
Intra-Domain Routing
Slides adapted from Daehyoek Kim
Based on Chapter 3.4 of the book



Logistics

• Assignment 1 has been graded. All of you did well!
• Assignment 2 will be posted soon
• We are trying a new group creation system for assignment 2
• This time, we allowed arbitrarily many individual groups: 

• Let us do a class poll on everyone’s preferences



Recap

• Ethernet layer (layer 2) switches operate by:
• If I do not know which port the destination is at, I forward on all of them
• If I hear a packet from source address A on a port X, next time if I get a 

packet with the destination address A, I will forward the packet only on 
port X

• I will never forward a packet to the same port that I heard it from, because 
that would be stupid

• Problem: If there is a loop, they will forward forever
• Solution: Disable enough links so that the graph becomes a tree 

(i.e. no loops). This is done by a distributed algorithm



Today

• The spanning tree protocol is designed to support extremely 
simple forwarding switches. It does not focus on performance at 
all

• We can do much better



Two types of routing 

Routing domain: An internetwork where all the routers are under 
the same administrative control (e.g., a university campus or an ISP)

Intra-domain routing: routing packets within a domain
• E.g., within a UT campus network
• Simpler routing policy under one administrative domain

Inter-domain routing: routing packets across multiple domains
• E.g., across AT&T and UT campus network
• Involving complex policies between multiple domains
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This lecture



Constructing a routing table
Recall: we can view a network as a weighted graph

Routing is to find the lowest-cost path between any two nodes
• Cost of a path == Sum of the costs of all the edges that make up the path

This objective function is not perfect, but it is not bad either
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Why not using static routing?

One might calculate all shortest paths and load them into routers

Problem? 
• It does not deal with node or link failures
• It does not consider the addition of new nodes or links
• It implies that edge costs cannot change

Alternatives: Dynamic and/or distributed protocol
• Distance vector
• Link state 
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Distance vector algorithm

Each node constructs a one-dimensional array (i.e., a vector) 
containing the “distances” (costs) to all other nodes 

Initially, each node knows the cost of the link to each of its directly 
connected neighbors

Then, it distributes that vector to its immediate neighbors

It computes shortest paths using Bellman-Ford algorithm
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Distance vector algorithm: Initial vectors
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A B C D E F G

R
o

u
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A 0 1 1 ∞ 1 1 ∞

B 1 0 1 ∞ ∞ ∞ ∞

C 1 1 0 1 ∞ ∞ ∞

D ∞ ∞ 1 0 ∞ ∞ 1

E 1 ∞ ∞ ∞ 0 ∞ ∞

F 1 ∞ ∞ ∞ ∞ 0 1

G ∞ ∞ ∞ 1 ∞ 1 0

Assumption: Distance between each router is 1

Initial vector stored on router A



Distance vector algorithm: Initial routing tables
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Assumption: Distance between each router is 1

Initial routing table stored on router ADest Cost NextHop

B 1 B

C 1 C

D ∞ —

E 1 E

F 1 F

G ∞ —



Distance vector algorithm: Each iteration

Every T seconds each router sends its table to its neighbor each 
each router then updates its table based on the new information

Upon receiving an update, calculate Dx(y): cost of least-cost path 
from x to y:

Dx(y) = minv { cx,v + Dv(y) }

11

Assumption: Distance between each router is 1

min taken over all neighbors v of x
v’s estimated least-cost-path cost to y

direct cost of link from x to v



Distance vector algorithm: Final routing tables
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Assumption: Distance between each router is 1

Dest Cost NextHop

B 1 B

C 1 C

D ∞ —

E 1 E

F 1 F

G ∞ —

Dest Cost NextHop

B 1 B

C 1 C

D 2 C

E 1 E

F 1 F

G 2 F



Handling link failure
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Assumption: Distance between each router is 1

1. F detects that link to G has failed
2. F sets distance to G to infinity and sends update to A
3. A sets distance to G to infinity since it uses F to reach G
4. A receives periodic update from C with 2-hop path to G
5. A sets distance to G to 3 and sends update to F
6. F decides it can reach G in 4 hops via A



Count-to-infinity problem
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Assumption: Distance between each router is 1

1. A advertises a distance of infinity to E
2. At the same time, B and C advertise a distance of 2 to E
3. B, upon hearing that E can be reached in 2 hops from C, concludes 

that it can reach E in 3 hops and advertises this to A
4. A concludes that it can reach E in 4 hops and advertises this to C
5. C concludes that it can reach E in 5 hops; and so on.
This cycle stops only when the distances reach some number that is 
large enough to be considered infinite ➔ “Count-to-infinity” problem



Count-to-infinity problem: Example

• Initial state
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C A E
Dest Cost Next

A 1 A

E 2 A

• A to E link goes down

• A receives C’s advertisement before A can 
advertise to C

• A finds shorter route to E via C

Dest Cost Next

A 1 A

E 2 A

Dest Cost Next

A 1 A

E 2 A

Dest Cost Next

A 1 A

E 4 A

Dest Cost Next

A 1 A

E 4 A

Dest Cost Next

C 1 C

E 1 E

Dest Cost Next

C 1 C

E ∞ E

Dest Cost Next

C 1 C

E 3 C

Dest Cost Next

C 1 C

E 3 C

Dest Cost Next

C 1 C

E 5 C

• A advertises updated table to C

• C registers change in path length to E via A

• C advertises updated table to A

• A registers change in path length to E via C



Solution 1: Using a small approximation of infinity
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Assumption: Distance between each router is 1

Use some relatively small number as an approximation of infinity

For example, the maximum number of hops to get across a certain 
network is never going to be more than 16

Problem? 
The network can grow to a point where some nodes were separated 
by more than 16 hops ➔ Limiting the network size



Solution 2: Split horizon
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Assumption: Distance between each router is 1

When a node sends a routing update to its neighbors, it does not send 
those routes it learned from each neighbor back to that neighbor

For example, if B has the route (E, 2, A) in its table, then it knows it 
must have learned this route from A, and so whenever B sends a 
routing update to A, it does not include the route (E, 2) in that update



Solution 3: Split horizon with poison reverse
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Assumption: Distance between each router is 1

B actually sends that back route to A, but it puts negative information 
in the route to ensure that A will not eventually use B to get to E

For example, B sends the route (E, ∞) to A



Routing Information Protocol (RIP)
RIP is designed based on the distance-vector algorithm
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Router C would advertise to router A the fact it can 

reach networks 2 and 3 at a cost of 0, networks 5 

and 6 at cost 1, and network 4 at cost 2
RIPv2 Packet Format

https://datatracker.ietf.org/doc/html/rfc1058 - historical IETF Document describing RIP

https://datatracker.ietf.org/doc/html/rfc1
https://datatracker.ietf.org/doc/html/rfc1058


Summary: Distance-vector routing

Building a routing table by distributing vector of distances to neighbors

Completely distributed and based only on knowledge of immediate 
neighbors 

• Simpler computation, small update message size
• Slow convergence

Count to infinity problem and limited network diameter
• Used in small-sized networks (E.g., LAN or private wide-area networks)
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Link state routing
Key idea: Send all nodes (not just neighbors) information about 
directly connected links (not entire routing table)

• Each node computes the shortest-path using a complete view of the 
network

Link State Packet (LSP)
• ID of the node that created the LSP
• Cost of link to each directly connected neighbor
• Sequence number (SEQNO)
• Time-to-live (TTL) for this packet

Q: What if a link state packet gets lost?
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Reliable flooding

Goal: Ensure every node have most recent LSP from each node
• Forward LSP to all nodes but one that sent it
• Send an acknowledgment back to the sending node
• Retransmit the LSP if an acknowledgment is not received within a certain 

time frame
• Generate new LSP periodically; increment SEQNO
• Start SEQNO at 0 when reboot
• Decrement TTL of each stored LSP; discard when TTL=0
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Reliable flooding: Example

(a) LSP arrives at node X
(b) X floods LSP to A and C
(c) A and C flood LSP to B (but not X)  
(d) Flooding is complete
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Compute the shorting path using Dijkstra’s 
algorithm
Assumption: non-negative link weights

N: set of nodes in the graph
l((i, j): the non-negative cost associated with the edge between nodes i, j N 
and l(i, j) =  if no edge connects i and j
Let s N be the starting node which executes the algorithm to find shortest 
paths to all other nodes in N

Algorithm maintains two lists: Confirmed and tentative
Each of these lists contains a set of entries (Destination, Cost, NextHop)
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Realization of Dijkstra’s algorithm:
Forward search algorithm
1. Initialize the Confirmed list with an entry for myself; this entry has a 

cost of 0
2. For the node just added to the Confirmed list in the previous step, 

call it node Next, select its LSP
3. For each Neighbor of Next, calculate the Cost to reach this Neighbor 

as Cost(myself→Next) + Cost (Next→Neighbor)
• If Neighbor is currently on neither the Confirmed nor the Tentative list, then add 

(Neighbor, Cost, Nexthop) to the Tentative list, where Nexthop is an intermediate 
node to reach Next

• If Neighbor is currently on the Tentative list, and the Cost is less than the 
currently listed cost for the Neighbor, then replace the current entry with 
(Neighbor, Cost, Nexthop)

4. If the Tentative list is empty, stop. Otherwise, pick the entry from the 
Tentative list with the lowest cost, move it to the Confirmed list, and 
return to Step 2 25



Forward search algorithm: Example
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Confirmed Tentative

(D,0,–)

(D,0,–) (B,11,B) (C,2,C)

(D,0,–) (C,2,C) (B,11,B)

(D,0,–) (C,2,C) (B,5,C) (A,12,C)

(D,0,–) (C,2,C) (B,5,C) (A,12,C)

(D,0,–) (C,2,C) (B,5,C) (A,10,C)

(D,0,–) (C,2,C) (B,5,C) (A,10,C)

Steps for building a routing table at D



Summary: Link state routing

Finding the shortest paths using a complete information about the 
network

• High computational complexity
• Faster convergence even under dynamic conditions (e.g., link failures)

Preventing routing loops using reliable flooding
• Sequence numbers and retransmissions

Example: OSPF (Open Shortest Path First) protocol

Q: Link state routing is the most common routing technique today? Does 
this mean we have forever moved past distance vector routing?
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