
1

Well structured program equivalence is highly undecidable

ROBERT GOLDBLATT, Victoria University of Wellington
MARCEL JACKSON, La Trobe University

We show that strict deterministic propositional dynamic logic with intersection is highly undecidable, solv-
ing a problem in the Stanford Encyclopedia of Philosophy. In fact we show something quite a bit stronger. We
introduce the construction of program equivalence, which returns the value T precisely when two given pro-
grams are equivalent on halting computations. We show that virtually any variant of propositional dynamic
logic has a Π1

1-hard validity problem if it can express even just the equivalence of well-structured programs
with the empty program skip. We also show, in these cases, that the set of propositional statements valid
over finite models is not recursively enumerable, so there is not even an axiomatisation for finitely valid
propositions.

Categories and Subject Descriptors: F.3 [Logics and Meanings of Programs]; F.4.1 [Mathematical
Logic and Formal Languages]: Mathematical Logic

General Terms: PDL, undecidability

Additional Key Words and Phrases: Deterministic propositional dynamic logic, fixset, program equivalence,
intersection

ACM Reference Format:
Goldblatt, R., Jackson, M., 2011. Well structured program equivalence is highly undecidable. ACM Trans.
Comput. Logic 1, 1, Article 1 (January 2011), 8 pages.
DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. INTRODUCTION
Determinism has played an unusual role in the study of programs. While most actual
algorithms are deterministic in nature, there has traditionally been a strong theme
on modeling programs nondeterministically. Indeed the standard semantics for classic
program logics such as dynamic logic, treat programs as binary relations on the state
space of a computer, and (in the standard relational semantics) apply constructions
such as program union and reflexive transitive closure, which fall outside of conven-
tional programming languages. Of course, there are numerous good reasons for this:
one is attempting to reason about programs more than reason from within them. Stat-
ing that “property α is true after some number of iterates of p” is a useful assertion to
make and close to the kind of questions that need to be asked in applications such as
formal program verification.

Another occasionally cited reason for the focus on nondeterminism is that logics
based over deterministic programs (partial functions) are known to experience an un-
expected explosion in complexity. In fact this is only half true. Satisfiability for strict

The second author was supported by ARC Discovery Project Grant DP1094578
Authors’ addresses: R. Goldblatt, School of Mathematics, Statistics and Operations Research, Victoria Uni-
versity of Wellington, New Zealand; M. Jackson, Department of Mathematics and Statistics, La Trobe Uni-
versity, VIC 3086, Australia.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2011 ACM 1529-3785/2011/01-ART1 $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1, Publication date: January 2011.

1:2 R. Goldblatt and M. Jackson

deterministic PDL (deterministic program variables, and program union and ∗ re-
placed by only conventional constructions of structured programming: if-then-else
and while-do) is only PSPACE-complete [Halpern and Reif 1983], while the full PDL
(over nondeterministic programs), and even strict PDL has EXPTIME-complete complex-
ity (see [D. Harel and Tiuryn 2000] for these and other similar results). However the
introduction of program intersection produces enormous contrast. Standard (that is,
nondeterministic) PDL with intersection is decidable [Danecki 1984], albeit doubly ex-
ponential time complete [Lange and Lutz 2005] (a result that has recently been ex-
tended to PDL with intersection and converse [S. Göller and Lutz 2009]) while Harel
[Harel 1985] showed that deterministic PDL with intersection (DIPDL) has a Π1

1-hard
validity problem, at the first level of the analytical hierarchy!

Strangely, it seems unknown what happens between the relatively well behaved SD-
PDL and the unimaginably badly behaved DIPDL. The decidability of strict determin-
istic propositional dynamic logic with intersection (SDIPDL) appears open and indeed
is stated as such in the Winter 2008 edition of the Stanford Encyclopedia of Philoso-
phy [Balbiani 2008]. While program intersection is not a conventionally encountered
programming construction, it is easy to simulate the intersection of two actual pro-
grams p and q and return the result when and if they both halt and agree. Thus it is
an available construct of conventional programming even if it is not expressible within
the language of SDPDL.

Recently the second author (with Tim Stokes) has examined algebraic formulations
of deterministic program logics [Jackson and Stokes 2009; 2011] and produced a very
simple axiomatisation for the loop-free fragment of SDIPDL [Jackson and Stokes 2011].
The validity problem of this fragment is easily seen to be co-NP-complete (by guessing a
finite invalidating model of size polynomial in the complexity of a given formula). The
authors of [Jackson and Stokes 2011] were rather hopeful that despite Harel’s famous
negative result for DIPDL, the strict fragment might still be decidable. In the present
article we show this is not the case: SDIPDL also suffers Π1

1-hardness. In fact we show
a more general result that concerns variants of PDL that are not necessarily deter-
ministic. We identify a natural notion of “program equivalence” and show that this
inevitably leads to Π1

1-hardness when expressible in a variant of PDL, independently
of the constraint of deterministic atomic programs. The Π1

1-hardness of SDIPDL can be
explained by the fact that in deterministic variants of PDL, intersection can be used to
express program equivalence.

We also show that for variants of PDL capable of expressing program equivalence
(such as SDIPDL) there is no axiomatisation possible for the propositions satisfiable on
finite relational models.

2. PROGRAM CONSTRUCTIONS
We direct the reader to a text such as Harel, Kozen and Tiuryn [D. Harel and Tiuryn
2000] (particularly Sections 5.1 and 5.2) for a full formal definition of Propositional
Dynamic Logic. PDL and its usual variants are two sorted, with variables consisting
of atomic programs and atomic propositions (we use T for true and F for false). In
the relational semantics, programs are binary relations on a set X (or partial maps
in deterministic forms of PDL) and propositions are subsets of X. Propositions are
given the usual operations of Propositional Logic (with the usual set theoretic seman-
tics on X) and programs may be combined using ; (composition of relations), union
∪, and the unary operation ∗ (reflexive transitive closure). There are also connectives
enabling interaction between programs and propositions. Every program p and propo-
sition α yields a new proposition by way of the modal necessity [p]α which has seman-
tics {x | ∀y (x, y) ∈ p ⇒ y |= α}; modal possibility is derived in the usual fashion as
〈p〉α := ¬[p]¬α. Similarly, every proposition α yields a program via a “query operator”

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1, Publication date: January 2011.

Well structured program equivalence is highly undecidable 1:3

?, with α? having semantics {(x, x) | x |= α}. In strict (or well structured) forms of PDL,
the operators of program union and ∗ are replaced by the basic constructions of well-
structured programming: aside from the already present composition, the construc-
tions while-do and if-then-else are the standard choice (note that these constructions
are expressible in full PDL). Note that the trivial program skip is T? while the the
empty relation arises as F?. Many variants of PDL involve further constructions not
described here. Of particular interest in this article are constructions relating to pro-
gram intersection.

The usual semantics for program intersection is simply set-theoretic intersection of
binary relations. Thus the program p ∩ q relates state s to state t provided that both p
and q relate s to t. However even if p∩ q relates state s to t, enacting p in state s might
give rise to some t′ outside of the range of the relation q. We consider a reasonable
variant of intersection, which we refer to as program equivalence. For programs p, q,
the proposition p ./ q (“p tie q”, or “p is equivalent to q”) is true at a point a if p is
equivalent to q at a: in the relational semantics, p ./ q has truth set equal to

{a | (∀b) (a, b) ∈ p↔ (a, b) ∈ q}.
Program equivalence can be expressed in SDIPDL as 〈p ∩ q〉T ∨ ¬(〈p〉T ∨ 〈q〉T). And,
provided query is included, SDPDL with program equivalence can express intersection:
p ∩ q = (p ./ q)? ; p.

Our main results will use a construction weaker than program equivalence. Con-
sider the unary operation Fix acting on programs p to produce a proposition Fix(p)
that asserts that halting computations of p act effectlessly. In the relational semantics,

Fix(p) = {a | (∀b) (a, b) ∈ p→ a = b}.
Our main results are expressed in terms of Fix, however in proofs it is more convenient
to use a construction fix(p), which we define as Fix(p) ∧ 〈p〉T. Note that Fix(p) =
fix(p) ∨ [p]F, so that fix and Fix are interdefinable in any reasonable variant of PDL.
But also, fix (whence Fix) can be expressed in terms of program equivalence as p ./
skip (hence it is expressible if ∩ is expressible in the deterministic case). On the other
hand, ./ cannot be expressed using Fix because one can find models of DPDL that are
closed under Fix but not under program equivalence (we omit the details of this claim).

A key observation in this note is that expressions of the form [x∗]α are express-
ible in the language of well-structured programs (provided that x and α are): as
[whileα dox]F. Expressions of the form [(x ∪ y)∗]α are fundamental to Harel’s origi-
nal proof of the high undecidability of DIPDL: they are used to interpret an infinite
grid. Expressions of this form are not in general expressible in strict forms of PDL,
however the presence of fix enables something similar to be done in enough cases to
encode tiling problems.

3. TILINGS
The undecidability results are proved by encoding tiling problems as originally em-
ployed by Harel [Harel 1985]. A finite set of square tiles is a finite set T = {T0, . . . , Tk−1}
of “tiles” endowed with a pair of binary “edge” relations ∼h (horizontal) and ∼v (ver-
tical). We interpret Ti ∼h Tj to mean that tile Ti can be placed on the left of tile Tj
in a horizontal row. Likewise Ti ∼v Tj is interpreted to mean that Ti can be placed
beneath Tj in a vertical column. A natural and very standard geometric restriction is
that if Ti ∼h Tj and Tk ∼h Tj and Tk ∼h T`, then Ti ∼H T` also. We will not make use
of this restriction, though assuming it does not affect the computational complexity of
the tiling problems we consider.

Consider the non-negative integer lattice ω × ω endowed with relations ∼h and ∼v

defined by (i, j) ∼h (i+ 1, j) and (i, j) ∼v (i, j + 1) for all i, j ≥ 0 (here of course, lattice

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1, Publication date: January 2011.

1:4 R. Goldblatt and M. Jackson

is referring to square grids rather than ordered sets). A tiling of the positive quadrant
of the plane (henceforth, a tiling of the plane) is a function from ω × ω into T that
preserves the relations ∼h and ∼v. Tilings of Z× Z are defined analogously.

We use two fundamental facts on tiling the plane.

— Tiling Fact 1. The following problem is Σ1
1-complete. Given a finite set of tiles T

with distinguished subset N of “neon” tiles. Is there is a tiling of the plane τ in which
τ(0, 0) = T0 and that τ−1(N) ∩ {(i, i) | i ∈ ω} is infinite (that is, the diagonal contains
infinitely many neon tiles)?

— Tiling Fact 2. The following sets Speriod and Snotiling are recursively inseparable:
Speriod is the set of finite sets of square tiles that can tile Z × Z periodically; Snotiling

is the set of finite sets of tiles that cannot tile the plane at all.

Tiling Fact 2 can be found in Böger, Grädel and Gurevich [E. Böger and Gurevich
1997, Theorem 3.1.7]: tiling periodically means that there is a tiling of Zn × Zm, with
the obvious toroidal adjacency constraints (work modulo n horizontally and modulo m
vertically). Tiling Fact 1 is a minor variant of some well known tiling problems inves-
tigated by Harel; see [Harel 1986] or [D. Harel and Tiuryn 2000] for example. We now
give a brief sketch of a proof of the Σ1

1-completeness claim. In [Harel 1986, p. 233],
Harel shows that the following problem is Σ1

1-complete: given a nondeterministic Tur-
ing machine program T , with initial state q0 and started on a one-way infinite blank
tape, does T return to the state q0 infinitely often? We now reduce this problem to the
problem in Tiling Fact 1. We use a modification of the standard translation of Turing
machines into tiles, as presented, say, by Robinson [Robinson 1971]. Using the nomen-
clature of Robinson’s article, there are essentially four kinds of tile (aside from the
blank tile which we will not need, as we’re only tiling the positive quadrant): the ini-
tial tiles (including one designated start tile T0), the merge tiles, the action tiles and
the alphabet tiles. The action tiles are constructed according to the commands of the
Turing machine program. Provided that T0 is placed at the position (0, 0), the tiling
can only be completed to the nth row if the program can run for n steps of computation
without halting. Moreover, each successfully tiled row encodes the configuration of the
Turing machine tape at the corresponding step of computation.

Now duplicate all tiles except initial tiles and action tiles. For each duplicated tile,
we make the second copy “neon”, and adjust the horizontal edge constraints to en-
sure that neon tiles can be placed horizontally adjacent only to other neon tiles (and
even then, only if they additionally satisfy the original edge constraints). Vertical con-
straints are unchanged however. Now, replace every action tile that encodes a tran-
sition into the state q0, by a neon copy. These tiles are not to be duplicated: they are
only neon. Also, action tiles not involving a transition into q0 are never neon. Then,
in any tiling of the plane, a row containing a neon tile must contain only neon tiles.
Since each successfully tiled row can contain precisely one action tile, the following
are equivalent: there is a computation that revisits state q0 infinitely often; there is a
tiling of the plane starting from T0 and in which infinitely many rows are neon; there
is a tiling of the plane starting from T0 and in which infinitely neon tiles are placed
on the diagonal. As the first of these is Σ1

1-complete, so the problem in Tiling Fact 1 is
Σ1

1-hard. Completeness follows in the usual way.

4. MAIN ARGUMENT
Let T = {T0, . . . , Tk−1} be some fixed finite set of tiles. For i = 0, 1, . . . , k − 1 we let αi

denote an atomic proposition variable which we think of as corresponding to the place-
ment of tile Ti. In order to produce our ω × ω grid we introduce four atomic program
variables: E, W, S and N. Squares of the grid will be created by asserting statements of

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1, Publication date: January 2011.

Well structured program equivalence is highly undecidable 1:5

the form fix(N ; E ; S ; W). We first define the propositions required, then explain how
these force a tiling.

Step 0. Defining a square. We need to be able to find squares in both clockwise and
anti-clockwise directions. We encode the clockwise square by the following proposition:

fix(N ; S) ∧ [N]fix(E ; W) ∧ [N ; E]fix(S ; N) ∧ [N ; E ; S]fix(W ; E) ∧ fix(N ; E ; S ; W).

The anticlockwise square is defined in the dual way, following partial paths through
E ; N ; W ; S. We denote the conjunction of the two square propositions by square.

Step 1. To define a grid we use the statement ρ1:

[N∗][E∗]square

which, as observed above, can be expressed using only modal operators and the lan-
guage of well-structured programs (instead of ∗).

Step 2. To force a tiling, we first let α denote the proposition that asserts that pre-
cisely one of the αi is true. Then, for each i, let βi denote the disjunction of all the
atomic tile propositions αj for which Ti ∼h Tj . Similarly, we let βi denote the disjunc-
tion of the atomic tile propositions αj for which Ti ∼v Tj . Then, provided we have an
ω × ω grid, a tiling can be forced by ρ2:

[N∗][E∗]

(
α ∧

k−1∧
i=0

(
αi ⇒ ([E]βi ∧ [N]βj)

))
Step 3. To force infinitely many neon tiles in the diagonal, first let neon denote the

disjunction of the atomic neon tile propositions. Then we use ρ3:

[(N ; E)∗]〈(N ; E)∗〉neon.

THEOREM 4.1. Fix any variation VPDL of PDL capable of expressing the usual con-
nectives on propositions, program composition, while-do, modal operators and fix. The
validity problem for VPDL is Π1

1-hard, regardless of whether atomic programs are as-
sumed to be deterministic or not.

PROOF. For any set of tiles T , with neon subset N , let γ denote α0 ∧ ρ1 ∧ ρ2 ∧ ρ3. We
claim that the following are equivalent:

(1) T can tile the positive quadrant of the plane with infinitely many neon tiles on the
diagonal and with T0 in the (0, 0) position;

(2) γ can be satisfied in some relational model where all atomic programs are deter-
ministic (even injective partial functions);

(3) γ can be satisfied in some relational model.

Implication 1 ⇒ 2 is routine, while 2 ⇒ 3 is trivial. Now assume that γ is satisfied at
some point of a relational model. We label this point by a0,0. Now by ρ1 we have that
square holds at a0,0. Thus, the program N ; E is defined at a0,0, because a0,0 is fixed by
N ; E ; S ; W. Then by ρ3, there is a nontrivial iterate of N ; E at which neon is true. Thus
there is a path of edges from a0,0 alternating N and E and leading to a position at which
neon is true. We label the points visited along this path (after a0,0) by a0,1, a1,1, a1,2,
a2,2, . . .; see the left picture in Figure 1. We do not rule out the possibility that some
points in the model are labelled more than once: to produce the tiling, we consider only
the labels of the selected points

Now as square holds at a0,0, we have that after N ; E it is necessary that fix(S ; N)
hold. Hence, in particular there is a point a1,0 that is reached by an application of S
from the point a1,1. Again applying square at a0,0, we have that after applying N ; E ; S
it is necessary that fix(W ; E). Thus in particular, there is a point a′0,0 west of a1,0.

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1, Publication date: January 2011.

1:6 R. Goldblatt and M. Jackson

s
a0,0

sa0,1 sa1,1

sa2,2sa1,2

6
N

-
E

-

N
6E

6

...

s
a0,0

sa0,1 sa1,1

sa2,2sa1,2

6
N

-
E

-

N
6E

6

...

s
∃a1,0

�W ?
S

s∃a0,2�
W

?S

Fig. 1. Selecting the points ai,j , and completing the ω × ω grid.

However a′0,0 is reached by an application of N ; E ; S ; W, which by square must fix a0,0.
Hence a′0,0 = a0,0.

Similarly, ρ1 ensures that square is true at the point a0,1. We now construct a square
anticlockwise through points a0,1, a1,1, a1,2 and some new point a0,2. The idea is essen-
tially dual to the previous case: after applying E; N (reaching a1,2), it is necessary that
fix(W ; E) be defined, thus we encounter some new point a0,2. From here a further S is
forced, and then as E ; N ; W ; S fixes a0,1, we have the desired square.

So far we have not used all the power of the proposition square: in the right hand
picture in Figure 1, the bottom left square has a different orientation to the square
above it. However, each time we extended a new arrow from a point, we did so by way
of propositions of the form fix(E;W) (and so on): thus in fact every arrow drawn has an
associated converse arrow labelled with the appropriate dual name (E switched with W
and N switched with S). Once these edges are also drawn, both squares so far obtained
are identical (two-way edges, with dual labels). So in fact, the process can be continued,
working out outward from the central diagonal (with clockwise constructions below the
horizontal and anti-clockwise constructions above) until a rectangular grid has been
formed.

Then we apply ρ3 a further time: extending the diagonal to a new point an,n where
neon is defined, and filling out the remaining pieces of a larger rectangle and so on.

In this way an infinite grid is interpreted, with neon tile propositions holding at
infinitely many places on the diagonal. Furthermore, every position in this grid can
now be visited by first iterating E and then iterating N. Now γ forces α0 to be true at
a0,0. And then, working inductively outward from a0,0, the proposition ρ2 ensures that
a tiling proposition holds at every one of the selected points and that neighbouring
squares (horizontally or vertically) have tiling propositions that match the tiling con-
straints. Thus we interpreted a tiling of the positive quadrant of the plane in which
neon tiles occur infinitely often along the diagonal. As the problem in Tiling Fact 1 is
Σ1

1-complete, thus satisfiability for VPDL is Σ1
1-hard and validity is Π1

1-hard.

Recall that if atomic programs are deterministic, then intersection can be used to de-
fine fix on well-structured programs. This gives the following corollary.

COROLLARY 4.2. Satisfiability for SDIPDL is Π1
1-hard.

Consider the operation of program difference:

p− q := {(a, b) | (a, b) ∈ p and(a, b) /∈ q}.

It is well known that standard PDL with program complementation is undecidable (see
[D. Harel and Tiuryn 2000, Theorem 10.12]). Program difference can be expressed in
terms of program complementation, but the reverse need not be true in the absence of

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1, Publication date: January 2011.

Well structured program equivalence is highly undecidable 1:7

a universal program (that is, the universal relation in the relational semantics). As a
second corollary, we show that standard PDL with program difference is Π1

1-hard.

COROLLARY 4.3. PDL with program difference (whence with program complemen-
tation) is Π1

1-hard.

PROOF. First observe that program intersection can be expressed from program
difference: p∩ q = p− (p− q). Now observe that fix(p) = (〈p〉T)∧ ([p− (p∩ skip)]F).

THEOREM 4.4. Fix any variation VPDL of PDL capable of expressing the usual con-
nectives on propositions, program composition, while-do, modal operators and fix. The
set of VPDL propositions valid over finite relational models of VPDL is not recursively
enumerable, whence there is no axiomatisation for VPDL over finite models.

PROOF. Consider a finite set of tiles T , and consider the proposition γT := ρ1∧ρ2. We
first show that if γT is satisfied at some point a0,0 in a model then T can tile the plane
(whence T /∈ Snotiling). The argument is similar to that used to prove Theorem 4.1,
but we use ρ1 to produce the diagonal (there are no neon tiles to consider). By ρ1, the
proposition square is true, which yields points a0,1, a1,1 and a1,0, reached successively
in following N ; E ; S, with W taking a1,0 back to a0,0, and with E ; N ; W ; S following
through the points in reverse order. Now, by ρ1 again, square is true at a1,1. Thus we
obtain points a1,2, a2,2 and a2,1 forming the rest of a new square based at a1,1. Now
we can fill out these points to a 2 × 2 region using the same argument in the proof of
Theorem 4.1. Then ρ1 guarantees that square is true at a2,2 and so on. Finally, once an
ω × ω grid is interpreted, we can use ρ2 to show that precisely one tiling proposition is
true at a0,0, and then force a tiling as in the proof of Theorem 4.1.

Now observe that if T can tile periodically: that is, can tile the torus Zn × Zm, then
γT can be satisfied in some finite model based on the nm points of Zn × Zm.

Thus the set S of finitely satisfiable propositions contains {γT | T ∈ Speriod} and is
disjoint from {γT | T ∈ Snotiling}. Now S is recursively enumerable (simply search for
a finite satisfying model). But it cannot be recursive, because Speriod and Snotiling are
recursively inseparable. Hence S is not coRE. Whence the propositions valid over finite
models of VPDL is not RE.

We mention that in order to express Fix in terms of program equivalence we invoked
the program skip. In the absence of skip (whence also query, as skip = T?), it is un-
clear if Theorem 4.1 and Theorem 4.4 hold (replacing fix by program equivalence).
However all of the arguments relating to the encoding of tilings can be routinely
adapted to the program equivalence situation, with some simplification. As a sketch:
work with only N and E, and replace the proposition square by statements of the form
(N ; E) ./ (E ; N).

ACKNOWLEDGMENTS

The authors are indebted to Dr. Tim Stokes for initiating the investigation into program equivalence in pub-
lications such as [Fearnley-Sander and Stokes 1997; 2003; Stokes 2006] as well as for numerous discussions
and feedback during the writing of this article.

REFERENCES
BALBIANI, P. 2008. Propositional dynamic logic. In The Stanford Encyclopedia of Philosophy (Winter 2008

Edition), E. N. Zalta, Ed. URL = http://plato.stanford.edu/archives/win2008/entries/logic-dynamic/.
D. HAREL, D. K. AND TIURYN, J. 2000. Dynamic Logic. Foundations of Computer Science. MIT Press.
DANECKI, R. 1984. Nondeterministic propositional dynamic logic with intersection is decidable. In Proceed-

ings of the 5th Symposium on Computation Theory (Zaborów, Poland). Number 208. LNCS, 34–53.
E. BÖGER, E. G. AND GUREVICH, Y. 1997. The Classical Decision Problem. Springer.

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1, Publication date: January 2011.

1:8 R. Goldblatt and M. Jackson

FEARNLEY-SANDER, D. AND STOKES, T. 1997. Equality algebras. Bull. Aust. Math. Soc. 56, 177–191.
FEARNLEY-SANDER, D. AND STOKES, T. 2003. Varieties of equality structures. Internat. J. Algebra Com-

put. 13, 463–480.
HALPERN, J. AND REIF, J. 1983. The propositional dynamic logic of deterministic, well-structured programs.

Theoret. Comput. Sci. 27, 127–165.
HAREL, D. 1985. Recurring dominoes: making the highly undecidable highly understandable. Ann. Disc.

Math. 24, 51–72.
HAREL, D. 1986. Effective transformations on infinite trees with applications to high undecidability, domi-

noes and fairness. J. ACM 33, 224–248.
JACKSON, M. AND STOKES, T. 2009. Semigroups with if-then-else and halting programs. Internat. J.

Algebra Comput. 19, 937–961.
JACKSON, M. AND STOKES, T. 2011? Modal restriction semigroups: toward and algebra of deterministic

programs. Internat. J. Algebra Comput., to appear.
LANGE, M. AND LUTZ, C. 2005. 2-ExpTime lower bounds for propositional dynamic logics with intersection.

J. Symbolic Logic 70, 1072–1086.
ROBINSON, R. 1971. Undecidability and nonperiodicity for tilings of the plane. Inventiones Math. 12, 177–

209.
S. GÖLLER, M. L. AND LUTZ, C. 2009. PDL with intersection and converse: satisfiability and infinite-state

model checking. J. Symbolic Logic 74, 279–314.
STOKES, T. 2006. On EQ-monoids. Acta Sci. Math. (Szeged) 72, 481–506.

Received April 2011; revised June 2011; accepted August 2011

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1, Publication date: January 2011.

