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Logistics

• FAI talk on Friday

− Dr. Karthik Dantu (Fri, 11am, PAI 3.14)
− Challenges in Building a Swarm of Robotic Bees

• Final tournament: Monday 12/17, 2pm

• Peer review process — thoughts?

• Progress reports coming back

− Hand graded version in with your final reports

• Final projects due in 3 weeks!

Todd Hester
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Your Progress Reports
• Overall quite good! (writing and content)

• Best ones motivate the problem before giving solutions

• Say not only what’s done, but what’s yet to do

• More about what worked than what didn’t

• Clear enough for outsider to understand

• Do not just paste in proposal text... modify/merge it in

− Especially if your plans have changed
− Report should not say what you plan to put in the report

Todd Hester
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Details

• Be specific - enough detail so that we could reimplement

– Use pseudocode and/or diagrams

• Break into sections

• Say up front specifically what you are doing

− Not “working on passing”
− But making pass decisions based on x, y, and z

• It should not be left to the reader to figure it out

• Can you say exactly how your work differs from baseline?

Todd Hester
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Style

• More about your approach, less about the process

− Not “What I did on summer vacation”
− Not just “we decided.”
− How? Why? What alternatives?
− Say where parameters came from

• Slides on resources page

• Final projects: content matters more

Todd Hester



Trading Agent Competition
• Put forth as a benchmark problem for e-marketplaces

[Wellman, Wurman, et al., 2000]

• Autonomous agents act as travel agents
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Trading Agent Competition
• Put forth as a benchmark problem for e-marketplaces

[Wellman, Wurman, et al., 2000]

• Autonomous agents act as travel agents

− Game: 8 agents, 12 min.
− Agent: simulated travel agent with 8 clients
− Client: TACtown↔ Tampa within 5-day period

• Auctions for flights, hotels, entertainment tickets

− Server maintains markets, sends prices to agents
− Agent sends bids to server over network

Todd Hester
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• Unlimited supply; prices tend to increase; immediate
clear; no resale
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28 Simultaneous Auctions
Flights: Inflight days 1-4, Outflight days 2-5 (8)

• Unlimited supply; prices tend to increase; immediate
clear; no resale

Hotels: Tampa Towers/Shoreline Shanties days 1-4 (8)

• 16 rooms per auction; 16th-price ascending auction;
quote is ask price; no resale
• Random auction closes minutes 4 – 11

Entertainment: Wrestling/Museum/Park days 1-4 (12)

• Continuous double auction; initial endowments; quote
is bid-ask spread; resale allowed

Todd Hester



Client Preferences and Utility

Preferences: randomly generated per client

− Ideal arrival, departure days
− Good Hotel Value
− Entertainment Values
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Client Preferences and Utility

Preferences: randomly generated per client

− Ideal arrival, departure days
− Good Hotel Value
− Entertainment Values

Utility: 1000 (if valid) − travel penalty + hotel bonus
+ entertainment bonus

Score: Sum of client utilities − expenditures

Todd Hester
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Allocation

G ≡ complete allocation of goods to clients

v(G) ≡ utility of G − cost of needed goods

G∗ ≡ argmax v(G)

Given holdings and prices, find G∗

• General allocation NP-complete

– Tractable in TAC: mixed-integer LP [ATTac-2000]

– Estimate v(G∗) quickly with LP relaxation

Prices known⇒ G∗ known⇒ optimal bids known

Todd Hester
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High-Level Strategy
• Learn model of expected hotel price distributions

• For each auction:

– Repeatedly sample price vector from distributions
– Bid avg marginal expected utility: v(G∗

w)− v(G∗
l )

• Bid for all goods — not just those in G∗

Goal: analytically calculate optimal bids

Todd Hester
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Hotel Price Prediction
• Features:

− Current hotel and flight prices
− Current time in game
− Hotel closing times
− Agents in the game (when known)
− Variations of the above

• Data:

− Hundreds of seeding round games
− Assumption: similar economy
− Features 7→ actual prices

Todd Hester
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The Learning Algorithm

• X ≡ feature vector ∈ IRn

• Y ≡ closing price − current price ∈ IR

• Break Y into k ≈ 50 cut points b1 ≤ · · · ≤ bk

• For each bi, estimate probability Y ≥ bi, given X

− Say X belongs to class Ci if Y ≥ bi
− k-class problem: each example in many classes
− Use BoosTexter (boosting [Schapire, 1990])

• Can convert to estimated distribution of Y |X

New algorithm for conditional density estimation

Todd Hester
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Hotel Expected Values
• Repeat until time bound, for each hotel:

1. Assume this hotel closes next
2. Sample prices from predicted price distributions
3. Given these prices compute V0, V1, . . . V8

− Vi = v(G∗)if own exactly i of the hotel
− V0 ≤ V1 ≤ . . . ≤ V8

• Value of ith copy is avg( Vi − Vi−1 )

Todd Hester
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Other Uses of Sampling
Flights: Cost/benefit analysis for postponing commitment

Cost: Price expected to rise over next n minutes
Benefit: More price info becomes known
• Compute expected marginal value of buying some

different flight

Entertainment: Bid more (ask less) than expected value of
having one more (fewer) ticket

Todd Hester



Finals
Team Avg. Adj. Institution
ATTac 3622 4154 AT&T
livingagents 3670 4094 Living Systems (Germ.)
whitebear 3513 3931 Cornell
Urlaub01 3421 3909 Penn State
Retsina 3352 3812 CMU
CaiserSose 3074 3766 Essex (UK)
Southampton 3253∗ 3679 Southampton (UK)
TacsMan 2859 3338 Stanford

• ATTac improves over time
• livingagents is an open-loop strategy
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Controlled Experiments
• ATTacs: “‘full-strength” agent based on boosting

• SimpleMeans: sample from empirical distribution
(previously played games)

• ConditionalMeans: condition on closing time

• ATTacns, ConditionalMeanns, SimpleMeanns:
predict expected value of the distribution

• CurrentPrice: predict no change

• EarlyBidder: motivated by TAC-01 entry livingagents
− Immediately bids high for G∗ (with SimpleMeanns)
− Goes to sleep

Todd Hester



Stability
• 7 EarlyBidder’s with 1 ATTac

Agent Score Utility
ATTac 2431 ± 464 8909 ± 264
EarlyBidder −4880 ± 337 9870 ± 34
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Stability
• 7 EarlyBidder’s with 1 ATTac

Agent Score Utility
ATTac 2431 ± 464 8909 ± 264
EarlyBidder −4880 ± 337 9870 ± 34

• 7 ATTac’s with 1 EarlyBidder
Agent Score Utility
ATTac 2578 ± 25 9650 ± 21
EarlyBidder 2869 ± 69 10079 ± 55

EarlyBidder gets more utility; ATTac pays less

Todd Hester
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Results
• Phase I : Training from TAC-01 (seeding round, finals)
• Phase II : Training from TAC-01, phases I, II
• Phase III : Training from phases I – III

Agent Relative Score
Phase I Phase III

ATTacns 105.2± 49.5 (2) 166.2± 20.8 (1)

ATTacs 27.8± 42.1 (3) 122.3± 19.4 (2)

EarlyBidder 140.3± 38.6 (1) 117.0± 18.0 (3)

SimpleMeanns −28.8± 45.1 (5) −11.5± 21.7 (4)

SimpleMeans −72.0± 47.5 (7) −44.1± 18.2 (5)

ConditionalMeanns 8.6± 41.2 (4) −60.1± 19.7 (6)

ConditionalMeans −147.5± 35.6 (8) −91.1± 17.6 (7)

CurrentPrice −33.7± 52.4 (6) −198.8± 26.0 (8)
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Other TAC competitions
• Supply Chain Management

• Ad Auctions

• Power
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Discussion
• Are these agents useful for the real version of these tasks?

• What can we learn from these competitions?

• General strategy that works well?

Todd Hester



Last-minute bidding [R,O, 2001]
− eBay: first-price, ascending auction
− Amazon: auction extended if bid in last 10 minutes
− eBay: bots exist to incrementally raise your bid to a

maximum

• Still people snipe. Why?
− There’s a risk that the bid might not make it
− However, common-value =⇒ bid conveys info
− Late-bidding can be seen as implicit collusion
− Or . . . , lazy, unaware, etc. (Amazon and eBay)
• Finding: more late-bidding on eBay,
− even more on antiques rather than computers

Small design-difference matters
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Late Bidding as Best Response
• Good vs. incremental bidders
− They start bidding low, plan to respond
− Doesn’t give them time to respond

• Good vs. other snipers
− Implicit collusion
− Both bid low, chance that one bid doesn’t get in

• Good in common-value case
− protects information

Overall, the analysis of multiple bids supports the
hypothesis that last-minute bidding arises at least
in part as a response by sophisticated bidders to
unsophisticated incremental bidding.
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