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1. INTRODUCTION
In the early 20th century, the expressivity of logics was considered in principle. For exam-
ple, first-order predicate logics with or without term-formers are equally expressive, in
principle.

In the early 21st century, more attention is paid to what we like to call ‘ergonomics’.
First-order predicate logic with term-formers is more ergonomic than first-order predicate
logic without term-formers; terms, propositions and proofs are shorter and more natural
in the former than in the latter.

Another imperative is for a weak logic—the fewer ‘bells and whistles’ we have to worry
about, the easier it will be to verify, implement, and prove its meta-theoretic properties.
This can be in tension with being ergonomic, as the example of first-order predicate logic
with or without term-formers illustrates.

Thus there enters a fruitful design tension: we aim for logics that are so ergonomic that
they ‘just work’, yet so weak and well-behaved that we can still prove good properties for
them.

Now we come to the issue of binding. Binding is ubiquitous in logical specifications in
mathematics—binding features in function definitions via λ-abstraction, and binders are
also used to define sets in comprehension, and to define finite and infinite sums, integrals,
derivations, quantifiers, and so on. A logic for mathematics that provides support for this
central and essential notion, is likely to be more ergonomic than a logic that does not.

First-order logic is weak, computationally tractable, and has good theoretical properties
(unification of first-order terms is decidable; proof-search is simple and well-understood;
models are simple). However, first-order logic is unergonomic in the sense that it does not
admit term-formers that can bind. Thus it is hard to give direct, finite, first-order axioma-
tisations of set theory, arithmetic, higher-order logic, or the λ-calculus.

This is one reason that e.g. higher-order logic is often used as a specification language in
theory (see [Farmer 2008] for an excellent exposition) and implementations (like Isabelle
[Paulson 1990])—higher-order logic has a binder (λ) built-in to terms, and so is more er-
gonomic.
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However, higher-order logic is also stronger than first-order logic, less computationally
tractable, and models tend to be more complex. The jump from first- to higher-order logic
is quite large.

This motivates the study of direct extensions of first-order predicate logic with term-
formers that can bind. The topic of this paper is the construction of one such extension,
which we call permissive-nominal logic (PNL). PNL has a clear first-order flavour, and it
admits term-formers that bind.

Technical summary and overview. The main technical contributions of this paper are:
the definition of permissive-nominal logic, in particular how it handles freshness side-
conditions and how this permits the addition of universal quantification to nominal terms;
the Tarski-style models we then construct; and the finite yet fully first-order axiomatisa-
tions of substitution, first-order logic, and arithmetic which we then exhibit.

Soundness, completeness, and cut-elimination follow by fairly routine arguments, but
we see this as a good sign: that the definition of permissive-nominal logic remains close to
first-order logic, while allowing terms with binders.

An overview of this paper is as follows:

— We introduce the syntax and derivation rules of permissive-nominal logic (Section 2).
The impatient reader can jump directly to Figure 1 on page 11 and see that these deriva-
tion rules are virtually indistinguishable from those of first-order logic; only an extra
side-condition in (∀L) hints at any difference.1

— We prove soundness and completeness (Theorems 3.30 and 3.45) with respect to a suit-
able notion of permissive-nominal set (Definition 3.4).

— We axiomatise arithmetic in PNL and prove a correctness and conservative extension
result Theorem 5.21. The axiomatisation of arithmetic is finite; the induction schema nor-
mally given in first-order logic arithmetic is represented by a single axiom with a univer-
sal quantification ∀X over a permissive-nominal terms unknown.

— We indicate how to axiomatise nominal inductive datatypes, the N-quantifier, and se-
mantic freshness (Section 6).

— We prove cut-elimination (Theorem 7.7). The proof is virtually identical to that of first-
order logic.

Permissive-nominal logic, nominal logic, and nominal terms. Permissive-nominal logic follows
the nominal logic of [Pitts 2003] in its name, which coined the term ‘nominal’, but nominal
logic from [Pitts 2003] is a first-order theory of (set of axioms for) the equivariant Fraenkel-
Mostowski sets and associated constructions used in [Gabbay and Pitts 2001]. The syntax,
semantics, and derivability of PNL are new, as indeed is the application to arithmetic.

The term-language of PNL goes back to the nominal terms of [Urban et al. 2004]. It is per-
missive, which means that the freshness contexts from [Urban et al. 2004] become a kind of
sorting constraint called permission sets. For more discussion see [Dowek et al. 2010] which
introduced permissive-nominal terms, and amongst other things gave correspondences
with nominal terms and also higher-order patterns.

In this paper we extend nominal syntax further by introducing shift-permutations (Defi-
nition 2.9). Also, unlike [Urban et al. 2004; Dowek et al. 2010] in PNL there is quantification
over unknowns ∀X .

This journal paper follows a conference paper [Dowek and Gabbay 2010]. With respect
to that paper, we have made the following changes:

— The treatment of α-equivalence has been streamlined, leading to simplified proofs. Two
structural rules (αL) and (αR) have been eliminated.

1The language of terms is significantly different, though; see Definition 2.13.
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— The rule ( N) from [Dowek and Gabbay 2010] is now part of the axiom rule, further sim-
plifying the proof-theory.

— The notion of permutation includes shift-permutations; these permutations ‘shift all
atoms up by one’. Some readers will see in this a de Bruijn-like ‘shift’ function [Abadi
et al. 1991]. This gives desirable extra power to ∀-quantification and, perhaps surpris-
ingly, turns out to be compatible with nominal techniques’ characteristic small support
property.

— We include proofs of completeness by a standard term-model construction, and a sketch
proof of cut-elimination.

2. PERMISSIVE-NOMINAL LOGIC
2.1. Syntax
Definition 2.1. A sort-signature is a pair (A,B) of name and base sorts. ν will range over
name sorts; τ will range over base sorts. A sort language is then defined by

α ::= ν | τ | (α, . . . , α) | [ν]α.

We admit the possibility of empty tuples, so that () is a sort (the unit sort).
Example 2.2. Examples of base sorts are: ‘λ-terms’, ‘formulae’, ‘π-calculus processes’, and
‘program environments’, ‘functions’, ‘truth-values’, ‘behaviours’, and ‘valuations’.

Examples of name sorts are ‘variable symbols’, ‘channel names’, or ‘memory locations’.
Definition 2.3. A term-signature over a sort-signature (A,B) is a tuple (F ,P, ar) where:

—F and P are disjoint sets of term- and proposition-formers.
— ar assigns to each f ∈ F a term-former arity (α)τ and to each P ∈ P a proposition-former

arity α, where α and τ are in the sort-language determined by (A,B).
We will write ((α1, . . . , αn))τ just as (α1, . . . , αn)τ .

A signature S is then a tuple (A,B,F ,P, ar).
Notation 2.4. We write f : (α)τ for ar(f) = (α)τ and similarly we write P : α for ar(P) = α.
Remark 2.5. The reader familiar with higher-order logic can read ar(f) = (α)τ as f : α→ τ
and no harm will come of it. We do not do this because we are following a first-order logic
notation—and because we want to avoid any possible confusion that (α → α) → α might
be a sort. It is not.
Example 2.6. A signature for the λ-calculus would have one name-sort ν, one base sort ι,
and term-formers lam : ([ν]ι)ι, app : (ι, ι)ι, and var : (ν)ι.

A proposition-former for nominal freshness # would have arity (ν, ι), though the arity
([ν]ι) would also be possible (this would handle more of the properties of names at the
level of the logic). More on this in Subsection 6.3.

Plenty more examples of PNL theories will follow.
Definition 2.7. For each name sort ν fix a disjoint countably infinite set of atoms Aν (level
1 names).

For each ν also fix a bijective function fν from Aν to the integers Z = {0, -1, 1, -2, 2, . . .}
(that we can do this follows from our assumption that atoms are countable).

Write

A<ν = {fν(i) | i < 0} A>ν = {fν(i) | i ≥ 0}.
Finally, write

A< =
⋃

A<ν A> =
⋃

A>ν A =
⋃

Aν
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a, b, c, . . . will range over distinct atoms (we call this the permutative convention).
A permission set has the form (A< ∪ A) \ B where A ⊆ A> and B ⊆ A< are finite. S, T ,

and U will range over permissions sets.
The use of A< and A> ensures that permission sets are infinite and also co-infinite (their

complement with respect to A is also infinite).
Remark 2.8 (Representing permission sets). A permission set S may be finitely represented

— either as the pair of finite sets (A,B) where A ⊆ A< and B ⊆ A> and S = (A< \A) ∪B,
— or perhaps more elegantly as a single finite set C ⊆ A such that S = A< ∆ C where
X ∆ Y = {z | (z ∈ X ∧ z 6∈ Y ) ∨ (z 6∈ X ∧ z ∈ Y ) (exclusive or).

Permission sets are a sorting/typing annotation which will be associated to variables in
Definition 2.11.

Definition 2.9. Given a, b ∈ Aν let a (level 1) swapping (a b) be the bijection on atoms
that maps a to b, b to a, and all other c to themselves.
Also define a bijection shiftν on atoms by:

shiftν(a) = fν(f -1
ν (a) + 1) (a ∈ Aν)

shiftν(a) = a a ∈ A \ Aν
Let the (level 1) permutations be the group of bijections on atoms generated by all swap-
pings and shiftν .
Call a permutation π finite when it is generated just by swappings; thus, when
nontriv(π) = {a∈A | π(a)6=a} is finite. Otherwise, call π non-finite.
π will range over permutations. Write P for the set of all permutations and write Pfin for
the set of all finite permutations.

Remark 2.10. Swappings are used to manage α-equivalence in nominal terms. This is stan-
dard and goes back (at least) to [Gabbay and Pitts 2001] and the second author’s thesis
[Gabbay 2001].

The true importance of shiftν is that it bijects A< with A< ∪ {a} for some a 6∈ A<—this
cannot be achieved using a finite permutation. The relevance of this is that later when we
build ∀X.φ, this really will mean ‘for all X’ even though the permission set S of X makes
it range over terms with free atoms in S.

Permutations, like permission sets, easily admit finite representations. shift corresponds
via the bijection with numbers to the operation ‘add 1’.
Definition 2.11. For each signature S = (A,B,F ,P, ar) and each sort α over (A,B) and
permission set S fix a countably infinite set of unknowns (level 2 names) of that sort and
permission set. X,Y, Z will range over distinct unknowns. Write sort(X) for the sort and
pmss(X) for the permission set of X .
Remark 2.12. So an unknown X has two type attributes: its sort α, which intuitively de-
scribes what kind of data it denotes, and its permission set S which describes the permitted
free atoms of the terms, and also the nominal support of the denotations, with which it
may be associated by a substitution or valuation—see the definitions of substitution and
valuation in Definitions 2.32 and 3.19 respectively.

If X has sort ‘integers’ and permission set A<, then intuitively X represents ‘a term de-
noting an integer, with free atoms in A<’.
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Another name for permission set S might be freshness set, since equally X represents
“terms with free atoms not in A \ S”.2

Definition 2.13. For each signature S, define raw terms and raw propositions over S by:

(a ∈ Aν)

a : ν

r1 : α1 . . . rn : αn

(r1, . . . , rn) : (α1, . . . , αn)

r : α (ar(f) = (α)τ)

f(r) : τ

r : α (a ∈ Aν)

[a]r : [ν]α

(sort(X) = α)

π·X : α

⊥ prop.

phi prop. psi prop.

phi⇒ psi prop.

r : α (ar(P) = α)

P(r) prop.

phi prop.

∀X.phi prop.

As in Definition 2.1, we admit the possiblity of empty tuples so that () the empty tuple of
terms is a term and has sort ().

We will quotient raw terms and propositions by α-equivalence (to obtain terms r and
propositions φ), later.
Example 2.14. Consider lam([b]app(X, var(b))) where b 6∈ pmss(X); this represents the λ-
term schema λy.(ty) where y 6∈ fv(t).

Recall that app and lam are term-formers of arities (ι, ι)ι and ([ν]ι)ι. The sorts of b and X
are ν (names) and ι (individuals) respectively.
Remark 2.15. Our version of PNL has connectives ⊥,⇒, and ∀. We could easily add other
connectives like >, ¬, ∧, ∨, and ∃. Instead we treat them as a definable extension using the
standard ‘de Morgan’ encoding.

We may write id ·X just as X .

2.2. Permutation actions and free atoms/unknowns
Nominal techniques suggest handling α-renaming using permutations. To a first approxi-
mation, if wherever the reader sees ‘permutation action’ they substitute ‘α-renaming’, then
they will not go too far wrong.
Notation 2.16. We use the following notation:

— Write π ◦ π′ for functional composition, so (π ◦ π′)(a) = π(π′(a))).
— Write id for the identity permutation, so id(a) = a always.
— Write π-1 for inverse, so π ◦ π-1 = id .
— Define πn by π0 = id and πn+1 = πn ◦ π.

Definition 2.17. Define a (level 1) permutation action on syntax by:

2Via this intuition, permission sets correspond to the freshness constraints a#X of [Urban et al. 2004]. For the
reader familiar with freshness constraints, another way to view permission sets is as fixing a single global fresh-
ness context with ‘enough’ freshnesses (the germ of this was already in [Gabbay 2005]) where ‘enough’ means
that for any term, we can always pick an atom not free in that term. However the implications of doing this go
beyond a syntactic tweak to nominal terms; permission sets are what make it possible for us to reconcile level 2
quantification ∀X with level 1 atoms-abstraction [a]r.
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π·a = π(a) π·(r1, . . . , rn) = (π·r1, . . . , π·rn)
π·[a]r = [π(a)]π·r π·(π′·X) = (π◦π′)·X
π·f(r) = f(π·r)
π·⊥ = ⊥ π·(phi⇒ psi) = (π·phi)⇒ (π·psi)

π·P(r) = P(π·r) π·(∀X.phi) = ∀X.π·phi

Definition 2.18. Let Π range over sort- and permission-set-preserving bijections on un-
knowns (so sort(Π(X))=sort(X) and pmss(Π(X))=pmss(X)) such that {X | Π(X) 6= X}
is finite.

Write Π ◦ Π′ for functional composition, Id for the identity permutation, and Π-1 for
inverse, much as in Notation 2.16.

Define a (level 2) permutation action by:

Π·a = a Π·(r1, . . . , rn) = (Π·r1, . . . ,Π·rn)
Π·[a]r = [a]Π·r Π·(π·X) = π·(Π(X))
Π·f(r) = f(Π·r)

Π·⊥ = ⊥ Π·(phi⇒ psi) = (Π·phi)⇒ (Π·psi)
Π·P(r) = P(Π·r) Π·(∀X.phi) = ∀Π(X).Π·phi

2.3. Free level 1 and level 2 variables
Definition 2.19. Suppose A is a set of atoms and π is a level 1 permutation. Suppose U is a
set of unknowns and Π is a level 2 permutation. Define π·A and Π·U by

π·A = {π(a) | a ∈ A} and Π·U = {Π(X) | X ∈ U}.

This is the standard pointwise permutation action on sets.
Definition 2.20. Define free atoms fa(r) and fa(phi) by:

fa(π·X) = π·pmss(X) fa([a]r) = fa(r) \ {a}
fa(f(r)) = fa(r) fa((r1, . . . , rn)) =

⋃
fa(ri)

fa(a) = {a}

fa(⊥) = ∅ fa(phi⇒ psi) = fa(phi) ∪ fa(psi)
fa(P(r)) = fa(r) fa(∀X.phi) = fa(phi)

Define free unknowns fV (r) and fV (phi) by:

fV (a) = ∅ fV (π·X) = {X}
fV ([a]r) = fV (r) fV ((r1, . . . , rn)) =

⋃
fV (ri)

fV (f(r)) = fV (r)

fV (⊥) = ∅ fV (phi⇒ psi) = fV (phi) ∪ fV (psi)
fV (P(r)) = fV (r) fV (∀X.phi) = fV (phi) \ {X}

Lemma 2.21. fa(π·r) = π·fa(r) and fa(π·phi) = π·fa(phi).
Also, fV (Π·r) = Π·fV (r) and fV (Π·phi) = Π·fV (phi).

Proof. By routine inductions on r.
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2.4. α-equivalence
Definition 2.22. Call an equivalence relationR on terms and on propositions a congruence
when it is closed under the following rules:

ri R si 1 ≤ i ≤ n

(r1, . . . , rn) R (s1, . . . , sn)

r R s (f : (α)τ, r, s : α)

f(r) R f(s)

r R s

[a]r R [a]s

phi R phi′ psi R psi′

phi⇒ psi R phi′ ⇒ psi′

r R s (P : α, r, s : α)

P(r) R P(s)

phi R phi′

∀X.phi R ∀X.phi′

Definition 2.23. Write (a b) for the (level 1) swapping permutation which maps a to b, b to
a, and all other c to themselves. Similarly write (X Y ) for the (level 2) swapping.

Define α-equivalence on terms and propositions to be the least congruence =α such
that:

(b a)·r =α s (b 6∈ fa(r))

[a]r =α [b]s

(π(a) = π′(a) for all a∈pmss(X))

π·X =α π
′·X

(Y X)·phi =α psi (Y 6∈ fV (phi))

∀X.phi =α ∀Y.psi

Example 2.24. We α-convert X and a in ∀X.P([a]X).
Let sort(Y ) = sort(X) and pmss(Y ) = pmss(X) = A<. Suppose a ∈ A< and b 6∈ A<.

Using (a b) and (X Y ) we deduce:

∀X.P([a]X)
(a b)
=α ∀X.P([b](b a)·X)

(X Y )
=α ∀Y.P([b](b a)·Y ).

It is routine to convert this sketch into a full derivation-tree.
Furthermore, if we take syntax as above except that a 6∈ A< and b 6∈ A<, then we deduce

∀X.P([a]X) =α ∀Y.P([b]Y ).
Remark 2.25. Note that α-equivalence is highly symmetric between levels 1 and 2, based
on permutations instead of substitutions, and avoids equality reasoning in the logic.

In [Gabbay and Pitts 2001; Pitts 2003; Gabbay 2007a; Gabbay and Cheney 2004; Cheney
2005] it is not in general possible to ‘just α-convert’ a level 1 abstraction. We must ap-
peal instead to equality reasoning describing atoms-abstraction in nominal sets. But this is
harder; derivable equality is more complex than syntactic equivalence.
Lemma 2.26. For every π, Π, r, s, phi, and psi, the following hold:

— r =α s if and only if π·r =α π·s and similarly phi =α psi if and only if π·phi =α π·psi.
— r =α s if and only if Π·r =α Π·s, and similarly phi =α psi if and only if Π·phi =α Π·psi.

Lemma 2.27. If r =α s then fa(r) = fa(s) and fV (r) = fV (s).
Proposition 2.28. =α is an equivalence relation on terms and propositions.

Proof. By a standard argument as in [Fernández and Gabbay 2007], using Lemmas 2.21,
2.26, and 2.27.

Lemma 2.29. If π(a) = a for every a ∈ fa(r) then π·r =α r.
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Definition 2.30. For each signature S, define terms and propositions over S to be raw
terms and propositions quotiented by α-equivalence.
r and s will range over terms. φ and ψ will range over propositions.

Remark 2.31. Terms and propositions inherit the definitions and properties of raw terms
and propositions. Thus for example we may write fa(r) to mean ‘fa(r) for some r ∈ r’
(Lemma 2.27 proves this is well-defined).

It is possible to construct terms and propositions directly using a variant of nominal
syntax-with-binding from [Gabbay and Pitts 2001], tweaked to include permutation and
abstraction by unknowns.

It is also possible to retain the definitions above—reasoning on α-equivalence classes of
terms—and to use theorems of abstractive functions developed in [Gabbay 2007b], which
are an alternative ‘nominal’ way to guarantee well-definedness of functions defined on
α-equivalence classes.

We will not dwell on these issues in this paper because we are most interested in what
PNL syntax can express rather than thinking about the syntax for its own sake. However,
the mathematics to do this exists and is well-understood.

2.5. Substitution

Definition 2.32. A (level 2) substitution θ is a function from unknowns to terms such
that:

— For all X , θ(X) : sort(X) and fa(θ(X)) ⊆ pmss(X).
— θ(X) = id ·X for all but finitely many X .

θ will range over substitutions.

One kind of substitution will be particularly useful later:
Definition 2.33. Suppose X is an unknown and suppose t : sort(X) and fa(t) ⊆ pmss(X).
Define [X::=t] by:

[X::=t](X) = t
[X::=t](Y ) = id ·Y all other Y

By convention (Definition 2.11)X and Y in Definition 2.34 range over distinct unknowns:
Definition 2.34. Define nontriv(θ) by:

nontriv(θ) = {X | θ(X) 6=id ·X or X∈fV (θ(Y )) for some Y }

nontriv(θ) is unknowns that can be produced or consumed by θ, other than in the trivial
manner that θ(X) = id ·X .
Definition 2.35. Define a substitution action by:

aθ = a (r1, . . . , rn)θ = (r1θ, . . . , rnθ)
([a]r)θ = [a](rθ) (π·X)θ = π·θ(X)
f(r)θ = f(rθ)
⊥θ = ⊥ (φ⇒ ψ)θ = (φθ)⇒ ψθ

(P(r))θ = P(rθ) (∀X.φ)θ = ∀X.(φθ) (X 6∈ nontriv(θ))
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Remark 2.36. Level 2 substitution rθ is capturing for level 1 abstraction [a]-. For example if
θ(X) = a then ([a]X)θ = [a]a. This is the behaviour displayed by the informal meta-level
when we write “take t to be x in λx.t”.

Only atoms in pmss(X) may be captured in this way. Thus for instance, if a 6∈ pmss(X)
then θ(X) = a is impossible because it would violate the condition fa(θ(X)) ⊆ pmss(X) in
Definition 2.32.
Remark 2.37. The condition fa(θ(X)) ⊆ pmss(X) in Definition 2.32, and the condition
fa(t) ⊆ pmss(X) in Definition 2.33, are necessary for the substitution action in Defini-
tion 2.35 to be well-defined.

Consider a name sort ν and suppose X : ν and a, b : ν. Suppose a, b 6∈ pmss(X), so that
by Definition 2.23 (a b)·X = id ·X .3

Suppose we drop the conditions on free atoms of terms, so that we admit [X::=a]
as a substitution. Then according to the definitions, ((a b)·X)[X::=a] = b whereas
(id ·X)[X::=a] = a.
Remark 2.38. In PNL, atoms are data; they are ‘bindable constant symbols’. Atoms are not
variables; they do not come with a substitution as a primitive in PNL. (Unknowns are
variables; they have a substitution action.)

The reader should not expect atoms to populate every sort, like variables do. Atoms
populate their own special sorts, name-sorts, which are sorts for ‘bindable data’.

We can make atoms populate a base sort (e.g. variable symbols with sort ‘λ-terms’ or
‘functions’) with a term-former (Definition 2.3), e.g. var in Sections 4 and 6.

We can make atoms behave like variables using axioms, like those of SUB in Figure 4.
In PNL, a substitution action for atoms is a matter of writing suitable axioms. Fortunately,
nominal techniques make this fairly easy to do.

2.6. Sequents and derivability
Definition 2.39. Φ and Ψ will range over sets of propositions. We may write φ,Φ and Φ, φ
as shorthand for {φ} ∪Φ. We may write Φ,Ψ as shorthand for Φ ∪Ψ. Finally, define fV (φ)
by

fV (Φ) =
⋃
{fV (φ) | φ ∈ Φ}.

A sequent is a pair Φ ` Ψ.

Definition 2.40 (Derivable sequents). The derivable sequents are defined in Figure 1.

Remark 2.41. As standard, the intuition of Φ ` Ψ being derivable is “the conjunction (log-
ical and) of the propositions in Φ entails the disjunction (logical or) of the propositions in
Ψ”. So for instance, intuitively the axiom rule (Ax) expresses that φ if and only if π·φ.

The π in (Ax) is deliberate and represents equivariance (preservation of truth under
permuting atoms) within permissive-nominal logic.4 Examples of how π is used follow
immediately in Subsection 2.7.

3Remember that we quotient raw terms by α-equivalence to obtain terms so this is now a real equality.
4In this paper equivariance surfaces in a variety of technical features of PNL: the π in (Ax); the way permutations
distribute into terms in Definition 2.17; Definition 3.16 and how it is used in Definition 3.18; Lemma 3.22; and
more.

In fact, equivariance is broad and useful phenomenon. The interested reader is referred to [Gabbay and Pitts
2001, Lemma 4.7] and [Gabbay 2011b, Subsection 4.2], where it is treated in full generality. See also [Gabbay 2011d,
Lemma 5.5], where the conditions on free atoms and support in Definitions 2.32 and 3.19 are also exhibited as
forms of equivariance.
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(Ax)
Φ, φ ` π·φ, Ψ

(⊥L)
Φ, ⊥ ` Ψ

Φ ` φ, Ψ Φ, ψ ` Ψ
(⇒L)

Φ, φ⇒ ψ ` Ψ

Φ, φ ` ψ, Ψ
(⇒R)

Φ ` φ⇒ ψ, Ψ

Φ, φ[X::=r] ` Ψ
(fa(r)⊆pmss(X), r:sort(X))

(∀L)
Φ, ∀X.φ ` Ψ

Φ ` φ, Ψ (X 6∈ fV (Φ,Ψ))
(∀R)

Φ ` ∀X.φ, Ψ

Φ ` φ, Ψ Φ, φ ` Ψ
(Cut)

Φ ` Ψ

Fig. 1: Sequent derivation rules of Permissive-Nominal Logic

Notation 2.42. We may write Φ ` Ψ as shorthand for ‘Φ ` Ψ is a derivable sequent’.
We may write Φ 6` Ψ as shorthand for ‘Φ ` Ψ is not a derivable sequent’.

Remark 2.43. Figure 1 includes rules for⊥,⇒, and ∀. Following on from Remark 2.15, note
that including rules for other connectives like >, ¬, ∧, ∨, and ∃ would be easy. Because
the PNL in this paper is classical, we can treat derivation rules for them as a definable
extension of what we already have.

We see no inherent difficulty with constructing an intuitionistic version of PNL.

2.7. Universal quantification, permission sorts, and shift-permutations
Recall the comment on ‘atoms as data’ in Remark 2.38. Because of permutations, in certain
circumstances free atoms can still behave like variables ranging over distinct atoms (cf. the
permutative convention of Definition 2.7). Atoms-substitution is not be primitive in PNL, but
atoms-permutation is.

Thus in PNL we can express a theory of atoms-inequality in the following interesting
way: Assume a name sort Atm and a proposition-former neq : (Atm,Atm), along with a
single proposition neq(a, b) for two distinct atoms in Atm—and, if we wish, a proposition
neq(a, a) ⇒ ⊥. The permutation π in (Ax) ensures that a and b represent any two distinct
atoms.

This goes further. The condition fa(r) ⊆ pmss(X) in (∀L) might suggest that ∀X.φmeans
“φ[X::=r] for every r such that fa(r) ⊆ pmss(X)”. Indeed this is so, but what pmss(X) in
∀X.φ really restricts is capture, as we now discuss.

— Suppose a name sort Atm and suppose X : Atm and a proposition-former P of arity
Atm. Suppose b ∈ pmss(X). By considering the swapping (b a) and (Ax), and (∀L),
∀X.P(X) ` P(a) for all a, even if a 6∈ pmss(X), as follows:

(Ax) π = (b a)
P(b) ` P(a)

(∀L) [X::=b]
∀X.P(X) ` P(a)

In other words, we can derive P(a) from ∀X.P(X), even if a is not permitted in X .
Thus, in the case of level 2 closed terms (without unknowns), these have finitely many
atoms and we can use a finite permutation to place them in pmss(X).

— This may not work for the more general case of a term with unknowns; for example there
is no finite π such that fa(π·(X, a)) ⊆ pmss(X) where a 6∈ pmss(X).
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So consider the general case of any sort α and suppose X : α and pmss(X) = S. Suppose
Q : α. Consider any other Y : α and pmss(Y ) = T . We will show that ∀X.Q(X) ` Q(Y )
is derivable.
Recall that shift permutation shiftν from Definition 2.9 and the definition of shiftnν from
Notation 2.16. Using shift permutations we can construct a permutation π such that S ∪
T ⊆ π·pmss(X).5
We derive as follows:

(Ax)
Q(π-1·Y ) ` Q(Y )

(∀L) [X::=π-1·Y ]
∀X.Q(X) ` Q(Y )

— Nevertheless, ∀X.φ does not mean “φ[X::=r] for every r”. This is because permutations
are bijective. For example, suppose X : Atm, a 6∈ pmss(X), and P : ([Atm]Atm). Then
∀X.P([a]X) ` P ([a]r) for all r such that a 6∈ fa(r), and also ∀X.P([b]X) ` P ([b]r) for all r
and all b such that b 6∈ fa(r). However,

∀X.P([a]X) 6` P ([a]a), and for all b, ∀X.P([a]X) 6` P ([b]b).

The fact that a 6∈ pmss(X) forbids capture by an instantiation, in a suitable sense.

3. SEMANTICS OF PERMISSIVE-NOMINAL LOGIC
Nominal sets were introduced in [Gabbay and Pitts 2001] (they were called ‘FM sets’).
Technically, a nominal set is a set with a finitely-supported permutation action for atoms.
Intuitively, a nominal set is a set with ‘free names’ in a manner which parallels how names
feature in abstract syntax, but without necessarily being syntactic structures.

Names in nominal sets are modelled as atoms. They can be renamed by the permutation
action; they can be bound by an atoms-abstraction construction; and they feature a finite
support property which guarantees that we can always pick a fresh name.

The interested reader can consult a literature which includes [Gabbay and Pitts 2001] or
[Gabbay 2011b] for detailed discussions of nominal sets and their applications.

We will interpret PNL using permissive-nominal sets. The permissive-nominal sets we use
here generalise nominal sets in two ways:

— They allow infinite support, since permission sets from Definition 2.7 need not be finite.
— They allow (some) infinite permutations, since permutations from Definition 2.9 are gen-

erated as a group by swappings and by infinite shift permutations, thus giving ∀-
quantification extra power as discussed in Subsection 2.7.

The main results are soundness (Theorem 3.30) and completeness (Theorem 3.45). The
main definitions are of permissive-nominal sets in Definition 3.4, and of the interpretations
of terms and propositions in Definitions 3.20 and 3.25 respectively.

The permissive-nominal development here resembles that in [Gabbay and Pitts 2001].
Definition 3.4 is a little subtle because we ignore infinite permutations when we determine
support, whereas equivariance from Definition 3.16 means commuting with all permuta-
tions.

5If permission sets were finite, or if all permutations were finite, then we could not do this in general.
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3.1. Permissive-nominal sets
Recall P the set of all permutations from Definition 2.9.

Definition 3.1. A set with a permutation action X is a pair (|X|, ·) of

— a carrier set |X| and
— a group action on the carrier set (P× |X|)→ |X|, written infix as π·x.

So, id ·x = x and π·(π′·x) = (π ◦ π′)·x for every π and π′ and every x ∈ |X|.

Definition 3.2. Say a set of atoms A ⊆ A supports x ∈ |X| when for all finite permutations
π, if π(a) = a for all a ∈ A then π·x = x.

Thus, if a permission set S supports x and ∀a∈S.π(a) = π′(a) then π·x = π′·x.
Remark 3.3. P contains infinite as well as finite permutations. In the next paragraph we
construct an x that is supported by ∅ (so that π·x = x for all finite π ∈ P) and yet
shiftν(x) 6= x. This observation is the same as fuzzy support from [Gabbay 2007b].

Recall the order fν on Aν from Definition 2.7 and consider

x = {π·(fν(0), fν(-1), fν(1), fν(-2), . . .) | π ∈ Pfin}
the set of finite permutations of Aν written out in order, with the pointwise permutation
action. Then π·x = x for every finite permutation, but shiftν ·x 6= x.

Definition 3.4. A permissive-nominal set is a set with a permutation action such that
every element has a supporting permission set.
X, Y will range over permissive-nominal sets.

Theorem 3.5. Suppose X is a permissive-nominal set. Then every x ∈ |X| has a unique least
supporting set supp(x) ⊆ A.6

As a corollary, if π is finite and π(a) = a for all a ∈ supp(x) then π·x = x.
Theorem 3.5 is familiar from [Gabbay and Pitts 2001], but we do have to be a little bit

careful since we are not working with nominal sets. It all works out:

Proof. The corollary is immediate given the definition of support (Definition 3.2).
Define A =

⋂
{S | S permission set, supports x}. Also, choose some permission set S

that supports x.
Suppose π is finite and π(a) = a for all a ∈ A. Write a1, . . . , an for the atoms in

nontriv(π) ∩ S, in some order. Let b1, . . . , bn be some choice of fresh atoms (so bi 6∈
S ∪ nontriv(π)∪A for 1 ≤ i ≤ n). Write τ = (b1 a1) ◦ . . . ◦ (bn an). It is routine to check that
(τ ◦ π ◦ τ)(a) = a for every a ∈ S. Thus τ ·(π·(τ ·x)) = x. Now τ ·x = x, and it follows by a
routine manipulation that π·x = x as required.

Lemma 3.6. Suppose X is a permissive-nominal set and x ∈ |X|. Then supp(π·x) = π·supp(x)
(Definition 2.19).

Proof. By a routine calculation using the group action.

Corollary 3.7. Suppose X is a permissive-nominal set and x ∈ |X|. Suppose b 6∈ supp(x). Then
(b a)·x = x implies a 6∈ supp(x).

Proof. Suppose b 6∈ supp(x). We prove the contrapositive. Suppose a ∈ supp(x). By
Lemma 3.6 supp((b a)·x) = (b a)·supp(x). By our suppositions, (b a)·supp(x) 6= supp(x).
It follows that (b a)·x 6= x.

6supp(x) need not necessarily be a permission set. For instance, supp(a) = {a}.
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3.2. Examples of permissive-nominal sets
3.2.1. Atoms

Definition 3.8. A the set of atoms can be considered a permissive-nominal set with a natu-
ral permutation action π·a = π(a).

The set {0, 1} can be considered a permissive-nominal set with the natural trivial per-
mutation action π·x = x for all π ∈ P and x ∈ {0, 1}.

In the cases of A and {0, 1} only, we will be lax about the distinction between the set,
and the permissive-nominal set with its natural permutation action.

3.2.2. Atoms-abstraction

Definition 3.9. Suppose X is a permissive-nominal set and Aν is a set of atoms. Suppose
x ∈ |X| and a ∈ Aν . Define atoms-abstraction [a]x and [Aν ]X by:

[a]x = {(a, x)} ∪ {(b, (b a)·x) | b ∈ Aν\supp(x)}
|[Aν ]X| = {[a]x | a ∈ Aν , x ∈ |X|}
π·[a]x = [π(a)]π·x

Remark 3.10. In the definition of [a]x in Definition 3.9 recall that by our permutative con-
vention b 6= a. An equivalent and more compact way of writing this is [a]x = {(π(a), π·x) |
π ∈ fix (supp(x)\{a})}where fix (A) = {π | ∀a∈A.π(a) = a}.
Lemma 3.11. (1) [Aν ]X is a permissive-nominal set.
(2) [a]x=[a]x′ if and only if x=x′, for a∈Aν and x∈|X|.
(3) [a]x=[a′]x′ if and only if a′ 6∈supp(x) and (a′ a)·x=x′, for a, a′∈Aν and x, x′∈|X|.

3.2.3. Product

Definition 3.12. If Xi are permissive-nominal sets for 1 ≤ i ≤ n then define X1 × . . . × Xn
by:

|X1 × . . .× Xn| = |X1| × . . .× |Xn|
π·(x1, . . . , xn) = (π·x1, . . . , π·xn)

Lemma 3.13. — supp(a) = {a}.
— supp([a]x) = supp(x) \ {a}.
— supp((x1, . . . , xn)) =

⋃
{supp(xi) | 1 ≤ i ≤ n}.

Proof. Proofs are as in [Gabbay and Pitts 2001] or [Gabbay 2011b].

3.3. Interpretation and soundness
3.3.1. Interpretation of signatures

Definition 3.14. Suppose (A,B) is a sort-signature (Definition 2.1).
A (PNL) interpretation or model I for (A,B) consists of an assignment of a permissive-

nominal set τ I to each τ ∈ B.7
We extend an interpretation I to sorts by:

JτKI = τ I J(α1, . . . , αn)KI = Jα1KI × . . .× JαnKI
JνKI = Aν J[ν]αKI = [Aν ]JαKI

7We favour the word ‘interpretation’ for assigning a denotational interpretation to a logic, and ‘model’ for check-
ing whether the interpretation makes a theory (a set of axioms). These senses overlap, in that an interpretation is
a model for the empty theory. In practice, we tend to use whichever word seems most appropriate in context.
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Remark 3.15. Note in Definition 3.14 that a base sort τ is interpreted by a permissive-
nominal set τ I given in the interpretation, whereas a name sort ν must be interpreted by its
corresponding set of atoms Aν as fixed in Definition 2.7. This is part of a nominal ‘slogan’
that atoms are interpreted by themselves.
Definition 3.16. Suppose X and Y are sets with a permutation action. Call a function f from
|X| to |Y| equivariant when

∀π ∈ P.∀x ∈ |X|.π·(f(x)) = f(π·x). (equivariance for functions)

Lemma 3.17. If f from |X| to |Y| is equivariant then supp(f(x)) ⊆ supp(x) for all x ∈ |X|.

Proof. If π ∈ fix (supp(x)) then π·f(x) = f(π·x), and if π is finite then π·x = x.

Definition 3.18. Suppose S = (A,B,F ,P, ar) is a signature (Definition 2.3).
A (PNL) interpretation I for S consists of the following data:

— An interpretation for the sort-signature (A,B) (Definition 3.14).
— For every f ∈ F with ar(f) = (α)τ an equivariant function f I from JαKI to JτKI (Defini-

tion 3.16).
— For every P ∈ P with ar(P) = α a finite equivariant function PI from JαKI to {0, 1}

(Definition 3.8).

Definition 3.19. Suppose I is an interpretation for S. A valuation ς to I is a map on un-
knowns such that for each unknown X ,

— ς(X) ∈ Jsort(X)KI , and
— supp(ς(X)) ⊆ pmss(X).

ς will range over valuations.

3.3.2. Interpretation of terms

Definition 3.20. Suppose I is an interpretation of a signature S. Suppose ς is a valuation
to I.

Define an interpretation JrKIς in S by:

JaKIς = a J[a]rKIς = [a]JrKIς
Jf(r)KIς = f I(JrKIς) Jπ·XKIς = π·ς(X)

J(r1, . . . , rn)KIς = (Jr1KIς , . . . , JrnKIς)

Lemma 3.21. If r : α then JrKIς ∈ JαKI .

Proof. By a routine induction on r.

Lemma 3.22. π·JrKIς = Jπ·rKIς .

Proof. By a routine induction on r. We consider one case:

— The case π′·X . By Definition 3.20 Jπ′·XKIς = π′·ς(X). Therefore π·Jπ′·XKIς =
π·(π′·ς(X)). It is a fact of the group action (Definition 3.1) that π·(π′·ς(X)) = (π◦π′)·ς(X),
and of the permutation action (Definition 2.17) that π·(π′·X) = (π ◦π′)·X . The result fol-
lows.

Lemma 3.23. supp(JrKIς) ⊆ fa(r).

Proof. By a routine induction on r. We consider one case in detail:

— The case π·X . fa(π·X) = π·pmss(X) by Definition 2.20. By assumption in Defini-
tion 3.19 supp(ς(X)) ⊆ pmss(X).
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The cases of a, [a]r, and [a]r use parts 1, 2, and 3 of Lemma 3.13. The case of f uses
Lemma 3.17.

3.3.3. Interpretation of propositions

Definition 3.24. Suppose ς is a valuation to an interpretation I. Suppose X is an unknown
and x ∈ Jsort(X)KI is such that supp(x) ⊆ pmss(X). Define a function ς[X::=x] by

(ς[X::=x])(Y ) = ς(Y ) and (ς[X::=x])(X) = x.

It is easy to verify that ς[X::=x] is also a valuation to I.
Definition 3.25. Suppose that I is an interpretation. Define an interpretation of proposi-
tions by:

JP(r)KIς = PI(JrKIς)
J⊥KIς = 0

Jφ⇒ ψKIς = max{1−JφKIς , JψKIς}
J∀X.φKIς = min{JφKIς[X::=x] | x∈Jsort(X)KI, supp(x)⊆pmss(X)}

Lemma 3.26. JφKIς = Jπ·φKIς always.

Proof. By induction on φ. We consider two cases:

— The case ∀X.φ. Suppose J∀X.φKIς = 1. This means that JφKIς[X::=x] = 1 for all x ∈ JαKI such
that supp(x) ⊆ pmss(X). By inductive hypothesis Jπ·φKIς[X::=x] = 1 for all x ∈ JαKI such
that supp(x) ⊆ pmss(X). Therefore J∀X.π·φKIς = 1. The result follows, since π·(∀X.φ) =
∀X.π·φ.

— The case P(r). We have JP(r)KIς = PI(JrKIς). As PI is equivariant, we get JP(r)KIς =
PI(π·JrKIς). By Lemma 3.22 π·JrKIς = Jπ·rKIς . Thus JP(r)KIς = PI(Jπ·rKIς) = Jπ·P(r)KIς .

Lemma 3.27. — JrKIς[X::=JtKIς ]
= Jr[X::=t]KIς .

— JφKIς[X::=JtKIς ]
= Jφ[X::=t]KIς .

Proof. By routine inductions on the definitions of JrKIς and JφKIς in Definitions 3.20 and 3.25.
We consider two cases:

— The case of Jπ·XKIς[X::=t]. We reason as follows:
Jπ·XKIς[X::=JtKIς ]

= π·JtKIς Definition 3.20
= Jπ·tKIς Lemma 3.22
= J(π·X)[X::=t]KIς Definition 2.35.

— The case of JP(r)KIς[X::=t]. We reason as follows:
JP(r)KIς[X::=JtKIς ]

= PI(JrKIς[X::=JtKIς ]
) Definition 3.25

= PI(Jr[X::=t]KIς) Part 1 of this result
= JP(r)[X::=t]KIς Definition 3.25.

Lemma 3.28. If ς(X) = ς ′(X) for all X ∈ fV (r) then JrKIς = JrKIς ′ , and similarly for φ.

Proof. By a routine induction on r and φ.
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3.3.4. Validity and soundness

Definition 3.29 (Validity). Call the proposition φ valid in I when JφKIς = 1 for all ς .
Call the sequent φ1, ..., φn ` ψ1, ..., ψp valid in I when (φ1 ∧ ... ∧ φn)⇒ (ψ1 ∨ ... ∨ ψp) is

valid.
Theorem 3.30 (Soundness). If Φ ` Ψ is derivable, then it is valid in all interpretations.

Proof. By induction on derivations (Figure 1). The case of (Ax) uses Lemma 3.26. The case
of (∀L) uses Lemma 3.27. The case of (∀R) uses Lemma 3.28. Other rules are routine by
unpacking definitions.

3.4. Completeness
In this subsection we prove Theorem 3.45: a converse to Theorem 3.30, that if φ is valid in
all models, then φ it is derivable.

For this subsection fix the following data:

— A signature S = (A,B,F ,P, ar).
— A formula φ such that 6` φ.

We will construct an interpretation I and a valuation ς (Definition 3.14) such that JφKIς = 0.
This suffices to prove the result.

3.4.1. Maximally consistent set of propositions

Definition 3.31. Choose a fixed but arbitrary enumeration of propositions ξ1, ξ2, ξ3, . . .
Define Φ1 = {¬φ}. For each i ≥ 1 define we Φi+1 as follows:

— If Φi ` ξi then write ξ = ξi.
— If Φi ` ¬ξi then write ξ = ¬ξi.
— If Φi 6` ξi and Φi 6` ¬ξi then write ξ = ξi.

There are now two cases:

— If ξ has the form ¬∀X.ξ′ then we define Φi+1 = Φi ∪ {ξ,¬ξ′[X::=Z]} where Z is some
fixed but arbitrary choice of unknown that is not free in any proposition in Φi and is
such that pmss(Z) = pmss(X) and sort(Z) = sort(X).

— Otherwise, we define Φi+1 = Φi ∪ {ξ}.
Finally, we define Φω by Φω =

⋃
i Φi.

Lemma 3.32. For every i, Φi 6` ⊥.

Proof. By induction on i:

— By definition Φ1 = {¬φ}. As 6` φ, we have ¬φ 6` ⊥
— Suppose Φi 6` ⊥. Either Φi+1 = Φi∪{¬ξ} or Φi+1 = Φi∪{¬ξ,¬ξ′[X::=Z]}—we consider

the first, simpler case; the second case is similar. Suppose Φi, ξ ` ⊥. It follows that
Φi ` ¬ξ. So we are not in the third case of Definition 3.31 and we are either in the first or
the second. So Φi ` ξ and thus Φi ` ⊥; a contradition.

Lemma 3.33. Φω 6` ⊥.

Proof. Assume Φω ` ⊥. So there exists a finite subset Γ of Φω such that Γ ` ⊥. As Γ is finite
it is included in some Φi, and Φi ` ⊥, contradicting Proposition 3.32.

Lemma 3.34. For every ξ, at least one of ξ ∈ Φω and ¬ξ ∈ Φω holds.

Proof. We check of Definition 3.31 that for every i, either ξi ∈ Φi+1 or ¬ξi ∈ Φi+1. The result
follows.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



A:18 Dowek, Gabbay

Lemma 3.35. For every ξ, if ¬∀X.ξ ∈ Φω then there exists a Z such that ¬ξ[X::=Z] ∈ Φω .

Proof. There exists an i such that ξi = ¬∀X.ξ. Since Φω ` ξi and Φω 6` ⊥, we have that
Φω 6` ¬ξi, and so Φi 6` ¬ξi. Thus Φi+1 = Φi ∪ {¬∀X.ξ, ¬ξ[X::=Z]}. The result follows.

Lemma 3.36. If Φω ` φ then φ ∈ Φω .

Proof. As, by Lemma 3.33, Φω 6` ⊥, if Φω ` φ then ¬φ 6∈ Φω . Thus by Lemma 3.34, φ ∈
Φω .

Corollary 3.37. (1) (φ⇒ ψ) ∈ Φω if and only if (φ 6∈ Φω or ψ ∈ Φω).
(2) ∀X.φ ∈ Φω if and only if

(for every r such that r : sort(X) and fa(r) ⊆ pmss(X), φ[X::=r] ∈ Φω).

Proof. (1) Suppose (φ⇒ ψ) ∈ Φω and φ ∈ Φω . Then Φω ` ψ and so by Lemma 3.36 ψ ∈ Φω .
Suppose φ 6∈ Φω . By Lemma 3.34 ¬φ ∈ Φω . So Φω ` ¬φ and therefore Φω ` φ ⇒ ψ. By
Lemma 3.36 (φ⇒ ψ) ∈ Φω .
Suppose ψ ∈ Φω . Then Φω ` ψ and so Φω ` φ⇒ ψ. By Lemma 3.36 (φ⇒ ψ) ∈ Φω .

(2) Suppose ∀X.φ ∈ Φω . By Lemma 3.36, if r : sort(X) and ∀(r) ⊆ pmss(X) then
φ[X::=r] ∈ Φω .
Conversely, suppose φ[X::=r] ∈ Φω for every r such that r : sort(X) and ∀(r) ⊆
pmss(X). We proceed by contradiction: suppose ∀X.φ 6∈ Φω . By Lemma 3.34 ¬∀X.φ ∈
Φω and by Lemma 3.35, there exists aZ such that¬φ[X::=Z] ∈ Φω . So Φω ` ¬φ[X::=Z],
and so Φω ` φ[X::=Z], and so Φω ` ⊥, contradicting Lemma 3.33.

3.4.2. The term model

Definition 3.38. Define I by:

— JαKI = {r | r : α}.
— f I maps r to f(r).
— PI maps r1, . . . , rn to 1 if P(r1, . . . , rn) ∈ Φω and to 0 otherwise.

Define ς by

ς(X) = X.

We endow JαKI with a permutation action given by the action on terms.
Lemma 3.39. supp(r) = fa(r).

As a corollary, JαKI from Definition 3.38 is a permissive-nominal set.

Proof. We prove two subset inclusions:

— Proof that supp(r) ⊆ fa(r). By Lemma 2.29, if π(a) = a for all a ∈ fa(r) then r = π·r. It
follows by the definition of support (Theorem 3.5) that supp(r) ⊆ fa(r).

— Proof that fa(r) ⊆ supp(r). Suppose a ∈ fa(r). Choose some fresh b (so b 6∈ fa(r) ∪
supp(r)). By Lemma 2.21 fa((b a)·r) = (b a)·fa(r). Since (b a)·fa(r) 6= fa(r) it follows
using Lemma 2.27 that r 6= (b a)·r. The result follows by the first part of this result and
by Corollary 3.7.

The corollary is immediate, unpacking Definition 3.2.

Lemma 3.40. (1) If ar(f) = (α)τ then f I is well-defined, equivariant, and maps JαKI to JτKI .
(2) If ar(P) = α then PI is well-defined, equivariant, and maps JαKI to {0, 1}.
Proof. (1) The only (very) slightly non-trivial part is equivariance. We reason as follows:

π·f I(r) = π·f(r) Definition 3.20
= f(π·r) Definition 2.17
= f I(π·r) Definition 3.20
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(2) The case of P is similar.

Proposition 3.41. I is an interpretation of the signature S = (A,B,F ,P, ar) which we fixed at
the beginning of this subsection. In addition, ς is a valuation to I.

Proof. By Lemma 3.39 each JαKI is a permissive-nominal set. By Lemma 3.40 for each f :
(α)τ ∈ F , f I is an equivariant map from JαKI to JτKI and for each P : α ∈ P , PI is a finite
equivariant function from JαKI to {0, 1}.

By construction ς(X) ∈ Jsort(X)KI always. By Lemma 3.39 supp(ς(X)) = supp(X) ⊆
pmss(X) always.

The result follows.

Lemma 3.42. JrKIς = r.

Proof. By a routine induction on the definition of JrKIς in Definition 3.20. We consider just
one case:

— The case of Jπ·XKIς . We reason as follows:
Jπ·XKIς = π·ς(X) Definition 3.20

= π·X Definition 3.38.

Lemma 3.43. JξKIς = 1 if and only if ξ ∈ Φω .

Proof. By induction on the definition of JξKIς (Definition 3.25):

— The case of JP(r)KIς . We reason as follows:
JP(r)KIς = 1 ⇔ PI(JrKIς) = 1 Definition 3.25

⇔ PI(r) = 1 Lemma 3.42
⇔ P(r) ∈ Φω Definition 3.38

— The case of J⊥KIς . By definition J⊥KIς = 0. By part 1 of Corollary 3.37, ⊥ 6∈ Φω .
— The case of Jφ⇒ ψKIς . We reason as follows:

Jφ⇒ ψKIς = 1 ⇔ JφKIς = 0 or JψKIς = 1 Definition 3.25
⇔ φ 6∈ Φω or ψ ∈ Φω ind. hyp.
⇔ φ⇒ ψ ∈ Φω Corollary 3.37, part 2

— The case of J∀X.φKIς , where α = sort(X) and S = pmss(X).
J∀X.φKIς = 1 ⇔ ∀t ∈ JαKI.supp(t) ⊆ S ⇒ JφKIς[X::=t] = 1 Definition 3.25

⇔ ∀t ∈ JαKI.supp(t) ⊆ S ⇒ Jφ[X::=t]KIς = 1 Lems. 3.28, 3.42
⇔ Jφ[X::=t]KIς = 1 every t : α s.t. fa(t) ⊆ S Lem. 3.39
⇔ φ[X::=t] ∈ Φω every t : α s.t. fa(t) ⊆ S ind. hyp.
⇔ ∀X.φ ∈ Φω Cor. 3.37, part 4

Lemma 3.44. If 6` φ, then there exists a model I and a valuation ς such that JφKIς = 0.

Proof. As ¬φ∈Φ0⊆Φω and Φω 6`⊥, we have φ 6∈Φω . By Lemma 3.43, we get JφKIς = 0.

As a corollary we get Theorem 3.45:

Theorem 3.45 (Completeness). If φ is valid in all models, then φ is derivable.
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We assume one atomic sort ν and two base sorts ι and o.
We assume term-formers and proposition-formers as follows:

0̇ : ι ˙succ : (ι)ι u : (ι, ι)ι ∗̇: (ι, ι)ι

⊥̇ : o ⇒̇: (o, o)o ∀̇ : ([ν]o)o ≈̇: (ι, ι)o
var : (ν)ι subι : ([ν]ι, ι)ι subo : ([ν]o, ι)o

≈ι: (ι, ι) ≈o: (o, o) ε : (o)

Fig. 2: Signature suitable for a PNL specification of arithmetic

(≈2) ∀X ′, X, Y ′, Y.(X ′≈X∧Y ′≈Y )⇒ X ′ op Y ′ ≈ X op Y op∈{u, ∗̇, ⇒̇, ≈̇}
(≈1) ∀X ′, X. X ′≈X ⇒ op(X ′) ≈ op(X) op∈{ ˙succ}
(≈0) ∀X. X ≈ X
(≈∀̇) ∀Z ′, Z. Z ′≈Z ⇒ ∀̇([a]Z ′) ≈ ∀̇([a]Z)
(≈sub) ∀X ′, X, Y ′, Y.(X ′≈X∧Y ′≈Y )⇒ op([a]X ′, Y ′) ≈ op([a]X,Y ) op∈{subι, subo}
(≈o) ∀Z ′, Z. Z ′≈Z ⇒ (ε(Z ′)⇔ ε(Z))
(≈ι) ∀X ′, X. X ′≈X ⇒ ε(X ′ ≈̇ X)

We fill in sorts as appropriate. Thus, ⊥̇ ≈o ⊥̇ whereas 0 ≈ι 0, and so on. The permission
sets of all variables are equal to A<, and a ∈ A<.

Fig. 3: EQU: axioms for equality as a PNL theory

4. SPECIFYING ARITHMETIC IN PERMISSIVE-NOMINAL LOGIC
We start by defining the sorts, term-formers, and proposition-formers of a signature L̇
which is suitable for finitely specifying arithmetic in PNL. We then specify its axioms and,
in Subsection 4.2, we discuss them in detail.

4.1. The signature L̇ and the axioms

Definition 4.1. A signature L̇ suitable for writing out a PNL theory of first-order logic is
given in Figure 2.

We introduce the following syntactic sugar:

— We may write subo([a]r, t) as r[a7→t].
— We may write subι([a]r, t) as r[a7→t].
— We may write both ≈ι and ≈o just as ≈.

Examples of this syntactic sugar in use, follow immediately below.

Equality. Axioms for equality ≈: (ι, ι) and equality ≈: (o, o) are given in Figure 3.

Substitution. Axioms for substitution subι and subo are given in Figure 4.
We arguably abuse notation in Figure 4 when we use variables of sort ι and o as appro-

priate not necessarily giving them distinct names (e.g. in (sub∗) X has sort ι, whereas in
(sub⇒̇) we use another variable also written X with sort o).

First-order logic. Axioms reflecting first-order formulas (in a shallow sense) as terms in
PNL (the ⊥̇, ⇒̇, and ∀̇) are given in Figure 5.

Arithmetic. Given EQU, SUB, and FOL, it is not hard to write axioms for arithmetic in
PNL. This is in Figure 6. Later on in Theorem 5.21 we prove that this is an axiomatisation
of arithmetic in PNL.
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(subvar) ∀X. var(a)[a7→X] ≈ X
(sub#) ∀X,Z. Z[a7→X] ≈ Z (pmss(Z) = (b a)·A<)
(sub ˙succ) ∀X ′, X. ˙succ(X ′)[a7→X] ≈ ˙succ(X ′[a7→X])
(subu) ∀X ′′, X ′, X. (X ′′ uX ′)[a7→X] ≈ (X ′′[a7→X] uX ′[a7→X])
(sub∗̇) ∀X ′′, X ′, X. (X ′′ ∗̇ X ′)[a7→X] ≈ (X ′′[a7→X] ∗̇ X ′[a7→X])
(sub⇒̇) ∀X ′′, X ′, X. (X ′′ ⇒̇ X ′)[a7→X] ≈ (X ′′[a7→X] ⇒̇ X ′[a7→X])
(sub≈̇) ∀X ′′, X ′, X. (X ′′ ≈̇ X ′)[a7→X] ≈ (X ′′[a7→X] ≈̇ X ′[a7→X])

(sub∀̇) ∀X,Z. (∀̇([b]Z))[a7→X] ≈ ∀̇([b](Z[a7→X])) (pmss(Z) = (b a)·A<)
(subid) ∀X. X[a7→var(a)] ≈ X

a ∈ A< and b 6∈ A<. The permission set of X ′′, X ′, and X is equal to A<. The permission set
of Z is equal to (b a)·A< (Definition 2.19).

Fig. 4: SUB: axioms for substitution as a PNL theory

(⇒̇) ∀Z ′, Z. ε(Z ′ ⇒̇ Z) ⇔ (ε(Z ′)⇒ ε(Z))

(∀̇) ∀Z.
(
ε(∀̇([a]Z))⇔ ∀X.ε(Z[a7→X])

)
(⊥̇) ε(⊥̇) ⇒⊥

Here Z ′ and Z have sort o, permission set A<, and a ∈ A<.

Fig. 5: FOL: axioms for first-order formulas as a PNL theory

(PS0) ∀X. ˙succ(X) ≈ 0̇⇒ ⊥
(PSS) ∀X ′, X. ˙succ(X ′) ≈ ˙succ(X)⇒ X ′ ≈ X
(P+0) ∀X. X u 0̇ ≈ X
(P+succ) ∀X ′, X. X ′ u ˙succ(X) ≈ ˙succ(X ′) uX
(P∗0) ∀X. X ∗̇ 0̇ ≈ 0̇
(P∗succ) ∀X ′, X. X ′ ∗̇ ˙succ(X) ≈ (X ′ ∗̇ X) uX

(PInd) ∀Z. (ε(Z[a7→0̇])⇒(
∀X.(ε(Z[a7→X])⇒ ε(Z[a 7→ ˙succ(X)]))

)
⇒

∀X.ε(Z[a7→X]))

All variables have permission set A<, and a ∈ A<.

Fig. 6: ARITH: axioms for arithmetic as a PNL theory

4.2. Comments on the axioms
Remark 4.2. In [Gabbay and Mathijssen 2008a] capture-avoiding substitution is equation-
ally axiomatised using nominal algebra in the style of SUB. Soundness and completeness
are proved, so providing some formal sense in which the axioms of SUB are ‘right’.

In [Gabbay and Mathijssen 2008b] first-order logic is equationally axiomatised using
nominal algebra (so the axioms involve only equality). The axioms of FOL are not based
on those of [Gabbay and Mathijssen 2008b]. In FOL, we take advantage of the stronger
language provided by PNL; Because PNL is already a first-order logic, we can use ⊥,⇒,
and ∀ directly to capture the behaviour of ⊥̇, ⇒̇, and ∀̇. In [Gabbay and Mathijssen 2008b]
we had to work a little harder because the ambient logic, nominal algebra, was purely
equational.
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Remark 4.3. Instead of the axioms for equality EQU, we could directly extend PNL by
adding derivation rules Figure 1 as follows:

Φ, r ≈ s, φ[X::=r], φ[X::=s] ` Ψ

(fa(r) ∪ fa(s) ⊆ pmss(X))
(≈S)

Φ, r ≈ s, φ[X::=r] ` Ψ

Φ, r ≈ r ` Ψ
(≈R)

Φ ` Ψ

Remark 4.4. Every unknown has a sort, and a permission set.
Different choices of permission set may yield logically equivalent results. For example,

in (sublam) it is not vital that pmss(Z) is exactly (b a)·A<. The important point is that a 6∈
pmss(Z).

Similarly, in (subapp) it is not vital that pmss(X ′′) = pmss(X ′); when we use the axiom
we can instantiate X ′′ and X ′ to r′′ and r′ such that fa(r′′) 6= fa(r′), and conversely if we
take pmss(X ′′) 6= pmss(X ′) then we can still instantiate X ′′ and X ′ to r′′ and r′ such that
fa(r′′) = fa(r′) ⊆ pmss(X ′′) ∩ pmss(X ′). More on this in Section 9.

5. A THEORY OF ARITHMETIC IN FIRST-ORDER LOGIC
We now recall first-order logic L and write Peano arithmetic in L. Our two main theorems
are:

— Theorem 5.6 which states that the PNL theory of first-order logic written in L̇—in sym-
bols this is EQU ∪ SUB ∪ FOL—soundly interprets first-order logic L; and

— Theorem 5.21 which states that the PNL theory of arithmetic in the PNL theory of first-
order logic, soundly and completely interprets ordinary Peano arithmetic in written in
L.8

5.1. First-order logic L
We will use the atoms Aν from L̇ in Section 4 as variables of our first-order logic (this is not
necessary, but it is convenient). So for this section, a, b, c, . . . will range over distinct atoms
in Aν .
Definition 5.1. Define terms and formulas of L by:

t ::= a | 0 | succ(t) | t+ t | t ∗ t
ξ ::= t ≈ t | ⊥ | ξ ⇒ ξ | ∀a.ξ

Substitution t′[a::=t] and ξ[a::=t] is as usual for first-order logic. We write sequents Ξ ` χ
where Ξ and χ are sets of formulas. Derivability is as usual for first-order logic.

8Missing from this is a proof that EQU∪SUB∪FOL soundly and completely interprets first-order logic. We believe
this to be true and the proof should be an elementary simplification of the more involved case for arithmetic—but
it is not worth writing out here.

Arithmetic is (in first-order logic) axiomatised using a schema. We use PNL ∀X to express them finitely; see e.g.
the ∀X in (PInd) of Figure 6 which models the ‘every ξ’ in (pind) in Figure 7.

Finite first-order logic theories (including the empty theory) are unproblematic. In these proofs, soundness
and completeness are only a means to the end of demonstrating how we can axiomatise finitely in a nominal
first-order logic PNL, structures that without names and binding would require infinite axiom schemes or higher
orders.
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Definition 5.2. Define a mapping (-). from terms and formulas of L to terms of L̇ by:

(a). = a (0). = 0̇
(succ(t)). = ˙succ((t).) (t′ + t). = (t′). u (t).

(t′ ∗ t). = (t′). ∗̇ (t).

(t′ ≈ t). = (t′). ≈̇ (t). (⊥). = ⊥̇
(ξ′ ⇒ ξ). = (ξ′). ⇒̇ (ξ). (∀a.ξ). = ∀̇[a](ξ).

Definition 5.3. Extend (-). to first-order logic sequents Ξ ` χ as follows:

(Ξ ` χ). = ε(∀̇[a1] . . . ∀̇[an]((ξ1 ∧ . . . ∧ ξk)⇒ (χ1 ∨ . . . ∨ χl)).)

Here, Ξ = {ξ1, . . . , ξk}, χ = {χ1, . . . , χl}, and the free variables of Ξ and χ are {a1, . . . , an}
(in some order).
Notation 5.4. Write S for EQU ∪ SUB ∪ FOL.
Lemma 5.5. S ` (t′[a::=t]). ≈ (t′).[a7→(t).] and

S ` (ξ[a::=t]). ≈ (ξ).[a7→(t).].

Proof. By routine inductions on t and ξ.

Theorem 5.6 (Correctness). If Ξ ` χ is derivable in first-order logic then S ` (Ξ ` χ). is
derivable in PNL.

Proof. By a long but routine inspection we can check that EQU, SUB, and FOL allow us to
model the behaviour of ‘real’ first-order logic. We use Lemma 5.5.

5.2. Interpretation of first-order logic
We recall the usual definition of interpretations in first-order logic:

Definition 5.7. A (first-order logic) interpretationM is a carrier set M , and elements

0M ∈M, succM ∈M →M, +M ∈ (M ×M)→M, and ∗M ∈ (M ×M)→M.

It is convenient to fix someM from here until Theorem 5.21.
Definition 5.8. Define ValuAν

(M) by:

ValuAν (M) = {ε ∈ Aν →M | ∃A ⊆ Aν .A finite ∧ ∀a, b 6∈ A.ε(a) = ε(b)}

Call elements of ValuAν
(M) Aν-valuations (to M ). ε will range over Aν-valuations.

If x ∈M write ε[a::=x] for the valuation mapping b to ε(b) and mapping a to x:

ε[a::=x](a) = x
ε[a::=x](b) = ε(b)

Give ε ∈ ValuAν (M) and X ⊆ ValuAν (M) a pointwise permutation action:

(π·ε)(a) = ε(π-1(a)).
π·X = {π·ε | ε ∈ X}.

U, V will range over finitely-supported subsets of ValuAν
(M)—so there exists some finite

A ⊆ Aν such that for all π, if π(a) = a for all a ∈ A then π·U = U .

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



A:24 Dowek, Gabbay

(ps0) ∀a. succ(a) ≈ 0⇒ ⊥
(pss) ∀a′, a. succ(a) ≈ succ(a′)⇒ a ≈ a′
(p+0) ∀a. a+ 0 ≈ a
(p+succ) ∀a′, a. a′ + succ(a) ≈ succ(a′) + a
(p∗0) ∀a. a ∗ 0 ≈ 0
(p∗succ) ∀a′, a. a′ ∗ succ(a) ≈ (a′ ∗ a) + a

(pind) ξ[a::=0]⇒
∀a.(ξ ⇒ ξ[a::=succ(a)])⇒
∀a.ξ (every ξ, every a)

Fig. 7: arithmetic: axioms for arithmetic in first-order logic

Remark 5.9. ValuAν
(M) would normally just be called ‘the set of valuations’. We are more

specific since we separately also have valuations on unknowns X (Definition 3.19).
PNL atoms are serving as variable symbols of L. To conveniently apply nominal tech-

niques, it is useful to restrict to valuations that are finite in the sense given in Definition 5.8.
In any case, any term or formula will only contain finitely many atoms.
Definition 5.10. We extend the interpretation to first-order logic syntax as follows:

JaKMε = ε(a)
J0KMε = 0M

Jsucc(t)KMε = succM(JtKMε )
Jt′ + tKMε = +M(Jt′KMε , JtKMε )
Jt′ ∗ tKMε = ∗M(Jt′KMε , JtKMε )

J⊥KMε = 0
Jξ′ ⇒ ξKMε = max{1−Jξ′KMε , JξKMε }

J∀a.ξKMε = min{JξKMε[a::=x] | x ∈M}
Jt′ ≈ tKMε = 1 if Jt′KMε = JtKMε and 0 otherwise

Definition 5.11. Call the formula ξ valid inMwhen JξKMε = 1 for all ε.
Call ξ1, . . . , ξk ` χ1, . . . , χl valid inMwhen (ξ1 ∧ . . . ∧ ξk)⇒ (χ1 ∨ . . . ∨ χl) is valid.

5.3. A theory of arithmetic in L

Definition 5.12. Define a first-order theory of arithmetic by the axioms in Figure 7.
An interpretation is a model of arithmetic when JξKM = 1 for ξ each of (ps0), (pss),
(p+0), (p+succ), (p∗0), (p∗succ), and every instance of (pind).

Remark 5.13. (pind) the induction axiom-scheme is of course of particular interest. We
therefore unpack what its validity

Jξ[a::=0]⇒ ∀a.(ξ ⇒ ξ[a::=succ(a)])⇒ ∀a.ξKM = 1 (every ξ, every a)

means, in a little more detail. For every a and ξ:

— If Jξ[a::=0]KMε = 1, and
— if for every x ∈M , JξKMε[a::=x] = 1 implies that Jξ[a::=succ(a)]KMε[a::=x] = 1,
— then for every x ∈M , JξKMε[a::=x] = 1.

In (pind) we take ‘every a’, and in (PInd) we do not. This is because in (PInd), a is
α-convertible,
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5.4. Building an interpretation for L̇ out of one for L
Recall the PNL signature L̇ from Section 4. SupposeM is a model of L. We use it to build
an interpretation N of L̇.
Definition 5.14. Extend L to L+M where we add all elements of M as constants, and
extend the interpretation to interpret these constants as themselves in M . (So if x ∈ M
then x is a constant symbol in L+M and JxKMε = x.)

Define an Aν-valuation ε0 ∈ ValuAν
(M) by

ε0(a) = 0M always.

If t is a term, we write JtKM for the function λε.JtKMε . If ξ is a formula, we write JξKM for the
function λε.JξKMε .

We now define an interpretation N for L̇. We give a denotation to the base sorts ι and o
of L̇, as follows:

ιN = {JtKM | t a term of L+M} π·JtKM = Jπ·tKM
oN = {JξKM | ξ a formula of L+M} π·JξKM = Jπ·ξKM

We give a denotation to the term-formers and proposition-formers of L̇, as follows:

varN a ε= ε(a)

0̇
N
ε= 0M

( ˙succN u) ε= succM(uε)
uN (u, v) ε= +M(uε, vε)
∗̇N (u, v) ε= ∗M(uε, vε)

subNι ([a]u, v) ε=u(ε[a::=vε])

⊥̇
N
ε= 0

subNo ([a]u, v) ε=u(ε[a::=vε])
⇒̇N (U, V ) ε= max{1−Uε, V ε}
∀̇
N

([a]U) ε= min{U(ε[a::=x]) | x ∈M}
≈̇N (u, v) ε=≈M(uε, vε)
≈Nι (u, v) = 1 if u=v and 0 otherwise
≈No (U, V ) = 1 if U=V and 0 otherwise

εN U =U(ε0)

Here, u and v range over ιN and U and V range over oN . We insert brackets where this
might increase clarity.
Remark 5.15. For the reader’s convenience we indicate the types of some of the symbols
above in an informal ‘crib sheet’:

ε : Aν→M varN : Aν→(Aν→M)→M
u : (Aν→M)→M U : (Aν→M)→{0, 1}

0M : M 0̇
N

: (Aν→M)→M
≈M : M2→{0, 1} ≈̇N : ((Aν→M)→M)2→(Aν→M)→{0, 1}

∀̇
N

: [Aν ]((Aν→M)→{0, 1})→ (Aν→M)→{0, 1}

This crib sheet is only indicative since, for instance, ε is not any function in Aν→M (see
Definition 5.8).
Lemma 5.16. (1) Jt′[a::=t]KMε = Jt′KMε[a::=JtKMε ].
(2) Jξ[a::=t]KMε = 1 if only if JξKMε[a::=JtKMε ] = 1.
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Lemma 5.17. The following equalities all hold:

varN(a) = JaKM

0̇
N

= J0KM
˙succN(JtKM) = Jsucc(t)KM

uN(Jt′KM, JtKM) = Jt′ + tKM
∗̇N (Jt′KM, JtKM) = Jt′ ∗ tKM

subNι ([a]Jt′KM, JtKM) = Jt′[a::=t]KM
subNo([a]JξKM, JsKM) = Jξ[a::=s]KM

⊥̇
N

= J⊥KM
⇒̇N(Jξ′KM, JξKM) = Jξ′ ⇒ ξKM

∀̇
N
([a]JξKM) = J∀a.ξKM

≈̇N(JrKM, JsKM) = Jr ≈ sKM

Proof. We compare Definitions 5.14 and 5.10. Most cases are immediate; we consider only
the slightly less trivial ones:

varN(a) = (λa.λε.ε(a))a Definition 5.14
= (λa.JaKM)a Definition 5.10
= JaKM fact

subNι ([a]Jt′KM, JtKM) = λε.Jt′KM(ε[a::=JtKMε]) Definition 5.14
= λε.Jt′[a::=t]KM Lemma 5.16

Other cases are no harder.

Lemma 5.18. N (Definition 5.14) is a PNL interpretation.

Proof. We must check that:

— ιN and oN are permissive-nominal sets.
By routine calculations. (In fact, ιN and oN are nominal sets; that is, their elements all have
finite support.)

— The functions defined in Definition 5.14 map elements of ιN , oN , [A]ιN , and [A]oN correctly to the
appropriate sets.
By Lemma 5.17.

— εN is equivariant from oN to {0, 1}.
By routine calculations using the fact that (a b)·ε0 = ε0.

Lemma 5.19. If (Ξ ` χ). is valid in N , then Ξ ` χ is valid inM.

Proof. We calculate that if (Ξ ` χ). is valid in N , then

J(ξ1 ∧ . . . ∧ ξk)⇒ (χ1 ∨ . . . ∨ χl)KMε0 = 1

But the proposition written out above is closed, so for all valuations ε, J(ξ1 ∧ . . . ∧ ξk) ⇒
(χ1 ∨ . . . ∨ χl)KMε = 1.

Recall from Notation 5.4 that we write S for EQU ∪ SUB ∪ FOL. Recall also from Defini-
tion 5.2 the mapping (-). from first-order logic L to PNL terms.
Proposition 5.20. N is a model of S ∪ ARITH.

Proof. By a routine verification. We consider the axiom (∀̇) from Figure 5. We unpack defi-
nitions and see that we must prove that for every ξ in L+M ,

— ∀x ∈M.ε0[a::=x] ∈ JξKN if and only if
— ε0[a::=JtKNε0] ∈ JξKN for every t a term of L+M .

This follows, because L+M has a constant symbol for every x ∈ M . Validity of the other
axioms is no harder.
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Theorem 5.21. arithmetic,Ξ ` χ in first-order logic if and only if
S ∪ ARITH ` (Ξ ` χ). in PNL.

Proof. We prove two implications. The top-to-bottom implication follows using Theo-
rem 5.6.

For the bottom-to-top implication, we reason as follows: Suppose S∪ARITH ` (Ξ ` χ). in
PNL. Choose an arbitrary interpretationM of first-order logic that is a model of arithmetic,
with carrier set M . By Soundness (Theorem 3.30) and Proposition 5.20, (Ξ ` χ). is valid in
N . By Lemma 5.19 Ξ ` χ is valid inM.Mwas arbitrary, so by completeness of first-order
logic [Shoenfield 1967, §4.2] it follows that Ξ ` χ is derivable.

6. MORE PNL THEORIES
So far we have built PNL and used it to finitely axiomatise arithmetic. In this section we
briefly touch on how to express some known ‘nominal’ constructs within PNL.

6.1. Inductive types
Permissive-nominal logic can express the principles of nominal abstract syntax developed
in [Gabbay and Pitts 2001].

Suppose a base sort ι, a name sort ν, and term-formers

var : ν → ι, app : (ι, ι)→ ι, and lam : [ν]ι→ ι.

Fix an unknown U : ι and for brevity write φ[U ::=r] as φ(r) for every φ. Suppose an axiom-
scheme, for every φ:

φ(var(a))⇒
∀X.(φ(X)⇒ φ(lam([a]X)))⇒
∀X,Y.(φ(X)⇒ φ(Y )⇒ app(X,Y ))⇒

∀X.(φ(X))

Here X and Y have sort ι and we make a fixed but arbitrary choice of atom a ∈ pmss(X).
We can also express this finitely, if we axiomatise a sort for predicates (as we did for

arithmetic). Here is the axiom-scheme above made finite by using the theories EQU, SUB,
and FOL from Section 4:

∀Z.ε(Z[a 7→var(a)])⇒
∀X.(ε(Z[a7→X])⇒ ε(Z[a7→lam([a]X)))⇒
∀X,Y.(ε(Z[a7→X])⇒ ε(Z[a7→Y ])⇒ ε(Z[a7→app(X,Y )]))⇒

∀X.ε(Z[a 7→X])

6.2. The Nquantifier
Nominal sets support the N-quantifier [Gabbay and Pitts 2001]. PNL also includes the N-
quantifier; the way in which it does this is quite interesting, as we shall see in a moment.

Nhas some distinctive properties which are reflected in nominal logic (NL) and the logic
of FM sets (FM):

∀x.(P(x)⇒ Na.Q(a, x))
==================
∀x. Na.(P(x)⇒ Q(a, x))

∀x. Na. Nb.(b a)·x≈x
=============================
Na. Nb.∀x.(a#x⇒ b#x⇒ (b a)·x≈x)
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Here and below we write a double horizontal line for ‘is provably equivalent to’. Nap-
pears absent from Permissive-Nominal Logic (PNL). It is ‘hiding’ in the permission sets.
Corresponding propositions are, where a, b 6∈ pmss(X):

∀X.(P(X)⇒ Q(a,X))
=================
∀X.(P(X)⇒ Q(a,X))

∀X.(b a)·X ≈ X
=============
∀X.(b a)·X ≈ X

We see from these examples that two things are happening: first, freshness conditions are
hard-coded into the syntax by permission sets—and second, so is the N-quantifier.

It is interesting to consider another example. In NL/FM:

Na.P(a) ∧ Na.Q(b)
================
Na. Nb.(P(a) ∧ Q(b))

Na.P(a) ∧ Na.Q(b)
==============

Na.(P(a) ∧ Q(a))

Correspondingly in PNL we have:

P(a) ∧ Q(b)
=========
P(a) ∧ Q(b)

P(a) ∧ Q(b)
=========
P(a) ∧ Q(a)

It is easy to use the rule (Ax) from Figure 1 to construct a derivation proving that P(a) ∧
Q(b) and P(a) ∧ Q(a) are indeed logically equivalent in Permissive-Nominal Logic.

The π in (Ax) expresses that truth is preserved by permutative renaming, or in symbols:
` φ⇔ π·φ always.

A permission set S can be viewed in two ways: as giving permission to instantiate using
free atoms in S—but also as a form of Nfor the atoms not in S.

6.3. Freshness a#x and abstraction
PNL has a notion of syntactic freshness which we identify as a notion of ‘free atoms of’,
and write fa(t) and fa(φ). Nominal sets also have a semantic notion of freshness a#x given
by a 6∈ supp(x).

As Lemma 3.23 demonstrates, intuitively if a is not free in t then a is fresh for the deno-
tation of t. In symbols: a 6∈ fa(t)⇒ a#JtK (see [Gabbay 2011c, Subsection 7.6] for a kind of
converse).

To capture in syntax the effect of a freshness predicate for a name sort ν on a sort α,
it suffices to assume EQU (or extend PNL with an equality primitive) and to assume a
predicate # of arity (ν, α) with an axiom

∀X.(a#X ⇔ (b a)·X ≈ X).

Here X has sort α and a and b have sort ν, and a ∈ pmss(X) and b 6∈ pmss(X). This is
essentially equation 13 in [Gabbay and Pitts 2001], using permission sets to attain the effect
of the N-quantifier. See also [Gabbay and Mathijssen 2009, Subsection 5.2] and [Gabbay
and Mathijssen 2007, Theorem 5.5] where similar observations were expressed for nominal
algebra.

Similarly atoms-abstraction [a]r can be axiomatised not using atoms-abstraction as a
term-former abs : (ν, τ) with axiom ∀X.abs(b, (b a)·X) ≈ abs(a,X) where b 6∈ pmss(X) (cf.
[Gabbay and Mathijssen 2009, Subsection 5.1]).

However, it is worthwhile to provide atoms-abstraction as primitive in PNL because it
gives us access to PNL α-equivalence which is a structural part of the PNL derivation sys-
tem: to rename a in abs(a,X) into abs(b, (b a)·X) requires equality reasoning and axioms;
to rename a in [a]X requires nothing but an α-conversion (in this paper, they are actually
the same term).
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7. CUT-ELIMINATION
Recall the (Cut) rule from Figure 1. In this section we prove that (Cut) is admissible in
the presence of the other rules in Figure 1.
Definition 7.1. Suppose fa(r) ⊆ pmss(X) and r : sort(X). Define Φ[X::=r] by

Φ[X::=r] = {φ[X::=r] | φ ∈ Φ}.

Lemmas 7.2 and 7.3 are proved by routine arguments like those in [Dowek et al. 2010;
Urban et al. 2004]:
Lemma 7.2. (π·r)θ = π·(rθ).
Lemma 7.3. Suppose Y 6∈ fV (t). Then

r[Y ::=u][X::=t] = r[X::=t][Y ::=u[X::=t]].

Lemma 7.4. Suppose fa(r) ⊆ pmss(X) and r : sort(X). Then

Φ ` Ψ implies Φ[X::=r] ` Ψ[X::=r].

Proof. By a routine induction on derivations. The case of (Ax) uses Lemmas 7.2 and 7.3.
The case of (∀L) uses Lemma 7.3.

Lemma 7.5. (1) If there exists a derivation ∆ of Φ ` ψ, Ψ then there exists a derivation of Φ `
π·ψ, Ψ.

(2) If there exists a derivation ∆ of Φ, φ ` Ψ then there exists a derivation of Φ, π·φ ` Ψ.

Proof. By a simultaneous induction on ∆. The case of (∀L) uses Lemma 7.2. (We need the
simultaneous induction for (⇒L) and (⇒R), since parts of the proposition move between
left and right.)

Notation 7.6. An instance of (Cut) rests on two sub-derivations. It is convenient to call
them the left branch and right branch as illustrated:

··· Left branch
Φ, φ ` Ψ

··· Right branch
Φ ` φ,Ψ

(Cut)
Φ ` Ψ

Theorem 7.7 (Cut-elimination). If Φ ` Ψ is derivable with a derivation that uses (Cut), then it
is derivable with a derivation that does not use (Cut).

Proof. The proof is as for first-order logic. The only differences are a π in (Ax) and a side-
condition fa(r) ⊆ pmss(X) in (∀L). These affect terms and have no effect on the structure
of derivations; for the purposes of this proof they are irrelevant.

We commute instances of (Cut) upwards, as usual, following the method of [Dummett
1977, pages 139-145] or [Gabbay 2011a]. At each step, the following measure based on the
depth of subderivations and the size of the cut formula, decreases:

— The size of the cut formula, and
— the longest path up the derivation the cut, that the formula persists,

lexicographically ordered.

— The commutation cases between rules for⇒ and ∀ are as standard for first-order logic.
— The essential case for⇒ is as standard.
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— For the essential case for ∀, suppose the subderivation has the following form:

Φ, φ[X::=r] ` Ψ
(∀L)

Φ, ∀X.φ ` Ψ

··· ∆
Φ ` φ, Ψ

(∀R)
Φ ` ∀X.φ, Ψ

(Cut)
Φ ` Ψ

By Lemma 7.4 there is a derivation ∆[X::=r] of Φ ` φ[X::=r], Ψ. We eliminate the
essential case as follows:

Φ, φ[X::=r] ` Ψ

··· ∆[X::=r]

Φ ` φ[X::=r], Ψ
(Cut)

Φ ` Ψ

— Suppose the subderivation has the following form:

(Ax)
Φ, φ ` π·φ,Ψ

··· ∆
Φ, π·φ ` Ψ

(Cut)
Φ, φ ` Ψ

We use Lemma 7.5 to obtain a derivation ∆′ of Φ, φ ` Ψ (the transformations involved
in the proof of Lemma 7.5 do not increase the inductive measure).

8. RELATED WORK
8.1. Other ‘nominal’ syntaxes and logics
Compared to other ‘nominal’ logics, PNL emphasises ergonomics. When we use PNL to
axiomatize and build proofs in arithmetic or in set theory, we want our hypotheses to speak
about natural numbers or sets, not to speak about atoms and freshness.

Thus, although notions of atom and freshness are important, they should be implicit; i.e.
handled automatically by the logic. This is the purpose of permission sets, which allow
us to handle freshness and α-renaming separately from logical deduction and equality
reasoning.

Axiomatisations. The two best-known ‘nominal’ logics are probably the nominal logic of
[Pitts 2003] and FM set theory. Both of these are Hilbert-style theories—sets of axioms—in
first-order logic. They are axiomatic theories of sets.

FM set theory contains axioms whose intended model is a sets cumulative hierarchy,
whereas nominal logic contains axioms only for sets with a finitely-supported permutation
action, with no assumption that they be composed of other sets. For the purposes of this
paper, the difference is not important.

Qua logic, PNL is a logic whereas nominal logic and FM set theory are axiomatisa-
tions. In addition and closely related to this, we can ‘just α-rename’ and ‘just choose a
fresh atom’—as mentioned above we have α-renaming and freshness without appealing
to equality reasoning and axioms.

Proof-theories for the N-quantifier. Natural deduction rules for Nare proposed e.g. in [Gab-
bay and Pitts 2001, Proposition 4.10], but these are not closed under substitution. The
second author created a proof-theory for N[Gabbay 2007a] with a good notion of proof-
normalisation and a completeness proof, followed by an alternative treatment with Ch-
eney [Gabbay and Cheney 2004].

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



Permissive-nominal logic A:31

These gave Nan operational behaviour as ‘pick a locally fresh name’; Cheney then de-
veloped another sequent system which gave Nan operational behaviour as ‘pick a globally
fresh name’ [Cheney 2005].

The logic of [Cheney 2005] includes 12 infinite axiom-schemes (Figures 3 and 4 of [Ch-
eney 2005]) describing the behaviour of atoms-abstraction from [Gabbay and Pitts 2001].
Thus, α-equivalence (for atoms) is axiomatically handled and does not participate in the
proof-theory.

PNL handles both α-equivalence and the N-quantifier very compactly, without recourse
to axioms, and indeed requiring neither equality reasoning nor a N-quantifier.

One-and-a-halfth order logic. This logic is designed to represent schematic first-order rea-
soning (first-order derivations in the presence of ‘unknown predicates’). It corresponds
roughly to the axiomatisation of first-order logic in Section 4.

Semantic nominal terms. In [Gabbay and Mulligan 2009a] we show how to interpret level
2 variables (unknowns) as infinite lists of distinct level 1 variables (atoms). This allows
us to build permissive-nominal term syntax as nominal abstract syntax-style inductive
datatypes as proposed in [Gabbay and Pitts 2001]. The aim of this paper is to discuss the
logic; not to analyse how its syntax could best be built.

8.2. From nominal terms-in-freshness-context to PNL terms-with-permission-sets
Nominal terms were introduced in [Urban et al. 2004] where a decidable and efficient uni-
fication algorithm was demonstrated (see [Calvès and Fernández 2008; Levy and Villaret
2010; Calvès 2010] for the state of the art). Nominal terms have been used in equational
specification languages; in rewriting [Fernández and Gabbay 2007] and in universal alge-
bra (the logic of equality) [Gabbay and Mathijssen 2009].

PNL differs from nominal terms in three ways:

— Nominal terms use a finite freshness context a#X whereas PNL uses permission sets,
following [Dowek et al. 2009; Dowek et al. 2010] (a ‘permission set’ S can equally well
be considered as a freshness sets A \ S).

— PNL predicates include universal quantification over unknowns ∀X .
— PNL term syntax includes shift-permutations (the implications of this are discussed in

Subsection 2.7).

These features optimise PNL for being a first-order style logical foundation for mathemat-
ics with binding.

Another way to view this paper is as follows: PNL is the ‘obvious’ extension of nominal
algebra [Gabbay and Mathijssen 2009] (an equational logic based on nominal terms), to a
first-order logic.

But how then do we arrive at permissive nominal techniques, starting from nominal al-
gebra? Suppose we have an equality axiom a#X ` f([a]X) = g(X). We want to write a
corresponding first-order axiom. There are two obvious routes to follow:

(1) Assume first-order logic with a sort of atoms ν and some axioms (like nominal logic or
FM set theory) and write

∀z, x.z#x⇒ f([z]x) = g(x).

Here z and x are variables and freshness # can be expressed using the axioms of the
logic.
The problem with this is that we lose proof-theory; we are just working in a Hilbert-
style axiom system.
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(2) Imagine a first-order logic with nominal terms in which freshness conditions are at-
tached to quantifiers, so that we can write

∀X:ν#a.f([a]X) = g(X).

Here ν#a means ‘elements of ν for which a is fresh’.
The problem with this is that we have a poor theory of α-equivalence; the freshness
context for X does not allow us to rename [a]X to [b](b a)·X , because there is no b fresh
for a (more on this in Implementing PNL below).

Concerning the second option, we can add ‘freshening’ axioms or derivation rules to the
effect that ∀X : ν#a.φ be logically equivalent to ∀X:ν#a,b.φ, and so on—this is in essence
what the ‘freshening’ rule (fr) of nominal algebra (rule in Figure 2 of [Gabbay and Math-
ijssen 2009]) does. It should be possible to construct a version of PNL along these lines;
the disadvantage would be that once X is instantiated, we can no longer add further
fresh atoms, unless we reintroduce (fr) into PNL, but even then we would not recover
full permissive-nominal α-equivalence.

In PNL we take the idea to the ωth degree; taking a limit of this ‘freshening’ operation
to obtain infinitely many fresh atoms, we arrive at permission sets.

8.3. Non-nominal logics
First- and higher-order logic. As discussed in the Introduction, we see PNL as sitting

somewhere in-between these two logics. It is more powerful—and we would claim more
ergonomic—than first-order logic, because term-formers can bind. Its advantage over
higher-order logic is the smaller and simpler models and generally more first-order charac-
ter. Its term-syntax supports a decidable unification algorithm: both without shift [Dowek
et al. 2010] and with [Gabbay 2011c].

Logics based on the ∇-quantifier. A family of logics exists based on higher-order patterns
and the∇-quantifier [Miller and Tiu 2003; Tiu 2007; Gacek et al. 2008]. The intended mean-
ing of e.g.∇x.r=s is ‘λx.r=λx.s’. Thus for instance the intended denotation of∇x.∇y.x=y
is λx.λy.x=λx.λy.y, and this is false.

As this example suggests, logics based on ∇ use raising and patterns (in brief: higher-
order variables applied to finite lists of distinct variables, as in xx1 . . . xn) to obtain the
effect of capturing substitution and variable dependencies, whereas we use permission
sets and a two-level term syntax. Our reading is that ∇ is a way of peeling a single λ-
abstraction uniformly off all terms and pushing it ‘into the meta-level’. Or, to put it another
way: ∇ generates a fresh λ-abstracted variable.

The main philosophical difference here is that ∇ is designed to assume α-equivalence
and treats variables as a ‘wire’ which must always be bound, either by λ in a term or
possibly by a top-level ∇; in contrast nominal techniques treat names as global and per-
mutable and break α-equivalence down into names and permutation. In a separate journal
paper submitted for publication, we relate these by translating permissive-nominal logic
to higher-order logic in the style of e.g. a translation of permissive-nominal term unifica-
tion to higher-order pattern unification [Dowek et al. 2010] or nominal algebra to algebra
over higher-order terms [Gabbay and Mulligan 2009b].

However, note that raising can cause a linear expansion in the size of a term (because
what is represented by X in this paper would be represented by xx1 . . . xn in a logic based
on raising), and can also cause ‘silly’ β-redexes (since the mechanism which encodes de-
pendency is the same mechanism which encodes computation). This is one of the motiva-
tions for CMTT discussed below.

Contextual modal type theory (CMTT). CMTT [Nanevski et al. 2008] is a two-level system;
typing contexts split into two halves; ∆ and Φ. The two levels are different from the two
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levels used in (permissive-)nominal terms. Variables u : A[Φ] ∈ ∆ range over representa-
tions of code; variables x : A ∈ Φ range over denotation.

This addresses a problem that is mostly orthogonal to what PNL tries to achieve. To
the extent that this could be represented in PNL, it would be represented at the level of
sorts—one sort for code, another for denotation (values).

Logics based on CMTT are consistent and have a well-studied proof-theory, so individ-
ual semantic models can be constructed using normal forms, but the question “what is
the general class of structures which these syntactic models represent?”’ has no answer
we know of. That is, no general sets-based class of models has has been given for CMTT.
Developing such models—perhaps using techniques borrowed from nominal sets—would
be interesting future work.

Further logics. Coming from other threads of research in computer science are logics de-
signed to enrich first-order logic directly with binders without thinking specifically about
inductive reasoning. We note in particular binding logic [Dowek et al. 2002] and λ-logic
[Beeson 2004].

Binding logic enriched first-order terms with binders but forbade capture and turned
out to be a little too weak.
λ-logic takes a direct approach of enriching first-order terms with λ-abstraction. The

approach to binding taken by PNL is somewhat more general and is certainly different, in
that it allows us to treat names as ‘bindable constants’. That is, we can compare names for
inequality as names, while at the same time we can give them the behaviour of variables
by axiomatising e.g. substitution for them, if we wish.

9. FURTHER REMARKS, FURTHER WORK
We have seen how permissive-nominal logic (PNL) extends first-order logic with term-
formers that can bind. We have given PNL a nominal-sets based semantics and shown it
sound and complete. We have considered a finite axiomatisation of arithmetic, based on
a finite axiomatisation of first-order logic in PNL, and proven it correct. Finally, we have
proved cut-elimination.

In most respects PNL behaves just like first-order logic. However, its ‘nominal’ con-
structs let it ergonomically perform many of the tasks that would require much more pow-
erful constructs in e.g. higher-order logic.

We do not claim that PNL makes nominal terms like those used in [Urban et al. 2004;
Fernández and Gabbay 2007] obsolete. The argument for permissive-nominal terms is that
they are a more abstract and powerful mathematical model with which to do proofs; for we
use them to ‘just quotient’ by α-equivalence, and we use them to reconcile α-equivalence
of atoms with ∀X . But that story is entirely compatible with prevous work. For instance,
though permission sets have the form (A<∪A)\B (Definition 2.7), in practice we only seem
to specify restrictions like a ∈ pmss(X) and b 6∈ pmss(X)—and these look like freshness
environments. In the discussion of Subsection 2.7 we saw why: permission sets control
capture, and we only care about controlling capture for the finitely many atoms men-
tioned explicitly in an axiom. Furthermore the use of shift-permutations (Definition 2.9)
means that the exact choice of permission set ‘does not really matter’—more on this be-
low. In a sense, freshness contexts live on in this paper and remain useful, as an emergent
property of how we interact with a more abstract underlying mathematical model given
by permissive-nominal terms.

We do not claim that PNL is the ultimate logic, whatever that means. However, we do
see PNL as a significant step forward in the continuing search for logics suitable for ax-
iomatising the systems with binding which are so common in computer science, as briefly
discussed in Section 8. We hope that PNL will turn out to be a ‘sweet spot’ amongst such
systems—fairly simple, yet usefully expressive and with good theoretic properties.
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We will now briefly discuss some of the design decisions and design alternatives avail-
able to us in creating logics in the spirit of PNL.

Unknowns of name sort, and atoms. A swapping with unknowns, as in (X Y )·r where X
and Y have a name sort ν, is not primitive syntax in PNL. This is atoms as variables as in
[Gabbay and Cheney 2004] and [Pitts 2003], as opposed to the atoms as constants approach
of nominal terms [Urban et al. 2004] which is inherited by this paper.

The axioms of nominal logic [Pitts 2003, Section 5] can be copied over to endow term-
formers abs and swap (see below) with the right properties; since the logic of [Pitts 2003]
is already a set of axioms, there is no harm in doing this also in PNL. Alternatively, we
can ‘promote’ behaviour from atoms to unknowns: Suppose a sort α and a name sort Atm.
Suppose sort(X) = α and a ∈ pmss(X). Suppose a term-former abs : (Atm, α)[Atm]α.
The axiom ∀X,Y.(X≈a ⇒ abs(X,Y )≈[a]Y ) ‘promotes’ atoms-abstraction, to an abstrac-
tion by unknowns of sort atom (over terms of sort α). Similarly for a term-former swap :
(Atm,Atm, α)α.

The question phrased in semantic terms is as follows:

— Should every inhabitant of the denotation of a name sort ν to be referenced in PNL
syntax by an atom?

— Should every inhabitant of the semantics of name sorts, to be referenced by a closed
term?

The answers to these questions matter, but not for this paper. It is not unusual (indeed,
it is very common) for there to be more elements in a type than there are closed terms.
Furthermore, we have proved completeness in Subsection 3.4, so any extra elements in
name sorts cannot ‘make anything false’.

Yet it is reasonable to ask in future work whether we could exclude ‘non-standard atoms’
in the same way that for example we might try to exclude non-standard numbers from
models of first-order theories of arithmetic. (Note that this is a general issue with a two-
level syntax, and is not specific to PNL.)

We believe that this is possible. The idea is in the proof-theory for Nfrom ‘Fresh Logic’
[Gabbay 2007a]; see (ExhaustA) in Figure 3, and Subsection 5.5.

Extending sorts. It would be a good idea to introduce sort-formers and polymorphism
into the sorting system, so that e.g. we can conveniently axiomatise a substitution action
on an infinite class of sorts. We see no difficulty in doing this—it is a definitional extension
of what we already have.

Another interesting extension is to assume, for every sort α, an associated name sort να.
This would allow us to talk about ‘the level 1 variables associated with α’ in the same way
that we can already talk about ‘the level 2 variables of sort α’.

Design of permission sets. There is design freedom in the choice of permission sets. We
briefly sketch some of the options.

We can have more permission sets. For instance, we can take A uncountable and permis-
sion sets all countably infinite sets. We can also add finite permission sets, enabling us e.g.
to reason about properties that only hold of (level 1) closed terms, or terms with a finitely
bounded number of free atoms.

We can have fewer permission sets. For instance we could take permission sets to be
A< \A, or π·A< for finite π.

We can also have much fewer permission sets—one, to be precise. PNL would work just
as well if we took A< as the single unique permission set. The effect of larger or smaller
permission sets can then be obtained using permutations. For example if pmss(X) = A<
and pmss(Y ) = shiftτ ·pmss(X) and sort(X) = τ = sort(Y ) then the effect of ∀Y.P(Y ) can
be obtained by the logically equivalent ∀X.P(shiftτ ·X). Using further shift-permutations
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and conjugation by finite permutations, any of the permission sets of Definition 2.7 can be
obtained.

Note that we never want A to be a permission set. If we had that, then we would not be
able to ‘choose a fresh atom’ and e.g. would be unable to α-convert a in [a]X if pmss(X) =
A.

Taking a more abstract view, a natural generalisation of Definition 2.7 is an equivariant
nominal join semi-lattice that does not contain >. So specifically for sets of atoms, this means
that if S and T are permission-sets then so are π·S and S ∪ T , and A is not a permission
set. To illustrate how this works, note that if S is a permission set and A \ S is finite then
it easily follows using equivariance and sets unions that A is a permission set. So to insist
that A is not a permission set, is really to insist that every permission set is coinfinite.

The design decision made in Definition 2.7 is simple, effective, and direct, and it allows
us to express capture-avoidance conditions easily without complex ‘emulations’ involving
shift .

PNL without shift . We can restrict PNL by dropping shift-permutations (but retaining
permission sets as defined), yielding a logic that could be called PNL without shift. This is
what was considered in the conference version of this paper [Dowek and Gabbay 2010].

This is less ergonomic, but in a certain sense it is just as powerful. It all depends on
whether we want to be able to change our mind about a permission set in mid-derivation.

This is a similar issue as appears e.g. in the design of a sequent system, whether we
allow weakening as an explicit sequent rule (so that we can weaken mid-derivation), or
integrate weakening into the axiom rule (so we have to anticipate the other propositions
needed in the sequent).

The isomorphism between pmss(X) and pmss(X) ∪ {a} for a 6∈ pmss(X) is explicit in
full PNL and an implicit fact in PNL without shift.

Unification of permissive-nominal terms without shift was considered in [Dowek et al.
2010]. Subsequently to writing this paper, that theory was re-cast using shift [Gabbay
2011c].

Note that nominal algebra satisfies an HSPA result whereas permissive-nominal algebra
with shift satisfies an HSP result; details are elsewhere [Gabbay 2009; Gabbay 2011c] but
what is relevant to this discussion is that the extra expressivity which shift gives, can make
a real, mathematically measurable, difference.

Implementing PNL. An implementation of PNL could follow the lines of a first-order
theorem-prover, since the proof-rules in Figure 1 are so like those of first-order logic. The
term-language would be richer and would include names and binding.

There would be many design choices, some of which we have touched on above: poly-
morphism in sorts; choice of permission sets (perhaps even adding variables to permission
sets); whether or not to include shift ; whether or not to exclude ‘non-standard’ atoms using
an (ExhaustA) rule like that in Figure 3 of [Gabbay 2007a]; and so on.

Another point is how much of the infinity of permission sets we should expose to the
user. To discuss this further, we must draw together several strands that have run through
this paper from the beginning.

At the start of this paper we introduced permission sets, which guarantee infinite sup-
plies of fresh atoms for every unknown. This culminated in Definition 2.30 with the
permissive-nominal ‘just quotient’ α-equivalence, which is different from the notion of
α-equivalence used in nominal terms in e.g. [Urban et al. 2004; Fernández and Gabbay
2007; Gabbay and Mathijssen 2009]. In Subsection 8.2 we gave a sense in which PNL is
obtained from nominal terms and nominal algebra by adding universal quantifiers while
taking a limit of extending freshness contexts in the sense of nominal terms.
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But then at the start of this section we noted that for any concrete derivation we only care
about the finitely many atoms explicitly mentioned, thus for any concrete derivation we
only care about finite freshness information after all.

So we have a choice, when implementing PNL, whether to present the user with A< and
A> directly as we did in Definition 2.7, or to present a nominal terms syntax in which a
(possibly but not necessarily finite) context of freshness assertions ∆ is carried and may
be extended as needed (nominal algebra does this using a freshness rule (fr) [Gabbay and
Mathijssen 2009]; an idea taken from [Gabbay 2007a]).

A specific disadvantage is that we would lose the permissive-nominal ‘just quotient
syntax’ theory of α-equivalence used in Definition 2.30.

At the moment it seems unclear how much this matters from the point of view of an
implementation. After all, in an implementation we will have a specific goal with specific
and (finitely many) atoms for which the user has chosen specific names. So will the user
even appreciate explicit access to an infinite stock of fresh atoms? Or, will the user prefer
a freshness context to be extended as needed? Note that the implementation might need
fresh names when α-renaming during resolution, so a resolution step might extend the
freshness context with finitely but unboundedly many new names. An advantage of pre-
senting A> explicitly is that these names are honestly presented to the user from the start.

As with any logic, there are many ways to present it. Yet, the underlying mathematics
remains essentially the same.

Summary. PNL addresses problems of mathematical specification with names and bind-
ing. It provides a first-order logic environment which allows us to formally express the
‘informal meta-level’, complete with names and binding. As such, the most exciting po-
tential application of PNL is as a logical foundation—as a meta-theory for mathematics—
intermediate in power between first- and higher-order logic. We believe that, perhaps with
some fairly modest extensions, it would make an expressive, ergonomic, and practical al-
ternative meta-language for mechanised mathematics.
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