
Internet Architecture
Overview

Instructor: Venkat Arun
Fall 2024

Some graphics are borrowed from the Peterson & Davie book (referred to as P&D)

Recap: How do we make the internet
scalable?

• Divide data into small chunks
called packets

• End hosts create packets
containing the destination
address

• The network tries its “best” to get
the packet to the destination

• Routers in the network store and
forward packets to the
(hopefully) correct next hop

Switch

Two forwarding strategies

Store and forward
• Packet enters the switch. The

switch stores it in memory
• Switch reads the packet’s

destination to figure out where
to send it

• Switch starts sending packets

Most switches store and forward

Cut through switching
• Packet enters the switch
• As soon as the destination

address is clear, the switch
starts to forward the packet

Advantages of the two kinds

Store and forward
• Easier to implement
• If input rate exceeds the output

rate, the packets must be
enqueued anyway

• More complex processing is
possible if you store the
packets

Cut through switching
• Lower latency
• Sometimes it is easier to

implement, e.g. with optics,
you can use a tiny mirror to just
redirect the bits to a given port

Note: understanding every aspect of this is not important for quizzes.
This is more of an example of the type of reasoning you should learn
to do.

How do we make it adaptable?

Principle 1: Precisely specify
interfaces between different
components, often arranged as
layers
• Everyone can have their own

implementation and yet
interoperate with each other

• When possible, allow for
flexibility within a component
without having to change the
interface (very tricky to get right)

Layering abstractions (P&D
chapter 1.3)

How do we make it adaptable?

Principle 1: Precisely specify
interfaces between different
components, often arranged as
layers
• Everyone can have their own

implementation and yet
interoperate with each other

• When possible, allow for
flexibility within a component
without having to change the
interface (very tricky to get right)

One layer can have many
abstractions

Layering abstractions (P&D
chapter 1.3)

How do we make it adaptable?
Principle 2: Move all intelligence to the end hosts when
possible

• Popularly called the “end-to-end” principle
• This way, the network is only responsible for transporting

packets from one machine to the other.

• Further, we only expect it to put in its “best effort”
• Everything else is handled in the end hosts: reliability,

security/encryption, assigning meaning to the bits, and
application specific logic

• End hosts are easier to change. It is still difficult to get
consensus from everybody though

Examples where adaptation has succeeded because of
this

• Applications like zoom and slack can unilaterally change
their interfaces because they are a single administrative
entity

• Email, in contrast, cannot evolve as rapidly since it is run
by many entities through a common protocol. However, it
is much more universal

• When people realize a cryptographic technique is broken,
individual software developers slowly start phasing it out
(e.g. web browsers and web servers). For example, people
are trying to stop using encryption mechanisms that can
be broken by quantum computers. Browser and web-
server developers can begin to do this unilaterally

• If a company is large enough, it can unilaterally implement
a new protocol. For example, Google implemented a new
transport protocol called QUIC because they control a lot
of browsers and servers. Now others also use it.

Implementing layers using encapsulation

Every layer adds its own header
to the data. On the other end,
every layer removes its header

Implementing layers using encapsulation

Every layer adds its own header to
the data. On the other end, every
layer removes its header

Not all nodes will implement all
the layers. Usually, higher layers
are only implemented at the end
hosts

The picture on the right is the “OSI”
model. Nobody uses
“Presentation” and “Session”
layers anymore.

Implementing layers using encapsulation

Every layer adds its own header to the
data. On the other end, every layer
removes its header

Not all nodes will implement all the
layers. Usually, higher layers are only
implemented at the end hosts

The picture on the right is the “OSI”
model. Nobody uses “Presentation”
and “Session” layers anymore.

Layering is not followed strictly

Todays’ protocol stack

Layering is not followed strictly
HTTP is slowly becoming
another narrow waist

Internet Protocol: The
“narrow waist” of the internet

One of the few things I will
say in this course that is
(almost) always true

How can you use the internet? Sockets
C API is explained in P&D chapter 1.4
The client side is used in the assignment 1. The server side will be used in assignment 3

Server Client

Meta questions

• Where else do you see a layered
architecture for modularity?
• OS: User processes, syscall interface,

kernel land, drivers, hardware
• Compilers: Lexing, parsing, semantics,

optimization, code generation, linking
• Databases: data layout, buffer

manager, file manager, access
methods (indices), query process, user
interface (e.g. SQL)

• UI toolkits: semantic representation
(e.g. DOM in the web), layout,
rendering, compositing (putting
together layers), presentation (showing
to the screen)

• What is the tradeoff between store-
and-forward switches vs pass-
through switches?

	Slide 1: Internet Architecture Overview
	Slide 3: Recap: How do we make the internet scalable?
	Slide 4: Two forwarding strategies
	Slide 5: Advantages of the two kinds
	Slide 6: How do we make it adaptable?
	Slide 7: How do we make it adaptable?
	Slide 8: How do we make it adaptable?
	Slide 9: Implementing layers using encapsulation
	Slide 10: Implementing layers using encapsulation
	Slide 11: Implementing layers using encapsulation
	Slide 12: Todays’ protocol stack
	Slide 13: How can you use the internet? Sockets
	Slide 14: Meta questions

