TRIPS: Extending the Range of
Programmable Processors

Stephen W. Keckler
Doug Burger and Chuck Moore

Computer Architecture and Technology Laboratory
Department of Computer Sciences
The University of Texas at Austin
www.cs.utexas.edu/users/cart

{= %\ The University of
Texas at Austin

Outline

* Application diversity and performance
scalability

e Limitations of conventional architectures
 TRIPS — a new architecture family

 Conclusions and future work

A=W\ The University of ,
%) Texas at Austin

Application Range Decreasing in GP Processors

Single chip with greater
| multithreaded range of capabilities

» Leverage larger economies
of scale

» Support intra-application
diversity

General
purpose
processor

The University of
Texas at Austin

Increasing Performance Scalability Range

<+— Fine-grained Coarse-grained —»

Fine-grain CMP Coarse-grain CMP Ultra-large cores

* Termites and chainsaws
— Good performance when tasks are abundant
— But: burden of communication, synchronization, load balancing
« Multiprocessor performance starts with a powerful uniprocessor
— Bulldozers serve a broader range of applications
» Better to build ten 10x processors than two hundred 1x processors
— Sub-divide into chainsaws/termites when necessary for finer granularity
« SMT is a contemporary example

= W\ The University of
Texas at Austin

Scaling Superscalar Processors?

* Looking back in time

— Enormous gains in frequency
« 1998: 500MHz -> 2002: 3000MHz
« Equal contributions from pipelining and technology
— IPC basically unchanged
« 1998: ~1IPC > 2002: ~1IPC
« Microarchitecture innovations just overcome losses due to pipelining

« Looking forward

— Faster clock rates? - deeper pipelines (toward < 10 FO4)

« Key latencies increase ... IPC decreases

« Power overheads increase superlinearly

« After next (and final) FO4 jump, frequency growth limited to technology only
— Higher IPC? - i.e. wide issue (16) and large window (512+)

« Complexity grows quadratically, but gain is logarithmic

— Bypass broadcast, renaming, instruction scheduling
« Wire delay limits size/speed of monolithic structures
« Achieving higher IPC is problematic in conventional architectures

R
Se\" “,.umm‘lok

(‘«E The University of
-"3 7) Texas at Austin

T aussid

What is Going Wrong?

1. Superscalar microarchitecture: scalability is limited
— Relies on large, centralized structures that want to grow larger
— Partitioning is a slippery slope: complexity, IPC loss...

2. Architecture: conventional binary interface is outdated!
— Linear sequence of instructions
— Defined for simple, single-issue machines

— Not natural for compiler
« Compiler forced to map control/data flow graphs into linear sequence
* Lots of useful information gets thrown away

— Not natural for instruction parallel machines
* Instruction relationships scattered throughout linear sequence
« Hardware must dynamically rediscover control/data flow graphs
* N2 problem - large, centralized structures

@5W The University of
N4/ Texas at Austin

Explicitly Parallel Architectures (VLIW)

 Architecture can be clean
— Hardware does not reconstruct dataflow graphs
— Simple in-order issue semantics
— Opportunity for higher arithmetic density
— Opportunity for power reduction
» Shift scheduling work to compiler ‘_—._.’ s P M —————
blaceggdr—i
« But — scalability issues Srecll T —
— Common register file L
— Full broadcast result bypass
— In-order issue not without complexity
« ALAT, register stack engine
— Future transition to OOQO?
* Faces challenges discovered in superscalar
* Not without becoming a new architecture

IPF — Itanium 2 (Intel, DAC 2003)
1.5GHz, 6-issue

(=W The University of
W%/ Texas at Austin

Architecture Generations Driven by Technology

'60s, '70s '80s, '90s, early '00s mid-late '00s, '10s
CISC » RISC > 777
Transistor limited Chip-area limited Communication limited
Complex instructions Simple instructions Reduce overheads of single insts.
Dense encodings Optimized for pipelining Efficient out-of-order processing
Few instructions in flight Tens of instructions in flight Hundreds to thousands in flight
Simple compilers Compiler instruction scheduling Compiler managed communication
Pipelining difficult Wide-issue difficult 777

= W\ The University of
Texas at Austin

TRIPS — A New Execution Model

« Compiler structures program into sequence of hyperblocks
— Atomic unit of fetch / schedule / execute / commit

» Blocks specify explicit instruction placement in the ALU array
— Critical path placed to minimize communication delays
— Less critical instructions placed in remaining positions

* Instructions specify consumers as explicit targets
— Communication cast into instruction encoding —-> no HW dependence analysis

— Point-to-point results forwarding —> no associative issue queues
- no global bypass network
— In-array storage expands register space -> no register renaming

— Only block outputs written back to register file —> fewer RF ports needed

« Dynamic instruction issue

— ALU array forms large distributed window with independent issue control
— Instructions execute in original dataflow-order

= W\ The University of
Texas at Austin

TRIPS Processor Overview

Sayoed uononsuy|

TRIPS core

Banked register file

Moves
Bank M

Bank O

0

1

2

3

5

|

.|

l

o |

Bank 1

Bank 2

Bank 3

{= %\ The University of
/) Texas at Austin

Execution node

L‘J HJ LTL]

L 3| Router

s

S

3

10

Block Compilation

Intermediate Code Data flow graph Mapping onto TRIPS
(0,0)

i1)add r1, r2, r3
i2)add r7, r2, r1
i3)Id r4, (r1)

i4) add r5, r4, 1

i5) beqgz r5, Oxdeac

@ Inputs (r2, r3)
@ Temporaries (r1, r4, r5)
@ Outputs (r7)

First, place critical path to minimize communication delays
Then place less critical paths to maximize ILP

="K\ The University of
%)) Texas at Austin

11

Block Execution

» Instruction distribution

» Input register fetch

» Block execution

» Output register writeback

DCache bank 0

DCache bank 2

DCache bank 3

Texas at Austin 12

Instruction Buffers: Frames

» Instruction Buffers add depth and define frames
— 2D array of execution units; 3D scheduling of instructions
— Allows very large blocks to be mapped onto a TRIPS processor
— Result addresses explicitly specified in 3-dimensions (x,y,z)
— Instructions execute in dataflow order, regardless of frame

add beqz
add
load
add
add

B add load

.................................. | |
add
Instruction Buffers form l ; l
1 & H .) e
! ! ! ! a logical “z-dimension 9

in each node

=5

4 logical frames

Execution Node each with 16 instruction slots

(==K The University of

Texas at Austin 13

Using Frames for Speculation and ILP

16 total frames (4 sets of 4)
start

Map A onto array
Start executing A

Predict C is next block
Speculatively execute C

Predict is D is after C
Speculatively execute D

Predict is E is after D
Speculatively execute E

Result:

« Enormous effective instruction window for extracting ILP

* Increased utilization of execution units (accuracy counts!)

end Latency tolerance for interconnect delays and load instructions

(% K\ The University of .
> Texas at Austin

Results — TRIPS Instructions per Cycle

O 8x8 TRIPS

H 4x4 TRIPS

0 4issue
Superscalar

IPC

U, 6‘,’ S, &
5
° %, 3

\ The University of
Texas at Austin

Using frames for TLP

XB(spec))'3/(%
=\ A %‘> Divide frame space
. ,IN(SPLC) ,/\% among threads
Fa | %
=\ 7 Each can be further
= divided to enable some
= = degree of speculation
| = =) = L Shown: 2 threads, each
e a s a ' with 1 speculative block
[' ”JL_ ' ”L__ ' ”JL_ = Alternate configuration
might provide 4 threads

Result:
* Simultaneous Multithreading (SMT) for TRIPS processors
* Polymorphism: Use same resources in different ways
for different workloads (“T-morph”)

(= W\ The University of

Texas at Austin 16

Current Status

« Architecture studies complete
« Enhancing compilation and scheduling tools

. . Control tile
— 3D instruction scheduler complete
— Currently improving hyperblock formation algorithms / l-cache tile

. TRIPS Chlp prototype RIIR||[R]|IR]||C j_ l/O||1/O||I/O] |405

— 2 4x4 TRIPS cores PRI XX LM ML ML

 16-way issue cores XXMM][M]| M

« 1K instruction window XXX XD M||[M| M]| M

« Up to 4 threads/core x [x [x][x][o]][][m][m][m][m

— NUCA L2 cache mirERRnimmEy
— Tiled architecture —

— ASIC process, 130nm, ~350mm? MR QMM MM

— 1000+ signal 1/0, 500MHz XL UMM M| M

— 12 person design team A X | XX P XD [[M][M| M]| M

— Q1 2005 tape-out / RJ[RJ[R||R C\E 1§/ [vo||uo||io

Execution unit tile L2 cache tile

I
_—

Register file tile D-cache tile

"W\ The University of

Texas at Austin 17

Observations and Challenges

« Compatibility — TRIPS has a different binary interface

— Variety of solutions in marketplace (IPF, Transmeta, etc.)

» Undersized blocks waste i-cache capacity and bandwidth
— Code compression techniques may prove promising

« Compiler obligations — hyperblock formation, predication
— But — scheduling burden diminishes relative to VLIW

« EXxceptions — block precise, not instruction precise
— Previous machines have supported imprecise exceptions

S E The University of
6’.

Texas at Austin 18

Conclusions

« Multiprocessor performance starts with a powerful uniprocessor
— Contemporary architectures have limited scalability

« Technology trends indicate that it is time for a new architecture
— Pipeline limitations, global wire delay, inefficient binary interface

» TRIPS represents a promising technology direction

>
>
>
>
>

g

Wire delay constraints: at microarchitecture and architecture
Eliminates difficult centralized structures dominating today’s designs
Architectural partitioning encourages regularity and re-use
Enhanced information flow between compiler and hardware

Dataflow substrate also suitable for threaded and data-parallel
computing

Power efficiency: no power-hungry structures, dataflow sub-graph
execution

@5W The University of
»-% * 3

Texas at Austin

19

