
18/31/05  CART UT-CS

Exploiting ILP, TLP, and DLP with the

Polymorphous TRIPS Architecture

Karthikeyan Sankaralingam

Haiming Liu

Changkyu Kim

Jaehyuk Huh

Computer Architecture and Technology Laboratory

Department of Computer Sciences

The University of Texas at Austin

Doug Burger

Stephen W. Keckler

Charles R. Moore

Ramadass Nagarajan



28/31/05  CART UT-CS

Trends in Programmable Processors

• Workloads are becoming

diverse

– Increased specialization

among processors

• Benefits of specialization

– Performance, power, area

• Problems of specialization

– Poor performance outside

intended domain

– Little design re-use

Server
DesktopGraphics

Network

P
e
rf

o
rm

a
n

c
e

GeForce

Pentium4

Power4

Intel IXP

Courtesy : Bob Gray bill, DARPA



38/31/05  CART UT-CS

Homogeneity versus Heterogeneity

• Heterogeneous - multiple different types of processors

(Eg: Tarantula [Espasa et al, ISCA 2002])

+  Performance advantages

– Load balancing inefficiencies

– Higher design complexity

• Homogeneous - single or multiple of same processor

+  Flexible/general purpose

+  Ample design reuse

– Processor mismatch inefficiencies

• Approach: Hardware Polymorphism

– Start with high performance homogeneous substrate

– Add coarse-grained reconfigurability to micro-architectural

elements

– Manage different elements appropriately for different

applications

VEC DSP

UNITHR

UNIUNI

UNI UNIVEC

UNITHR

DSPUNI UNI

DSP THR

UNIUNI

UNI UNI



48/31/05  CART UT-CS

Challenges for Homogenous Systems

• High degree of partitioning

– Necessary for fine-grained concurrency

• High computational density (ALUs/mm2 )

– Necessary for data parallel applications

• Keep communication localized

– Permits technology scalability

• Minimize specialized hardware

– Reduces design complexity

Fine-grain CMP:

64 in-order cores



58/31/05  CART UT-CS

What is the Right Granularity of Processing?

FPGA: 106 gates PIM: 256 elements Fine-grain CMP:

64 in-order cores

Coarse-grain CMP:

16 O-O-O cores

Fine-grained concurrency Coarse-grained/general-purpose

4 ultra-large cores

• Configuring granularity through polymorphism

– Synthesis: Emulate coarse-grained cores using fine-grained PEs

– Partitioning: Partition coarse-grained cores into fine-grained PEs

• Synthesizing fine-grained PEs difficult at best

• Partitioning ultra-large cores

• Maximize resources for single-threaded performance

• Sub-divide for finer granularity

• Configure micro-architectural elements for different levels of parallelism



68/31/05  CART UT-CS

Outline

• Introduction to polymorphous systems

• TRIPS architectural overview

• Polymorphous components

• Supporting different granularities of parallelism

– Instruction-level parallelism (ILP)

– Thread-level parallelism (TLP)

– Data-level parallelism (DLP)

• Conclusions



78/31/05  CART UT-CS

TRIPS Overview

CMP with large Grid Processor cores and L2 cache banks

Grid Processor Core

L2 cache bank



88/31/05  CART UT-CS

TRIPS Overview

Bank 0

Moves

Bank M

Bank 1

Bank 2

Bank 3

L
o

a
d

 s
to

re
 q

u
e

u
e

s

Bank 0

Bank 1

Bank 2

Bank 3

0 1 2 3

IF CT

L2 Cache Banks

• SPDI: Static Placement, Dynamic Issue

• ALU Chaining

• Short wires / Wire-delay constraints

exposed at the architectural level

• Block Atomic Execution

Block termination Logic



98/31/05  CART UT-CS

Challenges for Different Levels of Parallelism

• Instruction-level parallelism[Nagarajan et al, Micro01]

– Populate large instruction window with useful instructions

– Schedule instructions to optimize communication and

concurrency

• Thread-level parallelism

– Partition instruction window among different threads

– Reduce contentions for instruction and data supply

• Data-level parallelism

– Provide high density of computational elements

– Provide high bandwidth to/from data memory



108/31/05  CART UT-CS

TRIPS Configurable Resources

Bank 0

Moves

Bank M

Bank 1

Bank 2

Bank 3

L
o

a
d

 s
to

re
 q

u
e

u
e

s

Bank 0

Bank 1

Bank 2

Bank 3

0 1 2 3

Block termination LogicIF CT

L2 Cache Banks

• Reservation stations

– Instruction window management

• Instruction fetch control

– Speculation/non-speculation, multiple

threads, mapping re-use.

• Register files

– Speculative vs. non-speculative data storage

• L2 cache banks

– tag lookup, replacement, b/w to near banks



118/31/05  CART UT-CS

Aggregating Reservation Stations: Frames

Execution Node

opcode src1 src2

opcode src1 src2

opcode src1 src2

Instruction Buffers form 

a logical “z-dimension” 

in each node

opcode src1 src2

4 logical frames

each with 16 instruction slots

Control

Router

ALU

sub

add

add

add

sub

• Instruction buffers add depth to the execution array

– 2D array of ALUs; 3D volume of instructions



128/31/05  CART UT-CS

16 total frames (4 sets of 4)

start

end

A

B

C

D

E

 E (spec)

 D (spec)

 C (spec)

 A

Extracting ILP: Frames for Speculation

Execute A

Predict C

Execute C

Predict D

Execute D

Predict E

Execute E

•Ultra-wide issue from a large distributed instruction window

16-wide OOO issue



138/31/05  CART UT-CS

ILP Results with Speculation

SPEC Int

Programs

SPEC FP

programs

0

2

4

6

8

10

12

ammp equake mgrid swim tomcatv MEAN

IP
C

1

4

16

Perfect

0

2

4

6

8

10

12

bzip2 compr m88k mcf vortex MEAN

IP
C

1

4

16

Perfect

#blocks



148/31/05  CART UT-CS

Configuring Frames for TLP

B2(spec)

A2

Thread 2 Divide frame space

among threadsThread 1

B1(spec)

A1 - Each can be further sub-

divided to enable some

degree of speculation

- Shown: 2 threads, each

with 1 speculative block

- Alternate configuration

might provide 4 threads

•Multiple partitioned instruction window for different threads



158/31/05  CART UT-CS

TLP Results

• Speedup: 1.8x to 2.9x

• Reasons for performance losses

– Contention for resources (principally in instruction and data supply)

– Reduced instruction window size

0

5

10

15

20

25

30

2 4 8

# of threads

R
a

te
 o

f 
W

o
rk

 (
IP

C
)

Sequential Execution

TLP-mode execution

Multiple processors



168/31/05  CART UT-CS

Using Frames for DLP

end

start

lo
o

p
 N

 t
im

e
s

unroll 8X

start

end
lo

o
p

 N
/8

 t
im

e
s

(1)

(2)

(3)

(8)

Streaming Kernel:

 - read input stream element

 - process element

 - write output stream element

• Map very large unrolled kernels to window

• Turn-off speculation

• Keep communication localized

• Mapping re-use: Fetch/map loop body once, re-use many times

• Re-vitalization initiates successive iterations



178/31/05  CART UT-CS

Configuring Data Memory for DLP

Bank 0

Moves

Bank M

Bank 1

Bank 2

Bank 3

L
o

a
d

 s
to

re
 q

u
e

u
e

s

Bank 0

Bank 1

Bank 2

Bank 3

0 1 2 3

Block termination LogicIF CT

L2 Cache Banks

Stream register file (SRF) (accessed w/ LMW)

Streaming channels

• Regular data accesses

• Subset of L2 cache banks configured as SRF

• High bandwidth data channels to SRF

• Reduced address communication

• Constants saved in reservation stations

L1 Banks



188/31/05  CART UT-CS

DLP Results (4x4 GPA)

• Performance metric omits overhead, LD/ST instructions

0

2

4

6

8

10

12

14

16

convert dct fft8 fir16 idea transform MEAN

C
o

m
p

u
te

 I
n

s
t/

c
y
c
le

ILP mode

DLP-mode

1/4 LD B/W

NoRevitalize



198/31/05  CART UT-CS

Results: Summary

• ILP: instruction window occupancy

– Peak: 4x4x128 array   2048 instructions

– Sustained: 493 for Spec Int, 1412 for Spec FP

– Bottleneck: branch prediction

• TLP: instruction and data supply

– Peak: 100% efficiency

– Sustained: 87% for two threads, 61% for  four threads

• DLP: data supply bandwidth

– Peak: 16 ops/cycle

– Sustained: 6.9 ops/cycle



208/31/05  CART UT-CS

Related Work

• Polymorphous homogeneous

– SmartMemories: Modular reconfigurable architecture[Mai, ISCA

’01]

• Fine-grained homogeneous

– RAW: Baring it all to software [Waingold, IEEE Computer ’00]

• Ultra-fine grained homogeneous

– Piperench reconfigurable architecture and compiler [Goldstein,

IEEE Computer ’00]

• Heterogeneous

– Tarantula Vector Extensions to the EV8 [Espasa, ISCA ’02]



218/31/05  CART UT-CS

Conclusions

• TRIPS: Coarse-grained homogeneous approach with polymorphism.

– Sub-divide a powerful uniprocessor

– ILP: Well-partitioned powerful uniprocessor (GPA)

– TLP: Divide instruction window among different threads

– DLP: Mapping reuse of instructions and constants in grid

• Future work

– Demonstrate viability with HW/SW prototype

– Design software interfaces to exploit configurable hardware

• How well homogeneous approaches compare with specialized cores?

• How large should these cores scale?


