Internet Architecture
Overview

Instructor: Venkat Arun
Fall 2024

Some graphics are borrowed from the Peterson & Davie book (referred to as P&D)

Logistics

* Assighment 1 has been posted
* Canvas and Ed Discussion are published

* Today, we shall take a high-level overview

Recap: How do we make the internet
scalable?

* Divide data into small chunks
called packets

* End hosts create packets
containing the destination
address

* The network tries its “best” to get
the packet to the destination

* Routers in the network store and
forward packets to the
(hopefully) correct next hop

How do we make it adaptable?

Principle 1: Precisely specify Layering abstractions (P&D
interfaces between different chapter 1.3)

components, often arranged as
layers

Application programs

* Everyone can have their own
iImplementation and yet Process-to-process channels

Interoperate with each other

. Host-to-host connectivity
* When possible, allow for

flexibility within a component Hardware
without having to change the
interface (very tricky to get right)

How do we make it adaptable?

Principle 1: Precisely specify
interfaces between different
components, often arranged as
layers

* Everyone can have their own
Implementation and yet
Interoperate with each other

* When possible, allow for
flexibility within a component
without having to change the
interface (very tricky to get right)

Layering abstractions (P&D
chapter 1.3)

Application programs

Request/reply Message stream
channel channel

Host-to-host connectivity

Hardware

One layer can have many
abstractions

How do we make it adaptable?

Principle 2: Move all intelligence to the end hosts
when possible

Popularly called the “end-to-end” principle

This way, the network is only responsible for
trahnsportlng packets from one machine to the
other.

Further, we only expect it to put inits “best
effort”

Everything else is handled in the end hosts:
reliability, security/encryption, assigning
{ne_aning to the bits, and application specific
ogic

End hosts are easier to change. Itis still difficult
to get consensus from everybody though

Examples where adaptation has succeeded
because of this

. Aﬁplications like zoom and slack can unilaterally
C

hange their interfaces because they are a
single administrative entity

Email, in contrast, cannot evolve as rapidly since
it is run by many entities through a common
protocol. However, it is much more universal

* When people realize a cryptographic technique

is broken, individual software developers slowly
start phasing it out (e.g. web browsers and web
servers). For example, people are trying to stop
using encryption mechanisms that can be
broken by quantum computers

If a company is large enough, it can unilaterally
implement a new protocol. For example, Google
imUplemented a new transport protocol called
QUIC because they control a lot of browsers and
servers. Now others also use it.

Implementing layers using encapsulation

Every layer adds its own header
to the data. On the other end,
every layer removes its header

| HHP | RRP | Data |

Implementing layers using encapsulation

Every layer adds its own header to
the data. On the other end, every
layer removes its header

Not all nodes will implement all

the layers. Usually, higher layers

ﬂre only implemented at the end
osts

The picture on the right is the “OSI”
model. Nobody uses
“Presentation” and “Session”
layers anymore.

‘ Network I ‘ Network I

‘ Data link I ‘ Data link I

| Physical H Physical Ii

One or more nodes
within the network

Implementing layers using encapsulation

Every layer adds its own header to the
data. On the other end, every layer

removes its header

Not all nodes will implement all the
layers. Usually, higher layers are only
implemented at the end hosts

‘ Network I ‘ Network I

The picture on the right is the “OSI”
model. Nobody uses “Presentation”
and “Session” layers anymore.

‘ Data link I ‘ Data link I
| Physical H Physical Ii

One or more nodes

Layering is not followed strictly it the netcrk

Todays’ protocol stack

HTTP is slowly becoming
another narrow waist Layering is not followed strictly

Application
TCP | UDP
Internet Protocol: The IP
“narrow waist” of the internet
Subnetwork

One of the few things | will
say in this course that is
(almost) always true

How can you use the internet? Sockets

C APl is explained in P&D chapter 1.4

The client side is used in the assignment 1. The server side will be used in assignment 3

Server

import socket

def start_server(ip_address, port):
try:

Create a socket object

with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
Bind the socket to the IP address and port
s.bind((ip_address, port))
Enable the server to accept connections (max 5)
s.listen(5)
print(f"Server listening on {ip_address}:{port}")

Wait for a connection
Warning: does not use multiple threads
conn, addr = s.accept()
with conn:
print(f"Connected by {addr}")
while True:
Receive data from the client
data = conn.recv(1024)
if not data:
Break the loop if client disconnected
break
print(f"Received message: {data.decode('utf-8')}")
Optionally, send a response back to the client
conn.sendall(b"Message received")

Client

def send_message(ip_address, port, message):
try:

Create a socket object

with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
Connect to the server
s.connect((ip_address, port))
Send the message
s.sendall(message.encode('utf-8’))

Receive the response
response = s.recv(10000)
return response.decode(’utf-8")
except Exception as e:
return f"An error occurred: {e}"

Example usage

response = send_message("127.0.0.1", 8000, "Hello world")
print(response)

