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Trends in Programmable Processors

• Workloads are becoming

diverse

– Increased specialization

among processors

• Benefits of specialization

– Performance, power, area

• Problems of specialization

– Poor performance outside

intended domain

– Little design re-use

Server
DesktopGraphics

Network

P
e
rf

o
rm

a
n

c
e

GeForce

Pentium4

Power4

Intel IXP

Courtesy : Bob Gray bill, DARPA



38/31/05  CART UT-CS

Homogeneity versus Heterogeneity

• Heterogeneous - multiple different types of processors

(Eg: Tarantula [Espasa et al, ISCA 2002])

+  Performance advantages

– Load balancing inefficiencies

– Higher design complexity

• Homogeneous - single or multiple of same processor

+  Flexible/general purpose

+  Ample design reuse

– Processor mismatch inefficiencies

• Approach: Hardware Polymorphism

– Start with high performance homogeneous substrate

– Add coarse-grained reconfigurability to micro-architectural

elements

– Manage different elements appropriately for different

applications
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Challenges for Homogenous Systems

• High degree of partitioning

– Necessary for fine-grained concurrency

• High computational density (ALUs/mm2 )

– Necessary for data parallel applications

• Keep communication localized

– Permits technology scalability

• Minimize specialized hardware

– Reduces design complexity

Fine-grain CMP:

64 in-order cores
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What is the Right Granularity of Processing?

FPGA: 106 gates PIM: 256 elements Fine-grain CMP:

64 in-order cores

Coarse-grain CMP:

16 O-O-O cores

Fine-grained concurrency Coarse-grained/general-purpose

4 ultra-large cores

• Configuring granularity through polymorphism

– Synthesis: Emulate coarse-grained cores using fine-grained PEs

– Partitioning: Partition coarse-grained cores into fine-grained PEs

• Synthesizing fine-grained PEs difficult at best

• Partitioning ultra-large cores

• Maximize resources for single-threaded performance

• Sub-divide for finer granularity

• Configure micro-architectural elements for different levels of parallelism
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Outline

• Introduction to polymorphous systems

• TRIPS architectural overview

• Polymorphous components

• Supporting different granularities of parallelism

– Instruction-level parallelism (ILP)

– Thread-level parallelism (TLP)

– Data-level parallelism (DLP)

• Conclusions
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TRIPS Overview

CMP with large Grid Processor cores and L2 cache banks

Grid Processor Core

L2 cache bank
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TRIPS Overview
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• SPDI: Static Placement, Dynamic Issue

• ALU Chaining

• Short wires / Wire-delay constraints

exposed at the architectural level

• Block Atomic Execution

Block termination Logic
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Challenges for Different Levels of Parallelism

• Instruction-level parallelism[Nagarajan et al, Micro01]

– Populate large instruction window with useful instructions

– Schedule instructions to optimize communication and

concurrency

• Thread-level parallelism

– Partition instruction window among different threads

– Reduce contentions for instruction and data supply

• Data-level parallelism

– Provide high density of computational elements

– Provide high bandwidth to/from data memory
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TRIPS Configurable Resources
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• Reservation stations

– Instruction window management

• Instruction fetch control

– Speculation/non-speculation, multiple

threads, mapping re-use.

• Register files

– Speculative vs. non-speculative data storage

• L2 cache banks

– tag lookup, replacement, b/w to near banks



118/31/05  CART UT-CS

Aggregating Reservation Stations: Frames

Execution Node

opcode src1 src2

opcode src1 src2

opcode src1 src2

Instruction Buffers form 

a logical “z-dimension” 

in each node

opcode src1 src2

4 logical frames

each with 16 instruction slots

Control

Router

ALU

sub

add

add

add
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• Instruction buffers add depth to the execution array

– 2D array of ALUs; 3D volume of instructions
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16 total frames (4 sets of 4)

start
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Extracting ILP: Frames for Speculation

Execute A

Predict C

Execute C

Predict D

Execute D

Predict E

Execute E

•Ultra-wide issue from a large distributed instruction window

16-wide OOO issue
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ILP Results with Speculation
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Configuring Frames for TLP

B2(spec)

A2

Thread 2 Divide frame space

among threadsThread 1

B1(spec)

A1 - Each can be further sub-

divided to enable some

degree of speculation

- Shown: 2 threads, each

with 1 speculative block

- Alternate configuration

might provide 4 threads

•Multiple partitioned instruction window for different threads
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TLP Results

• Speedup: 1.8x to 2.9x

• Reasons for performance losses

– Contention for resources (principally in instruction and data supply)

– Reduced instruction window size
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Using Frames for DLP
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Streaming Kernel:

 - read input stream element

 - process element

 - write output stream element

• Map very large unrolled kernels to window

• Turn-off speculation

• Keep communication localized

• Mapping re-use: Fetch/map loop body once, re-use many times

• Re-vitalization initiates successive iterations
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Configuring Data Memory for DLP
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Stream register file (SRF) (accessed w/ LMW)

Streaming channels

• Regular data accesses

• Subset of L2 cache banks configured as SRF

• High bandwidth data channels to SRF

• Reduced address communication

• Constants saved in reservation stations

L1 Banks



188/31/05  CART UT-CS

DLP Results (4x4 GPA)

• Performance metric omits overhead, LD/ST instructions
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Results: Summary

• ILP: instruction window occupancy

– Peak: 4x4x128 array   2048 instructions

– Sustained: 493 for Spec Int, 1412 for Spec FP

– Bottleneck: branch prediction

• TLP: instruction and data supply

– Peak: 100% efficiency

– Sustained: 87% for two threads, 61% for  four threads

• DLP: data supply bandwidth

– Peak: 16 ops/cycle

– Sustained: 6.9 ops/cycle
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Related Work

• Polymorphous homogeneous

– SmartMemories: Modular reconfigurable architecture[Mai, ISCA

’01]

• Fine-grained homogeneous

– RAW: Baring it all to software [Waingold, IEEE Computer ’00]

• Ultra-fine grained homogeneous

– Piperench reconfigurable architecture and compiler [Goldstein,

IEEE Computer ’00]

• Heterogeneous

– Tarantula Vector Extensions to the EV8 [Espasa, ISCA ’02]
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Conclusions

• TRIPS: Coarse-grained homogeneous approach with polymorphism.

– Sub-divide a powerful uniprocessor

– ILP: Well-partitioned powerful uniprocessor (GPA)

– TLP: Divide instruction window among different threads

– DLP: Mapping reuse of instructions and constants in grid

• Future work

– Demonstrate viability with HW/SW prototype

– Design software interfaces to exploit configurable hardware

• How well homogeneous approaches compare with specialized cores?

• How large should these cores scale?


