
Intra-Domain Routing
Slides adapted from Daehyoek Kim
Based on Chapter 3.4 of the book

Logistics

• Assignment 1 has been graded. All of you did well!
• Assignment 2 will be posted soon
• We are trying a new group creation system for assignment 2
• This time, we allowed arbitrarily many individual groups:

• Let us do a class poll on everyone’s preferences

Recap

• Ethernet layer (layer 2) switches operate by:
• If I do not know which port the destination is at, I forward on all of them
• If I hear a packet from source address A on a port X, next time if I get a

packet with the destination address A, I will forward the packet only on
port X

• I will never forward a packet to the same port that I heard it from, because
that would be stupid

• Problem: If there is a loop, they will forward forever
• Solution: Disable enough links so that the graph becomes a tree

(i.e. no loops). This is done by a distributed algorithm

Today

• The spanning tree protocol is designed to support extremely
simple forwarding switches. It does not focus on performance at
all

• We can do much better

Two types of routing

Routing domain: An internetwork where all the routers are under
the same administrative control (e.g., a university campus or an ISP)

Intra-domain routing: routing packets within a domain
• E.g., within a UT campus network
• Simpler routing policy under one administrative domain

Inter-domain routing: routing packets across multiple domains
• E.g., across AT&T and UT campus network
• Involving complex policies between multiple domains

5

This lecture

Constructing a routing table
Recall: we can view a network as a weighted graph

Routing is to find the lowest-cost path between any two nodes
• Cost of a path == Sum of the costs of all the edges that make up the path

This objective function is not perfect, but it is not bad either

6

Why not using static routing?

One might calculate all shortest paths and load them into routers

Problem?
• It does not deal with node or link failures
• It does not consider the addition of new nodes or links
• It implies that edge costs cannot change

Alternatives: Dynamic and/or distributed protocol
• Distance vector
• Link state

7

Distance vector algorithm

Each node constructs a one-dimensional array (i.e., a vector)
containing the “distances” (costs) to all other nodes

Initially, each node knows the cost of the link to each of its directly
connected neighbors

Then, it distributes that vector to its immediate neighbors

It computes shortest paths using Bellman-Ford algorithm

8

Distance vector algorithm: Initial vectors

9

A B C D E F G

R
o

u
te

rs

A 0 1 1 ∞ 1 1 ∞

B 1 0 1 ∞ ∞ ∞ ∞

C 1 1 0 1 ∞ ∞ ∞

D ∞ ∞ 1 0 ∞ ∞ 1

E 1 ∞ ∞ ∞ 0 ∞ ∞

F 1 ∞ ∞ ∞ ∞ 0 1

G ∞ ∞ ∞ 1 ∞ 1 0

Assumption: Distance between each router is 1

Initial vector stored on router A

Distance vector algorithm: Initial routing tables

10

Assumption: Distance between each router is 1

Initial routing table stored on router ADest Cost NextHop

B 1 B

C 1 C

D ∞ —

E 1 E

F 1 F

G ∞ —

Distance vector algorithm: Each iteration

Every T seconds each router sends its table to its neighbor each
each router then updates its table based on the new information

Upon receiving an update, calculate Dx(y): cost of least-cost path
from x to y:

Dx(y) = minv { cx,v + Dv(y) }

11

Assumption: Distance between each router is 1

min taken over all neighbors v of x
v’s estimated least-cost-path cost to y

direct cost of link from x to v

Distance vector algorithm: Final routing tables

12

Assumption: Distance between each router is 1

Dest Cost NextHop

B 1 B

C 1 C

D ∞ —

E 1 E

F 1 F

G ∞ —

Dest Cost NextHop

B 1 B

C 1 C

D 2 C

E 1 E

F 1 F

G 2 F

Handling link failure

13

Assumption: Distance between each router is 1

1. F detects that link to G has failed
2. F sets distance to G to infinity and sends update to A
3. A sets distance to G to infinity since it uses F to reach G
4. A receives periodic update from C with 2-hop path to G
5. A sets distance to G to 3 and sends update to F
6. F decides it can reach G in 4 hops via A

Count-to-infinity problem

14

Assumption: Distance between each router is 1

1. A advertises a distance of infinity to E
2. At the same time, B and C advertise a distance of 2 to E
3. B, upon hearing that E can be reached in 2 hops from C, concludes

that it can reach E in 3 hops and advertises this to A
4. A concludes that it can reach E in 4 hops and advertises this to C
5. C concludes that it can reach E in 5 hops; and so on.
This cycle stops only when the distances reach some number that is
large enough to be considered infinite ➔ “Count-to-infinity” problem

Count-to-infinity problem: Example

• Initial state

15

C A E
Dest Cost Next

A 1 A

E 2 A

• A to E link goes down

• A receives C’s advertisement before A can
advertise to C

• A finds shorter route to E via C

Dest Cost Next

A 1 A

E 2 A

Dest Cost Next

A 1 A

E 2 A

Dest Cost Next

A 1 A

E 4 A

Dest Cost Next

A 1 A

E 4 A

Dest Cost Next

C 1 C

E 1 E

Dest Cost Next

C 1 C

E ∞ E

Dest Cost Next

C 1 C

E 3 C

Dest Cost Next

C 1 C

E 3 C

Dest Cost Next

C 1 C

E 5 C

• A advertises updated table to C

• C registers change in path length to E via A

• C advertises updated table to A

• A registers change in path length to E via C

Solution 1: Using a small approximation of infinity

16

Assumption: Distance between each router is 1

Use some relatively small number as an approximation of infinity

For example, the maximum number of hops to get across a certain
network is never going to be more than 16

Problem?
The network can grow to a point where some nodes were separated
by more than 16 hops ➔ Limiting the network size

Solution 2: Split horizon

17

Assumption: Distance between each router is 1

When a node sends a routing update to its neighbors, it does not send
those routes it learned from each neighbor back to that neighbor

For example, if B has the route (E, 2, A) in its table, then it knows it
must have learned this route from A, and so whenever B sends a
routing update to A, it does not include the route (E, 2) in that update

Solution 3: Split horizon with poison reverse

18

Assumption: Distance between each router is 1

B actually sends that back route to A, but it puts negative information
in the route to ensure that A will not eventually use B to get to E

For example, B sends the route (E, ∞) to A

Routing Information Protocol (RIP)
RIP is designed based on the distance-vector algorithm

19

Router C would advertise to router A the fact it can

reach networks 2 and 3 at a cost of 0, networks 5

and 6 at cost 1, and network 4 at cost 2
RIPv2 Packet Format

https://datatracker.ietf.org/doc/html/rfc1058 - historical IETF Document describing RIP

https://datatracker.ietf.org/doc/html/rfc1
https://datatracker.ietf.org/doc/html/rfc1058

Summary: Distance-vector routing

Building a routing table by distributing vector of distances to neighbors

Completely distributed and based only on knowledge of immediate
neighbors

• Simpler computation, small update message size
• Slow convergence

Count to infinity problem and limited network diameter
• Used in small-sized networks (E.g., LAN or private wide-area networks)

20

Link state routing
Key idea: Send all nodes (not just neighbors) information about
directly connected links (not entire routing table)

• Each node computes the shortest-path using a complete view of the
network

Link State Packet (LSP)
• ID of the node that created the LSP
• Cost of link to each directly connected neighbor
• Sequence number (SEQNO)
• Time-to-live (TTL) for this packet

Q: What if a link state packet gets lost?
21

Reliable flooding

Goal: Ensure every node have most recent LSP from each node
• Forward LSP to all nodes but one that sent it
• Send an acknowledgment back to the sending node
• Retransmit the LSP if an acknowledgment is not received within a certain

time frame
• Generate new LSP periodically; increment SEQNO
• Start SEQNO at 0 when reboot
• Decrement TTL of each stored LSP; discard when TTL=0

22

Reliable flooding: Example

(a) LSP arrives at node X
(b) X floods LSP to A and C
(c) A and C flood LSP to B (but not X)
(d) Flooding is complete

23

Compute the shorting path using Dijkstra’s
algorithm
Assumption: non-negative link weights

N: set of nodes in the graph
l((i, j): the non-negative cost associated with the edge between nodes i, j N
and l(i, j) =  if no edge connects i and j
Let s N be the starting node which executes the algorithm to find shortest
paths to all other nodes in N

Algorithm maintains two lists: Confirmed and tentative
Each of these lists contains a set of entries (Destination, Cost, NextHop)

24

Realization of Dijkstra’s algorithm:
Forward search algorithm
1. Initialize the Confirmed list with an entry for myself; this entry has a

cost of 0
2. For the node just added to the Confirmed list in the previous step,

call it node Next, select its LSP
3. For each Neighbor of Next, calculate the Cost to reach this Neighbor

as Cost(myself→Next) + Cost (Next→Neighbor)
• If Neighbor is currently on neither the Confirmed nor the Tentative list, then add

(Neighbor, Cost, Nexthop) to the Tentative list, where Nexthop is an intermediate
node to reach Next

• If Neighbor is currently on the Tentative list, and the Cost is less than the
currently listed cost for the Neighbor, then replace the current entry with
(Neighbor, Cost, Nexthop)

4. If the Tentative list is empty, stop. Otherwise, pick the entry from the
Tentative list with the lowest cost, move it to the Confirmed list, and
return to Step 2 25

Forward search algorithm: Example

26

Confirmed Tentative

(D,0,–)

(D,0,–) (B,11,B) (C,2,C)

(D,0,–) (C,2,C) (B,11,B)

(D,0,–) (C,2,C) (B,5,C) (A,12,C)

(D,0,–) (C,2,C) (B,5,C) (A,12,C)

(D,0,–) (C,2,C) (B,5,C) (A,10,C)

(D,0,–) (C,2,C) (B,5,C) (A,10,C)

Steps for building a routing table at D

Summary: Link state routing

Finding the shortest paths using a complete information about the
network

• High computational complexity
• Faster convergence even under dynamic conditions (e.g., link failures)

Preventing routing loops using reliable flooding
• Sequence numbers and retransmissions

Example: OSPF (Open Shortest Path First) protocol

Q: Link state routing is the most common routing technique today? Does
this mean we have forever moved past distance vector routing?

27

	Slide 1: Intra-Domain Routing
	Slide 2: Logistics
	Slide 3: Recap
	Slide 4: Today
	Slide 5: Two types of routing
	Slide 6: Constructing a routing table
	Slide 7: Why not using static routing?
	Slide 8: Distance vector algorithm
	Slide 9: Distance vector algorithm: Initial vectors
	Slide 10: Distance vector algorithm: Initial routing tables
	Slide 11: Distance vector algorithm: Each iteration
	Slide 12: Distance vector algorithm: Final routing tables
	Slide 13: Handling link failure
	Slide 14: Count-to-infinity problem
	Slide 15: Count-to-infinity problem: Example
	Slide 16: Solution 1: Using a small approximation of infinity
	Slide 17: Solution 2: Split horizon
	Slide 18: Solution 3: Split horizon with poison reverse
	Slide 19: Routing Information Protocol (RIP)
	Slide 20: Summary: Distance-vector routing
	Slide 21: Link state routing
	Slide 22: Reliable flooding
	Slide 23: Reliable flooding: Example
	Slide 24: Compute the shorting path using Dijkstra’s algorithm
	Slide 25: Realization of Dijkstra’s algorithm: Forward search algorithm
	Slide 26: Forward search algorithm: Example
	Slide 27: Summary: Link state routing

