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We solve the longstanding open problems of the blow-up involved in the translations, when possible, of a
nondeterministic Büchi word automaton (NBW) to a nondeterministic co-Büchi word automaton (NCW)
and to a deterministic co-Büchi word automaton (DCW). For the NBW to NCW translation, the currently
known upper bound is 2O(n log n) and the lower bound is 1.5n. We improve the upper bound to n2n and
describe a matching lower bound of 2Ω(n). For the NBW to DCW translation, the currently known upper
bound is 2O(n log n). We improve it to 2O(n), which is asymptotically tight. Both of our upper-bound
constructions are based on a simple subset construction, do not involve intermediate automata with richer
acceptance conditions, and can be implemented symbolically.

We continue and solve the open problems of translating nondeterministic Streett, Rabin, Muller, and
parity word automata to NCW and to DCW. Going via an intermediate NBW is not optimal and we
describe direct, simple, and asymptotically tight constructions, involving a 2Θ(n) blow-up. The constructions
are variants of the subset construction, providing a unified approach for translating all common classes of
automata to NCW and DCW.

Beyond the theoretical importance of the results, we point to numerous applications of the new construc-
tions. In particular, they imply a simple subset-construction based translation, when possible, of LTL to
deterministic Büchi word automata.

Categories and Subject Descriptors: F.1.1 [Computation by Abstract Devices]: Models of Computation—
Automata; F.1.2 [Computation by Abstract Devices]: Models of Computation—Alternation and nonde-

terminism; F.4.1 [Mathematical Logic and Formal Languages]: Mathematical Logic—Temporal logic;
F.4.3 [Mathematical Logic and Formal Languages]: Formal Languages

General Terms: Verification, Theory, Algorithms

Additional Key Words and Phrases: Formal verification, Model checking, Nondeterminism, Büchi automata,
co-Büchi automata

1. INTRODUCTION

Finite automata on infinite objects were first introduced in the 60’s, and were the
key to the solution of several fundamental decision problems in mathematics and
logic [Büchi 1962; McNaughton 1966; Rabin 1969]. Today, automata on infinite objects
are used for specification verification, and synthesis of nonterminating systems. The
automata-theoretic approach to verification views questions about systems and their
specifications as questions about languages, and reduces them to automata-theoretic
problems like containment and emptiness [Kurshan 1994; Vardi and Wolper 1994].
Recent industrial-strength property-specification languages such as Sugar, ForSpec,
and the recent standard PSL 1.01 include regular expressions and/or automata, mak-

Authors’ address: School of Engineering and Computer Science, Hebrew University, Jerusalem 91904, Israel;
IST Austria, Klosterneuburg, Austria.
The present article combines and extends [Boker and Kupferman 2009; 2011].
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM 1529-3785/YYYY/01-ARTA $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



A:2 U. Boker and O. Kupferman

ing specification and verification tools that are based on automata even more essential
and popular [Accellera 2006].

Early automata-based algorithms aimed at showing decidability. The application of
automata theory in practice has led to extensive research on the complexity of prob-
lems and constructions involving automata [Wolper et al. 1983; Street and Emerson
1984; Vardi and Wolper 1986; Emerson and Jutla 1988; Safra 1988; Pnueli and Rosner
1989]. For many problems and constructions, our community was able to come up with
satisfactory solutions, in the sense that the upper bound (the complexity of the best al-
gorithm or the blow-up in the best known construction) coincides with the lower bound
(the complexity class in which the problem is hard, or the blow-up that is known to be
unavoidable). For some problems and constructions, however, the gap between the up-
per bound and the lower bound is significant. This situation is especially frustrating,
as it implies that not only something is missing in our understanding of automata on
infinite objects, but also that we may be using algorithms that can be significantly
improved.

Two such fundamental and longstanding open problems are the translation, when
possible, of a nondeterministic Büchi word automaton (NBW) to an equivalent non-
deterministic co-Büchi word automaton (NCW) and to an equivalent deterministic co-
Büchi word automaton (DCW).1 NCWs are less expressive than NBWs. For example,
the language {w : w has infinitely many a’s} over the alphabet {a, b} cannot be recog-
nized by an NCW. In fact, NCWs are not more expressive than deterministic co-Büchi
automata (DCWs). 2 Hence, since deterministic Büchi automata (DBWs) are dual to
DCWs, a language can be recognized by an NCW iff its complement can be recognized
by a DBW.

The best translation of an NBW to an NCW, when possible, that is currently known
goes via an intermediate deterministic Streett [Safra 1988; Muller and Schupp 1995]
or parity [Piterman 2006; Kähler and Wilke 2008] automaton [Kupferman and Vardi
2005b], and involves a super-exponential blow-up. Starting with an NBW with n states,
we end up with a DCW with 2O(n logn) states. Not less problematic, the determinization
construction is awfully complex and is not amenable to optimizations and a symbolic
implementation. Note that the NBW-to-NCW problem does not require us to end up in
a deterministic automaton. Yet, it is not known how to take advantage of the allowed
nondeterminism, and it is not known how to keep the translation within the convenient
scope of the Büchi and the co-Büchi acceptance conditions.

The 2O(n log n) upper bound is particularly annoying, as the best known lower bound
is linear. The main challenge in proving a non-trivial lower bound for the translation of
NBW to NCW is the expressiveness superiority of NBW with respect to NCW. Indeed,
a family of languages that is a candidate for proving a lower bound for this translation
has to strike a delicate balance: the languages have to somehow take advantage of
the Büchi acceptance condition, and still be recognizable by an NCW.3 In particular, it
is not clear how to use the main feature of the Büchi condition, namely its ability to
easily track infinitely many occurrences of an event, as a co-Büchi automaton cannot
recognize languages that are based on such a tracking. Only in [Kupferman et al.

1In Büchi automata, some of the states are designated as accepting states, and a run is accepting iff it visits
states from the accepting set infinitely often [Büchi 1962]; whereas in co-Büchi automata, a run is accepting
iff it visits only the accepting set from some position.
2When applied to universal Büchi automata, the translation in [Miyano and Hayashi 1984], of alternating
Büchi automata into NBW, results in DBW. By dualizing it, one gets a translation of NCW to DCW.
3A general technique for proving lower bounds on the size of automata on infinite words is suggested in
[Yan 2006]. The technique is based on full automata, in which a word accepted by the automaton induces
a language. The fact NCWs are less expressive than NBWs is a killer for the technique, as full automata
cannot be translated to NCWs.
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2004], was it shown that there is an NBW whose equivalent NCW requires a different
structure, and only recently a non-trivial lower bound, of 1.5n, was proven [Aminof
et al. 2008].

Let us now turn to the problem of translating NBW to DCW. As noted above, the best
known upper bound for the translation is 2O(n logn), and a 2Ω(n) lower bound follows
from determinization of automata on finite words. For general ω-regular languages,
Michel’s 2Ω(n log n) lower bound implies we cannot hope for a subset-construction based
procedure for NBW determinization [Michel 1988; Löding 1999]. Michel’s language,
however, is not NCW-recognizable, and the problem of translating NBW to DCW, when
possible, is open. As in the case of going to an NCW, the question is not only whether
we can come up with a 2O(n) construction, but also whether the construction can avoid
a complex intermediate determinization construction. Recall that NCWs can be de-
terminized via the breakpoint construction of [Miyano and Hayashi 1984], which is
based on the simple subset construction: starting with an NCW with n states, one can
generate an equivalent DCW with 3n states. Thus, a linear NBW-to-NCW construction
would immediately imply a 3O(n) NBW-to-DCW construction. Such a linear construc-
tion, however, is not known.

Beyond the theoretical challenge in tightening the gaps, and the fact they are re-
lated to other gaps in our knowledge [Kupferman 2007], the translations of NBW to
NCW and DCW have immediate important applications in formal methods. The first
class of applications uses the NCW directly. The premier example in this class is of
symbolic linear temporal logic (LTL) model checking. LTL model checking reduces to
a search for bad-cycles, whose symbolic implementation involves nested fixed-points,
and is typically quadratic [Ravi et al. 2000]. An alternative approach is to translate
the LTL formula to the alternation free µ-calculus (AFMC). Evaluating AFMC formu-
las can be done with linearly many symbolic steps. It is shown in [Kupferman and
Vardi 2005b] that given an LTL formula ψ, there is an AFMC formula equivalent to ∀ψ
iff ψ can be recognized by a DBW. Moreover, an NCW for ¬ψ can be linearly translated
to an AFMC formula equivalent to ∃¬ψ, which can be negated to a formula equivalent
to ∀ψ. Thus, an improvement of the translation of NBW to NCW would immediately
imply an improvement of the translation of LTL to AFMC.

The second class of applications, which we find more appealing, is in procedures that
involve determinization. The acceptance by the industry of automata-based procedures
that involve determinization of automata on infinite words has been very partial. Ex-
amples include complementation, synthesis, game solving, temporal logic decidability,
reasoning about Markov decision processes, monitoring-based run-time verification,
and more. This has to do with the intricacy of optimal determinization constructions
[Safra 1988; Muller and Schupp 1995; Piterman 2006; Kähler and Wilke 2008], the
fact that the state space that results from determinization is awfully complex and is
not amenable to optimizations and a symbolic implementation, and the fact that deter-
minization requires the introduction of acceptance conditions that are more complex
than the Büchi acceptance condition. A simple translation of NBW to DCW would sig-
nificantly extend the scope of such procedures, many of which are now restricted to
safety properties.4 This class of applications is particularly appealing if we keep in
mind the fact that DCW and DBW are dual, and that NBWs are usually obtained from
LTL formulas, whose complementation is straightforward. Thus, an improved NBW to
DCW translation implies an improved LTL to DBW translation.

4For some settings of these applications, procedures that avoid determinization have already been sug-
gested [Kupferman and Vardi 2001; 2005c; Henzinger and Piterman 2006; Kupferman 2006; Schewe and
Finkbeiner 2007]. Our goal here is not to avoid determinization, but to suggest a simple subset-construction
based determinization procedure for the fragment of NBW that is DCW-recognizable.
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In the first part of this paper we solve both problems. Let us start with the trans-
lation of NBW to NCW. In the upper-bound front, we point to useful observations on
the structure of automata whose languages are NCW-recognizable, and we use these
observations in order to translate an NBW B to an NCW C whose underlying structure
is the product of B with its subset construction. Thus, given an NBW B with n states,
our translation yields an equivalent NCW with n2n states, and it has a simple sym-
bolic implementation [Morgenstern and Schneider 2008]. This construction, named the
augmented subset construction, turns out to have interesting properties and additional
applications, as will be detailed in this sequel.

In the lower-bound front, we show that the ability of NBWs to abstract precise count-
ing by counting to infinity with two states leads to exponential succinctness. Formally,
we show that for every integer n ≥ 2, there is a language Ln over a four-letter al-
phabet, such that Ln can be recognized by an NBW with O(n) states, whereas the
minimal NCW that recognizes Ln has n2n states. This leads to an asymptotically tight
2Θ(n) bound to the longstanding open problem of the state blow up in the translation
of NBW to NCW.

Our exponential lower bound suggests that an attempt to improve the translation of
NBW to DCW by going through an intermediate NCW is doomed to result in an au-
tomaton with doubly-exponentially many states. Fortunately, we show that the NCW
constructed by our upper-bound translation is transparent to additional applications
of the subset construction! That is, applying the subset construction on top of C yields
the same state space as if applying it directly on the NBW B. Using this property, we
can translate the NBW B to an equivalent DCW with 3n states. The construction is
based on the simple breakpoint construction of [Miyano and Hayashi 1984], and it can
be implemented symbolically [Morgenstern and Schneider 2008]. This answers to the
positive the longstanding open problem of whether an NBW that is DCW-recognizable
can be translated to an equivalent DCW with only a 2O(n) blow-up. It also implies
that an LTL formula of length n that is DBW-recognizable can be translated, using the

breakpoint construction, to a DBW with 22
O(n)

states. For both translations, a matching
lower bound exists [Kupferman and Vardi 2005b].

Having solved the problem of translating NBWs to NCWs and DCWs, we turn on
to study stronger acceptance conditions, and consider the translation of nondetermin-
istic Streett (NSW), Rabin (NRW), parity (NPW), and Muller (NMW) word automata
to NCW and to DCW. A straightforward approach is to first translate the stronger au-
tomata to NBWs, and then use our new translations. This approach, however, is not
optimal. For example, translating an NRW with n states and index k to the intermedi-
ate NBW results in an NBW with nk states, thus the NCW would have nk2nk states,
with no matching lower bound to the exponential dependency in k. Even more wasteful
is the case of NSWs: staring with an NSW with n states and index k, the intermediate

NBW has n2k states, thus the NCW would have n2k+n2
k

states, making the depen-
dency in k doubly-exponential. Hence, we seek a direct translation of these stronger
classes of automata to NCW and DCW.

We show that for NSW, an equivalent NCW can be defined on top of the augmented
subset construction. The definition of the co-Büchi acceptance condition is more in-
volved than that in the case of NBW, but the blow-up stays the same. This immedi-
ately provides n2n and 3n upper bound for the translation of NSW to NCW and DCW,
respectively, when exists. Clearly, the same construction is valid for special cases of
the Streett condition, like the parity or the generalized Büchi conditions.

For NRW and NMW, the situation is more complicated. Unfortunately, an equiva-
lent NCW cannot in general be defined on top of the augmented subset construction.
Moreover, even though the results on NSW imply a translation of NRW[1] (that is,
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a nondeterministic Rabin automaton with a single pair) to NCW, one cannot hope to
proceed via a decomposition of an NRW with index k to k NRW[1]s. Indeed, the under-
lying NRW[1]s may not be NCW-recognizable, even when the NRW is, and the same
for NMWs. We show that still, the NCW can be defined on top of k copies of the aug-
mented subset construction, giving rise to a kn2n upper bound for the translation to
NCW. Moreover, we show that when translating to an equivalent DCW, the k copies
can be determinized separately, while connected in a round-robin fashion, which gives
rise to a k3n blow-up. As with the other cases, the blow-up involved in the transla-
tions is asymptotically tight. The state blow-up involved in the various translations is
summarized in Table I of the Section 7.

Our improved upper bounds immediately imply the applications discussed above. We
elaborate on the applications further in Section 6. An important and useful property of
our constructions is the fact they have only a one-sided error when applied to automata
whose language is not NCW-recognizable. Thus, given an automaton A, the NCW C
and the DCW D we construct are such that L(A) ⊆ L(C) = L(D) (and L(A) = L(C) =
L(D) in case A is NCW-recognizable). Likewise, given an LTL formula ψ, the DBW
Dψ we construct is such that L(Dψ) ⊆ L(ψ) (and L(Dψ) = L(ψ) in case ψ is DBW-
recognizable). As we show in Section 6, this enables us to extend the scope of the
applications also to specifications that are not NCW-recognizable.

2. PRELIMINARIES

Given an alphabet Σ, a word over Σ is a (possibly infinite) sequence w = w1 · w2 · · ·
of letters in Σ. For two words, x and y, we use x � y to indicate that x is a pre-
fix of y and x ≺ y to indicate that x is a strict prefix of y. An automaton is a tu-
ple A = 〈Σ, Q, δ,Q0, α〉, where Σ is the input alphabet, Q is a finite set of states,
δ : Q × Σ → 2Q is a transition function, Q0 ⊆ Q is a set of initial states, and α is an
acceptance condition. We define several acceptance conditions below. Intuitively, δ(q, σ)
is the set of states that A may move into when it is in the state q and it reads the letter
σ. The automaton A may have several initial states and the transition function may
specify many possible transitions for each state and letter, and hence we say that A is
nondeterministic. In the case where |Q0| = 1 and for every q ∈ Q and σ ∈ Σ, we have
that |δ(q, σ)| ≤ 1, we say that A is deterministic. The transition function extends to
sets of states and to finite words in the expected way, thus for a set of states S and a
finite word x, we have that δ(S, x) is the set of states that A may move into when it is
in a state in S and it reads x. Formally, δ(S, ǫ) = S and δ(S,w ·σ) =

⋃
q∈δ(S,w) δ(q, σ). We

abbreviate δ(Q0, x) by δ(x), thus δ(x) is the set of states that A may visit after reading
x. For an automaton A and a state q of A, we denote by Aq the automaton that is iden-
tical to A, except for having {q} as its set of initial states. An automaton without an
acceptance condition is called a semi-automaton.

A run r = r0, r1, · · · of A on w = w1 ·w2 · · · ∈ Σω is an infinite sequence of states such
that r0 ∈ Q0, and for every i ≥ 0, we have that ri+1 ∈ δ(ri, wi+1). Note that while a
deterministic automaton has at most a single run on an input word, a nondeterministic
automaton may have several runs on an input word. We sometimes refer to r as a word
in Qω or as a function from the set of prefixes of w to the states of A. Accordingly, we
use r(x) to denote the state that r visits after reading the prefix x.

Acceptance is defined with respect to the set inf (r) of states that the run r visits
infinitely often. Formally, inf (r) = {q ∈ Q | for infinitely many i ≥ 0 , we have ri = q}.
As Q is finite, it is guaranteed that inf (r) 6= ∅. The run r is accepting iff the set inf (r)
satisfies the acceptance condition α.

Several acceptance conditions are studied in the literature. We consider here six:

— Büchi, where α ⊆ Q, and r is accepting iff inf (r) ∩ α 6= ∅.
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— co-Büchi, where α ⊆ Q, and r is accepting iff inf (r) ⊆ α. Note that the definition
we use is less standard than the inf (r) ∩ α = ∅ definition; clearly, inf (r) ⊆ α iff
inf (r) ∩ (Q \ α) = ∅, thus the definitions are equivalent. We chose to go with this
variant as it better conveys the intuition that, as with the Büchi condition, a visit in
α is a “good event”.

— parity, where α = {α1, α2, . . . , α2k} with α1 ⊂ α2 ⊂ · · · ⊂ α2k = Q, and r is accepting
if the minimal index i for which inf (r) ∩ αi 6= ∅ is even.

— Rabin, where α = {〈α1, β1〉, 〈α2, β2〉, . . . , 〈αk, βk〉}, with αi, βi ⊆ Q and r is accepting
iff for some 1 ≤ i ≤ k, we have that inf (r) ∩ αi 6= ∅ and inf (r) ∩ βi = ∅.

— Streett, where α = {〈β1, α1〉, 〈β2, α2〉, . . . , 〈βk, αk〉}, with βi, αi ⊆ Q and r is accepting
iff for all 1 ≤ i ≤ k, we have that inf (r) ∩ βi = ∅ or inf (r) ∩ αi 6= ∅.

— Muller, where α = {α1, α2, . . . , αk}, with αi ⊆ Q and r is accepting iff for some 1 ≤ i ≤
k, we have that inf (r) = αi .

The number of sets in the parity and Muller acceptance conditions or pairs in the
Rabin and Streett acceptance conditions is called the index of the automaton. An au-
tomaton accepts a word if it has an accepting run on it. The language of an automaton
A, denoted L(A), is the set of words that A accepts. We also say that A recognizes the
language L(A). For two automata A and A′, we say that A and A′ are equivalent if
L(A) = L(A′).

We denote the different classes of automata by three letter acronyms in {D,N} ×
{B, C, P, R, S, M} × {W}. The first letter stands for the branching mode of the automa-
ton (deterministic or nondeterministic); the second letter stands for the acceptance-
condition type (Büchi, co-Büchi, parity, Rabin, Streett, or Muller); and the third letter
indicates that the automaton runs on words. We say that a language L is γ-recognizable
if L can be recognized by an automaton in the class γ.

Different classes of automata have different expressive power. In particular, while
NBWs recognize all ω-regular languages [McNaughton 1966], DBWs are strictly less
expressive than NBWs, and so are DCWs [Landweber 1969]. In fact, a language L is in
DBW iff its complement is in DCW. Indeed, by viewing a DBW as a DCW and switching
between accepting and non-accepting states, we get an automaton for the complement-
ing language, and vice versa. The expressiveness superiority of the nondeterministic
model over the deterministic one does not apply to the co-Büchi acceptance condition.
There, every NCW has an equivalent DCW [Miyano and Hayashi 1984]. As for par-
ity, Rabin, Streett and Muller automata, both the deterministic and nondeterministic
models recognize all ω-regular languages [Thomas 1990].

3. FROM NBW TO NCW

In this section we present our improved upper and lower bounds for the translation,
when possible, of NBWs to NCWs. For readers who skipped the preliminaries, let us
mention that we work here with a less standard definition of the co-Büchi condition,
where a run r satisfies a co-Büchi condition α iff inf(r) ⊆ α.

3.1. Upper Bound

We start with the upper bound and provide a constructive proof, showing that for every
NBW B with n states whose language is NCW-recognizable, there is an equivalent
NCW C with at most n2n states. The underlying structure of C is very simple: it runs
B in parallel to its subset construction. We refer to the construction as the augmented
subset construction, and we describe the rationale behind it below.

Consider an NBW B with set αB of accepting states. The subset construction of B
maintains, in each state, all the possible states that B can be at. Thus, the subset
construction gives us full information about B’s potential to visit αB in the future.
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However, the subset construction loses information about the past. In particular, we
cannot know whether fulfilling B’s potential requires us to give up past visits in αB. For
that reason, the subset construction is adequate for determinizing automata on finite
words, but not good enough for determinizing ω-automata. A naive try to determinize B
could be to build its subset construction and define the acceptance set as all the states
for which B has the potential to be in αB. The problem is that a word might infinitely
often gain this potential via different runs. Were we only able to guarantee that the
run of the subset construction follows a single run of the original automaton, we would
have ensured a correct construction. Well, this is exactly what the augmented subset
construction does!

Definition 3.1 (Augmented subset construction). Let A = 〈Σ, A, δA, A0〉 be a semi-
automaton (an automaton without an acceptance condition). We define its augmented
subset construction A′ as the product of A with its subset construction. Formally, A′ =
〈Σ, A′, δA′ , A′

0〉, where

—A′ = A× 2A. That is, the states of A′ are all the pairs 〈a,E〉 where a ∈ A and E ⊆ A.
— For all 〈a,E〉 ∈ A′ and σ ∈ Σ, we have δA′(〈a,E〉, σ) = δA(a, σ) × {δA(E, σ)}. That is,

A′ nondeterministically follows A on its A-components and deterministically follows
the subset construction of A on its 2A-component.

—A′
0 = A0 × {A0}.

Once the above intuition is understood, there is still a question of how to define the
acceptance condition on top of the augmented subset construction. Since we target for
an NCW, we cannot check for infiniteness. However, the premise that the NBW is in
DCW guarantees that a word is accepted iff there is a run of the augmented subset
construction on it that remains in “potentially good states” from some position. We
explain and formalize this property below.

We start with a property relating states of a DCW (in fact, any deterministic automa-
ton) that are reachable via words that lead to the same state in the subset construction
of an equivalent automaton.

LEMMA 3.2. Consider an automaton A with a transition function δA and a DCW
D with a transition function δD such that L(A) = L(D). Let d1 and d2 be states of D
such that there are two finite words x1 and x2 such that δD(x1) = d1, δD(x2) = d2, and
δA(x1) = δA(x2). Then, L(Dd1) = L(Dd2).

PROOF. We prove that L(Dd1) ⊆ L(Dd2). The other direction is analogous. Consider
a word w ∈ L(Dd1). Since δD(x1) = d1, we have that x1 · w ∈ L(A). Let r be the
accepting run of A on x1 ·w. Since δA(x1) = δA(x2), there is a run r′ of A on x2 ·w such
that r′(x2) = r(x1) and for all prefixes y of w such that x ≺ y, it holds r′(y) = r(y).
Clearly, inf(r′) = inf(r), thus r′ is accepting, and x2 · w ∈ L(A). Hence, x2 · w ∈ L(D).
Since δD(x2) = d2, it follows that w ∈ L(Dd2), and we are done.

For automata on finite words, if two states of the automaton have the same language,
they can be merged without changing the language of the automaton. While this is
not the case for automata on infinite words, the lemma below enables us to do take
advantage of such states. We show it for DCW, yet it holds for every deterministic
automaton.

LEMMA 3.3. Consider a DCW D = 〈Σ, D, δ,D0, α〉. Let d1 and d2 be states in D such
that L(Dd1) = L(Dd2). For all finite words u and v, if δ(d1, u) = d1 and δ(d2, v) = d2 then

for all words w ∈ (u+ v)∗ and states d′ ∈ δ(d1, w) ∪ δ(d2, w), we have L(Dd′) = L(Dd1).
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PROOF. We prove that L(Dd′) = L(Dd1) for states d′ ∈ δ(d1, w). The proof for states
d′ ∈ δ(d2, w) is analogous.

For every word w ∈ (u+ v)∗ there is an index n ≥ 0 such that w ∈ (u+ v)n. We prove

by induction on n that L(Dd1) = L(Dd′) for every d′ ∈ δ(d1, w). The base case, in which
n = 0, is obvious, as d′ = d1. Assume that the claim holds for n and consider a word
w ∈ (u + v)n+1. Assume that w = x · u, for x ∈ (u + v)n. By the induction hypothesis,

the state d′′ = δ(d1, x) is such that L(Dd1) = L(Dd′′).

Consider a word y ∈ L(Dd1). We claim that y ∈ L(Dd′). Indeed, since δ(d1, u) = d1,

we have that u · y ∈ L(Dd1). Thus, u · y ∈ L(Dd′′). Since d′ = δ(d′′, u), it follows that

y ∈ L(Dd′). For the other direction, consider a word y ∈ L(Dd′). We claim that y ∈

L(Dd1). Indeed, since d′ = δ(d′′, u), we have that u · y ∈ L(Dd′′). Thus, by the induction
hypothesis, u · y ∈ L(Dd1). Therefore, since δ(d1, u) = d1, we get that y ∈ L(Dd1), as
required.

The other case, in which w = x · v, is proved analogously, having d2 in the role of
d1.

Our next observation is the key to the definition of the acceptance condition on top of
the augmented subset construction. Intuitively, it shows that if an NCW-recognizable
language L is indifferent to a prefix in (u+ v)∗, and L contains the language (v∗ ·u+)ω,
then L must also contain the word vω .

LEMMA 3.4. Consider an NCW-recognizable language L. For all finite words u and
v, if (v∗ · u+)ω ⊆ L and for every finite word x ∈ (u + v)∗ and infinite word w we have
that w ∈ L iff x · w ∈ L, then vω ∈ L.

PROOF. Let D = 〈Σ, D, δ,D0, α〉 be a DCW recognizing L. Assume by way of contra-
diction that vω 6∈ L. Then, there is i1 ≥ 1 such that the run of D on vi1 visits a state not
in α. Let δ(vi1 · u) = s1. By the first condition, L(Ds1) = L, thus, by our assumption,
vω 6∈ L(Ds1). Then, there is i2 ≥ 1 such that the run of Ds1 on vi2 visits a state not in α.
Let δ(s1, v

i2 · u) = s2. In a similar way, we can continue and define an infinite sequence
of states s1, s2, s3, . . . such that for all j ≥ 1, there is ij+1 ≥ 1 such that the run of Dsj

on vij+1 visits a state not in α and sj+1 = δ(sj , v
ij+1 · u). Since D is finite, there are

1 ≤ l1 < l2 such that sl1 = sl2 .
Consider the word w = vi1 · u · vi2 · u · · · vil1 · u · (vil1+1 · u · · · vil2 · u)ω. On the one

hand, the run of D on w visits infinitely many states not in α. On the other hand,
w ∈ (v∗ · u+)ω. Therefore, by the second condition, w ∈ L. Thus, we have reached a
contradiction, implying that vω ∈ L.

By considering the language of a specific state of the DCW, Lemma 3.4 implies the
following.

COROLLARY 3.5. Let D = 〈Σ, D, δ,D0, α〉 be a DCW. Consider a state d ∈ D. For all
nonempty finite words v and u, if (v∗ · u+)ω ⊆ L(Dd) and for all words w ∈ (v + u)∗ and

states d′ ∈ δ(d, w), we have L(Dd′) = L(Dd), then vω ∈ L(Dd).

We can now present our construction together with its acceptance condition. An ex-
ample of the construction is provided in Figure 1.

THEOREM 3.6. For every NBW B with n states that is NCW-recognizable there is an
equivalent NCW C with at most n2n states.

PROOF. Let B = 〈Σ, B, δB, B0, αB〉. We define the NCW C = 〈Σ, C, δC , C0, αC〉 as the
augmented subset construction of B with the following acceptance condition: a state is
a member of αC if it is reachable from itself along a path whose projection on B visits
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αB. Formally, 〈b, E〉 ∈ αC if there is a state 〈b′, E′〉 ∈ αB × 2B and finite words y1 and
y2 such that 〈b′, E′〉 ∈ δC(〈b, E〉, y1) and 〈b, E〉 ∈ δC(〈b′, E′〉, y2). We refer to y1 · y2 as the
witness for 〈b, E〉. Note that all the states in αB × 2B are members of αC with an empty
witness.

We prove the equivalence of B and C. Note that the 2B-component of C proceeds in a
deterministic manner. Therefore, each run r of B induces a single run of C (the run in
which the B-component follows r). Likewise, each run r′ of C induces a single run of B,
obtained by projecting r′ on its B-component.

We first prove that L(B) ⊆ L(C). Consider a word w ∈ L(B). Let r be an accepting
run of B on w. We prove that the run r′ induced by r is accepting. Consider a state
〈b, E〉 ∈ inf (r ′). We prove that 〈b, E〉 ∈ αC . Since 〈b, E〉 ∈ inf (r ′), then b ∈ inf (r). Thus,
there are three prefixes x, x·y1, and x·y1·y2 ofw such that r′(x) = r′(x·y1·y2) = 〈b, E〉 and
r′(x · y1) ∈ αB × 2B. Therefore, y1 · y2 witnesses that 〈b, E〉 is in αC . Hence, inf (r) ⊆ αC ,
and we are done.

We now prove that L(C) ⊆ L(B). Consider a wordw ∈ L(C). Let r′ be an accepting run
of C on w, let 〈b, E〉 be a state in inf (r ′), and let x be a prefix of w such that r′(x) = 〈b, E〉.
Since r′ is accepting, inf (r ′) ⊆ αC , so 〈b, E〉 ∈ αC . Let z be a witness for the membership
of 〈b, E〉 in αC . By the definition of a witness, δB(E, z) = E and there is a run of Bb on
z that visits αB and goes back to b. If z = ǫ, then b ∈ αB , the run of B induced by r′ is
accepting, and we are done. Otherwise, x · zω ∈ L(B), and we proceed as follows.

Recall that the language of B is NCW-recognizable. Let D = 〈Σ, D, δD, D0, αD〉 be a
DCW equivalent to B. Since L(B) = L(D) and x · zω ∈ L(B), it follows that the run ρ
of D on x · zω is accepting. Since D is finite, there are two indices i1 and i2 such that
i1 < i2, ρ(x · zi1) = ρ(x · zi2), and for all prefixes y of x · zω such that x · zi1 � y, we have
ρ(y) ∈ αD. Let d2 = ρ(x · zi1).

Consider the run η of D on w. Since r′ visits 〈b, E〉 infinitely often and D is finite,
there must be a state d1 ∈ D and infinitely many prefixes p1, p2, . . . of w such that for
all i ≥ 1, we have r′(pi) = 〈b, E〉 and η(pi) = d1.

We claim that the states d1 and d2 satisfy the conditions of Lemma 3.2 with x1
being p1 and x2 being x · zi1 . Indeed, δD(p1) = d1, δD(x · zi1) = d2, and δB(p1) = δB(x ·
zi1) = E. For the latter equivalence, recall that δB(x) = E and δB(E, z) = E. Hence, by
Lemma 3.2, we have L(Dd1) = L(Dd2).

Recall the sequence of prefixes p1, p2, . . .. For all i ≥ 1, let pi+1 = pi · ti. We now claim
that for all i ≥ 1, the state d1 satisfies the conditions of Corollary 3.5 with u being zi2−i1

and v being ti. The second condition is satisfied by Lemma 3.3. For the first condition,
consider a word w′ ∈ (v∗ ·u+)ω. We prove that w′ ∈ L(Dd1). Recall that there is a run of
Bb on v that goes back to b and there is a run of Bb on u that visits αB and goes back to
b. Recall also that for the word p1, we have that r′(p1) = 〈b, E〉 and η(p1) = d1. Hence,
p1 · w′ ∈ L(B). Since L(B) = L(D), we have that p1 · w′ ∈ L(D). Therefore, w′ ∈ L(Dd1).

Thus, by Corollary 3.5, for all i ≥ 1 we have that tωi ∈ L(Dd1). Since δD(d1, ti) = d1,
it follows that all the states that D visits when it reads ti from d1 are in αD. Note
that w = p1 · t1 · t2 · · · . Hence, since δD(p1) = d1, the run of D on w is accepting, thus
w ∈ L(D). Since L(D) = L(B), it follows that w ∈ L(B), and we are done.

Remark 3.7. The best known translation of an NBW to an NCW for the comple-
menting language (when exists) is super-exponential and results in a DCW. Indeed,
the translation goes via an intermediate deterministic Streett [Safra 1988] or parity
[Piterman 2006; Kähler and Wilke 2008] automaton for the complementing language.
Thus, starting with an NBW with n states, we end up with a DCW with 2O(n logn)

states. One may wonder whether the ideas in this section could be used in order to
come up with a 2O(n) translation of an NBW to a complementing NCW (when exists).
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B = B × 2B (with a corresponding co-Büchi acceptance condition)

2B

C

(Only the reachable states)

L(B) = L(C) = (Σ∗a)ω +Σ∗bbΣ∗aΣω

〈q0, {q0, q3}〉q0

q3

q2

q1

〈q3, {q1, q3}〉 〈q3, {q1, q2, q3}〉〈q3, {q0, q3}〉

{q0, q3} {q1, q3} {q1, q2, q3}

〈q2, {q1, q2}〉 〈q2, {q1, q2, q3}〉

{q1, q2}

〈q1, {q1}〉

{q1}{q0}

〈q1, {q1, q2}〉

〈q0, {q0}〉

〈q1, {q1, q2, q3}〉〈q1, {q1, q3}〉

b

a

b

a

b

a b ba

a

b

a b

b

ab
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Σ

a

b b

a
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b

a

a

b

a
a

a

b
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aa
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b

bb

b

b bb

ba

a

Fig. 1. Translating the NBW B to the NCW C via the augmented subset construction.

In fact, a 2O(n logn) lower bound for this problem is quite straightforward: It is not hard
to see that the languages used by Michel in order to prove a 2O(n logn) lower bound for
NBW complementation are DBW-recognizable [Michel 1988], thus their complement-
ing languages are NCW-recognizable. In addition, every NCW can be translated to an
equivalent NBW with at most twice as many states. Hence, if we assume by way of
contradiction that there is a 2O(n) translation of an NBW to a complementing NCW
(when exists), then applying it to the languages used by Michel, and then translating
the obtained NCWs to equivalent NBWs, would result in complementing NBWs with
only 2O(n) states, contradicting Michel’s lower bound.

3.2. Lower Bound

In this section we prove an exponential lower bound for the state blow-up in the trans-
lation of NBW to NCW. For that, we describe a family of languages L2, L3, . . . such that
for all n ≥ 2, an NBW for Ln has O(n) states whereas an NCW for Ln requires at least
n2n states.

Let Σ = {0, 1, $,#}. The language Ln is going to be the union of a language L′
n

with the language (Σ∗ · #)ω . Before we define L′
n formally, we describe the intuition

behind it. Our alert readers are probably bothered by the fact the (Σ∗ ·#)ω component
of Ln is not NCW-recognizable. Thus, one task of L′

n is to neutralize the non NCW-
recognizability of this component. The way to do this would be to have a finite bound
th(n) (the threshold of n) such that L′

n contains all words in (Σ∗ · #)ω that have a
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subword (0 + 1 + $)h, for h > th(n). Accordingly, the language Ln is also the union of
L′
n with the language (Σ≤th(n) · #)ω, in which the problematic (Σ∗ · #)ω component is

replaced by a component that is NCW-recognizable. The point is that while an NBW
that recognizes Ln can use its L′

n ∪ (Σ∗ · #)ω definition, an NCW for Ln must use
its equivalent L′

n ∪ (Σ≤th(n) · #)ω definition, and must therefore count to th(n). Thus,
the second task of L′

n is to fulfill the first task with a threshold that is exponential
in n. This way, the ability of the NBW to avoid the counting gives it the exponential
advantage we are after.

The language L′
n is going to fulfill its second task as follows. Consider a word in Σω

and a subword u ∈ (0 + 1 + $)∗ of it. The subword u is of the form v0$v1$v2$v3 · · · ,
for vi ∈ (0 + 1)∗. Thus, u can be viewed as an attempt to encode a binary n-bit cyclic
counter in which two adjacent values are separated by $. For example, when n = 3,
a successful attempt might be 100$101$110$111$000. Each subword in (0 + 1 + $)∗ of
length (n + 1)2n must reach the value 1n or contain an error (in its attempt to encode
a counter). There are two types of errors. One type is a “syntax error”, namely a value
vi of length different from n. The second type is an “improper-increase error”, namely
a subword vi · $ · vi+1 ∈ (0 + 1)n · $ · (0 + 1)n such that vi+1 is not the successor of vi in a
correct binary encoding of a cyclic n-bit counter. The language L′

n consists of all words
that contain the value 1n or an error, eventually followed by #.

We now define L′
n formally. For v, v′ ∈ (0+1)∗, we use not succn(v, v

′) to indicate that
v and v′ are in (0 + 1)n but v′ is not the successor of v in the binary encoding of a n-bit
counter. For example, not succ3(101, 111) holds, but not succ3(101, 110) does not hold.
We define the following languages over Σ.

— Sn = {$ · (0 + 1)m · $ : m < n} ∪ {(0 + 1)m : m > n},
— In = {v · $ · v′ | not succn(v, v

′)}, and
—L′

n = Σ∗ · (Sn ∪ In ∪ {1n}) · Σ∗ ·# · Σω.

Now, Ln = L′
n∪ (Σ∗ ·#)ω. For example, for n = 3, we have that 010$011#110$111# · · · is

in L3 since it is in L′
3 with a 111 subword, the word 010$$011# · · · is in L3 since it is in

L′
3 by a syntax error, the word $010$010$# · · · is in L3 since it is in L′

3 by an improper-
increase error, the word (010$011#)ω is in L3 since it has infinitely many #’s, and the
word 010$011#000$001$010#1ω is not in L3, as it has only finitely many #’s, it does
not contain an error, and while it does contain the subword 111, it does not contain a
subword 111 that is eventually followed by #.

LEMMA 3.8. For every n ≥ 1, the language L′
n can be recognized by an NCW with

O(n) states and by an NBW with O(n) states.

PROOF. We show that there is a nondeterministic automaton over finite words
(NFW) with O(n) states recognizing Sn∪In∪{1n}. Completing the NFW to an NBW or
an NCW for L′

n is straightforward. It is easy to construct NFWs with O(n) states for Sn
and for {1n}. An NFW with O(n) states for In is fairly standard too, nevertheless we
define it in detail in Figure 2, for the sake of completeness. A proper binary counting
mod 2n changes all the rightmost bits in a binary block until, and including, the first 0.
The other bits remain unchanged. An improper counting implies that at least one bit
is improperly set. Thus, the NFW can guess which bit is improperly set, and check it.
There are exactly four possibilities for the improper bit: 0 changed to 1 (denoted 0 1)
instead of 0  0, 1  0 instead of 1  1, 0  0 instead of 0  1, and 1  1 instead of
1  0. Since the two relevant bits are exactly n + 1 positions apart, the NFW should
only count to n+ 1 and check whether there is a 0 prior to the $ sign.
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0 1 instead of 0 0

0 0 instead of 0 1

1 1 instead of 1 0

1 0 instead of 1 1

In:
n − 1

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

Σ

000

Σ ΣΣ

1 11

0

Σ

Σ

000

Σ ΣΣ

1 11

0

Σ

Σ

000

Σ ΣΣ

0 11

1

Σ

0

Σ$$$

Σ ΣΣ

0 11

Σ

Σ

1

Σ$$$

Σ ΣΣ

1 11

Fig. 2. The finite automaton In, recognizing an improper binary counting

Zn:

q1q2qth(n)
qth(n)+1

q0

· · ·
Σ

##

Σ

#

ΣΣ

Σ

#

Σ

Fig. 3. The NCW Zn recognizing infinitely many #’s within bounded distances

An immediate corollary of Lemma 3.8 is that Ln can be recognized by an NBW with
O(n) states. Next, we show that while Ln is NCW-recognizable, an NCW for it must be
exponentially larger.

LEMMA 3.9. For every n ≥ 2, the language Ln is NCW-recognizable, and every NCW
recognizing Ln must have at least n2n states.

PROOF. We first prove that Ln is NCW-recognizable. Let th(n) = (n+1)2n. Consider
the language Zn = (Σ≤th(n) ·#)ω . It can be easily verified that Zn is recognized by the
NCW Zn, defined in Figure 3.
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We prove that Ln = L′
n ∪ Zn. Since, by Lemma 3.8, the language L′

n is NCW-
recognizable, it would follow that Ln is NCW-recognizable. Clearly, Zn ⊆ (Σ∗ · #)ω.
Thus, L′

n ∪ Zn ⊆ Ln, and we have to prove that Ln ⊆ L′
n ∪ Zn. For that, we prove

that (Σ∗ · #)ω ⊆ L′
n ∪ Zn. Consider a word w ∈ (Σ∗ · #)ω. If w ∈ Zn, then we are

done. Otherwise, w contains a subword u ∈ (0 + 1 + $)h, for h > th(n). Thus, either
u does not properly encode a n-bit cyclic counter (that is, it contains a syntactic or an
improper-increase error) or u has the subword 1n. Hence, u ∈ Σ∗ · (Sn ∪ In ∪ {1n}) · Σ∗.
Since w ∈ (Σ∗ ·#)ω, it has infinitely many occurrences of #’s. In particular, there is an
occurrence of # after the subword u. Thus, w ∈ L′

n, and we are done.
We now turn to prove the lower bound. Assume by way of contradiction that there is

an NCW Cn with acceptance set α and at most n2n − 1 states that recognizes Ln. Con-
sider the word w = (00 · · ·0$00 · · ·01$ · · ·$11 · · ·10#)ω, in which the distance between
two consequent #’s is d = (n+1)(2n− 1). Note that for all n ≥ 2, we have that d > n2n.
The word w has infinitely many #’s and it therefore belongs to Ln. Thus, there is an
accepting run r of Cn on w. Let t be a position such that rt′ ∈ α for all t′ ≥ t. Let t0 ≥ t
be the first position after t such that wt0 = #. Since Cn has at most n2n−1 states, there
are two positions t1 and t2, with t0 < t1 < t2 ≤ t0 + n2n, such that rt1 = rt2 .

Let w′ = w1 · w2 · · ·wt1 · (wt1+1 · · ·wt2)
ω . The NCW Cn accepts w′ with a run r′ that

pumps r between the positions t1 and t2. Formally, r′ = r0, r1, . . . , rt1 , (rt1+1, . . . , rt2)
ω.

Note that since rt′ ∈ α for all t′ ≥ t, the run r′ is indeed accepting. We would get to a
contradiction by proving that w′ 6∈ Ln.

Since t2 ≤ t0 + n2n and n2n < d, we have that wt1+1 · · ·wt2 has no occurrence of #,
thus w′ has no occurrences of # after position t0. Recall that Ln = L′

n∪(Σ∗ ·#)ω . By the
above, w′ 6∈ (Σ∗ ·#)ω . Furthermore, since L′

n = Σ∗ · (Sn ∪ In ∪ {1n}) ·Σ∗ ·# ·Σω, the fact
w′ has no occurrences of # after position t0 implies that the only chance of w′ to be in
Ln is to have a prefix of w1 · · ·wt0 in Σ∗ · (Sn ∪ In ∪{1n}) ·Σ∗ ·#. Such a prefix, however,
does not exist. Indeed, all the subwords in (0+1+$)∗ of w1 · · ·wt0 do not contain errors
in their encoding of a n-bit counter, nor they reach the value 1n. It follows that w 6∈ Ln,
and we are done.

Lemmas 3.8 and 3.9 imply the desired exponential lower bound:

THEOREM 3.10. There is a family of languages L2, L3, . . ., over an alphabet of size
4, such that for every n ≥ 2, the language Ln is NCW-recognizable, it can be recognized
by an NBW with O(n) states, and every NCW that recognizes it has at least n2n states.

Combining the above lower bound with the upper bound in Theorem 3.6, we can
conclude with the following.5

THEOREM 3.11. The asymptotically tight bound for the state blow up in the trans-
lation, when possible, of an NBW to an equivalent NCW is 2Θ(n).

Remark 3.12. While NCW = DCW, nondeterminism does add power to weak au-
tomata [Muller et al. 1986]. Let NWW and DWW denote nondeterministic and deter-
ministic weak automata on infinite words. While NWW = NCW, it is known that DWW
= DBW ∩ DCW [Landweber 1969; Maler and Staiger 1997; Boigelot et al. 2001]. Since
the translation of an NCW to an equivalent NWW is always possible and only doubles
the state space, Theorem 3.6 implies an n2n translation of an NBW to an NWW, when
possible. We now show that the languages Ln we used in the lower-bound proof are ac-
tually DWW-recognizable, implying that the asymptotically tight bound for the state

5Note that the lower and upper bounds are only asymptotically tight, leaving a gap in the constants. This is
because the NBW that recognizes Ln requires O(n) states and not strictly n states.
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blow up in the translation, when possible, of an NBW to an equivalent NWW is 2Θ(n).
Thus, Theorem 3.11 applies already to the special case of weak automata.

We prove that Ln is DBW-recognizable. Since DWW = DBW ∩ DCW, and Ln is DCW-
recognizable (Lemma 3.9), it follows that Ln is DWW-recognizable. Clearly, (Σ∗ · #)ω

is DBW-recognizable. In addition, L′
n is a co-safety language (every word in L′

n has
a good prefix, namely a prefix all whose extensions are in L′

n), As such, L′
n is DBW-

recognizable. Since Ln = L′
n ∪ (Σ∗ · #)ω and DBWs are closed under finite union, we

are done.

4. FROM NBW TO DCW

In Section 3.1, we presented the augmented subset construction and translated an
NBW B to an NCW C. In this section we use the special structure of C in order to
determinize it without an additional exponential blow-up. The key to our construction
is the observation that the augmented subset construction is transparent to additional
applications of the subset construction. Indeed, applying the subset construction on C
with state space B × 2B, one ends up in a deterministic automaton with state space
{{〈q, E〉 | q ∈ E} : E ⊆ B}, which is isomorphic to 2B. This transparency also applies to
a union of some identical copies of the augmented subset construction.

PROPOSITION 4.1. Consider a semi-automaton A, let C be its augmented subset
construction, and let C′ be a union of some copies of C. Then the subset construction of
C′ is isomorphic to the subset construction of A.

PROOF. Applying the subset construction on C with state space A × 2A, one ends
up in a deterministic automaton with state space {{〈q, E〉 | q ∈ E} : E ⊆ A}, which is
isomorphic to 2A. Since C′ is the union of some identical copies of C, say C1, . . . , Cm, its
subset construction is {{〈〈q1, E〉, 〈q2, E〉, . . . , 〈qm, E〉〉 | q1, . . . , qm ∈ E} : E ⊆ A}, which
is again isomorphic to 2A. (Note that each of q1, . . . , qm above is not a name of a specific
state, but a state-variable.)

It is well known that the subset construction can be used as an intermediate layer
in translating an NCW with state space C to a DCW with state space 3C [Miyano
and Hayashi 1984]. Thus, Proposition 4.1 above suggests that, when applied to C, the
translation of [Miyano and Hayashi 1984] would not involve an additional exponential
blow-up on top of the one involved in going from B to C. As we show in Theorem 4.2
below, this is indeed the case.

THEOREM 4.2. For every NBW B with n states that is NCW-recognizable there is an
equivalent DCW D with at most 3n states.

PROOF. The DCW D follows all the runs of the NCW C constructed in Theorem 3.6.
Let αC ⊆ B × 2B be the acceptance condition of C. The DCW D accepts a word if some
run of C remains in αC from some position.6 At each state, D keeps the corresponding
subset of the states of C, and it updates it deterministically whenever an input letter
is read. In order to check that some run of C remains in αC from some position, the
DCW D keeps track of runs that do not leave αC . The key observation in [Miyano
and Hayashi 1984] is that keeping track of such runs can be done by maintaining the
subset of states that belong to these runs.

Formally, let B = 〈Σ, B, δB, B0, αB〉. We define a function f : 2B → 2B by f(E) =
{b | 〈b, E〉 ∈ αC}. Thus, when the subset component of D is in state E, it should continue

6Readers familiar with the construction of [Miyano and Hayashi 1984] may find it easier to view the con-
struction here as one that dualizes a translation of universal co-Büchi automata to deterministic Büchi
automata, going through universal Büchi word automata – these constructed by dualizing Theorem 3.6.
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and check the membership in αC only for states in f(E). We define the DCW D =
〈Σ, D, δD, D0, αD〉 as follows.

—D = {〈S,O〉 | S ⊆ B and O ⊆ S ∩ f(S)}.
— For all 〈S,O〉 ∈ D and σ ∈ Σ, the transition function is defined as follows.

— If O 6= ∅, then δD(〈S,O〉, σ) = {〈δB(S, σ), δB(O, σ) ∩ f(S)〉}.
— If O = ∅, then δD(〈S,O〉, σ) = {〈δB(S, σ), δB(S, σ) ∩ f(S)〉}.

—D0 = {〈B0, ∅〉}.
— αD = {〈S,O〉 | O 6= ∅}.

Thus, the run of D on a wordw has to visit states in 2B×{∅} only finitely often, which
holds iff some run of C on w eventually always visits αC . Since each state of D corre-
sponds to a function from B to the set of size three { “in S ∩O”, “in S \O”, “not in S”},
its number of states is at most 3|B|.

5. STRONGER ACCEPTANCE CONDITIONS

The Büchi acceptance condition can be viewed as a special case of the Rabin, Streett,
and Muller acceptance conditions. While nondeterministic Rabin, Streett, and Muller
automata are not more expressive than nondeterministic Büchi automata, they are
more succinct: translating an NRW, NSW, and NMW with n states and index k to an
NBW, results in an NBW with O(nk), O(n2k), and O(n2k) states, respectively [Safra
and Vardi 1989; Seidl and Niwiński 1999]. In this section we study the translation,
when possible, of NRWs, NSWs, and NMWs to NCWs and DCWs. Since the Büchi
acceptance condition is a special case of these stronger conditions, the 2Ω(n) lower
bound from Theorem 3.10 applies, and the challenge is to come up with matching
upper bounds.

A first attempt to translate NRWs, NSWs, and NMWs to NCWs is to go via interme-
diate NBWs and then apply the augmented subset construction. This, however, results
in NCWs that are not optimal. A second attempt is then to apply the augmented subset
construction directly on the input automaton, and check the possibility of defining on
top of it a suitable co-Büchi acceptance condition. It is not hard to see that this second
attempt does not work for all automata. Consider for example the Rabin acceptance
condition. Note that the augmented subset construction does not alter a deterministic
automaton. Also, DRWs are not DCW-type [Kupferman et al. 2004] (that is, there is a
DRW A whose language is DCW-recognizable, but still no DCW equivalent to A can
be defined on top of the structure of A). It follows that there are NRWs whose lan-
guage is NCW-recognizable, but still no NCW recognizing them can be defined on top
of the automaton obtained by applying the augmented subset construction on them
(see Theorem 5.2 for a concrete example).

With this in mind, this section is a collection of good news. First, we show that NSWs
can be translated to NCWs on top of the augmented subset construction. Second, while
this is not valid for NRWs and NMWs, we show that they can be translated to NCWs on
top of a union of copies of the augmented subset construction. Moreover, when trans-
lating to an equivalent DCW, the different copies can be determinized separately.

5.1. From NSW to NCW

The translation of an NSW to an NCW, when exists, can be done on top of the aug-
mented subset construction, generalizing the acceptance condition used for translating
an NBW to an NCW.

In the translation of an NBW to an NCW, we start with an NBW B and define a state
〈b, E〉 of the augmented subset construction to be co-Büchi accepting if there is some
path p in B, taking 〈b, E〉 back to itself via a Büchi accepting state. The correctness
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of the construction follows from the fact that an NCW-recognizable language is closed
under pumping such cycles. Thus, if B accepts a word that includes a subword along
which p is read, then B also accepts words obtained by pumping the subword along
which p is read. In turns out that this intuition is valid also when we start with an
NSW S: a state 〈s, E〉 of the augmented subset construction is co-Büchi accepting if
there is some path p in S, taking 〈s, E〉 back to itself, such that p visits αi or avoid
βi for every pair i in the Streett acceptance condition. This guarantees that pumping
p infinitely often results in a run that satisfies the Streett condition, which in turn
implies that an NCW-recongnizable language is closed under such pumping.

We formalize and prove this idea below.

THEOREM 5.1. For every NSW S with n states that is NCW-recognizable, there is
an equivalent NCW C with at most n2n states.

PROOF. Let S = 〈Σ, S, δS , S0, 〈β1, α1〉, . . . 〈βk, αk〉〉. We define the NCW C = 〈Σ, C,
δC , C0, αC〉 as the augmented subset construction of S with the following acceptance
condition: a state is a member of αC if it is reachable from itself along a path whose
projection on S visits αi or avoids βi for every 1 ≤ i ≤ k.

Formally, 〈s, E〉 ∈ αC if there is a finite word z = z1z2 · · · zm of length m and a se-
quence of m + 1 states 〈s0, E0〉 . . . 〈sm, Em〉 such that 〈s0, E0〉 = 〈sm, Em〉 = 〈s, E〉, and
for all 0 ≤ l < m we have 〈sl+1, El+1〉 ∈ δC(〈sl, El〉, zl+1), and for every 1 ≤ i ≤ k, either
there is 0 ≤ l < m such that sl ∈ αi or sl 6∈ βi for all 0 ≤ l < m. We refer to z as the
witness for 〈s, E〉. Note that z may be the empty word.

We prove the equivalence of S and C. Note that the 2S-component of C proceeds in a
deterministic manner. Therefore, each run r of S induces a single run of C (the run in
which the S-component follows r). Likewise, each run r of C induces a single run of S,
obtained by projecting r on its S-component.

We first prove that L(S) ⊆ L(C). Note that this direction is always valid, even if S
is not NCW-recognizable. Consider a word w ∈ L(S). Let r be an accepting run of S on
w. We prove that the run r′ induced by r is accepting. Let J ⊆ {1, . . . , k} denote the set
of indices of acceptance-pairs whose β-element is visited infinitely often by r. That is,
J = {j | βj ∩ inf (r) 6= ∅}. Consider a state 〈s, E〉 ∈ inf (r ′). We prove that 〈s, E〉 ∈ αC .
Since 〈s, E〉 appears infinitely often in r′ and r is accepting, it follows that there are
two (not necessarily adjacent) occurrences of 〈s, E〉, between which r visits αj for all
j ∈ J and avoids βi for all i 6∈ J . Hence, we have the required witness for 〈s, E〉, and we
are done.

We now prove that L(C) ⊆ L(S). Consider a word w ∈ L(C), and let r be an accepting
run of C on w. Let J ⊆ {1, . . . , k} denote the set of indices of acceptance-pairs whose
β-element is visited infinitely often by r. That is, J = {j | (βj × 2S) ∩ inf (r) 6= ∅}. If
J is empty then the projection of r on its S-component is accepting, and we are done.
Otherwise, we proceed as follows. For every j ∈ J , let 〈sj , Ej〉 be a state in (βj × 2S) ∩
inf (r).

By the definition of J , all the states 〈sj , Ej〉, with j ∈ J , are visited infinitely often in
r, whereas states whose S-component is in βi, for i 6∈ J , are visited only finitely often
in r. Accordingly, the states 〈sj , Ej〉, with j ∈ J , are strongly connected via a path that
does not visit βi, for i 6∈ J . In addition, for every 〈sj , Ej〉, with j ∈ J , there is a witness
zj for the membership of 〈sj , Ej〉 in αC , going from 〈sj , Ej〉 back to itself via αj and
either avoiding βi or visiting αi, for every 1 ≤ i ≤ k. Let 〈s, E〉 be one of these 〈sj , Ej〉
states, and let x be a prefix of w such that r(x) = 〈s, E〉. Then, there is a finite word z
along which there is a path from 〈s, E〉 back to itself, visiting all αj for j ∈ J and either
avoiding βi or visiting αi for every 1 ≤ i ≤ k. Therefore, x · zω ∈ L(S).

Recall that the language of S is NCW-recognizable. Let D = 〈Σ, D, δD, D0, αD〉 be a
DCW equivalent to S. Since L(S) = L(D) and x · zω ∈ L(S), it follows that the run ρ
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of D on x · zω is accepting. Since D is finite, there are two indices, l and m, such that
l < m, ρ(x · zl) = ρ(x · zm), and for all prefixes y of x · zω such that x · zl � y, we have
ρ(y) ∈ αD. Let q be the state of D such that q = ρ(x · zl).

Consider the run η of D on w. Since r visits 〈s, E〉 infinitely often and D is finite,
there must be a state d ∈ D and infinitely many prefixes p1, p2, . . . of w such that for
all i ≥ 1, we have r(pi) = 〈s, E〉 and η(pi) = d. We claim that the states q and d of
D satisfy the conditions of Lemma 3.2 with x1 being p1 and x2 being x · zl. Indeed,
δD(p1) = d, δD(x · zl) = q, and δS(p1) = δS(x · zl) = E. For the latter equivalence, recall
that δS(x) = E and δS(E, z) = E. Hence, by Lemma 3.2, we have that L(Dq) = L(Dd).

Recall the sequence of prefixes p1, p2, . . .. For all i ≥ 1, let pi+1 = pi · ti. We now claim
that for all i ≥ 1, the state d satisfies the conditions of Corollary 3.5 with u being zm−l

and v being ti. The second condition is satisfied by Lemma 3.3. For the first condition,
consider a word w′ ∈ (v∗ · u+)ω. We prove that w′ ∈ L(Dd). Recall that there is a run of
Ss on v that goes back to s while avoiding βi for all i 6∈ J and there is a run of Ss on
u that goes back to s while visiting αj for all j ∈ J and either visiting αi or avoiding
βi for all i 6∈ J . (Informally, u “fixes” all the problems of v, by visiting αj for every βj
that v might visit.) Recall also that for the word p1, we have that r(p1) = 〈s, E〉 and
η(p1) = d. Hence, p1 · w′ ∈ L(S). Since L(S) = L(D), we have that p1 · w′ ∈ L(S).
Therefore, w′ ∈ L(Dd).

Thus, by Corollary 3.5, for all i ≥ 1 we have that tωi ∈ L(Dd). Since δD(d, ti) = d, it
follows that all the states that D visits when it reads ti from d are in αD. Note that
w = p1 ·t1 ·t2 · · · . Hence, since δD(p1) = d, the run of D on w is accepting, thus w ∈ L(D).
Since L(D) = L(S), it follows that w ∈ L(S), and we are done.

Two common special cases of the Streett acceptance condition are the parity and the
generalized Büchi acceptance conditions. In a generalized Büchi automaton with states
Q, the acceptance condition is α = {α1, α2, . . . , αk} with αi ⊆ Q, and a run r is accept-
ing if inf (r) ∩ αi 6= ∅ for all 1 ≤ i ≤ k. Theorem 5.1 implies that an NCW-recognizable
nondeterministic parity or generalized Büchi automaton with n states can be trans-
lated to an NCW with n2n states, which can be defined on top of the augmented subset
construction.

5.2. From NRW and NMW to NCW

In this section we study the translation of NRWs and NMWs to NCWs, when exists.
Unfortunately, for automata in these classes we cannot define an equivalent NCW on
top of the augmented subset construction. Intuitively, the key idea of Subsection 5.1,
which is based on the ability to pump paths that satisfy the acceptance condition, is
not valid in the Rabin and the Muller acceptance conditions, as in these conditions,
visiting some “bad” states infinitely often need not be compensated by visiting some
“good” ones infinitely often. We formalize this in the example below, which consists of
the fact that DRWs are not DCW-type [Kupferman et al. 2004].

THEOREM 5.2. There is an NRW and an NMW that are NCW-recognizable but an
equivalent NCW for them cannot be defined on top of the augmented subset construc-
tion.

PROOF. Consider the NRW A appearing in Figure 4. The language of A consists of
all words over the alphabet {0, 1} that either have finitely many 0’s or have finitely
many 1’s. This language is clearly NCW-recognizable, as it is the union of two NCW-
recognizable languages. Since A is deterministic and the augmented subset construc-
tion does not alter a deterministic automaton, it suffices to show that there is no co-
Büchi acceptance condition α′ that we can define on the structure of A and get an
equivalent language. Indeed, α′ may either be ∅, {q0}, {q1}, or {q0, q1}, none of which
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A:

α = {〈q0, q1〉, 〈q1, q0〉}
q1q0

1

1
0 0

Fig. 4. The NRW A, having no equivalent NCW on top of its augmented subset construction.

provides the language of A. Since every NRW has an equivalent NMW over the same
structure, the above result also applies to the NMW case.

Consider an NRW or an NMW A with index k. Our approach for translating A to an
NCW is to decompose it to k NSWs over the same structure, and apply the augmented
subset construction on each of the components. Note that the components may not
be NCW-recognizable even when A is, thus, we should carefully analyze the proof of
Theorem 5.1 and prove that the approach is valid.

We now formalize and prove the above approach. We start with the decomposition of
an NRW or an NMW with index k into k NSWs over the same structure.

LEMMA 5.3. Every NRW or NMW A with index k is equivalent to the union of k
NSWs over the same structure as A.

PROOF. An NRW A with states A and index k is the union of k NRWs with index
1 over the same structure as A. Since a single-indexed Rabin acceptance condition
{〈α1, β1〉} is equivalent to the Streett acceptance condition {〈α1, ∅〉, 〈A, β1〉}, we are
done.

An NMW A with states A and index k is the union of k NMWs with index 1 over
the same structure as A. Since a single-indexed Muller acceptance condition {α1} is
equivalent to the Streett acceptance condition {〈A \ α1, ∅〉} ∪

⋃
s∈α1

{〈A, {s}〉}, we are
done.

Next we show that a union of k NSWs can be translated to a single NSW over their
union.

LEMMA 5.4. Consider k NSWs, S1, . . . ,Sk, over the same structure. There is an NSW

S over the disjoint union of their structures, such that L(S) =
⋃k

i=1 L(Si).

PROOF. We obtain the Streett acceptance condition of S by taking the union of the
Streett acceptance conditions of the NSWs S1, . . . ,Sk. Note that while the underlying
NSWs are interpreted disjunctively (that is, in order for a word to be accepted by the
union, there should be an accepting run on it in some Si), the pairs in the Streett
condition are interpreted conjunctively (that is, in order for a run to be accepting, it
has to satisfy the constraints by all the pairs in the Streett condition). We prove that

still L(S) =
⋃k

i=1 L(Si). First, if a run r of S is an accepting run of an underlying
NSW Si, then the acceptance conditions of the other underlying NSWs are vacuously
satisfied. Hence, if a word is accepted by Si for some 1 ≤ i ≤ k, then S accepts it too.
For the other direction, if a word w is accepted in S, then its accepting run in S is also

an accepting run of one of the underlying NSWs, thus w is in
⋃k
i=1 L(Si).

Finally, we combine the translation to Streett automata with the augmented subset
construction and get the required upper bound for NRW and NMW.

THEOREM 5.5. For every NCW-recognizable NRW or NMW with n states and index
k, there is an equivalent NCW C with at most kn2n states.

PROOF. Consider an NRW or an NMW A with n states and index k. By Lemmas 5.3
and 5.4, there is an NSW S whose structure consists of k copies of the structure of A

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.
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such that L(S) = L(A). Let C be the NCW equivalent to S, defined over the augmented
subset construction of S, as described in Theorem 5.1. Note that S has nk states, thus
a naive application of the augmented subset construction on it results in an NCW with
kn2kn states. The key observation, which implies that we get an NCW with only kn2n

states, is that applying the augmented subset construction on S, the deterministic
component of all the underlying NCWs is the same, and it coincides with the subset
construction applied to A. To see this, assume that A = 〈Σ, A,A0, δ, α〉. Then, S =
〈Σ, A × {1, . . . , k}, A0 × {1, . . . , k}, δ′, α′〉, where for all a ∈ A, 1 ≤ j ≤ k, and σ ∈ Σ, we
have that δ′(〈a, j〉, σ) = δ(a, σ) × {j}. Applying the augmented subset construction, we
get the product of S and its subset construction, where the latter has a state for every
reachable subset of S. That is, a subset G′ ⊆ S is a state of the subset construction if
there is a finite word u for which δ′(u) = G′. Since for all a ∈ A, 1 ≤ j ≤ k, and σ ∈ Σ,
we have that δ′(〈a, j〉, σ) = δ(a, σ) × {j}, it follows that G′ is of the form G × {j} for
all 1 ≤ j ≤ k and some G ⊆ A. Hence, there are up to 2|A| = 2n states in the subset
construction of S. Thus, when we apply the augmented subset construction on S, we
end up with an NCW with only kn2n states, and we are done.

5.3. To DCW

In Section 4 we showed that if C is an NCW obtained by the augmented subset con-
struction, then applying the breakpoint construction on C does not involve an expo-
nential blow up. This implies, by Subsection 5.1, a 3n blow-up for the translation of an
NSW to a DCW.

THEOREM 5.6. For every DCW-recognizable NSW A with n states, there is an equiv-
alent DCW D with at most 3n states.

PROOF. By Theorem 5.1, the NSW A has an equivalent NCW C with n2n states,
obtained by applying the augmented subset construction on A. As in Theorem 4.2,
applying the breakpoint construction on C we end up with a DCW with at most 3n

states.

By [Boker et al. 2010], one cannot avoid the 3n state blow-up for translating an NCW
to a DCW. Since this lower bound clearly holds also for the stronger NSW condition,
we get a tight bound.

THEOREM 5.7. The tight bound for the state blow-up in the translation, when pos-
sible, of NSW to an equivalent DCW is Θ(3n).

Translating an NRW or an NMW to an NCW is more complicated than translating
an NSW. As shown in Subsection 5.2, the translation of an NRW or NMW A with index
k results in an NCW that has k copies of the augmented subset construction of A. When
applying the breakpoint construction on this NCW, its k different parts might cause a
doubly-exponential blowup. Fortunately, we can avoid it by determinizing each of the
k parts separately and connecting them in a round-robin fashion. This implies a k3n

blow-up for the translation of NRWs and NMWs, to DCW.

THEOREM 5.8. For every DCW-recognizable NMW or NRW A with n states and
index k there is an equivalent DCW D with at most k3n states.

PROOF. by Theorem 5.5, A has an equivalent NCW C with kn2n states. The NCW C
is obtained by applying the augmented subset construction on k copies of A, and thus
has k unconnected components, C1, . . . , Ck that are identical up to their acceptance
conditions αC1 , . . . , αCk

.
Since the k components of C all have the same A × 2A structure, applying the stan-

dard subset construction on C, one ends up with a deterministic automaton that is
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isomorphic to 2A. Applying the breakpoint construction on C, we could thus hope to
obtain a deterministic automaton with only 3|A| states. This construction, however,
has to consider the different acceptance conditions αi, maintaining in each state not
only a pair 〈S,O〉, but a tuple 〈S,O1, . . . , Ok〉, where each Oi ⊆ S corresponds to the
breakpoint construction with respect to αi. Such a construction, however, involves a kn

blow-up.
We circumvent this blow-up by determinizing each of the Ci’s separately and connect-

ing the resulting Di’s in a round-robin fashion, moving from Di to Di (mod k)+1 when
the set O, which maintains the set of states in paths in which Di avoids αi, becomes
empty. Now, there is 1 ≤ i ≤ k such that Ci has a run that eventually gets stuck in αi
iff there is 1 ≤ i ≤ k such that in the round-robin construction, the run gets stuck in a
copy that corresponds to Di in states with O 6= ∅.

Formally, for every 1 ≤ i ≤ k, we define a function fi : 2
A → 2A by fi(E) = {a | 〈a,E〉 ∈

αCi
}. We define the DCW D = 〈Σ, D, δD, D0, αD〉 as follows.

—D = {〈S,O, i〉 | S ⊆ A, O ⊆ S ∩ fi(S), and i ∈ {1, . . . k}}.
— For all 〈S,O, i〉 ∈ D and σ ∈ Σ, the transition function is defined as follows.

— If O 6= ∅, then δD(〈S,O, i〉, σ) = {〈S′, O′, i′〉}, where S′ = δA(S, σ), O
′ = δA(O, σ) ∩

fi(S) and i′ = i (mod k) + 1 if O′ = ∅ and i′ = i otherwise.
— If O = ∅, then δD(〈S,O, i〉, σ) = {〈S′, O′, i′〉}, where S′ = δA(S, σ), O

′ = δA(S, σ) ∩
fi(S) and i′ = i (mod k) + 1 if O′ = ∅ and i′ = i otherwise.

—D0 = {〈A0 of C1, ∅〉}.
— αD = {〈S,O, i〉 | O 6= ∅}.

A run of D is accepting if it gets stuck in one of the sets of accepting states. Since
the different parts of C are unconnected, we have that a run of C is accepting iff it gets
stuck in the accepting states of one of the Ci’s. Hence, a word is accepted by C iff it is
accepted by D, and we are done.

Since the lower bound for NBW clearly holds also for the stronger condition, we can
conclude with the following.

THEOREM 5.9. The asymptotically tight bound for the state blow up in the transla-
tion, when possible, of NRW and NMW to an equivalent DCW is 2Θ(n).

6. APPLICATIONS

In this section we describe immediate applications of our NBW to NCW (Theorem 3.6)
and NBW to DCW (Theorem 4.2) constructions. The goal of these applications is to
simplify procedures that currently involve determinization, either by using an NCW
instead of a deterministic Büchi or parity automaton, or by using a DBW instead of a
deterministic parity automaton. Note that both constructions are based on the subset
construction, have a simple state space, are amenable to optimizations, and can be
implemented symbolically [Morgenstern and Schneider 2008]. Also, the constructions
described for the richer acceptance conditions (Theorems 5.1, 5.5, 5.6 and 5.8) extend
these applications to NSW, NRW, and NMW, and to translations of LTL to automata
that use the richer acceptance conditions.

Theorems 3.6, 5.1, 5.5, 5.6 and 5.8 guarantee that if the given automaton is NCW-
recognizable, then the constructions result in equivalent automata. We first show that
if this is not the case, then the constructions have only a one-sided error. As we shall
see below, this would become handy in many of the applications.

LEMMA 6.1. For an automaton A, let C be the NCW obtained by the translations of
Theorems 3.6, 5.1 and 5.5, and let D be the DCW obtained from A by the constructions
of Theorems 4.2, 5.6 and 5.8. Then, L(A) ⊆ L(C) = L(D).
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PROOF. It is easy to see that the proof of the L(A) ⊆ L(C) direction in Theo-
rems 3.6, 5.1 and 5.5, as well as the equivalence of C and D in Theorems 5.6 and 5.8,
do not rely on the assumption that A is NCW-recognizable.

We now turn to describe the applications.

6.1. Deciding membership in NCW and DBW

As discussed in Section 1, NCWs are less expressive than NBWs, and they recognize
exactly all languages that complement languages in DBW. Motivated by the connec-
tions among DBW, alternation-free µ-calculus (AFMC), and alternating weak tree au-
tomata, [Kupferman and Vardi 2005b] studies the problem of deciding whether an
NBW or an LTL formula is in DBW. The solution in [Kupferman and Vardi 2005b]
involves determinization: given an NBW B, translates B to an equivalent determinis-
tic Rabin automaton R, and then check whether R is in DBW. The latter check can
be done in linear time. Deciding whether an LTL formula is in DBW has applications
beyond deciding its membership in AFMC. Indeed, there is no reason to work with
complicated deterministic automata in cases a DBW is sufficiently strong.

Below we describe a decision procedure that avoids the determinization. The proce-
dure is based on the following lemma, which is an easy corollary of Theorem 3.6 and
Lemma 6.1.

LEMMA 6.2. Consider an automaton A. Let C be its translation to NCW by the
construction of Theorems 3.6, 5.1 and 5.5. Then, A is NCW-recognizable iff L(C) ⊆ L(A).

We start with a procedure for deciding whether a given nondeterministic automaton
B is NCW-recognizable. By Lemma 6.2, the latter can be reduced to checking whether
L(C) ⊆ L(B), for the NCW C constructed from B in Theorems 3.6, 5.1, and 5.5. This

involves the generation of C and of the complement B̃ of B, and checking the emptiness
of the product C × B̃. For the Büchi, Rabin, and Streett conditions, complementation
can be done without determinization [Kupferman and Vardi 2001; 2005a]. For B with
n states and index k, the complexity is 2O(n logn) for NBW, is 2O(nk logn) for NRW, and
is 2O(nk log nk) for NSW. We note that in addition to avoiding determinization, the con-
stants in the O() notation are much better than these in the procedure that involves
determinization [Kupferman and Vardi 2001].

We proceed with the problem of deciding whether a given LTL formula is in NCW
or in DBW. Given an LTL formula ψ, let Bψ be a nondeterministic automaton for ψ,
and let Cψ be its NCW translation as in Theorems 3.6, 5.1, and 5.5. By Lemma 6.2,
the formula ψ is in NCW iff L(Cψ) ⊆ L(Bψ). The latter can be reduced to checking the
emptiness of the intersection of Cψ with the complement of Bψ. Fortunately, ψ is given,
so rather than complementing Bψ, we can generate and use B¬ψ instead. Thus, our
procedure not only avoids determinization, but also it does not involve complementa-
tion. Note that we do not restrict Bψ to be an NBW. Indeed, the translation of LTL to
NBW goes via nondeterministic generalized Büchi automata. Thus, keeping in mind
that the translation of NSW and NRW to NCW results in the same state space that
the translation of NBW does, a direct application of the procedures on the richer accep-
tance conditions yields better complexity. Moreover, in general, the translation of LTL
to NSW can result in automata that are exponentially more succinct than equivalent
NBWs [Safra and Vardi 1989].
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Now, since ψ is in DBW iff ¬ψ is in NCW, we can use the above procedure also for
checking whether a given LTL formula is in DBW. As above, complementation can be
avoided.7

6.2. Translating LTL to AFMC

Consider an LTL formula ψ. By [Kupferman and Vardi 2005b], there is an AFMC
formula equivalent to ∀ψ iff ψ is in DBW. As described in Section 6.1, we can first
check whether ψ can be translated to AFMC. Let C¬ψ be the NCW-translation, as in
Theorem 3.6, of the NBW B¬ψ for ¬ψ [Vardi and Wolper 1994]. By Lemma 6.1, we
have that L(C¬ψ) accepts exactly all computations that violate ψ. By [Kupferman and
Vardi 2005b], we can expand C¬ψ existentially to an AFMC formula θ that is satisfied
in exactly all systems that have a computation that violates ψ. The AFMC formula ¬θ
is then satisfied in exactly all systems all of whose computations satisfy ψ. Thus, using
the augmented subset construction, we have generated the AFMC formula without
determinization.

Note that while the translation avoids determinization, it is still doubly-exponential.
In model checking, the system is much bigger than the specification, and its size is
typically the computational bottleneck. Therefore, the fact that evaluation of AFMC
formulas can be done in linearly many symbolic steps (in both the system and the
specification) makes the translation appealing in practice. We note that no matching
lower bound is known, and that the blow-up in the translation of LTL to AFMC is still
open. 8

6.3. Translating LTL to DBW

As discussed in Section 1, numerous applications of automata theory in practice re-
quire determinization. The intricacy of optimal determinization constructions have led
to a situation in which many of these applications are not implemented in practice, or
are restricted to safety properties, for which determinization is easy and is based on
the subset construction. Our NBW to DCW construction in Theorem 4.2 immediately
extends the scope of these applications to all LTL specifications in DBW. In particular,
synthesis, control, game solving, probabilistic model checking, and monitoring-based
run-time verification can be now performed for LTL specifications in DBW with a sim-
ple determinization construction. The same holds for CTL⋆ satisfiability, for specifica-
tions whose path formulas are in DBW.

Given an LTL formula ψ, an input to one of these procedures, one can use the deci-
sion procedure described in Section 6.1 in order to check whether ψ is in DBW, in which
case our simple determinization construction can be applied to it. Formally, we have
the following. For an LTL formula ψ, let L(ψ) denote the set of computations satisfying
ψ. The following is an easy corollary of the duality between DBW and DCW.

LEMMA 6.3. Consider an LTL formula ψ that is DBW-recognizable. Let B¬ψ be an
NBW accepting L(¬ψ), and let Dψ be the DBW obtained by dualizing the DCW obtained
by the construction of Theorem 4.2 on B¬ψ. Then, L(Dψ) = L(ψ).

7A different Safraless procedure for deciding whether a specification can be translated to a DBW is described
in [Kupferman and Vardi 2005c]. The procedure there, however, requires NBWs of both the specification and
its negation, and using it in order to check whether a given NBW is NCW-recognizable requires complemen-
tation. In addition, the procedure in [Kupferman and Vardi 2005c] involves tree automata and is more
complicated.
8Wilke [Wilke 1999] proved an exponential lower-bound for the translation of an NBW for an LTL formula ψ
to an AFMC formula equivalent to ∀ψ. This lower-bound does not preclude a polynomial upper-bound for the
translation of an NBW for ¬ψ to an AFMC formula equivalent to ∃¬ψ, which would imply an exponential
upper bound for the translation of LTL to AFMC.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.
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Note that, also here, one need not translate the LTL formula to an NBW, and can in-
stead translate it to a nondeterministic generalized Büchi or even Streett automaton,
which are more succinct.

6.4. Using the one-sided error

The applications above have been described for specifications in NCW or DBW. In this
section we argue that the one-sided error of the construction enables us to use it also
for arbitrary specifications.

Given an LTL formula ψ, let C¬ψ be the NCW-translation of the NBW (or NSW,
NRW, or NMW) B¬ψ for ¬ψ. By Lemma 6.1, we have that L(C¬ψ) accepts all words that
violate ψ. Let θ be an AFMC formula obtained by expanding C¬ψ existentially. Thus, θ
is satisfied in a system S iff S has a computation accepted by C¬ψ. Given a system S,
we can still model check S with respect to θ. If θ is not satisfied, we can conclude that
no computation violates ψ. Indeed, C¬ψ over-approximates B¬ψ. If θ is satisfied, we can
check whether the witness to the satisfaction indeed violates ψ. If it does, we found a
counterexample and we are done. If not, we can conclude that ψ is not in DBW and
either look for another counterexample using θ, or use standard methods.

Now, for the applications that translate an LTL formula to a deterministic automa-
ton, Lemma 6.1 implies that when applied to an arbitrary LTL formula, the automa-
ton Dψ constructed in Lemma 6.3 is such that L(Dψ) ⊆ L(ψ). The polarity of the error
(that is, Dψ underapproximates ψ) is the helpful one. Indeed, for the purpose of mon-
itoring, a computation that is a member of L(Dψ) surely satisfies ψ. Only in case an
error is detected, one should check whether ψ is violated along it. For the purpose of
CTL⋆ satisfiability, consider a tree automaton for a CTL⋆ formula in positive normal
form in which the deterministic automata for the path formulas are approximated by
DBWs. Clearly, if the automaton is not empty, then a witness to the satisfiability ex-
ists. Finally, we can solve the synthesis problem using Dψ. If we get a transducer that
realizes Dψ, we know that it also realizes ψ, and we are done. Moreover, as suggested
in [Kupferman and Vardi 2005c], in case Dψ is unrealizable, we can check, again using
an approximating DBW, whether ¬ψ is realizable for the environment. Only if both ψ
is unrealizable for the system and ¬ψ is unrealizable for the environment, we need
precise realizability. Note that then, we can also conclude that ψ is not in DBW.

7. DISCUSSION

The simplicity of the co-Büchi condition and its duality to the Büchi condition make
it an interesting theoretical object. Its many recent applications in practice motivate
further study of it. Translating a Büchi automaton, as well as automata of richer accep-
tance conditions, to co-Büchi automata is useful in formal verification and synthesis,
yet the state blow-up that such translations involve was a long-standing open problem.
We solved the problem, and provided asymptotically tight constructions for translat-
ing all common classes of automata to nondeterministic and deterministic co-Büchi
automata.

The state blow-up involved in the various translations is summarized in Table I.
All the constructions are extensions of the augmented subset construction and

breakpoint construction, which are in turn extensions of the basic subset construc-
tion. In particular, the set of accepting states is induced by simple reachability queries
in the graph of the automaton. Hence, the constructed automata have a simple state
space and are amenable to optimizations and to symbolic implementations.

In spite of the exponential lower bound, we do not view the results in the paper as
“bad news”. We believe that the simple and symbolic translation of LTL to DBW (when
exists), which follows from the translation of NBW and NSW to NCW, is a very good
news. As discussed in Section 6.3, numerous applications of automata theory in prac-
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Table I.

From � To NCW DCW

NBW, NPW, NSW O(n2n) O(3n)

NRW, NMW O(kn2n) O(k3n)

The state blow-up involved in the translation,
when possible, of a word automaton with n
states and index k to an equivalent NCW and
DCW.

tice require determinization. The intricacy of optimal determinization constructions
has led to a situation in which many of these applications are not implemented in
practice. From the theoretical side, we see work on new algorithms for the applications,
ones that avoid the determinization [Kupferman and Vardi 2005a; Kupferman 2006;
Henzinger and Piterman 2006; Ehlers 2010]. From the practical side, we see work on
restricting the scope of the applications to specifications for which determinization is
easy [Jobstmann and Bloem 2006; Piterman et al. 2006]. In particular, many appli-
cations are restricted to safety properties, for which determinization is based on the
subset construction. Theorems 5.6 and 5.8 and Lemma 6.3 imply that one need not
restrict attention to safety properties; the appealing simple and symbolic algorithms
that handle them can be applied also to properties that are DBW-recognizable, and in
fact, thanks to the one-sided error, to all of LTL.
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