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1. INTRODUCTION

This paper is about Answer Set Programming (ASP) where the main computational
task is to compute the answer sets of a logic program. In this context, consequences
of a logic program, those that are true in all answer sets, are of interest as they can
be used to simplify the given program and help computing its answer sets. The best
known example is the well-founded model for normal logic programs [Van Gelder
et al. 1991], which always exists and can be computed efficiently. All literals in
the well-founded model are consequences, and in all current ASP solvers, a logic
program is first simplified by its well-founded model. A natural question then is
whether there are other consequences of a logic program that can be computed
efficiently and used to simplify the given logic program. Motivated by this, we
propose to use loops and loop formulas to compute consequences of a logic program.

The notions of loops and loop formulas were first proposed by Lin and Zhao [2004]
for propositional normal logic programs, they showed that a set of atoms is an an-
swer set of a normal logic program iff it satisfies the completion and the loop
formulas of the program. The notions and the result have been extended to dis-
junctive logic programs, nested logic programs [Lee and Lifschitz 2003], general
logic programs [Ferraris et al. 2006], normal logic programs with variables [Chen
et al. 2006], propositional circumscription [Lee and Lin 2006], and arbitrary first-
order formulas with sable model semantics [Lee and Meng 2008]. Generally, the
consequences of a logic program are the logical consequences of its completion and
loop formulas. However, deduction in propositional logic is coNP-hard and in gen-
eral there may be an exponential number of loops [Lifschitz and Razborov 2006].
One way to overcome these problems is to use some tractable inference rules and
consider only those loop formulas that can be used effectively by these inference
rules and at the same time can be computed efficiently.

In this paper, we choose unit propagation as the inference rule. To see which loops
would yield “unit propagation friendly” loop formulas, let us look at the form of
loop formulas for normal logic programs (similarly for disjunctive logic programs).

According to [Lin and Zhao 2004], a loop L is a set of atoms, and its loop formula
is a sentence of the form: ∨

L ⊃
∨

r∈R−(L)

body(r),

where R−(L) is the set of so-called external support rules of L, and body(r) is the
conjunction of the literals in the body of the rule r. Without going into details
about the definition of external supports and how they are computed, we see that
if a loop L has no external supports, then its loop formula is equivalent to the
following set of literals:

{¬a | a ∈ L },
and if a loop L has exactly one external support rule, say r, then its loop formula
is equivalent to the following set of binary clauses:

{¬a ∨ l | a ∈ L, l ∈ body(r) }.

Thus we see that loops that have at most one external support rule are special in
that their loop formulas will yield unit or binary clauses that can be used effectively
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by unit propagation.
More generally, if we assume a set A of literals, then for any loop that has at

most one external support rule whose body is not false under A, its loop formula
is equivalent to either a set of literals or a set of binary clauses under A.

Since the completion of a logic program can be computed and converted to a set
of clauses in linear time (by introducing new variables if necessary), if these loop
formulas can also be computed in polynomial time, we then have a polynomial time
algorithm for computing some consequences of a logic program. In general terms,
one of such procedure is as follows:

Input: a logic program P .

1. Initialize U = ∅, and convert Comp(P ) to a set C of clauses.

2. Based on U , compute a set of loop formulas, and convert them into a set L of
clauses.

3. Let K = {ϕ | U ∪ C ∪ L `P ϕ }, where `P is a sound inference rule in proposi-
tional logic (such as unit propagation).

4. If K \ U = ∅, then return K, else let U = K and go back to step 2.

We shall show that, the loop formulas of loops with no external support rules can
indeed be computed in polynomial time. For normal logic programs, when `P is
unit propagation, and the class of loops under U is those that have no external
support under U , then the above procedure computes essentially the same set of
literals as does the Expand operator in smodels [Simons et al. 2002]. In particular,
it computes the well-founded model [Van Gelder et al. 1991] when the given normal
logic program has no constraint. In general, this procedure can be more powerful,
when loops with at most one external support rule are considered, and these extra
consequence can help ASP solvers. This is supported experimentally. Our ear-
lier experimental results reported in [Chen et al. 2008] showed that consequences
computed by the above procedure can speed up cmodels [Giunchiglia et al. 2006]
significantly. However, the sizes of the logic programs that we tried were not big
enough to show its benefits on clasp [Gebser et al. 2007]. We have since performed
more experiments with a better implementation of the procedure outlined above.
We report here that even for clasp, the computed consequences can speed it up
significantly on large programs - the largest program that we tried is an instance of
the Hamiltonian Circuit problem with 1000 nodes. For this program, clasp needs
almost 3000 seconds to return an answer set. Our system runs in 18 seconds to
return the consequences of the program as computed by our procedure above, and
once these consequences are added to the original program as constraints, clasp
returns an answer set in about 6 seconds!

The above procedure works in principle for more general logic programs, such
as disjunctive logic programs. As expected, loop formulas of loops with no exter-
nal support rules required in the procedure can still be computed in polynomial
time. The consequences computed from the procedure are closely related to the
pre-processing step in DLV, well-founded models, and greatest unfounded sets in
disjunctive logic programs as well. However, the problem of computing the loop
formulas of loops with at most one external support rule turns to be NP-hard.
We thus propose a polynomial algorithm for computing some of these loop formu-
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las, and show experimentally that this polynomial approximation algorithm can be
effective in practice.

This paper is organized as follows. We briefly review the basic notions of logic
programming in the next section. Then we define loops with at most one external
support rule under a given set of literals, and consider how to compute their loop
formulas for normal and disjunctive logic programs. We then consider how to use
these loop formulas to derive consequences of a program using unit propagation,
and discuss related work. Since the problem of computing the loop formulas of loops
with at most one external support rule is different for normal and disjunctive logic
programs, we first consider the case for normal logic programs, then extend it to
disjunctive logic programs. We also show experimentally that, when loop formulas
of loops with at most one external support rule is considered in the procedure,
these extra consequences can help ASP solvers to find answer sets of certain logic
programs.

2. PRELIMINARIES

In this paper, we consider only fully grounded finite logic programs.
A normal logic program is a finite set of (normal) rules of the form:

H ← a1, . . . , am, not am+1, . . . , not an, (1)

where n ≥ m ≥ 0 and ai, 1 ≤ i ≤ n, are atoms. H is either empty or an atom.
If H is empty, then this rule is also called a constraint, and if H is an atom, it is
a proper rule.

A disjunctive logic program is a finite set of (disjunctive) rules of the form

a1 ∨ · · · ∨ ak ← ak+1, . . . , am, not am+1, . . . , not an, (2)

where n ≥ m ≥ k ≥ 0 and a1, . . . , an are atoms. Note that, if k ≤ 1, the rule is a
normal rule.

We will also write rule r of form (2) as

head(r)← body(r), (3)

where head(r) is a1 ∨ · · · ∨ ak, body(r) = body+(r)∧¬body−(r), body+(r) is ak+1 ∧
· · · ∧ am, and ¬body−(r) is ¬am+1 ∧ · · · ∧ ¬an, and we identify head(r), body(r),
body+(r) with their corresponding sets of literals, specially, we identify body−(r)
with the set of atoms occurred in ¬body−(r).

Given a logic program P , we denote by Atoms(P ) the set of atoms in it, and Lit(P )
the set of literals constructed from Atoms(P ):

Lit(P ) = Atoms(P ) ∪ {¬a | a ∈ Atoms(P ) }.

Given a literal l, the complement of l, written l̄ below, is ¬a if l is a and a if l is ¬a,
where a is an atom. For a set L of literals, we let L = {l̄ | l ∈ L}.

2.1 Answer Sets

Now, we review the definitions of answer sets for normal and disjunctive logic
programs.
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To define the answer sets of a normal logic program with constraints, we first
define the stable models of a normal logic program that does not have any con-
straints [Gelfond and Lifschitz 1988]. Given a normal logic program P without
constraints, and a set S of atoms, the Gelfond-Lifschitz transformation of P on S,
written PS , is obtained from P by deleting:

(1) each rule that has a formula not p in its body with p ∈ S, and

(2) all formulas of the form not p in the bodies of the remaining rules.

Clearly for any S, PS is a set of rules without any negative literals, so that PS has a
unique minimal model, denoted by ΓP (S). Now a set S of atoms is a stable model
of P iff S = ΓP (S).

In general, given a normal logic program P that may have constraints, a set S
of atoms is an answer set of P iff it is a stable model of the program obtained by
deleting all the constraints in P , and it satisfies all the constraints in P , i.e. for any
constraint of the form (1) such that H is empty, either ai 6∈ S for some 1 ≤ i ≤ m
or aj ∈ S for some m + 1 ≤ j ≤ n.

The answer sets of a disjunctive logic program is defined as in [Gelfond and
Lifschitz 1991]. Given a disjunctive logic program P and a set S of atoms, the
Gelfond-Lifschitz transformation of P on S, written PS , is defined the same as
for normal logic programs. Clearly for any S, PS is the set of rules without any
negative literals, so that PS has a set of minimal models, denoted by ΓP (S). Now
a set S of atoms is an answer set of P iff S ∈ ΓP (S).

2.2 Completions

The completion of a disjunctive (normal) logic program P [Lee and Lifschitz 2003],
Comp(P ), is defined as the set of propositional formulas that consists of the impli-
cation

body(r) ⊃ head(r), (4)

for every rule r in P , and the implication

a ⊃
∨

r∈P, a∈head(r)

body(r) ∧
∧

p∈head(r)\{a}

¬p

 , (5)

for each atom a ∈ Atoms(P ).
Note that, if P is a normal logic program without constraints, Comp(P ) is equiv-

alent to the Clark’s completion of P [Clark 1978]. If P has constraints, then the
completion of P is the union of Clark’s completion and the set of sentences corre-
sponding to the constraints in P : if← a1, ..., am, not am+1, ..., not an is a constraint,
then its corresponding sentence is ¬(a1 ∧ · · · ∧ am ∧ ¬am+1 ∧ · · · ∧ ¬an).

As we mentioned, we will convert the completion into a set of clauses, and use unit
propagation as the inference rule. Since unit propagation is not logically complete,
it matters how we transform the formulas in the completion into clauses. In the
following, let comp(P ) be the set of following clauses:

(1) for each a ∈ Atoms(P ), if there is no rule in P with a in its head, then add ¬a;

(2) if r is not a constraint, then add head(r) ∨
∨

body(r);
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(3) if r is a constraint, then add the clause
∨
body(r);

(4) if a is an atom and r1, . . . , rt, t > 0, are all the rules in P with a in their heads,
then introduce t new variables v1, . . . , vt, and add the following clauses:

¬a ∨ v1 ∨ · · · ∨ vt,

vi ∨
∨

body(ri) ∨
∨

p∈head(ri)\{a}

p, for each 1 ≤ i ≤ t,

¬vi ∨ l, for each l ∈ body(ri) ∪ head(ri) \ {a} and 1 ≤ i ≤ t.

2.3 Loops and Loop Formulas

We now briefly review the notions of loops and loop formulas in disjunctive (normal)
logic programs [Lee and Lifschitz 2003].

Given a disjunctive (normal) logic program P , the positive dependency graph
of P , written GP , is the directed graph whose vertices are atoms in P , and there is
an arc from p to q if there is a rule r ∈ P such that p ∈ head(r) and q ∈ body+(r).
A set L of atoms is said to be a loop of P if for any p and q in L, there is a
non-empty path from p to q in GP such that all the vertices in the path are in L,
i.e. the L-induced subgraph of GP is strongly connected.

Given a loop L, a rule r is an external support of L if head(r) ∩ L 6= ∅ and
L ∩ body+(r) = ∅. In the following, let R−(L) be the set of external support rules
of L. Then the loop formula of L under P , written LF (L,P ), is the following
implication

∨
p∈L

p ⊃
∨

r∈R−(L)

body(r) ∧
∧

q∈head(r)\L

¬q

 . (6)

2.4 Unfounded Sets

The notion of unfounded sets for normal logic programs, which provide the basis
for negative conclusions in the well-founded semantics [Van Gelder 1989], has been
extended to disjunctive logic programs [Leone et al. 1997].

Let P be a disjunctive logic program, A be a set of literals. A set of atoms X
is an unfounded set for P w.r.t. A if, for each a ∈ X, for each rule r ∈ P such
that a ∈ head(r), at least one of the following conditions holds:

(1) A ∩ body(r) 6= ∅, that is, the body of r is false w.r.t. A.

(2) body+(r) ∩X 6= ∅, that is, some positive body literal belongs to X.

(3) (head(r) \X)∩A 6= ∅, that is, an atom in the head of r, distinct from elements
in X, is true w.r.t. A.

Note that if P is a normal logic program, unfounded sets defined here coincide with
the definition given for normal logic programs in [Van Gelder 1989]. For normal
logic programs, the union of all unfounded sets w.r.t. A is also an unfounded set
w.r.t. A (called the greatest unfounded set). But this is not generally true for
disjunctive logic programs, thus for some disjunctive logic program P and set of
literals A, the union of two unfounded sets is not an unfounded set and the greatest
unfounded set of P w.r.t. A does not exist. From Proposition 3.7 in [Leone et al.
1997], the greatest unfounded set exists for any P if A is unfounded-free. Formally,
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a set of literals A is unfounded-free for a disjunctive logic program P , if A∩X = ∅
for each unfounded set X for P w.r.t. A. If A is unfounded-free for P , then the
greatest unfounded set exists. In the following, we use GUSP (A) to denote the
greatest unfounded set for P w.r.t. A.

Loops and unfounded sets are closely related [Lee 2005; Anger et al. 2006]. In
this paper, we show that the greatest unfounded sets (if exist) can be computed
from loops that have no external support rules.

2.5 Unit Propagation

We use unit propagation as the inference rule for deriving consequences from the
completion and loop formulas of a logic program. Given a set Γ of clauses, we
let UP (Γ) be the set of literals that can be derived from Γ by unit propagation.
Formally, it can be defined as follows:

Function UP (Γ)
if (∅ ∈ Γ) then return Lit;
A := unit clause(Γ);
if A is inconsistent then return Lit;
if A 6= ∅ then return A ∪ UP (assign(A,Γ)) else return ∅;

where Lit is the set of literals in the language, unit clause(Γ) returns the union of
all unit clauses in Γ, and assign(A,Γ) is { c | for some c′ ∈ Γ, c′ ∩A = ∅, and c =
c′ \A }.

3. COMPUTING LOOPS WITH AT MOST ONE EXTERNAL SUPPORT FOR NOR-
MAL LOGIC PROGRAMS

The basic theorem about loop formulas says that a set of atoms is an answer set of a
logic program iff it is a model of the program’s completion and loop formulas1. This
is the case for normal logic programs [Lin and Zhao 2004] as well as disjunctive logic
programs [Lee and Lifschitz 2003]. This means that a sentence is a consequence of
a logic program iff it is a logical consequence of the program’s completion and loop
formulas. The problem is that logical entailment in propositional logic is coNP-
complete, and that in the worst case, there may be an exponential number of loops
and loop formulas. Here, we suggest using unit propagation as the inference rule,
and some special classes of loops whose loop formulas can be computed efficiently.
We consider loops with at most one external support rule.

In this section, we consider the case for normal logic programs.

3.1 Loops with at Most One External Support

Consider first loops without any external support rules. If a loop L has no external
support rules, i.e. R−(L) = ∅, then its loop formula (6) is equivalent to

∧
p∈L ¬p.

More generally, if we already know that A is a set of literals that are true in all
answer sets, and A∩ body(r) 6= ∅, for every rule r ∈ R−(L), then under A, the loop
formula of L is equivalent to

∧
p∈L ¬p.

Thus we extend the notion of external support rules, and have it conditioned on
a given set of literals. Let P be a logic program, and A a set of literals. We say

1Or the program and its loop formulas if singletons are always considered loops.
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that a rule r ∈ R−(L) is an external support of L under A if A∩body(r) = ∅. In the
following, we denote by R−(L,A) the set of external support rules of L under A.
Now given a logic program P and a set A of literals, let

loop0(P,A) = {L | L is a loop of P such that R−(L,A) = ∅ },
floop0(P,A) = {¬a | a ∈ L for a loop L ∈ loop0(P,A) }.

Then loop0(P,A) is the set of loops that do not have any external support rules
under A, and floop0(P,A) is equivalent to the set of loop formulas of these loops.
In particular, the set of loop formulas of loops without any external support rules
is equivalent to floop0(P, ∅).

Similarly, we can consider the set of loops that have exactly one external support
rule under a set A of literals, and the set of loop formulas of these loops:

loop1(P,A) = {L | L is a loop of P such that R−(L,A) = {r}, for only one rule

r ∈ P },
floop1(P,A) = {¬a ∨ l | a ∈ L, l ∈ body(r), where L ∈ loop1(P,A) and r is the

only external support rule of L under A }.

In particular, floop1(P, ∅) is equivalent to the set of loop formulas of the loops that
have exactly one external support rule in P .

Notice that if L is a loop of P without any external supports under A, then L
is also an unfounded set of P w.r.t. A. However, the other way around is not true
in general. An unfounded set does not need to be a loop. For instance, consider
P = {a ← not b. b ← not a.}. There is no loops here. But {b} is an unfounded
set w.r.t. A = {a}. Furthermore, to our best knowledge, there is no corresponding
notion to loops with exactly one external support in the literature on unfounded
sets.

We now consider how to compute floop0(P,A) and floop1(P,A). We start with
floop0(P,A). Let ml0(P,A) be the set of maximal loops that do not have any
external support rules under A: a loop is in ml0(P,A) if it is a loop of P such
that R−(L,A) = ∅, and there does not exist any other such loop L′ where L ⊂ L′.
Clearly,

floop0(P,A) =
⋃

L∈ml0(P,A)

L.

The following proposition is immediate:

Proposition 3.1. Let P be a normal logic program and A a set of literals. If L1

and L2 are two loops of P that do not have any external support rules under A,
and L1 ∩ L2 6= ∅, then L1 ∪ L2 is also a loop of P that does not have any external
support rules under A.

Thus for any normal logic program P , and A ⊆ Lit(P ), loops in ml0(P,A) are
pair-wise disjoint. This means that there can only be at most |Atoms(P )| loops in
ml0(P,A).

To compute ml0(P,A), consider GP , the positive dependency graph of P . If
L is a loop of P , then there must be a strongly connected component C of GP

such that L ⊆ C. For L to be in ml0(P,A), it is impossible that L ⊂ C and
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R−(C,A) = ∅, then there are two cases: either L = C and R−(C,A) = ∅ or L ⊂ C,
R−(C,A) 6= ∅ and R−(L,A) = ∅. If it is the latter, then for any r ∈ R−(C,A), it
must be that head(r) 6∈ L, for otherwise, r must be in R−(L,A), a contradiction
with R−(L,A) = ∅. Thus if R−(C,A) 6= ∅, then any subset of C that is in ml0(P,A)
must also be a subset of S = C \{head(r) | r ∈ R−(C,A)}. Thus instead of GP , we
can recursively search the S induced subgraph of GP . This motivates the following
procedure for computing ml0(P,A).

ML0(P,A) := ML0(P,A,Atoms(P ));
Function ML0(P,A, S): P a normal program, A and S sets of literals of P

ML := ∅; G := the S induced subgraph of GP ;
For each strongly connected component L of G:
if R−(L,A) = ∅ then add L to ML;
else append ML0(P,A,L \ {head(r) | r ∈ R−(L,A) }) to ML;

return ML;

where GP is the positive dependency graph of P .
From our discussions above, the following result is immediate.

Theorem 3.2. For any normal logic program P , any A ⊆ Lit(P ), and any
C ⊆ Atoms(P ), the above function ML0(P,A,C) returns the following set of loops:

{L | L ⊆ C is a loop of P such that R−(L,A) = ∅, and there does not

exist any other such loop L′ such that L ⊂ L′ }

in O(n2), where n is the size of P as a set. Particularly, ML0(P,A) = ml0(P,A).

We now consider the problem of computing floop1(P,A). For any rule r, let
ml1(P,A, r) be the set of maximal loops of P that have r as their only external
support rule under A: L is in ml1(P,A, r) if it is a loop of P such that R−(L,A) =
{r} and there is no other such loop L′ such that L ⊂ L′. Notice that this definition
is meaningful only if r is a proper rule of P . If r is a constraint, then it can never
be an external support rule of any loop, thus ml1(P,A, r) = ∅. Now let

ml1(P,A) =
⋃
r∈P

ml1(P,A, r).

It is easy to see that loops in ml1(P,A, r) are pair-wise disjoint. Thus the size of
ml1(P,A, r) is bounded by |Atoms(P )|, and ml1(P,A) by m |Atoms(P )|, where m
is the number of proper rules in P .

It is easy to see that floop1(P,A) is the following set:⋃
L∈ml1(P,A)

{¬a ∨ l | a ∈ L, l ∈ body(r), R−(L,A) = {r}}.

Thus to compute floop1(P,A), we need to compute only ml1(P,A), and for the
latter, we only need to compute ml1(P,A, r) for all proper rules r ∈ P such that
A ∩ body(r) = ∅. At first glance, this problem can be trivially reduced to that of
computing ml0(P \ {r}, A), the set of maximal loops that do not have any external
support rules under A in the program obtained from P by deleting r from it.
However, while it is true that if L ∈ ml0(P \ {r}, A) and r is the only external
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support rule of L under A in P , then L ∈ ml1(P,A, r), the converse is not true in
general.

Example 1. Consider the following logic program P :

a ← b, c.

b ← a.

b ← c.

c ← b.

It is easy to see that ml1(P, ∅, b← c) = {{a, b}}, but ml0(P \ {b← c}, ∅) = {{a, b, c}}.

We do not yet know any efficient way of computing ml1(P,A, r), but for the
purpose of computing floop1(P,A) ∪ floop0(P,A), ml0(P \ {r}, A) is enough.

Proposition 3.3. For any normal logic program P and a set A of literals,
floop0(P,A) implies that floop1(P,A) is equivalent to the following theory⋃

A∩body(r)=∅, L∈ml0(P\{r},A)

{¬a ∨ l | a ∈ L, l ∈ body(r)}. (7)

Note that, we have proved that floop0(P,A) ∪ floop1(P,A) is logically equiva-
lent to floop0(P,A) ∪ (7). From the proof we can see that, if a binary clause
C ∈ floop1(P,A) is not entailed by floop0(P,A) then C is in (7), and if a binary
clause C ′ ∈ (7) is not entailed by floop0(P,A) then C is in floop1(P,A), thus
UP (floop0(P,A) ∪ floop1(P,A)) = UP (floop0(P,A) ∪ (7)).

So to summarize, for normal logic programs, to compute floop0(P,A)∪floop1(P,A),
we first compute ml0(P,A), and then for each proper rule r ∈ P such that A ∩
body(r) = ∅, we compute ml0(P \ {r}, A). The worst case complexity of this pro-
cedure is O(n3), where n is the size of P . There are a lot of redundancies in this
procedure as described here as the computations of ml0(P,A) and ml0(P \ {r}, A)
overlap a lot. These redundancies can and should be eliminated in the actual
implementation.

3.2 Computing Consequences of a Normal Logic Program

By Lin and Zhao’s theorem on loop formulas, logical consequences of comp(P ) ∪
floop0(P,A)∪floop1(P,A) are also consequences of P . Since comp(P ) and floop0(P,A)
∪floop1(P,A) can all be computed in polynomial time, with a polynomial time
inference rule, we thus get a polynomial time algorithm for computing some conse-
quences of a logic program. In this paper, we consider using UP , the unit propa-
gation.

Consider first loops without any external support rules. When `P is unit prop-
agation UP , and the loop formulas are those from ML0 (maximal loops with no
external support), the iterative procedure given in Introduction becomes the fol-
lowing one:

Function T0(P ): P is a logic program
X := ∅; Y := comp(P ) ∪ { loop formulas of loops in ML0(P, ∅) };
while X 6= UP (Y ) do
X := UP (Y ); Y := Y ∪ { loop formulas of loops in ML0(P,X) };
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return X ∩ Lit(P );

Note that, function T0(P ) returns consequences of a program P and comp(P ) may
contain extra variables when the completion is converted to clauses, thus ∩Lit(P )
is needed for the return of the function.

Formally, the above procedure computes the least fixed point of the following
operator:

f(X) = UP ( comp(P ) ∪X ∪ floop0(P,X) ) ∩ Lit(P ). (8)

As it turns out, this least fixed point is essentially the well-founded model when
the given normal logic program has no constraints. This means that, surprisingly
perhaps, the well-founded models amount to repeatedly applying unit propagation
to the program completion and loop formulas of loops that do not have any “appli-
cable” external support rules. In general, for normal logic programs that may have
constraints, the least fixed point of the above operator is essentially Expand(P, ∅)
in smodels [Simons et al. 2002; Baral 2003]. More generally, given a set A of literals,
Expand(P,A) corresponds to the least fixed point of the following operator:

UP
A (X) = UP ( comp(P ) ∪A ∪X ∪ floop0(P,X) ) ∩ Lit(P ). (9)

Clearly the function T0 can start from A, we only need to replace X := ∅ by X := A
in the procedure, then computes the least fixed point of UP

A .
Now if we add in floop1(P,A), a more powerful operator can be defined:

TP
A (X) = UP ( comp(P ) ∪A ∪X ∪ floop0(P,X) ∪ floop1(P,X) ) ∩ Lit(P ).

In the following, we denote by T1(P,A) the least fixed point of the operator TP
A .

Clearly, UP
A (X) ⊆ TP

A (X), and the least fixed point of UP
A , denoted by T0(P,A) (in

particular, T0(P, ∅) = T0(P )), is contained in T1(P,A), the least fixed point of TP
A .

The following example shows that the containments can be proper.

Example 2. Consider the following logic program P :

x ← not e.

e ← not x.

n ← x.

n ← m.

m ← n.

← not n.

Clearly, x ∈ T1(P, ∅) but x 6∈ T0(P, ∅).

Proposition 3.4. Let P be a normal logic program and A a set of literals in P .
If S is an answer set of P that satisfies A, then S also satisfies T1(P,A).

Notice that T1(P,A), the least fixed point of the operator TP
A , can be computed

by an iterative procedure like the one described in Introduction.

3.3 Expand in smodels

We mentioned that the least fixed point of our operator UP
A defined by (9) coincides

with the output of the Exapnd operator used in smodels. We now make this precise.
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Our following presentation of the Expand operator in smodels follows that in [Baral
2003].

Given a normal logic program P and a set A of literals, the goal of Expand(P,A)
is to extend A as much as possible and as efficiently as possible so that all answer
sets of P that agree with A also agree with Expand(P,A). It is defined in terms
of two functions named Atleast(P,A) and Atmost(P,A). They form the lower and
upper bound of what can be derived from the program P based on A in the sense
that those in Atleast(P,A) must be in and those not in Atmost(P,A) must be
out. Formally, Expand(P,A) is defined to be the least fixed point of the following
operator:

EP
A (X) = Atleast(P,A ∪X) ∪Atoms(P ) \Atmost(P,A ∪X). (10)

The function Atleast(P,A) is defined as the least fixed point of the operator FP
A

defined as follows:

F1(P,X) = { a ∈ Atoms(P ) | there is a rule r in P such that a = head(r) and

X |= body(r) },
F2(P,X) = {¬a | a ∈ Atoms(P ) and for all r ∈ P , if a = head(r), then

X |= ¬body(r) },
F3(P,X) = {x | there exists an atom a ∈ X such that there is only one rule r

in P such that a = head(r), x ∈ body(r), and X 6|= ¬body(r) },
F4(P,X) = { x̄ | there exists ¬a ∈ X such that there is a rule r in P such that

a = head(r) and X ∪ {x} |= body(r) },

F5(P,X) =

{
Lit(P ) if X is inconsistent,
∅ otherwise,

FP
A (X) = A ∪X ∪ F1(P,X) ∪ F2(P,X) ∪ F3(P,X) ∪ F4(P,X) ∪ F5(P,X).

where X |= body(r) if body(r) ⊆ X, and X |= ¬body(r) if X ∩ body(r) 6= ∅.
The function Atmost(P,A) is defined as the least fixed point of the following

operator GP
A:

GP
A(X) = { a | there is a rule r ∈ P such that head(r) = a, X \A− |= body+(r),

and body−(r) ∩A+ = ∅ } \A−,

where A+ = { a | a is an atom and a ∈ A }, and A− = { a | a is an atom and
¬a ∈ A }.

In the following, a normal program P is said to be simplified if for any rule r ∈ P ,
head(r) 6∈ body+(r) ∪ body−(r). Notice that any normal logic program is strongly
equivalent to a simplified normal logic program: if head(r) ∈ body+(r), then {r}
is strongly equivalent to the empty set, thus can be safely deleted from any logic
program, and if head(r) ∈ body−(r), then {r} is strongly equivalent to {← body(r)}
(cf. [Lin and Chen 2007]).

The following theorem relates T0(P,A) and Expand(P,A). The proof is given in
Appendix.

Theorem 3.5. For any normal logic program P , and any set A ⊆ Lit(P ).
Expand(P,A) ⊆ T0(P,A). If P is simplified, then Expand(P,A) = T0(P,A).
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As we mentioned, if P has no constraint, then Expand(P, ∅) is the same as the
well-founded model of P [Baral 2003]. Thus for simplified logic programs, the well-
founded model can be computed by a bottom-up procedure using unit propagation
on sets of clauses from the program completion and the loop formulas of the loops
that do not have any external support rules.

The following example shows that if P has a rule such as p ← not p, T0 may be
stronger than Expand.

Example 3. Consider the following program P :

p ← not q.

q ← not p.

f ← not p.

f ← not f.

Clearly, T0(P, ∅) = {f, q,¬p}, but Expand(P, ∅) = ∅.

3.4 Some Experiments

We have implemented a system2 that for any given normal logic program P , first
computes T1(P, ∅), and then adds the following set of constraints: {← l̄ | l ∈
T1(P, ∅) } to P . Clearly, adding the above constraints to P does not change the
answer sets. The effectiveness of this strategy obviously depends on the underlying
ASP solver as well as whether the consequences computed by our system are “new”
to the ASP solver.

For the normal logic programs used at the First Answer Set Programming System
Competition3, our system does not return anything beyond the well-founded model
of P . Thus for these programs, our system does not add anything new. This
does not mean that our system is not suitable for these benchmark problems. A
typical logic program has variables, and the instances that are used to ground
these variables are often important in determining the hardness of the grounded
logic program. Niemelä’s encoding of the Hamiltonian Circuit (HC) problem is
used in the competition as well, but the graphs used are all generated randomly.
As we shall see next, when the graphs have some specific structures which occur
in many practical problems, our system can speed up the current ASP solvers on
these problems significantly.

For Niemelä’s encoding of the HC problem in [Niemelä 1999]. Instead of randomly
generated graphs, we consider graphs that represent networks consisting of sets
of components that are densely connected inside but have only a few connections
among them. These networks are ubiquitous. Examples include countries consisting
of big cities that are connected by only a few highways, cities consisting of populated
neighborhoods that are connected by a few “main roads”, and circuits that are
often composed of components that are highly connected inside but have only a
few connections between them.

2Our implementation is available on the web http://www.cs.ust.hk/cloop/. The current imple-

mentation is significantly more efficient that the one reported in our KR’08 paper [Chen et al.

2008].
3http://asparagus.cs.uni-potsdam.de/contest/
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Table I. Run-time Data for Normal Logic Programs.
Problem cmodels cmodelsT1

clasp claspT1
T1

10x10 9.93 0.70 0.07 0.05 0.29
10x20 18.24 2.50 0.24 0.13 0.63
10x30 38.66 5.16 0.57 0.25 1.03

10x40 85.15 7.98 1.05 0.38 1.52
10x50 73.31 14.12 2.10 0.48 1.97

15x10 586.57 5.42 0.46 0.19 1.02
15x20 >2h 12.62 1.24 0.52 2.26

15x30 >2h 25.07 6.46 0.68 3.64

15x40 >2h 45.24 100.80 1.58 5.47
15x50 >2h 72.09 234.00 2.33 7.14

20x10 2080.62 19.62 0.73 0.44 2.47

20x20 >2h 67.38 25.04 1.19 5.59

20x30 >2h 147.72 85.82 2.81 8.85
20x40 >2h 219.62 465.13 4.36 13.01

20x50 >2h 352.35 2940.28 6.20 17.36

To simplify things a bit, we model these networks by graphs consisting of some
complete subgraphs that are connected by a few arcs between them. Specifically,
we consider graphs of the form MxN: a graph with N copies of the complete graph
with M nodes, C1, . . . , CN , and with exactly one arc from Ci to Ci+1 and exactly
one arc from Ci+1 to Ci, for each 1 ≤ i ≤ N (CN+1 is defined to be C1).

Clearly, a graph of the form MxN has a Hamiltonian circuit, and each such
circuit must go through the arcs connecting the complete subgraphs. Furthermore,
all except for one of the “must-in” arcs can be computed by T1(P, ∅), thus adding
their corresponding constraints to P should help ASP solvers in computing the
answer sets. This is confirmed by our experiments.

Table I contains the running times for these Hamiltonian Circuit programs.4

For each MxN entry in the table, we randomly created 20 different such graphs
(two MxN graphs may differ on which arcs are chosen to connect two neighboring
complete subgraphs), and the times reported in the table refers the average times
for the resulting 20 programs. The programs are first grounded by gringo (ver-
sion 3.0.1 [2007])5, then computed by different ASP solvers. The numbers under
“cmodelsT1

” and “claspT1
” refers to the run times (in seconds) of cmodels (ver-

sion 3.79 [2006]) and clasp (version 1.3.4 [2007]) when the results from T1(P, ∅) are
added to the original program as constraints, and those under “T1” are the run
times of our program for computing T1(P, ∅). As can be seen, information from
T1(P, ∅) makes both cmodels and clasp run much faster when looking for an answer
set.

In addition to cmodels and clasp, we also tried DLV (Oct 11 2007 [2006]) and
smodels (version 2.34). DLV did not return in 2 hours (including grounding times)
for most of the 10x2 graphs, but returned an answer set under 0.1 second when the

4Our experiments were done on a 4×AMD Opteron 844 (1.8GHz) CPU and 8GB RAM. The

reported times are in CPU seconds as reported by Linux “/usr/bin/time” command.
5The result is similar when programs are grounded by Lparse (version 1.1.2) in
http://www.tcs.hut.fi/Software/smodels/.
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results from T1(P, ∅) were added.
Our experiences with smodels are especially interesting and informative. Simi-

lar to DLV, smodels performed badly even on the smallest graphs that we tried.
However, adding consequences from T1(P, ∅) did not help either. This is actually
to be expected as smodels applies the Lookahead operator, and whatever that can
be computed by T1(P, ∅) can also be computed by the Lookahead operator6. It is
not easy to modify smodels by taking out the Lookahead operator. But clasp has
an option to turn on an operator like this one, and we were surprised to find out
that once this option was turned on, clasp became much slower. For instance, it
took an hour for it to return an answer set for most of the 20x30 graphs.

We can only hypothesize why smodels performed badly on these programs, and
why clasp performed almost just as badly when its lookahead option is turned
on. Whatever the reasons are, it is clear that an operator like lookahead should
be applied selectively. A similar discussion is given in [Liu and You 2007]. Our
system computes T1(P, ∅) once as a pre-processing step, and the results help cmodels
and clasp on logic programs that contain certain crucial “must-in” rules. It is an
interesting question how to integrate this procedure into search by applying it when
a search decision lead to a logic program that contains some crucial “must-in” rules.
Of course, the difficult part is to figure out which program has this property.

We remark here that the crucial feature of the graphs that we consider here is
that they consist of sets of subgraphs that are densely connected inside but with a
single path linking them together. Whether the subgraphs are identical copies of
a complete graph is not important. Furthermore, while our experiments were done
on the Hamiltonian Circuit problem, they should carry over to any logic programs
whose positive dependency graphs have a similar structures. As we mentioned
above, these structures are ubiquitous in practical problems. When these problems
are modeled by logic programs, the dependency graphs of these programs will reflect
the structures as well.

Finally, in retrospect it is not surprising that the consequences computed and
added to the input program speeds up the current ASP solvers. These new con-
sequences are from loops with exactly one external support rule. These external
support rules are crucial as they must be used in computing an answer set. In a
sense, these new consequences are like “backbones” in SAT. Once they are added
to the input, a big search space is pruned.

4. COMPUTING LOOPS WITH AT MOST ONE EXTERNAL SUPPORT FOR DIS-
JUNCTIVE LOGIC PROGRAMS

In the previous section, we show that for normal logic programs, loop formulas
of loops with at most one external support rule can be computed in polynomial
time, and an iterative procedure based on these formulas, the program completion,
and unit propagation computes consequences of the program which can help ASP
solvers to find answer sets of certain logic programs.

In this section we tend to extend these results to disjunctive logic programs. We
consider first these loops can be computed in disjunctive logic programs.

6Literals in T1(P, ∅) are consequences of P , clearly, they can be computed from Lookahead.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



16 · Xiaoping Chen et al.

4.1 Loops with No External Support

It is easy to see that if a loop L has no external support rules, i.e. R−(L) = ∅, then
its loop formula (6) is equivalent to

∧
p∈L ¬p, if L has only one external support

rule, i.e. R−(L) = {r}, then its loop formulas (6) is equivalent to

∧
p∈L
¬p ∨

body(r) ∧
∧

q∈head(r)\L

¬q

 ,

which will be equivalent to a set of binary clauses.
More generally, if we already know that A is a set of literals that are true in all

answer sets, then for any loop L that has no external support rules whose body
is active under A w.r.t. L, its loop formula is still equivalent to a set of literals
under A. A rule r is active under A w.r.t. L if A∩body(r) = ∅ and A∩(head(r)\L) =
∅.

Thus we extend the notion of external support rules, and have it conditioned on
a given set of literals. Let P be a disjunctive logic program, and A a set of literals.
We say that a rule r is an external support rule of L under A if r ∈ R−(L) is active
under A w.r.t. L. In the following, we denote by R−(L,A) the set of external
support rules of L under A.

Given a disjunctive logic program P and a set A of literals, similar to normal
logic programs, we define

loop0(P,A) = {L | L is a loop of P such that R−(L,A) = ∅ },
floop0(P,A) = {¬a | a ∈ L for a loop L ∈ loop0(P,A) }.

We now consider how to compute floop0(P,A) for disjunctive logic programs.
It is shown that floop0(P,A) can be computed in quadratic time for normal logic
programs. However, for disjunctive logic programs, the problem is NP-hard in the
general case.

Proposition 4.1. Given a disjunctive logic program P , a set A of literals, and
an atom a, deciding whether ¬a ∈ floop0(P,A) is NP-complete.

Fortunately, if the set A is unfounded-free7, then floop0(P,A) can be computed in
quadratic time. As we shall see, this restriction is enough for computing conse-
quences of a logic program using the procedure outlined in Introduction when the
inference rule is unit propagation and the class of loops is that of loops without
external support.

Our algorithm below for computing floop0(P,A) is similar to the corresponding
one for normal programs, and is through maximal loops.

For a disjunctive logic program P , let ml0(P,A) be the set of maximal loops that
do not have any external support rules under A. Clearly,

floop0(P,A) =
⋃

L∈ml0(P,A)

L.

If P is a normal logic program, loops in ml0(P,A) are pair-wise disjoint. For
disjunctive logic programs the property is not true in general, this is the reason

7Recall that A is unfounded-free if A ∩X = ∅ for each unfounded set X of P w.r.t. A.
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that floop0(P,A) is intractable. However, if A is unfounded-free, then loops in
ml0(P,A) are pair-wise disjoint. This follows from the following proposition:

Proposition 4.2. Let P be a disjunctive logic program, A be a set of literals
such that A∩ (L1 ∪L2) = ∅. If L1 and L2 are two loops of P that do not have any
external support rules under A, and L1 ∩ L2 6= ∅, then L1 ∪ L2 is also a loop of P
that does not have any external support rules under A.

The following example shows that the condition A ∩ (L1 ∪ L2) = ∅ in Proposi-
tion 4.2 is necessary.

Example 4. Consider the following disjunctive logic program P :

a ∨ b ∨ c ← .

a ← b, c.

b ← a.

c ← a.

Let A = {b, c}, L1 = {a, b} and L2 = {a, c}. L1 and L2 are belong to loop0(P,A),
but L1 ∪ L2 = {a, b, c} is a loop of P that has one external support under A.

Now consider the following algorithm:

ML0(P,A) := ML0(P,A,Atoms(P ));
Function ML0(P,A, S): P a disjunctive program, A and S sets of literals of P

ML := ∅; G := the S induced subgraph of GP ;
For each strongly connected component L of G:

if R−(L,A) = ∅ then add L to ML;
else append ML0(P,A,L \

⋃
r∈R−(L,A) H(r,A)) to ML;

return ML;

where GP is the positive dependency graph of P , and

H(r,A) =

{
head(r) if head(r) ∩A = ∅
head(r) ∩A if head(r) ∩A 6= ∅.

Specially, ML0(P,A) is a short term for ML0(P,A,Atoms(P )). Note that, if P
is a normal logic program, then the algorithm presented here is the same as the
corresponding algorithm for normal logic programs.

Similarly, we have the following theorem.

Theorem 4.3. Let P be a disjunctive logic program, A and S sets of literals
in P .

(1 ) The function ML0(P,A, S) runs in O(n2), where n is the size of P as a set.

(2 ) ML0(P,A) ⊆ loop0(P,A).

(3 ) If A is unfounded-free, then ML0(P,A) = ml0(P,A).

4.2 Loops with at Most One External Support

Similarly, for disjunctive logic programs, we can consider the set of loops that have
exactly one external support rule under a set A of literals, and the set of loop
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formulas of these loops:

loop1(P,A) = {L | L is a loop of P such that R−(L,A) = {r}, for only one rule

r ∈ P },
floop1(P,A) = {¬a ∨ l | a ∈ L, l ∈ body(r) ∪ head(r) \ L, where L ∈ loop1(P,A)

and r is the only external support rule of L under A }.

Like floop0(P,A), floop1(P,A) can be computed in polynomial time for normal
logic programs, but for disjunctive logic programs, it is intractable.

Proposition 4.4. Given a disjunctive logic program P , a set A of literals, an
atom a, and a literal l, deciding whether ¬a ∨ l ∈ floop1(P,A) is NP-complete.

While there is a polynomial algorithm for computing floop0(P,A) when A is
unfounded-free, this is not the case for floop1(P,A). Proposition 4.4 holds even
when we restrict A to be unfounded-free.

Notice that for normal logic programs, the complexity of floop1(P,A) is left
as an open question. Instead, a polynomial algorithm is proposed for computing
floop0(P,A)∪ floop1(P,A)8, which corresponds to the set of loop formulas of loops
with at most one external support. For disjunctive logic programs, floop0(P,A) ∪
floop1(P,A) is still intractable even when A is unfounded-free9.

Given this negative results about computing loop formulas of loops with at most
one external support in disjunctive logic programs, we turn our attention to poly-
nomial algorithms that can compute as many loop formulas from floop0(P,A) ∪
floop1(P,A) as possible. We propose one such approximation algorithm below. It
is based on the observation that if a loop has one external support rule, then it
often has no external support when this rule is deleted. This would reduce the
problem of computing loops with one external support rule to that of loops with
no external support, and for the latter we can use the function ML0(P,A, S) when
A is unfounded-free (Theorem 4.3).

Proposition 4.5. For any disjunctive logic program P and a set A of literals
that is unfounded-free for P . floop0(P,A) and floop1(P,A) imply the following
theory ⋃

A∩body(r)=∅, L∈ML0(P\{r},A)

{¬a ∨ l | a ∈ L, l ∈ body(r) ∪ head(r) \ L }. (11)

In the following, we use FLoop1(P,A) to denote (11). Note that, if P is a normal
logic program, then floop0(P,A)∪FLoop1(P,A) is equivalent to floop0(P,A)∪ (7).
According to Proposition 3.3, if P is a normal logic program, then floop0(P,A) ∪
floop1(P,A) is equivalent to floop0(P,A) ∪ FLoop1(P,A) for any A. However, for

8Not exactly this set, but floop0(P,A) ∪ (7), which is logically equivalent to floop0(P,A) ∪
floop1(P,A), and especially UP (floop0(P,A) ∪ (7)) = UP (floop0(P,A) ∪ floop1(P,A)).
9For disjunctive logic programs, deciding whether a literal l ∈ UP (floop0(P,A) ∪ floop1(P,A))

where A is unfounded-free, is NP-hard. Note that, we can use the translation proposed in the
proof of Proposition 4.4 to reduce the SAT problem to it.
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disjunctive logic programs, these two formulas are not equivalent, even when A is
unfounded-free, as the following example illustrates.

Example 5. Consider the following logic program P :

a ∨ b ∨ c ← d.

a ← b, c.

b ← a.

c ← b.

Let A = ∅, loop1(P,A) = { {a, b, c}, {a, b} }, both loops have one external support
rule: a ∨ b ∨ c ← d, thus ¬a ∨ ¬c,¬b ∨ ¬c ∈ floop1(P,A), but they can not be
computed from FLoop1(P,A)10.

So to summarize, for disjunctive logic programs, while we can not efficiently
compute floop0(P,A) ∪ floop1(P,A), we can compute floop0(P,A) ∪ FLoop1(P,A)
which is still helpful for computing consequences of a logic program. To compute
floop0(P,A) ∪ FLoop1(P,A), we first call ML0(P,A), and then for each proper
rule r ∈ P such that A ∩ body(r) = ∅, we call ML0(P \ {r}, A). The worse case
complexity of this procedure is O(n3), where n is the size of P .

4.3 Computing Consequences of a Disjunctive Logic Program

Let’s now consider computing consequences of a disjunctive logic program using
the loop formulas computed in last subsection.

Consider the iterative procedure given in Introduction. When `P is unit propaga-
tion UP , and the loop formulas are those from ML0 (for disjunctive logic programs),
it tends to be the same as the function T0 presented in Section 3.

Clearly T0(P ) runs in polynomial time and returns a set of consequences of
a disjunctive logic program P . It is easy to see that at each iteration, the set X
computed by the procedure is also a set of consequences of P . Thus by the following
proposition and Theorem 4.3, if P has at least one answer set, then at each iteration,
the set of literals added to the set of loop formulas of loops in ML0(P,X), equals
to floop0(P,X), the set of loop formulas with no external support under X.

Proposition 4.6. Let P be a disjunctive logic program that has an answer set.
If A is a set of literals that are consequences of P , then A is unfounded-free for P .

Similarly, using floop0(P,A) ∪ floop1(P,A), we get the following procedure:

Function T 1(P ): P is a disjunctive logic program
X := ∅; Y := comp(P ) ∪ floop0(P, ∅) ∪ floop1(P, ∅);
while X 6= UP (Y ) do
X := UP (Y ); Y := Y ∪ floop0(P,X) ∪ floop1(P,X);

return X ∩ Lit(P );

Again it is easy to see that at each iteration, X is a set of consequences of P ,
and in particular, T 1(P ) returns a set of consequences of P . For normal logic

10Note that, let r = a ∨ b ∨ c ← d., ML0(P \ {r}, A) = { {a, b, c} } and {a, b} is not a maximal
loop without external support rules in P \ {r}.
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programs, by Proposition 3.3, floop0(P,A)∪floop1(P,A) can be computed in poly-
nomial time, thus T 1(P ) runs in polynomial time. For disjunctive logic programs,
as we have shown in the previous subsection, even for unfounded-free A, computing
floop0(P,A)∪floop1(P,A) is intractable. Thus we cannot show that the above pro-
cedure is polynomial. However, this still leaves open the question of whether T 1(P )
can be computed by some other methods that hopefully can be shown to run in
polynomial time. Unfortunately, this does not seem to be likely as we can show
that computing T 1(P ) is also intractable.

Proposition 4.7. For any disjunctive logic program P , deciding whether a lit-
eral is in T 1(P ) is NP-hard.

In the last subsection, we propose to use FLoop1(P,A) as a polynomial approxi-
mation of floop1(P,A). We can thus make use of this operator:

Function T1(P ): P is a disjunctive logic program
X := ∅; Y := comp(P ) ∪ floop0(P, ∅) ∪ FLoop1(P, ∅);
while X 6= UP (Y ) do
X := UP (Y ); Y := Y ∪ floop0(P,X) ∪ FLoop1(P,X);

return X ∩ Lit(P );

This is the function that we have implemented and used in our experiments. See
Section 4.5 for details.

4.4 Related Work

Here we relate T0(P ) for disjunctive program P to the preprocessing procedure in
DLV [Leone et al. 2006] and the well-founded semantics of disjunctive programs
proposed by Wang and Zhou [2005].

4.4.1 DLV preprocessing operator. We now show that T0(P ) coincides with the
least fixed point of the operatorWP used in DLV for preprocessing a given disjunc-
tive logic program. First, we show that the greatest unfounded set of a disjunctive
logic program (if exists) can be computed from loop formulas of loops that have no
external support rules.

Given a disjunctive logic program P and A a set of literals. We use M(P,A) to
denote the least fixed point of the operator MA

P defined as follows:

loopA0 (P,X) = { a | there is a loop L of P s.t. a ∈ L and R−(L,A ∪X) = ∅ },
FA
2 (P,X) = { a | a ∈ Atoms(P ) and for all r ∈ P , if a ∈ head(r) then

A ∩ body(r) 6= ∅, X ∩ body(r) 6= ∅, or (head(r) \ {a}) ∩A 6= ∅ },
MA

P (X) = X ∪ loopA0 (P,X) ∪ FA
2 (P,X).

Theorem 4.8. For any disjunctive logic program P and any A ⊆ Lit(P ) such
that the greatest unfounded set of P w.r.t. A exists. M(P,A) = GUSP (A).

From the above theorem, we can compute GUSP (A) by M(P,A). We do not yet
know any efficient way of computing loop0(P,A) for any possible A, but if A is
restricted to be unfounded-free, then GUSP (A) always exists, and loopA0 (P,X) =⋃

L∈ML0(P,A∪X) L, which can be computed in polynomial time. Furthermore, FA
2 (P,X)

can be computed in linear time. So, if A is unfounded-free, we have proposed a
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loop-oriented approach for computing GUSP (A) in polynomial time. Note that, dif-
ferent from other current approaches, GUSP (A) is computed directly here, avoiding
the computation of the complement of it.

Now we introduce the WP operator proposed in [Leone et al. 1997].

TP (X) = { a ∈ Atoms(P ) | there is a rule r ∈ P such that a ∈ head(r),

head(r) \ {a} ⊆ X, and body(r) ⊆ X },
WP (X) = TP (X) ∪GUSP (X).

From Proposition 5.6 in [Leone et al. 1997], WP has a least fixed point, de-
noted Wω

P (∅), is the consequence of the program. Wω
P (∅) can also be computed

efficiently, thus it is considered as a good start point to compute answer sets and
is implemented in DLV.

In the following, a disjunctive logic program P is said to be simplified if for
any r ∈ P , head(r) ∩ (body+(r) ∪ body−(r)) = ∅. Notice that any disjunctive logic
program is strongly equivalent to a simplified program: if head(r) ∩ body+(r) 6= ∅,
then {r} is strongly equivalent to the empty set, thus can be safely deleted from
any logic program, and if head(r) ∩ body−(r) 6= ∅, then {r} is strongly equivalent
to {r′} such that head(r′) = head(r) \ body−(r) and body(r′) = body(r) (cf. [Lin
and Chen 2007]). Clearly, if P is a normal program, the notion of simplified defined
here coincides with the one in the previous subsection.

The following theorem relates T0(P ) and Wω
P (∅).

Theorem 4.9. For any disjunctive logic program P , Wω
P (∅) ⊆ T0(P ). If P is

simplified and without constraints, then Wω
P (∅) = T0(P ).

Note that, [Leone et al. 1997] proved that, if P does not contain constraints,Wω
P (∅)

coincides with the well-founded model of a normal logic program P ′ obtained
by “shifting” some head atoms to the bodies of the rules. Thus, if P is simpli-
fied and without constraints, then T0(P ) coincides with the well-founded model
of P ′ as well.

Given a disjunctive logic program P , we denote by sh(P ) the normal program
obtained from P by substituting every rule of form (2) by the k rules

ai ← ak+1, . . . , am, not am+1, . . . , not an, not a1, . . . , not ai−1, not ai+1, . . . , not ak.

(1 ≤ i ≤ k)

It is worth to note that, FLoop1(sh(P ), A) may be not a consequence of a dis-
junctive logic program, even when A is unfounded-free for P or sh(P ).

Example 6. Consider the following logic program P :

d ← not e.

e ← not d.

a ∨ c ← d.

a ∨ b ← e.

a ← b.

b ← a.

← not a.
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← not b.

Clearly, {a, b, d} and {a, b, e} are the only two answer sets of P , {a, b, d} is the
only answer set of sh(P ). Let A = {a, b}, A is unfounded-free for P and sh(P ).
¬a∨d ∈ FLoop1(sh(P ), A) which is false for {a, b, e}, thus not a consequence of P .

A disjunctive logic program P is head-cycle free, if there does not exist a loop L
and a rule r, s.t. a, b ∈ L and a, b ∈ head(r). If P is head-cycle free, then a set of
atoms is an answer of P iff it is an answer set of sh(P ).

Proposition 4.10. For any head-cycle free disjunctive logic program P and a
set A of literals:

ml0(P,A) = ML0(P,A) = ML0(sh(P ), A),

FLoop1(P,A) =
⋃

A∩body(r)=∅,
L∈ML0(sh(P\{r}),A)

{¬a ∨ l | a ∈ L, l ∈ body(r) ∪ head(r) \ L },

and floop0(P,A) implies that floop1(P,A) is equivalent to FLoop1(P,A).

4.4.2 Wang and Zhou’s well-founded semantics for disjunctive logic programs.
Theorem 3.5 states that T0 computes the well-founded model when the given normal
logic program is simplified and has no constraints. However, there have been several
competing proposals for extending the well-founded semantics to disjunctive logic
programs [Leone et al. 1997; Brass and Dix 1999; Wang and Zhou 2005]. It is
interesting that with a slight change of unit propagation, the procedure computes
the same results as the well-founded semantics proposed in [Wang and Zhou 2005].
We now make this precise, first, we give one of the definitions of the well-founded
semantics proposed by Wang and Zhou.

Given a disjunctive logic program P , a positive (negative) disjunction is a dis-
junction of atoms (negative literals) of P . A pure disjunction is either a positive
one or a negative one. If A and B = A ∨ A′ are two disjunctions, then we say A
is a subdisjunction of B, denoted A ⊆ B. Let S be a set of pure disjunctions,
we say body(r) of r ∈ P is true w.r.t. S, denoted S |= body(r), if body(r) ⊆ S;
body(r) is false w.r.t. S, denoted S |= ¬body(r) if either (1) the complement of a
literal in body(r) is in S or (2) there is a disjunction a1 ∨ · · · ∨ an ∈ S such that
{not a1, . . . , not an } ⊆ body(r).

Now we define the notion of unfounded set under a set of pure disjunctions. Let S
be a set of pure disjunctions of a disjunctive logic program P , a set of atoms X is
an unfounded set for P w.r.t. S if, for each a ∈ X, r ∈ P such that a ∈ head(r), at
least one of the following conditions holds:

(1) the body of r is false w.r.t. S;

(2) there is x ∈ X such that x ∈ body+(r);

(3) if S |= body(r), then S |= (head(r)−X). Here (head(r)−X) is the disjunction
obtained from head(r) by removing all atoms in X, S |= (head(r)−X) means
there is a subdisjunction A′ ⊆ (head(r)−X) such that A′ ∈ S.

Note that, if S is just a set of literals, then the above definition is equivalent to
the definition in Preliminaries. If P has the greatest unfounded set w.r.t. S, we
denote it by UP (S). However, UP (S) may be unfounded for some S.
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Now we are ready to define the well-founded operator W ′P for any disjunctive
logic program P and set of pure disjunctions S:

T ′P (S) = {A a pure disjunction | there is r ∈ P : A ∨ a1 ∨ · · · ∨ ak ← body(r),

such that S |= body(r) and not a1, . . . , not ak ∈ S },
W ′P (S) = T ′P (S) ∪ UP (S).

Note that T ′P (S) is a set of positive disjunctions rather than a set of atoms.
From [Wang and Zhou 2005], the operator W ′P always has the least fixed point,

which is denoted by lfp(W ′P ), and the well-founded semantics U -WFS is defined as
U-WFS(P ) = lfp(W ′P ).

Now we extend T0 to treat about pure disjunctions. First, we extend the no-
tion floop0(P,A) to under a set of pure disjunctions S.

A rule r is active under S w.r.t. a loop L, if S 6|= ¬body(r) and S 6|= (head(r)\L).
A rule r is an external support rule of L under S, if r ∈ R−(L) is active under S
w.r.t. L. We use R−(L, S) to denote the set of external support rules of L under S.

Given a disjunctive logic program P and a set S of pure disjunctions, let

floop0(P, S) = {¬a | a ∈ L for a loop L of P such that R−(L, S) = ∅ }.

Then floop0(P, S) is equivalent to the set of loop formulas of the loops that do not
have any external support rules under S. Clearly, if S is just a set of literals, the
above definition of floop0 is equivalent to the definition in Section 4.

Now we extend unit propagation to return pure disjunctions. Given a set Γ of
clauses, we use UP ∗ to denote the set of pure disjunctions returned by the extended
unit propagation:

Function UP ∗(Γ)
if (∅ ∈ Γ) then return Lit;
S := pure clause(Γ);
if S is inconsistent then return Lit;
if S 6= ∅ then return S ∪ UP ∗(assign(S,Γ)) else return ∅;

where pure clause(Γ) returns the union of all positive clauses (disjunctions) and
negative literals in Γ, let A be the union of all unit clauses in S11, then assign(S,Γ)
is { c | for some c′ ∈ Γ, c′ ∩A = ∅, and c = c′ \A }.

We use the new unit propagation in T0, formally, the procedure computes the
least fixed point of the following operator:

T ∗0 (P, S) = UP ∗( comp(P ) ∪ S ∪ floop0(P, S) ) ∩DB(P ),

where DB(P ) denotes the set of pure disjunctions formed by the literals in Lit(P ).
We use T ∗0 (P ) to denote such least fixed point.

The following theorem relates U-WFS(P ) and T ∗0 (P ).

Theorem 4.11. For any disjunctive logic program P , U-WFS(P ) ⊆ T ∗0 (P ).
If P is simplified and without constraints, then U-WFS(P ) = T ∗0 (P ).

11Note that, A is a set of literals.
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Table II. Run-time Data for Disjunctive Logic Programs.
Problem cmodels cmodelsT1

claspD claspDT1
T1

10x10 1194.901 2.44 0.14 0.12 0.38
10x20 1318.681 5.48 0.61 0.35 1.23
10x30 580.491 16.01 2.63 0.85 2.53

10x40 2318.571 32.27 8.42 2.64 4.53
10x50 1864.361 57.06 13.40 4.55 6.59

15x10 >2h 9.86 0.66 0.54 1.76
15x20 >2h 33.67 4.56 1.56 6.04

15x30 >2h 60.76 14.99 3.41 12.81

15x40 >2h 122.00 40.02 9.15 22.56
15x50 >2h 211.29 96.31 17.13 35.08

20x10 >2h 16.03 2.04 1.54 5.20

20x20 >2h 75.38 13.68 4.49 19.21

20x30 >2h 189.10 58.17 8.86 39.19
20x40 >2h 416.63 120.32 22.03 73.75

20x50 >2h 728.85 251.15 36.86 136.77

4.5 Some Experiments

We have also implemented a program that for any given disjunctive logic program P ,
it first computes T1(P ), and then adds {← l̄ | l ∈ T1(P ) } to P . Our implementation
is also available on the web12.

We tried our program on a number of benchmarks. First, for the disjunctive
logic programs at the First Answer Set Programming System Competition, T1(P )
does not return anything beyond the well-founded model of P . Next we tried the
disjunctive encoding of the Hamiltonian Circuit problem,13 and consider graphs
with the same structure proposed in Section 3.4. Similarly, none of these “must-in”
arcs can be computed using the WP operator, except one of them, others can be
computed from T1(P ), thus adding the corresponding constraints to P should help
ASP solvers in computing the answer sets.

Table II contains the running times for these programs.14 Similar to the exper-
iments described in Section 3.4, we also randomly created 20 different graphs for
each MxN, and the times reported in the table refers the average times for these cor-
responding 20 problems. The problems are first grounded by gringo (while Lparse
will exhaust RAM before it grounds a 20x20 problem), then computed by different
ASP solvers. In this table, the numbers under “cmodelsT1

” and “claspDT1
” refer to

the run times (in seconds) of cmodels (version 3.79) and claspD (version 1.1 [2008])
when the results from T1(P ) are added to the original program as constraints. As
can be seen, information from T1(P ) makes cmodels and claspD run much faster
when looking for an answer set. We also tried DLV, which will not be terminated
in 2 hours (including grounding times) for most 20x5 and 20x10 problems, but with
information from T1(P ) it will compute an answer of these problems less than 10
and 50 seconds separately.

12http://www.cs.ust.hk/cloop/
13http://www.dbai.tuwien.ac.at/proj/dlv/examples/hamcycle
14Our experiments were done on the same computer described in Section 3.4.
1The program does not terminate in 2 hours for some instances, we count their time as 2 hours.
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5. CONCLUSION

In this paper, we consider loops that have at most one external support rule for
normal and disjunctive logic programs. These loops are special in that their loop
formulas are equivalent to sets of unit or binary clauses. We have considered how
they, together with the program completion, can be used to deduce useful conse-
quences of a logic program under unit propagation.

Our main results are that, for normal logic programs, the set of loop formulas of
loops with at most one external support rule under a set of literals can be computed
in polynomial time, and an iterative procedure using these loop formulas, program
completion and unit propagation is proposed to computing consequences of the pro-
gram. When restricted to loop formulas of loops with no external support rules, the
procedure basically computes the well-founded model. We have implemented this
procedure as a pre-processing step, and show experimentally that for some interest-
ing Hamiltonian Circuit problems, this pre-processing step significantly improves
the performances of cmodels and clasp, which are among the best ASP solvers
today.

For disjunctive logic programs, the set of loop formulas of loops that do not
have any external support under an unfounded-free set of literals can be computed
in polynomial time, and an iterative procedure using these loop formulas, program
completion and unit propagation outputs the same set of consequences as computed
by the preprocessing step of DLV, and is basically the same as Wang and Zhou’s
well-founded model semantics of disjunctive logic programs. However, the problem
of computing loop formulas of loops with at most one external support is intractable.
As a result, we consider a polynomial time algorithm for computing some of these
loop formulas, and our experimental results show that this algorithm is sometimes
useful for simplifying a disjunctive logic program beyond that can be done by the
preprocessing step of DLV.

The following are two interesting directions for future work:

—We have used unit propagation as the inference rule. One could use others as
long as they are “efficient” enough. For example, in addition to unit propagation,
one can consider adding the following rule: infer l from l ∨ a and l ∨ ¬a, or even
the full resolution on binary clauses.

—We have used these loop formulas for deriving consequences of a logic program.
They can of course be used in ASP solvers such as ASSAT and cmodels directly.
Whether this has any benefit requires further study.

APPENDIX: PROOFS OF THEOREMS AND PROPOSITIONS

A.1 Proof of Proposition 3.3

Proof of Proposition 3.3: Suppose floop0(P,A) and floop1(P,A) are true. We
show that for any proper rule r of P such that A ∩ body(r) = ∅, and any L ∈
ml0(P \ {r}, A),

{¬a ∨ l | a ∈ L, l ∈ body(r)} (12)

is true. Firstly, L is also a loop of P , and that either R−(L,A) = ∅ or R−(L,A) =
{r}. For the first case, L ⊆ floop0(P,A), then floop0(P,A) implies ¬a for each
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a ∈ L, thus (12) is true. For the second case, (12) is contained in floop1(P,A), thus
true.

Now suppose floop0(P,A) and (7) are true. We show that floop1(P,A) is true,
i.e. for any proper rule r ∈ P such that A ∩ body(r) = ∅ and any L ∈ ml1(P,A, r),
(12) holds. Firstly, L is a loop of P \ {r} that has no external support rules under
A. Thus there exists L′ ∈ ml0(P \ {r}, A) such that L ⊆ L′. Now L′ is also a
loop of P , and w.r.t. P , either R−(L′, A) = ∅ or R−(L′, A) = {r}. In the first
case, L ⊆ L′ ⊆ floop0(P,A), thus (12) holds. In the second case, L′ must be in
ml1(P,A, r) as well, thus L = L′ and (12) holds.

A.2 Proof of Proposition 3.4

Proof of Proposition 3.4: According to Theorem 1 in [Lin and Zhao 2004], S is
an answer set of P if and only if it satisfies comp(P ) and each loop formula of P .
Given a set X of literals, if X is a set of consequences of P ∪ {← p | ¬p ∈ A} ∪ {←
not p | p ∈ A}, then TP

A (X) is a set of consequences of this program, thus T1(P,A)
is also a set of consequences.

A.3 Proof of Theorem 3.5

Lemma A.1. For any normal logic program P , and any A ⊆ Lit(P ).15

M(P,A) = Atoms(P ) \Atmost(P,A).

Proof. Let AM(P,A) = Atoms(P ) \Atmost(P,A) and X ⊆ AM(P,A), clearly
X ∩ Atmost(P,A) = ∅. First we prove that M(P,A) ⊆ AM(P,A). As M(P,A) is
the least fixed point of our operator MA

P , we only need to prove that MA
P (X) ⊆

AM(P,A).
Let L be a loop of P and R−(L,A ∪X) = ∅, clearly L ∩Atmost(P,A ∪X) = ∅.

For any set of atoms Y such that Y ⊆ Atmost(P,A) and Y ⊆ Atmost(P,A ∪X),
as X ∩ Atmost(P,A) = ∅, Y \ A− = Y \ (A− ∪ X), so GP

A(Y ) = GP
A∪X(Y ), thus

Atmost(P,A ∪ X) = Atmost(P,A). Now we have L ∩ Atmost(P,A) = ∅, then

loopA0 (P,X) ∩Atmost(P,A) = ∅ and loopA0 (P,X) ⊆ AM(P,A).

Let a be an atom such that a ∈ FA
2 (P,X), then for all r ∈ P , if a = head(r)

then A ∪ X |= ¬body(r). Clearly, a 6∈ Atmost(P,A ∪ X) and a 6∈ Atmost(P,A),
thus FA

2 (P,X) ⊆ AM(P,A).
So MA

P (X) ⊆ AM(P,A) and M(P,A) ⊆ AM(P,A). Now we prove that AM(P,A)
⊆ M(P,A). Let S = AM(P,A) \M(P,A), we want to prove S = ∅. The sketch
of the proof is: if S 6= ∅, then there exists a loop L ⊆ S and R−(L,M(P,A)) = ∅,
clearly, L ⊆ loopA0 (P,M(P,A)) and L ⊆ M(P,A), so S ∩ M(P,A) 6= ∅, which
conflicts to the definition of S. Now we give the detail of the proof.

For any atom a, if ¬a ∈ S, then there exists a rule r such that head(r) = a and
Atmost(P,A)\A− 6|= body+(r), which is equivalent to ((Atoms(P )\Atmost(P,A))∪
A−) ∩ body+(r) 6= ∅. As Atoms(P ) \ Atmost(P,A) = S ∪M(P,A), there exists a
rule r such that head(r) = a and S ∩ body+(r) 6= ∅.

Let GS
P be the S induced subgraph of G, L = {a | for each b ∈ S, if there is a

15M(P,A) is defined in Section 4.4.1.
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path from a to b in GS
P , then there is a path from b to a in GS

P }. Now we prove
that, L 6= ∅ and R−(L,M(P,A)) = ∅.

For any atom a ∈ S, let H−(a) = {b | b ∈ S, there is a path from a to b and

there is not any path from b to a in GS
P } and H+(a) = {b | b ∈ S, there is a path

from b to a in GS
P }. If L = ∅, then for each atom a ∈ S, H−(a) 6= ∅. If an atom

b ∈ H−(a), then a ∈ H+(b) and H−(b) ⊆ H−(a) \ {a}. If another atom c ∈ H−(b)
then H−(c) ⊆ H−(a) \ {a, b}. So we can form an infinite list of atoms {a1, a2, . . .},
where ai+1 ∈ H−(ai) and ai+1 6= aj (1 ≤ j ≤ i, 1 ≤ i ≤ ∞). But S is finite, so
L 6= ∅.

Clearly, L is a loop of P , L ⊆ S, L 6= ∅, and for each external support rule r of
L, body+(r) ∩ S = ∅. Furthermore, each rule whose head is belonged to S is not
satisfied under M(P,A)∪S, so R−(L,M(P,A)) = ∅. Then L ⊆ loopA0 (P,M(P,A)),
L ⊆M(P,A) and L ⊆ S, which conflicts to the definition of S.

So S = ∅ and M(P,A) = Atoms(P ) \Atmost(P,A).

Lemma A.2. For any normal logic program P , and any A ⊆ Lit(P ).

Expand(P,A) ⊆ T0(P,A).

Proof. Expand(P,A) is the least fixed point of the operator EP
A defined by (10).

For any set X of literals, such that X ⊆ T0(P,A), we want to prove EP
A (X) ⊆

T0(P,A). First we prove that Atleast(P,A ∪X) ⊆ T0(P,A).
Atleast(P,A ∪X) is the least fixed point of operator FP

A∪X . Let Y ⊆ T0(P,A),
we consider Fi(P, Y ) (1 ≤ i ≤ 5) respectively.

Let x be a literal, if x ∈ F1(P, Y ), then there is a rule x ← l1, . . . , ln. and
{l1, . . . , ln} ⊆ Y . The corresponding clause x ∨ l̄1 ∨ · · · ∨ l̄n is in comp(P ), then
x ∈ UP (comp(P ) ∪ Y ). As Y ⊆ T0(P,A) and T0(P,A) is the least fixed point of
our operator UP

A defined by (9), x ∈ UP (comp(P ) ∪ T0(P,A)), x ∈ T0(P,A). So
F1(P, Y ) ⊆ T0(P,A).

If x̄ ∈ F2(P, Y ), then for every rule r, if head(r) = x then body(r) is false under Y .
The corresponding clause x̄∨v1∨v2∨· · ·∨vn is in comp(P ) and ¬v1,¬v2, . . . ,¬vn ∈
UP (comp(P ) ∪ Y ), where vi is the new variable stands for the body of the rule.
Clearly x̄ ∈ UP (comp(P )∪Y ). In particular, if n = 0, there is a clause x̄ in comp(P ),
then x̄ ∈ UP (comp(P )∪Y ). Similar to the prove for F1(P, Y ), F2(P, Y ) ⊆ T0(P,A).

If x ∈ F3(P, Y ), then there exists a clause ¬a ∨ v1 ∨ v2 ∨ · · · ∨ vn in comp(P ),
a ∈ Y and for any j 6= i, ¬vj ∈ Y , then vi ∈ UP (comp(P ) ∪ Y ). As the clause
¬vi ∨ x is in comp(P ), x ∈ UP (comp(P ) ∪ Y ), thus F3(P, Y ) ⊆ T0(P,A).

If x̄ ∈ F4(P, Y ), then there is a literal ¬a ∈ Y , a rule a ← l1, . . . , ln., and
{l1, . . . , ln} is true under Y ∪ {x}. As Y is consistent, then {l1, . . . , ln} is not true
under Y , so x is equivalent to a literal li (1 ≤ i ≤ n) and for any j 6= i, 1 ≤ j ≤ n,
lj ∈ Y . The corresponding clause is a ∨ l̄1 ∨ · · · ∨ l̄n, then x̄ ∈ UP (comp(P ) ∪ Y ),
so F4(P, Y ) ⊆ T0(P,A).

If Y is inconsistent, then F5(P, Y ) = Lit(P ). T0(P,A) is also inconsistent, then
T0(P,A) = Lit(P ), F5(P, Y ) ⊆ T0(P,A).

As for any Y ⊆ T0(P,A), FP
A∪X(Y ) ⊆ T0(P,A), we have proved that Atleast(P,A∪

X) ⊆ T0(P,A).
Now we prove that Atoms(P ) \Atmost(P,A) ⊆ T0(P,A).
From Lemma A.1, M(P,A ∪ X) = Atoms(P ) \Atmost(P,A ∪X). Clearly for
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any Y ⊆ T0(P,A), loopA0 (P, Y ) ⊆ T0(P,A) and FA
2 (P, Y ) ⊆ T0(P,A), so MA

P (P, Y ) ⊆
T0(P,A), M(P,A ∪X) ⊆ T0(P,A).

So EP
A (X) ⊆ T0(P,A) and Expand(P,A) ⊆ T0(P,A).

Lemma A.3. For any simplified logic program P , and any A ⊆ Lit(P ).

T0(P,A) ⊆ Expand(P,A).

Proof. T0(P,A) is the least fixed point of our operator UP
A defined by (9). For

any set X of literals such that X ⊆ Expand(P,A), we want to prove UP
A (X) ⊆

Expand(P,A). X is consistent, if not, Expand(P,A) = Lit(P ) and UP
A (X) ⊆

Expand(P,A). First we prove that UP (comp(P ) ∪X) ∩ Lit(P ) ⊆ Expand(P,A).
From the definition of comp(P ) in Preliminaries, some new variables are intro-

duced and there are four kinds of clauses in comp(P ). We consider them one by
one. First we give some notions that will be used in the proof.

A set of literals X ⊆ Lit(comp(P )) is called a proper submodel of a set of clauses
comp(P ), if for any new variable vi which stands for the body {l1, . . . , lm}, vi ∈ X
implies {l1, . . . , lm} ⊆ X and ¬vi ∈ X implies that there exists some j, 1 ≤ j ≤ m
such that l̄j ∈ X. For any set of literals Y ⊆ Lit(comp(P )), Sub(Y ) = {vi | vi ∈
Y, vi stands for the body {l1, . . . , lm}, and {l1, . . . , lm} 6⊆ Y }.

For any set of literals X ⊆ Lit(comp(P )), such that X is a proper submodel of
comp(P ) and (X ∩ Lit(P )) ⊆ Expand(P,A).

For type 1, the clause is ¬a and ¬a ∈ F2(X ∩ Lit(P )).
For type 2, the clause is l̄1 ∨ · · · ∨ l̄n ∨ l. Assume that it can be reduced to a

unit clause under X. As the rule is a simplified rule, the head of the rule is not
belonged to the set of the atoms appeared in the body, then there are only two
cases. If the remaining literal is l, then {l1, . . . , ln} ⊆ X, so l ∈ F1(P,X ∩ Lit(P )),
l ∈ Expand(P,A). If the remaining literal is l̄i, then l̄ ∈ X, and for any j 6= i, 1 ≤
j ≤ n, lj ∈ X, so l̄i ∈ F4(P,X ∩Lit(P )), l̄i ∈ Expand(P,A). So if the unit clause c
is reduced from one of this kind of clauses, then c ∈ Expand(P,A).

For type 3, the clauses are ¬a∨v1∨· · ·∨vm, vi∨ l̄1i∨· · ·∨ l̄ni , ¬vi∨l1i , . . .¬vi∨lni

(1 ≤ i ≤ m).
For the clause ¬a ∨ v1 ∨ · · · ∨ vm, assume that it can be reduced to a unit

clause under X. There are only two cases. If the remaining literal is ¬a, then
{¬v1, . . . ,¬vm} ⊆ X. As X is a proper submodel of comp(P ), for any rule r ∈ P
if head(r) = a then body(r) is false under X ∩ Lit(P ), so ¬a ∈ F2(P,X ∩ Lit(P )),
¬a ∈ Expand(P,A). If the remaining literal is vi, vi 6∈ Lit(P ), so we do not need
to consider this case.

For the clause vi ∨ l̄1 ∨ · · · ∨ l̄n, assume that it can be reduced to a unit clause
under X. There are only two cases. If the remaining literal is l̄j , then ¬vi ∈ X and
for any k 6= j, 1 ≤ k ≤ n, lk ∈ X. As X is a proper submodel of comp(P ), then
l̄j ∈ X, so l̄j ∈ Expand(P,A). If the remaining literal is vi, vi 6∈ Lit(P ).

For the clause ¬vi ∨ lj , assume that it can be reduced to a unit clause under
X. There are only two cases. If the remaining literal is lj , then vi ∈ X. As X is
a proper submodel of comp(P ), lj ∈ X. So lj ∈ Expand(P,A). If the remaining
literal is ¬vi, vi 6∈ Lit(P ).

So if the unit clause c is reduced from the clause of type 3, then {c} ∩ Lit(P ) ⊆
Expand(P,A).
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For type 4, the clause is l̄1 ∨ · · · ∨ l̄n. Assume that it can be reduced to a unit
clause under X. If the remaining literal is l̄i, then for any j 6= i, 1 ≤ j ≤ n, lj ∈ X,
so l̄i ∈ F4(P,X ∩ Lit(P )). So if the unit clause c is reduced from one of this kind
of clauses, then c ∈ Expand(P,A).
unit clause(assign(X, comp(P ))) returns the union of unit clauses reduced from

comp(P ) under X, we denote UPO(comp(P ), X) for short. So for any X ⊆ Lit(comp(P )),
X is a proper submodel of comp(P ) and X ∩ Lit(P ) ⊆ Expand(P,A), we have
UPO(comp(P ), X) ∩ Lit(P ) ⊆ Expand(P,A).

Let Y = UPO(comp(P ), X), if Y is not a proper submodel of comp(P ), then
there exists some vi ∈ Y which stands for the body {l1, . . . , ln} and for some
1 ≤ j ≤ n, lj 6∈ Y . vi can only come from the clause ¬a ∨ v1 ∨ · · · ∨ vm, so
a ∈ Y and for all k 6= i, 1 ≤ k ≤ m, ¬vk ∈ Y , then {l1, . . . , ln} ⊆ F3(P, Y ∩
Lit(P )), UPO(comp(P ), Sub(Y )) ∩ Lit(P ) ⊆ Expand(P,A). Let Z = Y \ Sub(Y ),
it is clear that Z is a proper submodel of comp(P ), then UPO(comp(P ), Z) ∩
Lit(P ) ⊆ Expand(P,A). So UPO(comp(P ), Y ) ∩ Lit(P ) = (UPO(comp(P ), Z) ∪
UPO(comp(P ), Sub(Y ))) ∩ Lit(P ) ⊆ Expand(P,A).

So UP (comp(P ) ∪X) ∩ Lit(P ) ⊆ Expand(P,A).
Now we prove that loop0(P,X) ⊆ Expand(P,A).
From Lemma A.1, for any Y ⊆ Expand(P,A), loopA0 (P, Y ) ⊆ Expand(P,A),

then loop0(P,X) ⊆ Expand(P,A).
So UP

A (X) ⊆ Expand(P,A) and T0(P,A) ⊆ Expand(P,A).

Proof of Theorem 3.5: Directly from Lemma A.2 and A.3.

A.4 Proof of Proposition 4.1

Proof of Proposition 4.1: Clearly, deciding whether ¬a ∈ floop0(P,A) is a NP
problem. We can proceed as follows: guess a loop L of P such that a ∈ L, and
verify that L has no external support rules under A.

We prove the hardness for NP by reducing the 3-SAT problem to the problem.
Now we give the detail of the proof.

Given a set of atoms Atoms = { a1, a2, . . . , an } and Lit = Atoms ∪ Atoms, let Γ
be a set of clauses of the form l1 ∨ l2 ∨ l3, where li ∈ Lit (1 ≤ i ≤ 3), deciding
whether Γ is satisfiable is a 3-SAT problem.

Let p be an atom not in Atoms, we denote by Loop(Atoms) the logic program:

ai ← p.

p ← ai, p. (1 ≤ i ≤ n)

Clearly, every subset of Atoms extended with p is a loop of Loop(Atoms) and every
loop of Loop(Atoms) is in this form.

Let C be a clauses in Γ and a, b, c be the three atoms mentioned in C, there are
only eight cases to form C from a, b, c. We use Tran(C) to denote a disjunctive
rule according to C, which is different for each case. We give the detail in Table III.

Let Sat(Γ) = {Tran(C) | C ∈ Γ }, clearly, Sat(Γ) is a disjunctive logic pro-
gram. Furthermore, if an interpretation I ⊆ Atoms does not satisfy a clauses C,
then Tran(C) is an external support rule of the loop I∪{p} under Atoms, otherwise,
Tran(C) is not an external support rule under Atoms.
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Table III. Rule Tran(C) of clause C for each case.

Clause C Rule Tran(C)

a ∨ b ∨ c p← a, b, c.
a ∨ b ∨ ¬c p ∨ c← a, b.

a ∨ ¬b ∨ c p ∨ b← a, c.

a ∨ ¬b ∨ ¬c p ∨ b ∨ c← a.
¬a ∨ b ∨ c p ∨ a← b, c.

¬a ∨ b ∨ ¬c p ∨ a ∨ c← b.
¬a ∨ ¬b ∨ c p ∨ a ∨ b← c.

¬a ∨ ¬b ∨ ¬c p ∨ a ∨ b ∨ c← .

We use Tran(Γ) to denote the disjunctive logic program: Loop(Atoms)∪Sat(Γ).
From the discussion above, for any interpretation I ⊆ Atoms, I ∪ {p} is a loop
of Tran(Γ), and if I satisfies a clause C in Γ, then Tran(C) is not an external
support rule of the loop I ∪ {p} under Atoms, otherwise, Tran(C) is an external
support rule of I ∪ {p} under Atoms.

So if there is an interpretation I satisfies every clause in Γ, then loop I ∪ {p}
of Tran(Γ) has no external support rules under Atoms, and ¬p ∈ floop0(Tran(Γ), Atoms).
If there does not exists such an interpretation, then for any I ⊆ Atoms, I ∪ {p}
has at least one external support rule under Atoms, thus there does not exists
a loop of Tran(Γ) with p that has no external support rules under Atoms, then
¬p 6∈ floop0(Tran(Γ), Atoms). So Γ is satisfiable iff ¬p ∈ floop0(Tran(Γ), Atoms).

It is known that the 3-SAT problem is NP-complete, thus deciding whether ¬a ∈
floop0(P,A) is NP-hard, the problem is NP-complete.

A.5 Proof of Proposition 4.2

Proof of Proposition 4.2: Suppose otherwise, and let r ∈ R−(L1∪L2, A). Then
head(r)∩(L1∪L2) 6= ∅, body+(r)∩(L1∪L2) = ∅, A∩body(r) = ∅, A∩(head(r)\(L1∪
L2)) = ∅ and A∩(L1∪L2) = ∅. Thus A∩head(r) = ∅ and either head(r)∩L1 6= ∅ or
head(r) ∩ L2 6= ∅. So either r ∈ R−(L1, A) or r ∈ R−(L2, A), a contradiction with
the assumption that L1 and L2 do not have any external support rules under A.

A.6 Proof of Theorem 4.3

Proof of Theorem 4.3: The complexity part is straightforward and the loops com-
puted from ML0(P,A,Atoms(P )) are loops without external support rules for P
w.r.t. A. Note that, generally ML0(P,A) 6⊆ ml0(P,A).

For the correctness when A is unfounded-free, observe that if L is a loop of P ,
then there must be a strongly connected component C of GP such that L ⊆ C. Now
if L ∈ ml0(P,A), then there must be such a component C such that either L = C
and R−(C,A) = ∅ or L ⊂ C, R−(C,A) 6= ∅ and R−(L,A) = ∅. In the latter case,
for any r ∈ R−(C,A), if head(r) ∩ A = ∅, then head(r) ∩ L = ∅, for otherwise,
r must be in R−(L,A), a contradiction with R−(L,A) = ∅. If head(r) ∩ A 6= ∅,
as A is unfounded-free, then for any loop L ∈ ML0(P,A,Atoms(P )), L ∩ A = ∅,
thus (head(r) ∩ A) ∩ L = ∅. So if R−(C,A) 6= ∅, then any subset of C that is
in ml0(P,A) must also be a subset of S = C \

⋃
r∈R−(L,A) H(r,A). Thus instead
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of GP , we can recursively search that S induced subgraph of GP .

A.7 Proof of Proposition 4.4

Proof of Proposition 4.4: Clearly, deciding whether ¬a ∨ l ∈ floop1(P,A) is a
NP problem. We can proceed as follows: guess a loop L of P such that a ∈ L,
and verify that L has only one external support rule r under A such that l ∈
body(r) ∪ head(r) \ L.

Similar to the proof of Proposition 4.1, we prove the hardness for NP by reducing
the 3-SAT problem to the problem. We also follow the notions proposed in the above
proof.

We use Tran1(Γ) to denote the disjunctive logic program: Loop(Atoms)∪Sat(Γ)∪
{ p ← q, q ←}, where q is an atom not in Atoms and different from p. From the
discussion in the above proof, for any interpretation I ⊆ Atoms, I ∪ {p} is a loop
of Tran1(Γ), and if I satisfies a clause C in Γ, then Tran(C) is not an external
support rule of the loop I ∪ {p} under Atoms, otherwise, Tran(C) is an external
support rule of I ∪ {p} under Atoms.

So if there is an interpretation I satisfies every clause in Γ, then loop I ∪ {p}
of Tran1(Γ) has only one external support rule: p← q under Atoms, and ¬p∨ q ∈
floop1(Tran1(Γ), Atoms). If there does not exists such an interpretation, then for
any I ⊆ Atoms, I ∪{p} has more than one external support rule under Atoms, thus
there does not exists a loop of Tran1(Γ) with p that has only one external support
rule under Atoms, then ¬p ∨ q 6∈ floop1(Tran1(Γ), Atoms). So Γ is satisfiable iff
¬p∨q ∈ floop1(Tran1(Γ), Atoms). Furthermore, as q is a consequence of Tran1(Γ),
Atoms ⊆ U(Tran1(Γ), ∅).

It is known that the 3-SAT problem is NP-complete, thus for A ⊆ U(P, ∅),
deciding whether ¬a ∨ l ∈ floop1(P,A) is NP-hard, the problem is NP-complete.

A.8 Proof of Proposition 4.5

Proof of Proposition 4.5: For any rule r in the disjuctive logic program P , we
also define ml1(P,A, r) the set of maximal loops of P that have r as their only
external support rule under A, and ml1(P,A) =

⋃
r∈P ml1(P,A, r). Let

floop′1(P,A) =
⋃

L∈ml1(P,A)

{¬a ∨ l | a ∈ L, l ∈ body(r) ∪ head(r) \ L,

R−(L,A) = {r} }.

Clearly, if L ∈ ml1(P,A) then L ∈ loop1(P,A), so floop1(P,A) implies floop′1(P,A).
We only need to prove that floop′1(P,A) implies the formula (11) under floop0(P,A).

Suppose floop0(P,A) and floop′1(P,A) are true. We show that for any rule r ∈ P
s.t. A ∩ body(r) = ∅, and any L ∈ ml0(P \ {r}, A),

{¬a ∨ l | a ∈ L, l ∈ body(r) ∪ head(r) \ L } (13)

is true. Firstly, L is also a loop for P , and that either R−(L,A) = ∅ or R−(L,A) =
{r}. For the first case, L ⊆ floop0(P,A), thus (13) is true. For the second case,
L ∈ loop1(P,A) and there does not exist any other such loop L′ s.t. L ⊂ L′, so
l ∈ ml1(P,A, r), (13) is contained in floop′1(P,A), thus true.
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So floop0(P,A)∪floop′1(P,A) implies the formula (11), and floop0(P,A)∪floop1(P,A)
implies the formula (11).

A.9 Proof of Proposition 4.6

Proof of Proposition 4.6: Let S be an answer set of P and S = S∪Atoms(P ) \ S,
clearly, A ⊆ S. Let X be an unfounded set for P w.r.t. A, from the definition of
unfounded sets, X is also an unfounded set for P w.r.t. S. Theorem 4.6 in [Leone
et al. 1997] demonstrates that S is unfounded-free. So if A is not unfounded-free,
then there exists an unfounded set X for P w.r.t. A such that X ∩A 6= ∅, thus X is
also an unfounded set w.r.t. S and X ∩S 6= ∅, a contradiction with S is unfounded-
free. So A is also unfounded-free.

A.10 Proof of Proposition 4.7

Proof of Proposition 4.7: Similar to the proof of Proposition 4.1, we prove the
hardness for NP by reducing the 3-SAT problem to the problem, deciding whether
a literal l ∈ T 1(P ). We follow the notions proposed in the above proof.

We use Tran2(Γ) to denote the disjunctive logic program: Loop(Atoms)∪Sat(Γ)∪
{ p← q, q ← notm, m← not q, ← not p }, where q and m are different atoms not
in Atoms and different from p. Clearly, Atoms ∪ {p} ⊂ T 1(P ). We want to know
whether q belongs to T 1(P ).

From the discussion in the proof of Proposition 4.1, if Γ is satisfiable, then there
exists an interpretation I ⊆ Atoms that satisfies every clause in Γ, thus I ∪{p} is a
loop of Tran2(Γ) and I∪{p} has only one external support rule p← q under Atoms∪
{p}, as p ∈ T 1(P ), then q ∈ T 1(P ). If Γ is unsatisfiable, then every possible
interpretation does not satisfy Γ, thus every possible loop in Tran2(Γ) has more
than one external support rule, so q 6∈ T 1(P ).

So Γ is satisfiable iff q ∈ T 1(P ). Thus deciding whether a literal l ∈ T 1(P ) is
NP-hard.

A.11 Proof of Theorem 4.8

Lemma A.4. For any disjunctive logic program P , any A ⊆ Lit(P ), and any
X ⊆ GUSP (A). GUSP (A) = GUSP (A ∪X).

Proof. Clearly, GUSP (A) ⊆ GUSP (A∪X). Now we prove that GUSP (A∪X) ⊆
GUSP (A).
GUSP (A ∪ X) is an unfounded set of P w.r.t. A ∪ X and X ⊆ GUSP (A) ⊆

GUSP (A ∪ X), from the definition of unfounded sets, GUSP (A ∪ X) is also an
unfounded set of P w.r.t. A, so GUSP (A ∪X) ⊆ GUSP (A).

So GUSP (A) = GUSP (A ∪X).

Proof of Theorem 4.8: Let X ⊆ GUSP (A), first we prove that M(P,A) ⊆
GUSP (A). As M(P,A) is the least fixed point of our operator MA

P , we only need
to prove that MA

P (X) ⊆ GUSP (A).
Note that, if an atom a ∈ FA

2 (P,X), then for each r ∈ P , a ∈ head(r) implies (1)

A ∪X 6= ∅, or (2) (head(r) \ {a}) ∩ A 6= ∅. From the definition of unfounded sets,
{a} is an unfounded set for P w.r.t. A ∪X. Furthermore, GUSP (A) exists, from
Lemma A.4, GUSP (A ∪ X) exists, then {a} ⊆ GUSP (A ∪ X), thus FA

2 (P,X) ⊆
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GUSP (A∪X). Let L be a loop of P and R−(L,A∪X) = ∅, clearly, L is an unfounded
set of P w.r.t. A∪X, and L ⊆ GUSP (A∪X). So MA

P (X) ⊆ GUSP (A∪X). From
Lemma A.4, MA

P (X) ⊆ GUSP (A), thus M(P,A) ⊆ GUSP (A).
Now we prove that GUSP (A) ⊆M(P,A). Let S = GUSP (A)\M(P,A), we want

to prove S = ∅. The sketch of the proof is: if S 6= ∅, then there exists a loop L ⊆ S
and R−(L,A∪M(P,A)) = ∅, clearly, L ⊆ loopA0 (P,M(P,A)) and L ⊆M(P,A), so
S ∩M(P,A) 6= ∅, which conflicts to the definition of S. Now we give the detail of
the proof.

For any atom a, if a ∈ S, then every rule r ∈ P such that a ∈ head(r), we have
A ∩ body(r) 6= ∅, A ∩ (head(r) \ GUSP (A)) 6= ∅, or body+(r) ∩ GUSP (A) 6= ∅. As
GUSP (A) = S∪M(P,A), there exists a rule r such that a ∈ head(r), S∩body+(r) 6=
∅.

Let GS
P be the S induced subgraph of the positive dependence graph GP , L = { a |

for each b ∈ S, if there is a path from a to b in GS
P , then there is a path from b to

a in GS
P }. Now we prove that, L 6= ∅ and R−(L,A ∪M(P,A)) = ∅.

For any atom a ∈ S, let H−(a) = { b | b ∈ S, there is a path from a to b and there
is not any path from b to a in GS

P } . Clearly, for each atom a ∈ S, there exists an
atom b ∈ S such that there is an arc from a to b in GS

P . If L = ∅, then for each atom
a ∈ S, H−(a) 6= ∅. If an atom b ∈ H−(a), then H−(b) ⊆ H−(a) \ {a}. If another
atom c ∈ H−(b) then H−(c) ⊆ H−(a) \ {a, b}. So we can form an infinite list of
atoms {a1, a2, . . .}, where ai+1 ∈ H−(ai) and ai+1 6= aj (1 ≤ j ≤ i, 1 ≤ i ≤ ∞).
But S is finite, so L 6= ∅.

Clearly, L is a loop of P , L ⊆ S, L 6= ∅. Let r be an external support rule of L,
if body+(r)∩ S 6= ∅, then there exist two atoms a and b such that a ∈ L, b ∈ S \L,
and there is a path from a to b in GS

P , thus there is also a path from b to a in GS
P .

Note that, for each atom c ∈ S, if there is a path from b to c in GS
P , then there

is a path from a to c, thus there is a path from c to a and also a path from c to
b. So b ∈ L, which conflicts to b ∈ S \ L, thus for each external support rule r of
L, body+(r) ∩ S = ∅. Furthermore, all rules r ∈ P , such that head(r) ∩ S 6= ∅,
A∩ body(r) 6= ∅, (M(P,A)∪S)∩ body(r) 6= ∅, or A∩ (head(r)\ (S∪M(P,A))) 6= ∅,
so R−(L,A ∪ M(P,A)) = ∅. Then L ⊆ loopA0 (P,M(P,A)), L ⊆ M(P,A) and
L ⊆ S, which conflicts to the definition of S.

So S = ∅ and M(P,A) = GUSP (A).

A.12 Proof of Theorem 4.9

Lemma A.5. For any disjunctive logic program P , Wω
P (∅) ⊆ T0(P ).

Proof. Wω
P (∅) is the least fixed point of the operator WP . For any set X of

literals, such that X ⊆ T0(P ), we want to prove WP (X)) ⊆ T0(P ). First we prove
that TP (X) ⊆ T0(P ).

If an atom a ∈ TP (X), then there is a rule r ∈ P such that a ∈ head(r), (head(r)\
{a}) ⊆ X, and body(r) ⊆ X. The corresponding clause head(r) ∨

∨
body(r) is

in comp(P ), then a ∈ UP (comp(P ) ∪X). So TP (X) ⊆ T0(P ).
Now we prove that GUSP (X) ⊆ T0(P ). From Theorem 4.8, M(P,X) = GUSP (X).

T0(P ) returns a set of consequence of P , then every subset of T0(P ) is unfounded-
free for P . Note that, if X1 ⊆ X2 ⊆ T0(P ), then

⋃
L∈ML0(P,X1)

L ⊆
⋃

L∈ML0(P,X2)
L,
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from the definition of T0(P ),
⋃

L∈ML0(P,X1)
L ⊆

⋃
L∈ML0(P,X2)

L ⊆ T0(P ). Addi-

tionally, for any Y ⊆ T0(P ), X ∪ Y is unfounded-free for P , from Theorem 4.3,⋃
L∈ML0(P,X∪Y ) L =

⋃
L∈ml0(P,X∪Y ) L = loopX0 (P, Y ). So for any Y ⊆ T0(P ),

loopX0 (P, Y ) ⊆ T0(P ). Now we prove that FX
2 (P, Y ) ⊆ T0(P ).

For any atom a ∈ FX
2 (P, Y ) and any rule r ∈ P , if a ∈ head(r), then X ∩

body(r) 6= ∅, Y ∩ body(r) 6= ∅, or (head(r) \ {a}) ∩ X 6= ∅. The corresponding
clause ¬a∨ v1 ∨ v2 ∨ · · · ∨ vn is in comp(P ) and ¬v1,¬v2, . . . ,¬vn ∈ UP (comp(P )∪
X ∪ Y ), where vi is the new variable stands for the body of the rule. Clearly,
¬a ∈ UP (comp(P )∪X∪Y ). In particular, if n = 0, there is clauses ¬a in comp(P ).

So FX
2 (P, Y ) ⊆ T0(P ).

So MX
P (P, Y ) ⊆ T0(P ), M(P,X) ⊆ T0(P ).

Lemma A.6. For any simplified disjunctive logic program P that does not con-
tain constraints, T0(P ) ⊆ Wω

P (∅).

Proof. T0(P ) is equivalent to the least fixed point of our operator f defined
by (8). For any set X of literals such that X ⊆ Wω

P (∅), we want to prove f(X) ⊆
Wω

P (∅). Note that X is always consistent. First we prove that UP (comp(P )∪X)∩
Lit(P ) ⊆ Wω

P (∅).
Note that P is a simplified program that without constraints, from the definition

of comp(P ) in Preliminaries, some new variables are introduced and there are three
kinds of clauses in comp(P ). We consider them one by one. First we give some
notions that will be used in the proof.

A set of literals X ⊆ Lit(comp(P )) is called a proper submodel of a set of
clauses comp(P ), if for any new variable vi which stands for the set of liter-
als body(ri) ∪ head(ri) \ {a} (formula body(ri) ∧

∧
p∈head(ri)\{a} ¬p), vi ∈ X im-

plies (body(ri) ∪ head(ri) \ {a}) ⊆ X and ¬vi ∈ X implies that there exists a
literal l ∈ body(ri) ∪ head(ri) \ {a} such that l̄ ∈ X. For any set of literals Y ⊆
Lit(comp(P )), Sub(Y ) = { vi | vi ∈ Y, vi stands for the set body(ri)∪head(ri) \ {a},
and (body(ri) ∪ head(ri) \ {a}) 6⊆ Y }.

Consider any set of literals X ⊆ Lit(comp(P )), such that X is a proper submodel
of comp(P ) and (X ∩ Lit(P )) ⊆ Wω

P (∅).
For type 1, the clause is ¬a for an atom a that there is no rule in P with a as its

head. Clearly, {a} is an unfounded set for P w.r.t. ∅, then ¬a ∈ Wω
P (∅).

For type 2, the clause is head(r)∨
∨
body(r) for each rule r in P . Assume that it

can be reduced to a unit clause under X. As the rule is a simplified rule, atoms in
the head do not appear in the body, then there are only two cases. If the remaining
literal l ∈ head(r), then (body(r)∪head(r) \ {l}) ⊆ X, so l ∈ TP (X) and l ∈ Wω

P (∅).
If the remaining literal l ∈ body(r), then (head(r)∪ (body(r) \ {l̄})) ⊆ X ⊆ Wω

P (∅),
thus head(r) ⊆ GUSP (X ∩ Lit(P )) and (body(r) \ {l̄}) ⊆ X, so l ∈ Wω

P (∅). So if
the unit clauses c is reduced from one of this kind of clauses, then c ∈ Wω

P (∅).
For type 3, the clauses are corresponding to the clauses formed in item 4 for the

definition of comp(P ) in Preliminaries.
For the clause ¬a∨v1∨· · ·∨vt, assume that it can be reduced to a unit clause un-

der X. There are only to cases. If the remaining literal is ¬a, then {¬v1, . . . ,¬vt} ⊆
X. As X is a proper submodel of comp(P ), then {a} is an unfounded set for P
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w.r.t. X ∩ Lit(P ), thus ¬a ∈ Wω
P (∅). If the remaining literal is vi, vi 6∈ Lit(P ), so

we do not need to consider this case.
For clauses of the form vi ∨

∨
body(ri) ∨

∨
p∈head(ri)\{a} p or ¬vi ∨ l, if the unit

clause c is reduced from these clauses, as X is a proper submodel of comp(P ),
then {c} ∩ Lit(P ) ⊆ Wω

P (∅).
In the algorithm for unit propagation, unit clause(assign(X, comp(P ))) returns

then union of unit clauses reduced from comp(P ) under X, we denote UPO(comp(P ), X)
for short. From the above discussion, we have proved that, for any X ⊆ Lit(comp(P )),
X is a proper submodel of comp(P ) and X∩Lit(P ) ⊆ Wω

P (∅), we have UPO(comp(P ), X)
∩Lit(P ) ⊆ Wω

P (∅).
Let Y = UPO(comp(P ), X), if Y is not a proper submodel of comp(P ), then there

exists some vi ∈ Y which stands for the set body(ri)∪ head(ri) \ {a} and there is a
literal l in this set that l 6∈ Y . vi can only come from the clause ¬a ∨ v1 ∨ · · · ∨ vt,
so a ∈ Y and for all k 6= i, 1 ≤ k ≤ t, ¬vk ∈ Y . As Y ∩Lit(P ) ⊆ Wω

P (∅), a ∈ TP (Y ∩
Lit(P )), then there is a rule r that a ∈ head(r) and body(r) ∪ head(r) \ {a} ⊆ Y .
So UPO(comp(P ), Sub(Y )) ∩ Lit(P ) ⊆ Wω

P (∅). Let Z = Y \ Sub(Y ), it is clear
that Z is a proper submodel of comp(P ), then UPO(comp(P ), Z)∩Lit(P ) ⊆ Wω

P (∅).
So UPO(comp(P ), Y ) ∩ Lit(P ) = (UPO(comp(P ), Z) ∪ UPO(comp(P ), Sub(Y ))) ∩
Lit(P ) ⊆ Wω

P (∅).
So UP (comp(P ) ∪X) ∩ Lit(P ) ⊆ Wω

P (∅).
Now we prove that, for any X ⊆ Wω

P (∅), FLoop0(P,X) ⊆ Wω
P (∅).

Clearly, X is unfounded-free, from Theorem 4.8, FLoop0(P,X) = floop0(P,X) ⊆
GUSP (X) ⊆ Wω

P (∅).
So f(X) ⊆ Wω

P (∅) and T0(P ) ⊆ Wω
P (∅).

Proof of Theorem 4.9: The theorem can be proved from Lemma A.5 and A.6
directly.

A.13 Proof of Proposition 4.10

Lemma A.7. For any disjunctive logic program P and a set A of literals, floop0(P,A)
implies that floop′1(P,A) is equivalent to the following theory⋃

A∩body(r)=∅,L∈ml0(P\{r},A)

{¬a ∨ l | a ∈ L, l ∈ body(r) ∪ head(r) \ L}. (14)

Proof. Suppose floop0(P,A) and floop′1(P,A) are true. We show that for any
rule r ∈ P s.t. A ∩ body(r) = ∅, and any L ∈ ml0(P \ {r}, A),

{¬a ∨ l | a ∈ L, l ∈ body(r) ∪ head(r) \ L } (15)

is true. Firstly, L is also a loop for P , and that either R−(L,A) = ∅ or R−(L,A) =
{r}. For the first case, L ⊆ floop0(P,A), thus (15) is true. For the second case,
L ∈ loop1(P,A) and there does not exist any other such loop L′ s.t. L ⊂ L′, so
l ∈ ml1(P,A, r), (15) is contained in floop′1(P,A), thus true.

Now suppose floop0(P,A) and (14) are true. We show that floop′1(P,A) is true,
i.e., for any loop L ∈ ml1(P,A, r), (15) is true. Clearly, L ∈ ml0(P \ {r}, A) or
there exists a loop L′ ∈ ml0(P \ {r}, A) s.t. L ⊂ L′. For the first case, (14) is
true, thus (15) is true. For the second case, L′ ∈ loop0(P,A), floop0(P,A) is true,
thus (15) is true.
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Proof of Proposition 4.10: For the first equation. Clearly, if P is head-cycle
free, then loop0(P,A) = loop0(sh(P ), A). Let C be a strongly connected component
of GP , loop L ⊆ C and L ∈ ml0(P,A). There are two cases: either L = C
and R−(C,A) = ∅ or L ⊂ C, R−(C,A) 6= ∅ and R−(L,A) = ∅. In the later case,
if head(r) ∩ A = ∅, then head(r) ∩ L = ∅, for otherwise, r must be in R−(L,A), a
contradiction with R−(L,A) = ∅.

If head(r) ∩ A 6= ∅, let X = head(r) ∩ L. As P is head-cycle free, then |X| ≤ 1,
i.e., there is at most one atom a ∈ X. As r ∈ R−(C,A), so body+(r) ∩ C = ∅,
A ∩ body(r) = ∅ and A ∩ (head(r) \ C) = ∅. L ⊂ C, let Y = A ∩ (head(r) \ L).
If Y 6= ∅, let b ∈ Y , clearly, a 6= b, a, b ∈ C, b ∈ head(r), which conflicts to P is
head-cycle free, so Y = ∅. Thus a 6∈ L, for otherwise, r must be in R−(L,A), a
contradiction with R−(L,A) = ∅. So (head(r) ∩A) ∩ L = ∅.

Thus if R−(C,A) 6= ∅, then any subset of C that is in ml0(P,A) must also be
a subset of S = C \ {H(r,A) | r ∈ R−(C,A) }. Thus instead of GP , we can
recursively search the S included subgraph of GP .

So if P is head-cycle free, then ML0(P,A) = ml0(P,A). As sh(P ) is a normal
program, from Theorem 3.2, ML0(sh(P ), A) = ml0(sh(P ), A) = ml0(P,A). So
ml0(P,A) = ML0(P,A) = ML0(sh(P ), A).

As ML0(sh(P \ {r}), A) = ML0(P \ {r}, A), so the second equation is true.
Furthermore, as P is head-cycle free, if a loop L ∈ ml1(P,A, r), then for any

loop L′ ⊃ L s.t. R−(L′, A) = {r} and head(r) \ L = head(r) \ L′, for otherwise, P
is not head-cycle free. So floop1(P,A) ≡ floop′1(P,A). Then from Lemma A.7 and
the first equation, floop1(P,A) ≡ FLoop1(P,A) under floop0(P,A).

A.14 Proof of Theorem 4.11

Proof of Theorem 4.11: The proof is similar to the proof for Theorem 4.9, we
just need to replace the set A of literals to the set S of pure disjunctions.
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