated for all q, q′∈Q, σ, σ′∈Σ, i, j∈{0, . . . , p(|w|)− 1}, and δ ∈ ∆.

Fig. 15. Knowledge base KBM,w simulating a polynomially space-bounded ATM

ATM. We merely require that every element relates to the necessary successor
configurations of all of the configurations it represents. Our encoding ensures that,
whenever the initial configuration is not accepting, there is at least one “minimal”
model that reflects this.

After this informal introduction, consider the knowledge base KBM,w given in
Fig. 15. The roles Sδ (δ ∈ ∆) describe a configuration’s successors using the
transition δ. The initial configuration for a word w is described by the concept Iw:

Iw := Aq0 uH0 u Cσ0,0 u . . . u Cσ|w|−1,|w|−1 u C�,|w| u . . . u C�,p(|w|)−1,

where σi denotes the symbol at the ith position of w. We will show that checking
whether the initial configuration is accepting is equivalent to checking whether
Iw v A follows from KBM,w. The following is obvious from the characterisation
given in Definition 3.1.

Lemma 6.5. KBM,w and Iw v A are in Horn-ALC.

Next we need to investigate the relationship between elements of an interpreta-
tion that satisfies KBM,w and configurations of M. Given an interpretation I of
KBM,w, we say that an element e of the domain of I represents a configuration
σ1 . . . σi−1qσi . . . σm if e ∈ AIq , e ∈ HIi , and, for every j ∈ {0, . . . , p(|w|) − 1},
e ∈ CIσ,j whenever

j ≤ m and σ = σj or j > m and σ = �.

Note that we do not require uniqueness of the above, so that a single element might
in fact represent more than one configuration. As we will see below, this does not
affect our results. If e represents a configuration as above, we will also say that e
has state q, position i, symbol σj at position j etc.

Lemma 6.6. Consider some interpretation I that satisfies KBM,w. If some el-
ement e of I represents a configuration α and some transition δ is applicable to α,
then e has an SIδ -successor that represents the (unique) result of applying δ to α.

Proof. Consider an element e, state α, and transition δ as in the claim. Then
one of the axioms (1) applies, and e must also have an SIδ -successor. This successor
represents the correct state, position, and symbol at position i of e, again by the
axioms (1). By axiom (2), symbols at all other positions are also represented by all
SIδ -successors of e.

ACM Transactions on Computational Logic, Vol. V, No. N, January 2012.

34 · Markus Krötzsch et al.

Lemma 6.7. A word w is accepted byM iff Iw v A is a consequence of KBM,w.

Proof. Consider an arbitrary interpretation I that satisfies KBM,w. We first
show that, if any element e of I represents an accepting configuration α, then
e ∈ AI .

We use an inductive argument along the recursive definition of acceptance. If α is
a universal configuration then all successors of α are accepting, too. By Lemma 6.6,
for any δ-successor α′ of α there is a corresponding SIδ -successor e

′ of e. By the
induction hypothesis for α′, e′ is in AI . Since this holds for all δ-successors of α,
axiom (4) implies e ∈ AI . Especially, this argument covers the base case where α
has no successors.

If α is an existential configuration, then there is some accepting δ-successor α′
of α. Again by Lemma 6.6, there is an SIδ -successor e

′ of e that represents α′, and
e′ ∈ AI by the induction hypothesis. Hence axiom (3) applies and also conclude
e ∈ AI .

Since all elements in IIw represent the initial configuration of the ATM, this shows
that IIw ⊆ AI whenever the initial configuration is accepting.

It remains to show the converse: if the initial configuration is not accepting,
there is some interpretation I such that IIw 6⊆ AI . To this end, we define a canon-
ical interpretation M of KBM,w as follows. The domain of M is the set of all
configurations of M that have size p(|w|) + 1 (i.e., that encode a tape of length
p(|w|), possibly with trailing blanks). The interpretations for the concepts Aq, Hi,
and Cσ,i are defined as expected so that every configuration represents itself but
no other configuration. Especially, IMw is the singleton set containing the initial
configuration. Given two configurations α and α′, and a transition δ, we define
(α, α′) ∈ SMδ iff there is a transition δ from α to α′. AM is defined to be the set of
accepting configurations.

By checking the individual axioms of Fig. 15, it is easy to see that M satisfies
KBM,w. Now if the initial configuration is not accepting, IMw 6⊆ AM by con-
struction. Thus M is a counterexample for Iw v A, which thus is not a logical
consequence.

We can summarise our results as follows.

Theorem 6.8. The standard reasoning problems for any description logic be-
tween Horn-ALC and Horn-SHIQ are ExpTime-complete.

Proof. Inclusion is obvious as Horn-SHIQ is a fragment of SHIQ, for which
these problems are in ExpTime [Tobies 2001]. Regarding hardness, Lemma 6.7
shows that the word problem for polynomially space-bounded ATMs can be reduced
to checking concept subsumption in KBM,w. The other standard reasoning prob-
lems can be reduced to satisfiability checking by Proposition 2.8. By Lemma 6.5,
KBM,w is in Horn-ALC. The reduction is polynomially bounded due to the re-
stricted number of axioms: there are at most p(|w|) × |∆| axioms of type (1),
p(|w|)2 × |Σ| × |∆| of type (2), |Q| × |∆| of type (3), and |Q| × p(|w|)× |Σ| of type
(4).

The proof that was used to establish the previous result is suitable for obtaining
further complexity results for logical fragments that are not above Horn-ALC.
ACM Transactions on Computational Logic, Vol. V, No. N, January 2012.

Complexities of Horn Description Logics · 35

Theorem 6.9. Consider the description logics

(a) ELF , the fragment of SROIQfree that supports ABoxes and TBoxes using the
constructors >, ∃, u, and number restrictions of the form 61R.>,

(b) Horn-FLE obtained by extending Horn-FL− with GCIs of the form ∃R.A v B,
(c) Horn-FL◦− obtained by extending Horn-FL− with composition of roles while

restricting to regular RBoxes, and
(d) Horn-FLI− obtained by extending Horn-FL− with inverse roles.

Concept subsumption is ExpTime-hard for Horn-FL◦−, and ExpTime-complete
for ELF , Horn-FLE, and Horn-FLI−.

Proof. The results are established by modifying the knowledge base KBM,w to
suit the given fragment. We restrict to providing the required modifications; the
full proofs are analogous to the proof for Horn-ALC.

(a) Replace axioms (2) in Fig. 15 with the following statements:

> v ≤1Sδ.> Hj u Cσ,i u ∃Sδ.> v ∃Sδ.Cσ,i, i 6= j.

(b) Replace axioms (1) with axioms of the form

Aq uHi u Cσ,i v ∃Sδ.> u ∀Sδ.(Aq′ uHi±1 u Cσ′,i).

All occurrences of existential restrictions ∃R.C on the left-hand side of GCIs
are replaced by a fresh concept name X for which the axiom ∃R.C v X is
added.

(c) Axioms (1) are replaced as in (b). We introduce roles RAδ for each transition δ,
and replace every occurrence of ∃Sδ.A with ∃RAδ.>. Moreover, every remaining
occurrence of concept A is replaced with ∃RA.>, with RA a new role. Finally,
the following axioms are added:

Sδ ◦RA v RAδ for each δ ∈ ∆.

(d) Axioms (1) are replaced as in (b). Every occurrence of ∃Sδ.A is replaced with
a new concept name ASδ, and the following axioms are added:

A v ∀S−1δ .ASδ for each δ ∈ ∆.

It is easy to see that those changes allow for analogous reductions. The membership
results for ELF , Horn-FLE , and Horn-FLI− are immediate from their inclusion in
SHIQ.

ExpTime-completeness of ELF was shown in [Baader et al. 2005] (where it was
called EL≤1), but the above theorem provides a more direct proof.

7. RELATED WORK

Horn-SHIQ has originally been introduced in [Hustadt et al. 2005] where it has
been defined as discussed in Section 3 but with additional implicit restrictions
related to the presence of transitivity. The latter was caused by a method of
transitivity elimination that creates non-Horn axioms of the form ∀R.A v ∀R.∀R.A
for transitive roles R which must be taken into account when defining Horn-SHIQ.

ACM Transactions on Computational Logic, Vol. V, No. N, January 2012.

36 · Markus Krötzsch et al.

As discussed in Section 3, this problem can be avoided by encoding transitivity
(and other RIAs) by means of automata encoding techniques as used in [Demri
and Nivelle 2005] which have first been applied to DLs in [Kazakov 2008]. Taking
this into account, our formulation of Horn-SHIQ is slightly more general than
the one in [Hustadt et al. 2005] and than the formulations used in precursors to
this work [Krötzsch et al. 2006a; Krötzsch et al. 2006b; Krötzsch et al. 2007].
While the data complexity of Horn-SHIQ has been one of the main motives for
defining it in [Hustadt et al. 2005], the combined complexity result reported herein
is new. Recent investigations revealed that even entailment of conjunctive queries
for Horn-SHOIQ can be performed in ExpTime [Ortiz et al. 2011], whereas this
problem is known to be 2ExpTime-complete for SHIQ [Glimm et al. 2008] and
even co-N2ExpTime-hard for ALCOIF [Glimm et al. 2011]. Another recent result
established the exact reasoning complexity of Horn-SHOIQ and Horn-SROIQ to
be ExpTime and 2ExpTime, respectively [Ortiz et al. 2010].

The lower data complexity of reasoning in Horn-SHIQ has first been exploited by
the KAON2 system as described in [Motik 2006; Motik and Sattler 2006]. Further
algorithms and implementations have since been able to exploit the simpler struc-
ture of Horn knowledge bases to achieve tangible performance gains. An example
is the hypertableau reasoner HermiT that can handle arbitrary SROIQ (OWL 2)
knowledge bases [Motik et al. 2009]. The “consequence-driven” reasoning method
of [Kazakov 2009] is restricted to Horn-SHIQ, but shows outstanding performance
for practically relevant ontologies that fall into that fragment. The restriction of
consequence-driven reasoning to Horn DLs has recently been relaxed [Simančík
et al. 2011].

Other notable examples of Horn DLs are light-weight description logics. Indeed,
disjunctive information makes reasoning NP-hard in all DLs that support conjunc-
tion and GCIs, and hence it is excluded from DLs that allow for polynomial-time
reasoning. Thus, it is no surprise to find that EL++ [Baader et al. 2005; 2008] and
various versions of DL-Lite [Calvanese et al. 2007] are Horn DLs in the sense of this
paper. The same is true for various formulations of DLP [Grosof et al. 2003; Volz
2004], as has already been observed in Section 4.

Reducing inference problems of DL to inference problems of corresponding Data-
log programs has been considered in a number of approaches. Examples include
resolution-based approaches for EL [Kazakov 2006], for its extension ELP [Krötzsch
et al. 2008] and for SHIQ [Hustadt et al. 2005; Motik 2006], as well as approaches
for SHIQ based on ordered binary decision diagrams [Rudolph et al. 2008d; 2008c].
In many of these cases, disjunctive Datalog is required [Motik 2006; Rudolph et al.
2008d; 2008c]. Some encodings naturally lead to Datalog without disjunctions when
applied to Horn DLs [Hustadt et al. 2005; Kazakov 2006; Krötzsch et al. 2008], while
others use disjunctions in this case as well [Rudolph et al. 2008d; 2008c].

The description logic FL− dates back to [Brachman and Levesque 1984] where it
was introduced as a presumably tractable variant of the frame language FL. While
subsumption of individual concept expressions can indeed be decided in polynomial
time, the subsumption problem for FL− and even in FL0 is ExpTime-hard in
the presence of arbitrary FL− TBoxes, as was first shown by McAllester in an
unpublished manuscript of 1991 [Donini et al. 1996].
ACM Transactions on Computational Logic, Vol. V, No. N, January 2012.

Complexities of Horn Description Logics · 37

EL

NEXPTIME

EXPTIME

PSPACE

PTIME

Horn-FLE

Horn-SHIQ

Horn-FLOH -

Horn-FL-

Horn-FLI -ELF

RL

SHIQ

SHOIQ

Horn-SHOIQ

Horn-FL°
-

SROIQN2EXPTIME

2EXPTIME Horn-SROIQ

Horn-ALC

Fig. 16. Reasoning complexities of Horn DLs; the exact position of Horn-FL◦− is not known

8. CONCLUSIONS

In this paper, we have generalised the well-known definition of Horn-SHIQ to
Horn-SROIQfree, the Horn fragment of SROIQ without structural restrictions
on regularity or simplicity. This also led us to a simplified characterisation of
Horn DLs based on a formal grammar. We have then studied a number of increas-
ingly expressive Horn description logics that are obtained as fragments of Horn-
SROIQfree w.r.t. their worst-case inferencing complexities. The reported results
are summarised in Fig. 16. Some non-Horn DLs – SHIQ, SHOIQ, and SROIQ –
are also displayed in this context, while FL0 and FL− (both ExpTime) are omitted
to simplify the presentation. The complexity results for Horn-SHOIQ and Horn-
SROIQ do not follow from this work: they have been established by Ortiz et al.
[2010].

The entry for Horn-FL◦− in Fig. 16 is displayed in a dotted box to indicate
that its exact position is not certain. We have established ExpTime hardness,
which suffices to demonstrate that this extension of Horn-FL− does no longer admit
reasoning in PSpace.4 The 2ExpTime upper bound for the complexity follows
from the according result for Horn-SROIQ [Ortiz et al. 2010]. Further checks are
needed to determine the exact complexity of Horn-FL◦−. But when considering the
fact that no Horn DL is known to be complete for a non-deterministic complexity
class, it seems to be very unlikely that this DL is complete for NExpTime. Indeed,
we conjecture that this avoidance of non-determinism is inherent to Horn DLs.

A tableau algorithm for reasoning in description logics between Horn-FL− and
Horn-FLOH− has been devised to show the upper complexity bound for reasoning
in these logics. In essence, this algorithm achieves its goal in polynomial space
by storing only very small portions of the constructed tableau, corresponding to
very restricted “local” environments in the according model. The main result there-

4Unless PSpace = ExpTime.

ACM Transactions on Computational Logic, Vol. V, No. N, January 2012.

38 · Markus Krötzsch et al.

fore consists in showing that such an extremely limited view suffices for complete
reasoning in the considered logics. As opposed to RL, the addition of nominals
to Horn-FL− significantly complicates reasoning procedures, although it does not
lead to increased worst-case complexities. Due to a high amount of unguided non-
determinism, the tableau algorithm for Horn-FLOH− is clearly unsuitable for prac-
tical implementation.

Another important theme in this paper was to establish hardness results that
require only a minimal amount of logical expressivity, and which can therefore be
useful to derive hardness results for many other DLs as well. This was achieved
by directly simulating Turing machine computations in terms of DL inferencing,
where polynomially space-bounded Alternating Turing Machines have been found
a convenient tool for showing ExpTime hardness. The versatility of this approach
was illustrated by deriving a number of additional hardness results for extensions
of EL and FL− which extended or strengthened existing results.

Generally, over the last years, the ongoing investigation of Horn fragments of
widely adopted DLs has produced many new insights in terms of the syntactic
description of such fragments and the computational complexity of reasoning tasks,
but it has also provided valuable stimuli for practical developments, such as the
definition of tractable ontology formalisms and the implementation of reasoning
engines which benefit from the fact that many practically occurring ontologies are
at least “almost Horn.”

Acknowledgements. We would like to thank the anonymous reviewers who have
provided detailed and insightful comments on this work and its precursors.

REFERENCES

Baader, F., Brandt, S., and Lutz, C. 2005. Pushing the EL envelope. See Kaelbling and
Saffiotti [2005], 364–369.

Baader, F., Brandt, S., and Lutz, C. 2008. Pushing the EL envelope further. In Proceedings
of the OWLED 2008 DC Workshop on OWL: Experiences and Directions, K. G. Clark and
P. F. Patel-Schneider, Eds. CEUR Workshop Proceedings, vol. 496. CEUR-WS.org.

Baader, F., Calvanese, D., McGuinness, D., Nardi, D., and Patel-Schneider, P., Eds.
2007. The Description Logic Handbook: Theory, Implementation, and Applications, Second
ed. Cambridge University Press.

Baader, F. and Nipkow, T. 1998. Term Rewriting and All That. Cambridge University Press.
Brachman, R. J. and Levesque, H. J. 1984. The tractability of subsumption in frame-based

description languages. In Proceedings of the 4th National Conference on Artificial Intelligence
(AAAI’84), R. J. Brachman, Ed. AAAI Press, 34–37.

Calvanese, D., Giacomo, G. D., Lembo, D., Lenzerini, M., and Rosati, R. 2007. Tractable
reasoning and efficient query answering in description logics: The DL-Lite family. Journal of
Automated Reasoning 39, 3, 385–429.

Chandra, A. K., Kozen, D. C., and Stockmeyer, L. J. 1981. Alternation. Journal of the
ACM 28, 1, 114–133.

Dantsin, E., Eiter, T., Gottlob, G., and Voronkov, A. 2001. Complexity and expressive
power of logic programming. ACM Computing Surveys 33, 3, 374–425.

Demri, S. and Nivelle, H. 2005. Deciding regular grammar logics with converse through first-
order logic. Journal of Logic, Language and Information 14, 3, 289–329.

Donini, F. M., Lenzerini, M., Nardi, D., and Schaerf, A. 1996. Reasoning in description
logics. In Principles of Knowledge Representation, G. Brewka, Ed. Studies in Logic, Language,
and Information. CLSI Publications, 193–238.

ACM Transactions on Computational Logic, Vol. V, No. N, January 2012.

Complexities of Horn Description Logics · 39

Glimm, B., Kazakov, Y., and Lutz, C. 2011. Status QIO: An update. In Proceedings of
the 24th International Workshop on Description Logics (DL’11), R. Rosati, S. Rudolph, and
M. Zakharyaschev, Eds. CEUR Workshop Proceedings, vol. 745. CEUR-WS.org.

Glimm, B., Lutz, C., Horrocks, I., and Sattler, U. 2008. Answering conjunctive queries in
the SHIQ description logic. Journal of Artificial Intelligence Research 31, 150–197.

Grosof, B. N., Horrocks, I., Volz, R., and Decker, S. 2003. Description logic programs:
combining logic programs with description logic. In Proceedings of the 12th International
Conference on World Wide Web (WWW’03). ACM, 48–57.

Hitzler, P., Krötzsch, M., and Rudolph, S. 2009. Foundations of Semantic Web Technolo-
gies. Chapman & Hall/CRC.

Hustadt, U., Motik, B., and Sattler, U. 2005. Data complexity of reasoning in very expres-
sive description logics. See Kaelbling and Saffiotti [2005], 466–471.

Kaelbling, L. and Saffiotti, A., Eds. 2005. Proceedings of the 19th International Joint
Conference on Artificial Intelligence (IJCAI’05). Professional Book Center.

Kazakov, Y. 2006. Saturation-based decision procedures for extensions of the guarded fragment.
Ph.D. thesis, Universität des Saarlandes, Saarbrücken, Germany.

Kazakov, Y. 2008. RIQ and SROIQ are harder than SHOIQ. In Proceedings of the 11th
International Conference on Principles of Knowledge Representation and Reasoning (KR’08),
G. Brewka and J. Lang, Eds. AAAI Press, 274–284.

Kazakov, Y. 2009. Consequence-driven reasoning for Horn SHIQ ontologies. In Proceedings
of the 21st International Conference on Artificial Intelligence (IJCAI’09), C. Boutilier, Ed.
IJCAI, 2040–2045.

Krötzsch, M. 2011. Efficient rule-based inferencing for OWL EL. See Walsh [2011], 2668–2673.
Krötzsch, M., Hitzler, P., Vrandečić, D., and Sintek, M. 2006a. How to reason with

OWL in a logic programming system. In Proceedings of the 2nd International Conference
on Rules and Rule Markup Languages for the Semantic Web (RuleML’06). IEEE Computer
Society Press.

Krötzsch, M., Rudolph, S., and Hitzler, P. 2006b. On the complexity of Horn description
logics. In Proceedings of the 2nd Workshop on OWL: Experiences and Directions, B. Cuenca
Grau, P. Hitzler, C. Shankey, and E. Wallace, Eds. CEUR WS Proceedings, vol. 216. CEUR-
WS.org.

Krötzsch, M., Rudolph, S., and Hitzler, P. 2007. Complexity boundaries for Horn descrip-
tion logics. In Proceedings of the 22nd AAAI Conference on Artificial Intelligence (AAAI’07).
AAAI Press, 452–457.

Krötzsch, M., Rudolph, S., and Hitzler, P. 2008. ELP: Tractable rules for OWL 2. See
Sheth et al. [2008], 649–664.

Krötzsch, M., Rudolph, S., and Schmitt, P. H. 2010. On the semantic relationship between
Datalog and description logics. In Proceedings of the 4th Interational Conference on Web
Reasoning and Rule Systems (RR’10). LNCS, vol. 6333. Springer, 88–102.

Krötzsch, M., Simančík, F., and Horrocks, I. 2012. A description logic primer.
CoRR abs/1201.4089.

Lutz, C. and Sattler, U. 2005. Description Logics. Lecture at the ICCL Summer School
2005, Dresden, Germany. Slides available at http://www.computational-logic.org/content/
events/iccl-ss-2005/.

Motik, B. 2006. Reasoning in description logics using resolution and deductive databases. Ph.D.
thesis, Universität Karlsruhe (TH), Germany.

Motik, B., Cuenca Grau, B., Horrocks, I., Wu, Z., Fokoue, A., and Lutz, C., Eds. 27
October 2009. OWL 2 Web Ontology Language: Profiles. W3C Recommendation. Available at
http://www.w3.org/TR/owl2-profiles/.

Motik, B. and Sattler, U. 2006. A comparison of reasoning techniques for querying large de-
scription logic ABoxes. In Proceedings of the 13th International Conference on Logic for Pro-
gramming, Artificial Intelligencen, and Reasoning (LPAR’01), M. Hermann and A. Voronkov,
Eds. LNCS, vol. 4246. Springer, 227–241.

ACM Transactions on Computational Logic, Vol. V, No. N, January 2012.

40 · Markus Krötzsch et al.

Motik, B., Shearer, R., and Horrocks, I. 2009. Hypertableau reasoning for description
logics. Journal of Artificial Intelligence Research 36, 165–228.

Ortiz, M., Rudolph, S., and Šimkus, M. 2010. Worst-case optimal reasoning for the Horn-DL
fragments of OWL 1 and 2. In Proceedings of the 12th International Conference on Principles
of Knowledge Representation and Reasoning (KR’10), F. Lin, U. Sattler, and M. Truszczynski,
Eds. AAAI Press, 269–279.

Ortiz, M., Rudolph, S., and Šimkus, M. 2011. Query answering in the Horn fragments of the
description logics SHOIQ and SROIQ. See Walsh [2011], 1039–1044.

OWL Working Group, W. 27 October 2009. OWL 2 Web Ontology Language: Document
Overview. W3C Recommendation. Available at http://www.w3.org/TR/owl2-overview/.

Rudolph, S., Krötzsch, M., and Hitzler, P. 2008a. All elephants are bigger than all mice.
In Proceedings of the 21st International Workshop on Description Logics (DL’08), F. Baader,
C. Lutz, and B. Motik, Eds. CEUR Workshop Proceedings, vol. 353. CEUR-WS.org.

Rudolph, S., Krötzsch, M., and Hitzler, P. 2008b. Cheap Boolean role constructors for
description logics. In Proceedings of the 11th European Conference on Logics in Artificial In-
telligence (JELIA’08), S. Hölldobler, C. Lutz, and H. Wansing, Eds. LNAI, vol. 5293. Springer,
362–374.

Rudolph, S., Krötzsch, M., and Hitzler, P. 2008c. Description logic reasoning with decision
diagrams: Compiling SHIQ to disjunctive Datalog. See Sheth et al. [2008], 435–450.

Rudolph, S., Krötzsch, M., and Hitzler, P. 2008d. Terminological reasoning in SHIQ with
ordered binary decision diagrams. In Proceedings of the 23rd AAAI Conference on Artificial
Intelligence (AAAI’08). AAAI Press, 529–534.

Savitch, W. J. 1970. Relationship between nondeterministic and deterministic tape complexities.
Journal of Computer and System Science 4, 177–192.

Sheth, A., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., and
Thirunarayan, K., Eds. 2008. Proceedings of the 7th International Semantic Web Conference
(ISWC’08). LNCS, vol. 5318. Springer.

Simančík, F., Kazakov, Y., and Horrocks, I. 2011. Consequence-based reasoning beyond
Horn ontologies. See Walsh [2011], 1093–1098.

Tobies, S. 2001. Complexity results and practical algorithms for logics in knowledge represen-
tation. Ph.D. thesis, RWTH Aachen, Germany.

Volz, R. 2004. Web ontology reasoning with logic databases. Ph.D. thesis, Universität Karlsruhe
(TH), Germany.

Walsh, T., Ed. 2011. Proceedings of the 22nd International Conference on Artificial Intelligence
(IJCAI’11). AAAI Press/IJCAI.

ACM Transactions on Computational Logic, Vol. V, No. N, January 2012.

