
Lecture 14: The transport 
layer

Different types of abstractions, reliability techniques and tradeoffs
Lecturer: Venkat Arun

We roughly follow chapter 5.2, but there are differences



Recap
Sequence numbers of the bytes that the sender 
sends

Sequence numbers the receiver acknowledges 
(it does not send any data bytes)

0-1000 0-1000

1000-2000 0-2000

2000-3000 Lost. Did not receive

3000-4000 0-2000, 3000-4000

4000-5000 0-2000, 3000-5000

⋮
after several more packets, sender receives the ACKs and realizes bytes 2000-3000 were lost. This takes 
time because it takes one RTT (Round Trip Time) for the ACKs to reach the sender. Plus, it must wait for 

either dupACKs or a timeout to declare loss. Say it has sent 15 more packets by then, we will continue as 
shown below

20000-21000 0-2000, 3000-21000

2000-3000 0-21000 We’re back to normal now

How sequence numbers are send and ACKed



Objective for today

There are lots of engineering tradeoffs that are possible. The design 
presented yesterday is not the only possible design or even the best 
one.

Today, we will look at lots of alternate designs, all of which have 
been/are used:
• Other reliability mechanisms
• Alternative transport abstractions 
• Reconsider the internet’s end-to-end and best effort principles



Cumulative ACKs

• The method described in the previous lecture is not how TCP 
works, but it is quite similar to how a newer protocol, QUIC, works.

• TCP originally did not give receivers the ability to acknowledge 
ranges of bytes. Instead, it could only send a cumulative 
acknowledgment

• A cumulative ACK is a single sequence number that 
acknowledges all bytes sent from the beginning to that sequence 
number



Cumulative ACK example
Sequence numbers of the bytes that the sender 
sends

Sequence number the receiver acknowledges (it 
does not send any data bytes)

0-1000 1000

1000-2000 2000

2000-3000 Lost. Did not receive

3000-4000 2000

4000-5000 2000

⋮
after several more packets, sender receives the ACKs and realizes bytes after 2000 were lost. However, it 
does not know how many were lost. One approach is to be optimistic and assume only one packet was 

lost and retransmit it

20000-21000 2000

2000-3000 21000 We’re back to normal now 

21000-22000 22000 The sender does not yet know that things are 
back to normal, but it chooses to be optimistic

How the same circumstance would be handled by cumulative ACKs



TCP Fast Retransmit

When only cumulative ACKs are available, TCP uses two retransmission 
strategies
• If it obtains 3 duplicate ACKs (dupACKs), it retransmits the segment 

immediately following the ACKed sequence number and continues with fresh 
transmissions afterward
• Note: if the sender is getting dupACKs, it still knows that packets are still getting through. 

Thus, the network has not completely died and there is reason for optimism
• If it times out, things are much worse since it means no packets are getting 

through (why?). It assumes all subsequent packets are lost and takes drastic 
steps, which we will discuss when we discuss congestion control
• Why does a timeout mean that no packets are getting through? If they were getting 

through, loss would have been detected with dupACKs first
• There are lots of corner cases here. In Linux, the logic is implemented in 

net/ipv4/tcp.c. It is ~5000 lines of complicated spaghetti code



Where cumulative ACKs go wrong
Sequence numbers of the bytes that the sender 
sends

Sequence number the receiver acknowledges (it 
does not send any data bytes)

0-1000 1000

1000-2000 2000

2000-3000 Lost. Did not receive

3000-4000 Lost. Did not receive

4000-5000 2000

⋮
Here, the sender’s view is exactly the same as before. However, 2 packets got lost. Thus, here being 

optimistic is unwarranted

20000-21000 2000

2000-3000 3000 We have not made much progress and are 
headed toward a long recovery period and probably 
a timeout

21000-22000 3000 Alas. 

How the same circumstance would be handled by cumulative ACKs



TCP was later modified

• Cumulative ACKs are clearly suboptimal. Thus, TCP Selective ACKnowledgments 
(SACKs) were standardized

• However, the header format was already, so people adopted the “TCP Options” 
fields. These allowed for an extra 40 bytes of fields, with each field being 32 bits.

• SACKs were standardized in IETF RFC2018 in 1996
• This allowed for up to 3 ranges
• This is smaller from the arbitrarily many ranges allowed in QUIC, but is nevertheless 

almost as good
• However, all TCP implementations must handle SACK-free packets because:

• The other end need not implement SACK
• Routers are allowed to drop options fields

• Note: You do not need to remember all this detail. A vague recollection is probably 
enough for your career. You can always look things up later. Even I had to look up 
some of it. I have spent 9 years (and counting) of my life thinking about TCP

https://www.rfc-editor.org/rfc/rfc2018


An even simpler design: Go-back-n

• Suppose the receiver gets bytes 0-9000 and 10000-20000
• Next, it receives 9000-20000. It can now reconstruct the entire stream
• However, maintaining the state required to do this can sometimes be 

expensive. An alternate simpler design for the receiver is the following:
• If the received packet is the one immediately following the bytes already delivered to the 

application, deliver this new data to the application
• Otherwise, drop the packet

• This is called the go-back-n protocol and enables extremely receivers. 
However, now the sender must retransmit all packets after every loss event.

• Where might you use this?
• Reference: https://www.geeksforgeeks.org/sliding-window-protocol-set-2-

receiver-side/



An even simpler design: Go-back-n

• Go-back-n is used in some link layer protocols (I believe)
• It was used recently in Microsoft datacenters. Why?
• Datacenter servers need to handle extremely high data rates. Using a 

software-based TCP stack can be inefficient. Thus, they tried 
implementing the transport stack in hardware

• However, hardware has a hard time being dynamic. Thus, they used the 
go-back-n protocol

• This was ok since they put in a lot of effort to make the rest of the 
network highly reliable making packet losses unlikely

• I believe that they have now gone back to a more “normal” protocol, but 
am not sure



Takeaway
There is no “best” design. Different circumstances call for different choices.

The end-to-end principle of the internet and the layered architecture makes it 
(slightly) simpler to modify protocols independently of each other. However, 
the sheer scale of the internet still makes it one of the hardest places in which 
to change fundamental protocols



Alternate transport abstractions



Three transport → application interfaces

• UDP: best effort, packet oriented
• TCP: reliable stream oriented
• QUIC: Message oriented (chapter 5.2.10)
• Unreliable, message-oriented protocols are useful for video 

streaming



Head of line blocking

Object 3 Object 2 Object 1

Let the above denote bytes received by a TCP receiver. It contains three 
objects. For example, web pages constitute a lot of different objects 
(code, images etc), so loading a single page often involves downloading 
100s-1000s of distinct objects. Many objects are downloaded over a 
single TCP connection



Head of line blocking

Object 3 Object 2 Object 1

Suppose one packet of object 1 is lost

Lost packet



Head-of-line blocking

Object 3 Object 2 Object 1

Suppose one packet of object 1 is lost

TCP will deliver only the first part of object 1, even though objects 2 and 3 
have already been received. The page would load faster if the browser 
could start processing them while we wait for the retransmitted packet

Delivered to browser



QUIC – a brief history

• This was enough of a problem that Google built QUIC, a new transport 
protocol

• Normally, developing new protocols for the internet is hard
• But Google is a large company. They control both the browser and their own 

servers, so they can do it
• However, while they control the operating systems (OS) of their own servers, 

they do not control the users’ OS
• TCP and other transport protocols are usually implemented in the OS and 

user-space applications like web browsers do not have permission to modify 
them. Another blocker was that they would have had to standardize a new 
protocol number in IP (although this is an easier problem to solve)

• Thus, they built QUIC on top of UDP. TCP encapsulates inside IP packets. 
QUIC encapsulates inside UDP packets which in turn is inside IP. This works 
just fine. OSes allow applications to send receive UDP packets.



QUIC – a brief history contd…

• Now QUIC is also standardized by IETF and everyone has their 
own implementations

• In addition to offering message orientation, they added a few more 
features:
• Unlimited SACK ranges as we’ve already discussed
• Different type of cryptography that is sometimes faster
• Support for FEC (Forward Error Correction). FEC is done via Error 

Correcting Codes (ECC) and support for unreliable data delivery
• A different congestion control algorithm, BBR (although this does not 

require a new protocol)



A case for unreliability

• In live video streaming (e.g. zoom) if a packet for a frame is lost, it 
is better to just drop the whole frame and work toward displaying 
the next frame than to incur the overhead, and latency, of 
retransmission

• FEC is useful here to minimize the effects of loss. FEC allows for 
low latency delivery since we need not wait for retransmissions



Note
The following content is only for fun and will not appear in exams. 
The intention is to ensure that you are not left with the impression that there is only one “right” 
way to do things. Even the most sacred principles of internet design—the end-to-end principle 
and best effort delivery—can be violated when necessary
Like all engineering, network design is about balancing tradeoffs



Why packets get lost

• Physical noise
• Routers are getting packets faster than they can send them out. 

Eventually, they run out of memory space for their packet buffer, and 
are forced to drop the packet
• In the picture above, the router is receiving traffic from all ports with a 

destination to port 4

Router
port 1

port 2 port 4

port 3



Why packets get lost

Sometimes, the one port is a lot slower than the other. In this case, 
even a 2-port “router” can drop packets

An example is WiFi where the wireless link is much slower than the 
wired one

WiFi
Router

Wired link Wireless link



A second look at flow control

Flow control in TCP ensures that the receiver always has enough 
memory allocated to receive all packets sent by the sender

If the application does not consume packets at the same rate, it 
signals the sender to stop

Wait a minute…



A completely reliable network
Each link in the network implements flow control to ensure its neighbors never send more than 
what it can handle

(backpressure and deadlocks discussed on board)

This violates the end-to-end principle and forces all nodes to implement this complex 
protocol. Thus, it is not used on the internet

However, it is used by some datacenters because they own all the nodes. It is also used in 
networks inside chips (e.g. CPUs) since the hardware design is simpler if they assume packets 
never get lost

This is why Microsoft dared to use the go-back-N reliability protocol, since they built an 
(almost) loss free network


	Slide 1: Lecture 14: The transport layer
	Slide 2: Recap
	Slide 3: Objective for today
	Slide 4: Cumulative ACKs
	Slide 5: Cumulative ACK example
	Slide 6: TCP Fast Retransmit
	Slide 7: Where cumulative ACKs go wrong
	Slide 8: TCP was later modified
	Slide 9: An even simpler design: Go-back-n
	Slide 10: An even simpler design: Go-back-n
	Slide 11: Takeaway
	Slide 12: Alternate transport abstractions
	Slide 13: Three transport  application interfaces
	Slide 14: Head of line blocking
	Slide 15: Head of line blocking
	Slide 16: Head-of-line blocking
	Slide 17: QUIC – a brief history
	Slide 18: QUIC – a brief history contd…
	Slide 19: A case for unreliability
	Slide 20: Note
	Slide 21: Why packets get lost
	Slide 22: Why packets get lost
	Slide 23: A second look at flow control
	Slide 24: A completely reliable network

