
Lecture 18: Queuing disciplines
+ the application layer

Lecturer: Venkat Arun



Queuing Disciplines: an in-network bandwidth 
allocation mechanism (chapter 6.2)
• Implemented by routers
• When a router’s capacity is exceeded, which packets should it 

forward and which should it drop?
• In what order should it forward packets



Primer on router architecture
These are ethernet 
ports/interfaces. It reads every 
packet from every port. 

It reads the header to get the 
destination IP addresses 

It looks up this address in its 
routing table to decide which port it 
should forward it to

It then sends it to that port using a 
“switching mechanism” that we 
will study in the next slide

We can separate each physical 
port into an “input port” and an 
“output port”



Primer on router architecture: Input Queued 
Routers
Note: This is only one of many possible 
designs, but we will not discuss the 
others in this course
• Packets are queued only at the input 

ports 
• Time is divided into slots. At every time 

slot, the backplane takes some bytes 
from the input interface/port to the 
output port. There is a lot of 
sophistication in this backplane that 
we will not discuss in this course

• The queuing disciplines we will discuss 
today are applied independently to 
queues in each input port

Picture taken from Scott Shenker and Ion 
Stoica’s slides



Queuing discipline: FIFO

• This is what we had assumed 
when we discussed AIMD 
congestion control

• All packets arriving at a port are 
enqueued here

• Advantage: simple to implement
• Disadvantage: Flows that send 

more get more bandwidth. They 
can go “rogue”, blast packets into 
the network and get rewarded for it 
(e.g. by modifying TCP congestion 
control)



Queuing discipline: Fair queuing
• Input queues discussed earlier are split 

further into multiple queues. 
• Packets are classified into “flows” in some 

way and put into separate queues
• E.g. using src/dst IP and port and the protocol 

number. This is commonly called a “5 tuple”
• Packets are dequeued so that each queue 

gets the same number of bytes per second
• Advantage: prevents rogue flows (Q. does 

it?)
• Disadvantage: much more complex. In 

particular, hardware is bad at maintaining a 
variable number of queues since the 
number of packets is not known a priori



Queuing discipline: artificial bottlenecks

• Sometimes routers are explicitly instructed to forward at a lower 
speed than what they are capable

• This is extremely simple to implement and ensures the congestion 
stays near the edges of the internet. 

• Mechanisms like fair queuing are nearly impossible to implement 
near the core where millions of flows may go through the same 
link



Commercial artificial bottlenecks 

• This usually just means that there is some place between you and the network that 
is bottlenecked at the advertised speed.

• It caps the maximum, but says very little about what speed you will actually get
• When you change your plan, nobody is going out to install a new router or wire. It is 

just a software change that asks the router to change how much it is throttling your 
packets

• ISP contracts with commercial entities (e.g. UT Austin) are similar, except with bigger 
numbers



Application layer
RPCs (chapter 5.3) and HTTP (chapter 5, perspective)



Why do we need a higher layer?

• TCP lets you transmit streams of bytes
• Imagine a computer just receiving some bytes. It doesn’t know who is 

sending them, what the bytes mean or what they want it to do
• Note: an IP address is only a rough clue for who is sending. E.g. it does not 

identify a specific user

• This is the job of higher layer protocols
• We will study HTTP as an example



Request-Response protocols

• Today, we will focus on the web
• Shown on the right is a request-

response pattern commonly used in 
applications

• It could be to download a webpage, 
or to interact with it. 



HTTP Format
START_LINE <CRLF> 
MESSAGE_HEADER <CRLF> <CRLF>
MESSAGE_BODY <CRLF>

where <CRLF> is a special two-byte sequence 
(carriage return and line feed)

Start line formats:

For “get” requests:
GET /~venkatar/f24/assignments.html HTTP/1.1

For responses:
HTTP/1.1 200 OK

Or, if the server wants to say the page does not exist:
HTTP/1.1 404 Not Found

Examples of header fields:

Host: www.google.com
Date: Thu, 24 Oct 2024 17:14:44 GMT
Last-Modified: Mon, 07 Oct 2024 16:58:46 GMT

Content-Encoding: gzip
Content-Type: text/html; charset=utf-8



Live demo 1: course website

• When you load a webpage, the browser sends a request asking for 
the HTML. 

• The server responds with some HTML. The HTML tells the browser 
what other objects (if any) are needed to render the webpage. 
Usually, this includes videos, CSS, and javascript (executable 
code)



Live demo 2: Google’s autocomplete

• When the page loads, the browser first downloads some code 
from google that tells it what to do

• When you type something into google.com, the downloaded code 
asks the browser to send requests to the google server as your 
type into it.

• The server responds with autocompletion results


	Slide 1: Lecture 18: Queuing disciplines + the application layer
	Slide 2: Queuing Disciplines: an in-network bandwidth allocation mechanism (chapter 6.2)
	Slide 3: Primer on router architecture
	Slide 4: Primer on router architecture: Input Queued Routers
	Slide 5: Queuing discipline: FIFO
	Slide 6: Queuing discipline: Fair queuing
	Slide 7: Queuing discipline: artificial bottlenecks
	Slide 8: Commercial artificial bottlenecks 
	Slide 9: Application layer
	Slide 10: Why do we need a higher layer?
	Slide 11: Request-Response protocols
	Slide 12: HTTP Format
	Slide 13: Live demo 1: course website
	Slide 14: Live demo 2: Google’s autocomplete

