# CS 378: Autonomous Intelligent Robotics (FRI)

Dr. Todd Hester

## **Teaching Staff**

#### TA:

Shweta Gulati

#### **Student Mentors:**

- Josan Munoz
- Nick White

#### Staff:

- Peter Stone
- Piyush Khandelwal
- Jack O'Quin

#### **Two Main Goals**

Learn about Autonomous Intelligent Robotics
Learn about CS Research

# **Today**

- Introduction to BWI Project
- Course Overview

# **Building Wide Intelligence (BWI)**

Create an intelligent environment inside the building using external components.

- 1) Persistent Robots
- 2) Display screens
- 3) Kiosks
- 4) Cameras
- 5) Rfid

# **BWI** Robot



#### **BWI Tasks/Goals**

- Lead someone to their destination
- Track users in the building
- Bring things to people (video)
- Telepresence for meetings
- Others?

# **BWI Challenges**

- Vision
  - Person detection, identification, and tracking
  - Identify landmarks
- Localization
  - Using vision, RFID, Wifi, Cameras
- Navigation
  - Navigate successfully to a destination
- Motion
  - Motion planning, obstacle avoidance, safety
- Human Robot Interaction
  - Natural Language
  - Multiple robot Single intelligent entity?
- Multi-Robot Planning/Coordination

# **BWI Project**

- Segway Robots
- Cameras
- RFID Tags
- AR Drone Copter
- Existing codebase for some things
- Using Robot Operating System (ROS)

## **Open Ended Research**

You will have freedom to work on any aspect of the project you want.

But it will require hard work.

#### **About this course**

- This is a unique opportunity for undergraduates at the freshman level to engage in research. There are opportunities to possibly publish papers, do undergraduate theses, etc.
- This semester is split into an introduction to the BWI project and then a small research project. In the fall, you will solely work on independent research projects.
- There are no prerequisites. However this research stream requires some programming skills. So you'll need to work on those over the Spring semester.

## **Course Design**

- Introduction
  - Readings and Programming Assignments
- Research Projects
  - Open-ended readings
  - Finding research papers
  - Weekly updates on research progress

#### **Course Overview**

Syllabus

## **Workload Summary**

- Each week
  - 1 Reading + summary
  - Find 1 new paper
  - Week 7 on... project update
- 2 Programming Assignments
- Class participation

#### Research Project

- Project updates each week
- Project proposal
- Progress report
- Final report

#### Research

- Freedom to work on what you want
- Developing new and innovative ideas

#### Hard work

- Self-motivation (no hand holding)
- Open-endedness
- Programming Skills

## **Programming**

- If you know Java but not C++
  - Pattern match off existing code
  - A ton of C++ tutorials online I'll point you to these
  - Lots of office hours

- If you don't know programming
  - We don't have the time to go through a lot of basic programming concepts in class
  - However, we have a number of people to help you with programming outside the lecture hours
  - You can also try enrolling in a programming course this semester itself.
  - Learning programming will require quite a bit of self-effort, but as long as you try you'll be fine.

## **Expected of you**

- Ask questions
  - You have a problem, let us know. Follow it up!
- Expand your knowledge
  - For instance, if we give you a list of commands to run:
     look up what they do!
- Search for solutions on the internet
  - If you have a problem, someone else has probably had it in the past as well.
- A serious effort to learn and improve programming skills
- Working on your own time

#### This week

- Make sure you have a CS account.
  - https://udb.cs.utexas.edu/amut/acut/
- Make sure you have a wiki account (can edit a page)
  - http://zweb.cs.utexas.edu/users/piyushk/bwi/index. php/CS378/Main\_Page
- Enroll in Piazza
  - www.piazza.com

#### **Next week**

- Reading Assignment 1 (due Monday 9 PM) on class webpage:
  - http://www.cs.utexas.edu/~todd/cs378/#table
- Add a paper to the wiki (due Tuesday 12:30 PM)

#### How to read a paper

- Pass 1
  - Read abstract, introduction and results/conclusion
  - Figure out what paper is about
  - Don't dive into the paper without getting the overall idea!
- Pass 2 (Required for understanding)
  - Read the paper in depth
  - Be critical and inquisitive
  - Jot down notes/questions on the margins mark everything you did not understand
  - These points will help you discuss the paper
  - Not necessary to understand all technical details

## How to find a paper

- Google Scholar
- Look at citations of other relevant papers
- Look up similar projects and check out their publications pages