
UT CS 356 Assignment 4 - Congestion Control

Venkat Arun

1 Introduction

In this assignment, you will extend your code from the previous assignment
to implement a congestion control algorithm (CCA). With this, your transport
layer implementation will be complete and can be used by applications! “Real”
implementations are more efficient and use a more efficient serialization mech-
anism than our JSON-based header format, but your implementation will have
all the important features.

Recall that in the previous assignment, we picked a constant receive window
size and timeout value. In this assignment, you will implement two additional
functions get cwnd and get rto that return what congestion window (cwnd)
and retransmission timeout (rto) the sender should use. The units are in bytes
and seconds respectively. You will have to modify your implementations of
the other functions to enable the computation of these quantities. Note, the
congestion control algorithm we discussed in class modifies only the sender and
not the receiver.

Recall, the RTO is set as RTT AVG + 4 * RTT VAR. Both are computed as
Exponentially Weighted Moving Averages (EWMAs) of the respective quanti-
ties computed for each packet: RTT and |RTT - RTT AVG|.1 You will have to
calculate the RTT for each packet as the difference in the time at which it was
sent and when it was received. Having unique packet id is particularly useful
here, since you know exactly which packet is being acknnowledged. Further, at
first you will not have any good RTT estimates. During this period, return a
large conservative value like 1 second.
EWMA. For any sequence of numbers x1, x2, · · ·, the EWMA at time t is
computed recursively as et = αxt+(1−α)et−1 where α ∈ (0, 1) is a constant (say,
we pick α = 1/64). This has two benefits. First, it weighs older data points less.
If you expand the formula, you get et = αxt+α(1−α)xt−1+α(1−α)2xt−2+ · · ·.
Thus the weight of a data point ∆t time steps ago decreases exponentially with
∆t. Second, it is extremely simple to compute without maintaining any extra
state. A simple moving average by contrast requires O(w) memory where w is
the size of the window over which we want to compute the average.

The congestion window should be computed using the AIMD algorithm dis-
cussed in class. Implementing slow start is optional.

1We use the absolute difference instead of variance because it is less computational expen-
sive to compute. Whether this optimization matters today is debatable.

1

2 The MahiMahi Emulator

Congestion control only makes sense when the link has finite bandwidth. In
the last assignment, we ran the sender and receiver on the same machine while
testing. Within a single machine, we get extremely high link rates. To properly
test CCAs, we need a way to slow the packets down. We need to slow them
down along two dimensions: throughput and delay. Throughput controls the
maximum number of bytes the link will let pass every second. Delay controls
how long the link takes to transmit any packet from one side to another.

We will use the MahiMahi network emulator for this purpose. You could
have optionally used it in the previous assignment. This is the only assignment
in this course that requires Linux since Mahimahi requires Linux’s ability to
create isolated network namespaces. You should follow the steps outlined in
http://mahimahi.mit.edu. For example, you may use the following steps on
Ubuntu to install from source:

Install the pre-requisites:

sudo apt install autotools-dev protobuf-compiler

libprotobuf-dev dh-autoreconf iptables pkg-config

dnsmasq-base apache2-bin apache2-dev debhelper libssl-dev

ssl-cert libxcb-present-dev libcairo2-dev libpango1.0-dev

Download the code

git clone https://github.com/ravinet/mahimahi

Next, we need to deal with the fact that C++ is a wonderfully stable lan-
guage that is always backwards compatible and its compilers never change their
rules (note, the preceding sentence was sarcasm). The problem is the creator of
mahimahi added a flag to convert all warnings to errors2 and GCC added some
extra warnings that were not there before. Modify line 15 of configure.ac to
remove the C++ compiler flags -Wall -Wextra from it. These were the flags
forcing the compiler to treat all warnings as errors. Removing it should make
the build go smoothly. The final line should be:

PICKY CXXFLAGS="-pedantic -Wall -Weffc++"

Finally, run the following commands:

./autogen.sh ./configure make sudo make install

This should create binaries called mm-delay and mm-link among others in
your path. For more information, you can read the linked website and their

2In C++’s defense, this problem would not have occurred if Mahimahi did not do this.

2

http://mahimahi.mit.edu

“man pages” using man mm-delay. To emulate a 12 Mbit/s link, you need to
create a trace file containing just a single line with the number “1”. For instance,
you can create it using echo 1 >12mbps. Now, use the following command:

mm-delay 10 mm-link --meter-uplink --meter-uplink-delay

--downlink-queue=infinite --uplink-queue=droptail

--uplink-queue-args=bytes=30000 12mbps 12mbps

This will create a new shell (well, it creates two new shells; first with mm-
delay and then mm-link). Any programs executed after running the above
command will be “inside” the shell. Any packets sent by such programs will
have to pass through a network emulator before they go out to programs that
started “outside” the shell. Packets going from inside to outside are said to go
on the “uplink”. The other direction is called “downlink”. You should start the
sender inside and the receiver outside.

Note, you can run mahimahi shells inside other mahimahi shells. For in-
stance, if you run the above command twice, you will get a total of 40ms of
RTT. Make sure you are inside only one pair of shells (one mm-delay and one
mm-link shell). When you run “exit” inside a mahimahi shell, you will exit to
the outer shell you were originally in before running the command.

The parameters in the command above make Mahimahi emulate a 12 Mbit/s
link with a 20 ms RTT (10 ms each way) and 30000 bytes (1 BDP) of buffer
in the uplink direction and an infinitely large downlink buffer. You can make
the downlink buffer finite too, but will not matter since ACK packets are much
smaller than data packets anyway. It will also display two graphs, one to show
the number of bytes going from inside to outside (in bytes/s) and another to
show the amount of time the packets waited in the queue.

You should also test your algorithm on other configurations. You can create
files with different link rates. To create a 6 Mbit/s link, create a file with a
single line containing “2”. To create a 24 Mbit/s link, create a file with two
lines each containing “1”. You can find other, more interesting, traces with
time-varying link rates here: https://github.com/ravinet/mahimahi/tree/

master/traces. While you can run your algorithm over those traces, and it
will likely not perform terribly, we won’t concern ourselves with those in this
assignment.

3 Deliverables

You will submit a PDF and some code.
What happens when cwnd is too large? As a first step, instead of im-
plementing a CCA, just return a constant every time get cwnd is called. For
each constant you return, calculate the goodput when you run it over the emu-
lated link described above. Goodput is defined as the number of unique bytes
transmitted. It is the effective throughput you get when you do not count re-
transmissions. Plot this value for cwnd values ranging from 1 packet to 10 BDP

3

https://github.com/ravinet/mahimahi/tree/master/traces
https://github.com/ravinet/mahimahi/tree/master/traces

(product of link rate and base delay). Include this plot in the PDF and explain
your observations.
Implement AIMD. Run it on various choices of parameters and explain how
it works. You can use the live graphs that Mahimahi creates to get an intuition
for what is happening. Each time, make sure you transmit a large enough file
that it takes 100 seconds to finish. In particular, run it on an emulated link
with an infinitely large buffer. In addition to the explanation, submit the code
for this implementation in gradescope, similarly to what you did in the previous
assignment.
Bonus question. When you ran it on an infinitely large buffer, you proba-
bly noticed that the delay shown in the Mahimahi live graph keeps increasing.
This is a problem with many internet paths that have very large buffers, even
if they are finite. The problem is popularly called “buffer bloat” and causes ex-
cessive delay if algorithms like AIMD are used which react only to loss. Other
congestion control algorithms try to solve this problem by also reacting to in-
creasing delays (i.e. RTTs). Read about one of them, implement it, submit the
code separately on gradescope and explain what you did in your PDF report.
TCP Vegas is a good candidate for this purpose. You can also invent your own
algorithm.
Ungraded exploration. Although we did not discuss this at length in class,
AIMD is also fair (well... sort of). If you run two independent pairs of
senders/receivers over the same emulated link and plot the cwnd that each
picks, on average they will pick the same value. You can try running this exper-
iment and understand why it is happening. Surprisingly, even though AIMD is
an ancient algorithm, and is far from being perfectly fair, in my experience it is
one of the best at being fair to other AIMD flows. Finding algorithms that get
high throughput, maintain small queues and are fair to each other over all the
possible internet paths remains an open problem in spite of decades of intense
research.

4 Things to be careful about

Here are a few implementation-level details you will want to be careful about:

• Make sure the congestion window you return is never smaller than packet size,
since otherwise the sender will not be able to transmit any packets.

• Make sure rto is never smaller than your machine’s ability to measure
time, say 1 ms (or 0.001 seconds).

• It may be useful to liberally add print statements to understand how your
algorithm is behaving.

• If your implementation is inefficient, it may slow down when transmitting
a large file. For instance, if you are not careful, you might accidentally
write an algorithm that has complexity that is quadratic in the number
of packets sent.

4

• Do not use a VPN or a similar software while running the Mahimahi
emulator. Both of them create software interfaces (which you can see
using ifconfig) and sometimes conflict with each other.

5

	Introduction
	The MahiMahi Emulator
	Deliverables
	Things to be careful about

