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Logistics

• Readings

– Specify which papers you read!
– 2 case studies and 1 TDP

• How to read a research paper

– Some have too few details...
– Others have too many.

• Next week’s readings posted

• Use the undergrad writing center!

– Friday afternoon workshops (3 p.m.)
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Overview of the Readings
• Darwin: genetic programming approach

• Stone and McAllester: Architecture for action selection

• Riley et al: Coach competition, extracting models

• Kuhlmann et al: Learning for coaching

• Withopf and Riedmiller: Reinforcement learning

• MacAlpine et al: UT Austin Villa 2011

• Barrett et al: SPL Kicking strategy
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Evolutionary Computation
• Motivated by biological evolution: GA, GP

• Search through a space

− Need a representation, fitness function
− Probabilistically apply search operators to set of points

in search space

• Randomized, parallel hill-climbing through space

• Learning is an optimization problem (fitness)

Some slides from Machine Learning [Mitchell, 1997]
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• More ambitious follow-up to Luke, 97 (made 2nd round)

• Motivated in part by Peter’s detailed team construction

• Evolves whole teams — lexicographic fitness function

• Evolved on huge (at the time) hypercube

• Lots of spinning, but figured out dribbling, offsides

• 1-1-1 record. Tied a good team, but didn’t advance

• Success of the method, but not pursued
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Architecture for Action Selection

• (other slides, video)

• downsides

• Keepaway
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Coaching
• Learn best strategy to play a fixed team

• Give high level advice to players at low frequency

• Focus on learning formations

• Learn when successful teams passed/kicked

• Learn when opponent will pass and try to block

• What if players switch roles?

• Why just imitate another team?

• Other slides
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UT Austin Villa 2011

• Other slides

• Why not use CMA-ES on role positions as well?

• Changes for 2012?
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• Figure

• Emphasis on quickness

• Now: Better model of opponents -> Know if we have more
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Learning Commentary

• David Chen and Ray Mooney
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Coordination Graphs
• n agents, each choose an action Ai

• A = A1 × . . .×An

• Ri(A) 7→ IR

• Coordination problem: R1 = . . . = Rn = R

• Nash equilibrium: no agent could do better given what
others are doing.

• May be more than one (chicken)

Todd Hester
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Example from the paper
• Understand the rule syntax

• Form the coordination graph

• First eliminate rules based on context

• What does it mean for G3 to collect all relevant rules?

• What does it mean for G3 to maximize over all actions of
a1 and a2?

• How are the results propagated back?

• Let’s try again with G1 eliminated first

Todd Hester
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Application to soccer
• Make the world discrete by assigning roles, using high-

level predicates

• Assume global state information

• Finds pass sequences and starts players moving ahead of
time.

• Note the results: with and without coordination.
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Reactive Deliberation

• A hybrid approach

• Executor: carry out reactive behaviors

• Deliberator: evaluate possible high-level schema with
parameters; generate bids

• Deliberator takes time, but something keeps happening
always.

• In effect: deliberator commits to schema for some time

Todd Hester
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