
CS 378: Autonomous
Intelligent Robotics (FRI)

Dr. Todd Hester

Are there any questions?

Logistics

● Readings Monday
○ Pick your own paper from the wiki

● Post for teammates on Piazza
○ Project topics, skills

● Talks Tomorrow
○ Dr. Mohan Sridharan
○ Towards Autonomy in Human-Robot Collaboration

■ 11 am, ACES 2.402
○ Integrating Answer Set Programming and

Probabilistic Planning on Robots
■ 3 pm, ACES 2.402

Assignment 1

● Laptop Issues
○ There will be issues
○ Start early
○ Strongly encouraged to use lab machines

● Debug and Troubleshooting
○ In the lab
○ Post on Piazza
○ Copy and paste from terminal

● Cutting-Edge & Complex Code
○ There will be problems
○ START EARLY
○ Get help IN PERSON - Come to office hours

● Now due tomorrow 4pm!

Assignment 1

● Gazebo and Rviz

● Any interesting behaviors driving the robot
around?

● Any issues with navigation?

● Try blocking the robot's path?

● Any issues navigating with the Kinect?

Today

● ROS Tutorial
○ Setting up two simple nodes to send messages to

each other
● Kalman Filters

Example 1 - Publisher and Listener

● The first example is directly from ROS Tutorials
○ http://www.ros.org/wiki/ROS/Tutorials

● I highly recommend going through these tutorials on
your own time

● We'll take a look at C++ tutorial today (Tutorial 11)
● If you are interested in using ROS in Python go

through the Python tutorial (Tutorial 12). The tutorials
are fairly similar

http://www.ros.org/wiki/ROS/Tutorials
http://www.ros.org/wiki/ROS/Tutorials

talker.cpp (intro_to_ros)
#include "ros/ros.h"

#include "std_msgs/String.h"

#include <sstream>

int main(int argc, char **argv) {

 ros::init(argc, argv, "talker");

 ros::NodeHandle n;

 ros::Publisher chatter_pub = n.advertise<std_msgs::String>("chatter", 1000);

 ros::Rate loop_rate(1);

 int count = 0;

 while (ros::ok()) {

 std_msgs::String msg;

 std::stringstream ss;

 ss << "hello world " << count;

 msg.data = ss.str();

 ROS_INFO("%s", msg.data.c_str());

 chatter_pub.publish(msg);

 ros::spinOnce();

 loop_rate.sleep();

 ++count;

 }

 return 0;

}

listener.cpp (intro_to_ros)
#include "ros/ros.h"
#include "std_msgs/String.h"

void chatterCallback(const std_msgs::String::ConstPtr msg) {
 ROS_INFO("I heard: [%s]", msg->data.c_str());
}

int main(int argc, char **argv) {
 ros::init(argc, argv, "listener");
 ros::NodeHandle n;
 ros::Subscriber sub =
 n.subscribe<std_msgs::String>("chatter", 1000, chatterCallback);
 ros::spin();
 return 0;
}

talker.cpp
#include "ros/ros.h"
#include "std_msgs/String.h"
#include <sstream>

● ros/ros.h is a convenience header that includes most of
the pieces necessary to run a ROS System

● std_msgs/String.h is the message type that we will
need to pass in this example
○ You will have to include a different header if you

want to use a different message type
● sstream is responsible for some string manipulations in

C++

talker.cpp
 ros::init(argc, argv, "talker");
 ros::NodeHandle n;

● ros::init is responsible for collecting ROS specific information
from arguments passed at the command line
○ It also takes in the name of our node
○ Remember that node names need to be unique in a

running system
● The creation of a ros::NodeHandle object does a lot of work

○ It initializes the node to allow communication with other
ROS nodes and the master in the ROS infrastructure

○ Allows you to interact with the node associated with this
process

talker.cpp
 ros::Publisher chatter_pub = n.advertise<std_msgs::String>("chatter", 1000);
 ros::Rate loop_rate(1);

● NodeHandle::advertise is responsible for making the
XML/RPC call to the ROS Master advertising
std_msgs::String on the topic named "chatter"

● loop_rate is used to maintain the frequency of
publishing at 1 Hz (i.e., 1 message per second)

talker.cpp
 int count = 0;
 while (ros::ok()) {

● count is used to keep track of the number of
messages transmitted. Its value is attached to the
string message that is published

● ros::ok() ensures that everything is still alright in the
ROS framework. If something is amiss, then it will
return false effectively terminating the program.
Examples of situations where it will return false:
○ You Ctrl+c the program (SIGINT)
○ You open up another node with the same name.
○ You call ros::shutdown() somewhere in your code

talker.cpp
 std_msgs::String msg;
 std::stringstream ss;
 ss << "hello world " << count;
 msg.data = ss.str();

● These 4 lines do some string manipulation to put the
count inside the String message

● msg.data is a std::string

talker.cpp
 ROS_INFO("%s", msg.data.c_str());
 chatter_pub.publish(msg);

● ROS_INFO is a macro that publishes an information
message in the ROS ecosystem. By default
ROS_INFO messages are also published to the
screen.
○ There are debug tools in ROS that can read these

messages
○ You can change what level of messages you want to

be have published

● ros::Publisher::publish() sends the message to all
subscribers

talker.cpp
 ros::spinOnce();
 loop_rate.sleep();
 ++count;

● ros::spinOnce() is analogous to the main function of the ROS
framework.
○ Whenever you are subscribed to one or many topics, the

callbacks for receiving messages on those topics are not
called immediately.

○ Instead they are placed in a queue which is processed
when you call ros::spinOnce()

○ What would happen if we remove the spinOnce() call?
● ros::Rate::sleep() helps maintain a particular publishing

frequency
● count is incremented to keep track of messages

listener.cpp - in reverse!
int main(int argc, char **argv) {
 ros::init(argc, argv, "listener");

 ros::NodeHandle n;

 ros::Subscriber sub =

 n.subscribe<std_msgs::String>("chatter", 1000, chatterCallback);

 ros::spin();

 return 0;
}

● ros::NodeHandle::subscribe makes an XML/RPC call to the
ROS master
○ It subscribes to the topic chatter
○ 1000 is the queue size. In case we are unable to process

messages fast enough. This is only useful in case of
irregular processing times of messages. Why?

○ The third argument is the callback function to call
whenever we receive a message

● ros::spin() a convenience function that loops around ros::
spinOnce() while checking ros::ok()

listener.cpp
#include "ros/ros.h"
#include "std_msgs/String.h"

void chatterCallback(const std_msgs::String::ConstPtr msg) {
 ROS_INFO("I heard: [%s]", msg->data.c_str());
}

● Same headers as before
● chatterCallback() is a function we have defined that

gets called whenever we receive a message on the
subscribed topic

● It has a well typed argument.

Running the code

● Build the example package
○ rosmake intro_to_ros

● In separate terminal windows, run the following
programs:
○ roscore
○ rosrun intro_to_ros talker
○ rosrun intro_to_ros listener

● To view messages:
○ rostopic list
○ rostopic echo chatter

Example 2 - Adding a Messenger
node
● A number of times in ROS you will have a bunch of

nodes processing data in sequence. For instance a
blob detection node provides the location of blobs for
every camera image it receives

● To demonstrate this, we'll change our previous
example in the following ways:
○ Introduce a messenger node that listens for

messages on the topic chatter and forwards them
on the topic chatter2. (I couldn't think of a cute
name for this topic)

○ At the command line remap the listener to
subscribe to chatter2 instead of chatter

messenger.cpp (intro_to_ros)
#include "ros/ros.h"

#include "std_msgs/String.h "

ros::Publisher chatter_pub ;

std_msgs::String my_msg;

void chatterCallback(const std_msgs::String::ConstPtr msg) {
 ROS_INFO("I heard: [%s]", msg->data.c_str());

 my_msg.data = msg->data + ". Dont kill the messenger! ";

 chatter_pub.publish(my_msg);

}

int main(int argc, char **argv) {
 ros::init(argc, argv, "messenger");

 ros::NodeHandle n;

 ros::Subscriber sub =

 n.subscribe<std_msgs::String>("chatter", 1000, chatterCallback);

 chatter_pub = n.advertise<std_msgs::String>("chatter2", 1000);

 ros::spin();

 return 0;
}

Running the code

● You will have to execute the following steps to get
this example working

● In separate terminal windows, run the following
programs:
○ roscore
○ rosrun intro_to_ros talker
○ rosrun intro_to_ros listener chatter:=chatter2
○ rosrun intro_to_ros messenger

Review

● ROS is a peer-to-peer robot middleware package
● We use ROS because it allows for easier hardware

abstraction and code reuse
● In ROS, all major functionality is broken up into a

number of chunks that communicate with each other
using messages

● Each chunk is called a node and is typically run as a
separate process

● Matchmaking or bookkeeping between nodes is done
by the ROS Master

Assignments Due Next Week

● HW1 - Due tomorrow 4pm

● Reading Due Monday night
○ Pick any paper you want!

● Add a new paper to the wiki (by class time
Tuesday)

● Post Teammate Search
○ Project Topics, Skills
○ Thursday

