
Queueing disciplines and 
switches
Lecturer: Venkat Arun

CS 356

Some figures are borrowed from Nick McKeown’s slides



Recap: Congestion control

• Congestion window (cwnd) caps the maximum number of packets inflight (i.e. 
packets that have been sent but neither acknowledged, nor declared as lost)

• If a flow is alone on a network path with bottleneck capacity C and propagation 
delay Rm, then it will maintain max(0, cwnd - C Rm) packets in the queue. 
Propagation delay refers to the Round Trip Time (RTT) when the queue is empty

• C Rm is called the Bandwidth Delay Product (BDP) and is an important quantity that 
characterizes a link

• If cwnd >= C Rm, sending rate = C in steady state. Else, it is cwnd / Rm

• If cwnd > C Rm + buffer_size, then packets will get lost
• Thus, if a CCA maintains cwnd between C Rm and C Rm + buffer_size, it will fully 

utilize the link and not drop packets
• AIMD oscillates between these two values. Ideally, you’d want cwnd to be exactly C 

Rm to also minimize queuing delay. Modern algorithms do this, but not particularly 
well



Recap: Congestion control fairness

• If there are multiple flows with congestion windows cwnd1, cwnd2, … sharing 
a bottleneck bandwidth C and all of them have propagation delay Rm, they 
maintain ∑𝑖𝑐𝑤𝑛𝑑𝑖 − 𝐶𝑅𝑚 bytes in the queue
• The expression for when they have different propagation delays is more complex. In fact, 

we found this year that it takes a while for the system to reach steady state after one flow 
changed its cwnd suddenly

• If the flows use AIMD to vary their cwnd, they will eventually converge to all of 
them having the same cwnd (not true if Rm is different for different flows)

• This happens because every time they do additive increase, the difference in 
cwnd remains constant. When they do multiplicative decrease the difference 
reduces by half

• Flows can “go rogue” and transmit faster than their fair share. If the network 
uses First-In-First-Out (FIFO) queues, there is nothing others can do about it



Theme of today’s class

• Subtle differences in design decisions lead to strange outcomes



Queuing discipline: FIFO
• This is what we had assumed when we discussed 

AIMD congestion control
• All packets arriving at a port areenqueued here 
• Advantage: simple to implement
• Disadvantage 1: Flows that send more get more 

bandwidth. They can go “rogue”, blast packets into 
the network and get rewarded for it (e.g. by 
modifying TCP congestion control)

• Disadvantage 2: Some flows want throughput. 
They want to maintain a larger queue so that if the 
link rate suddenly increases, there are packets to 
transmit. Others prefer lower latency, but their 
packets will be stuck behind the throughput-
sensitive flows’ packets

• Q. what will happen if we dropped packets at the 
front of the queue instead of at the tail?



Queuing discipline: Fair queuing

• Input queues discussed earlier are splitfurther
into multiple queues.

• Packets are classified into “flows” in someway 
and put into separate queues
• E.g. using src/dst IP and port and the 

protocolnumber. This is commonly called a “5 
tuple”

• Packets are dequeued so that each queue gets 
the same number of bytes per second

• Advantage: prevents rogue flows (Q. does it?)
• Disadvantage: much more complex. In 

particular, hardware is bad at maintaining a 
variable number of queues since thenumber of 
packets is not known a priori



Queuing discipline: artificial bottlenecks

• Sometimes routers are explicitly instructed to forward at a lower 
speed than what they are capable 

• This is extremely simple to implement and ensures the congestion 
stays near the edges of the internet. 

• Mechanisms like fair queuing are nearly impossible to implement 
near the core where millions of flows may go through the same 
link



Commercial artificial bottleneck

• This usually just means that there is some place between you and the 
network that is bottlenecked at the advertised speed. 

• It caps the maximum, but says very little about what speed you will 
actually get.

• When you change your plan, nobody is going out to install a new router 
or wire. It is just a software change that asks the router to change how 
much it is throttling your packets.

• ISP contracts with commercial entities (e.g. UT Austin) are similar, 
except with bigger numbers



Routers

• A router is more than a single 
queue. It takes packets from one 
port (pictured), reads its 
destination address and forwards 
it to the appropriate port

• How does it know the destination 
port? By looking up the 
destination address in the routing 
table

• How do you implement this 
efficiently in hardware?



How do you switch packets?
1. When a packet 

comes, you decide 
where to forward it

2. You send it to the 
output port somehow

3. You decide the order 
in which to send 
packets at the output 
port (Q. Why can’t you 
do this at the input?)

Note: we treat input ports 
as distinct from output 
ports. Every physical port 
has an input and output 
port



Shared memory architecture vs input-queued 
crossbar

Input queued: Ports act 
independently except for the 
crossbar which takes packets 
from the input to the output 
side. Fragments memory
Shared memory: Input ports 
write to a datastructure in a 
shared memory that output 
ports read. Requires too much 
memory bandwidth! 
High speed switches today use 
crossbars 



Crossbars

• The crossbar (left) selects which input port is connected to which 
output port. Input (output) ports can be connected to at most one 
output (input) port

• You can imagine this as a bipartite graph (shown on board)



Head of line blocking

• Greed and blue packets can be 
transmitted in parallel with the 
red ones, but are blocked by the 
red packets



Head of line blocking solved with VOQs

• Each input queue was split into a 
separate “Virtual Output Queue 
(VOQ)”, one for each output

• This solves the head-of-line 
blocking problem



Where will you implement fair queuing?

• Often done by having another set of queues at each output port. 
This can get quite expensive


	Slide 1: Queueing disciplines and switches
	Slide 2: Recap: Congestion control
	Slide 3: Recap: Congestion control fairness
	Slide 4: Theme of today’s class
	Slide 5: Queuing discipline: FIFO
	Slide 6: Queuing discipline: Fair queuing
	Slide 7: Queuing discipline: artificial bottlenecks
	Slide 8: Commercial artificial bottleneck
	Slide 9: Routers
	Slide 10: How do you switch packets?
	Slide 11: Shared memory architecture vs input-queued crossbar
	Slide 12: Crossbars
	Slide 13: Head of line blocking
	Slide 14: Head of line blocking solved with VOQs
	Slide 15: Where will you implement fair queuing?

