
PLB: Congestion Signals are Simple and Effective
for Network Load Balancing

Mubashir Adnan Qureshi, Yuchung Cheng, Qianwen Yin, Qiaobin Fu, Gautam Kumar,
Masoud Moshref, Junhua Yan, Van Jacobson, David Wetherall, Abdul Kabbani∗

Google

ABSTRACT
We present a new, host-based design for link load balancing and
report the first experiences of link imbalance in datacenters. Our
design, PLB (Protective Load Balancing), builds on transport proto-
cols and ECMP/WCMP to reduce network hotspots. PLB randomly
changes the paths of connections that experience congestion, pre-
ferring to repath after idle periods to minimize packet reordering.
It repaths a connection by changing the IPv6 Flow Label on its
packets, which switches include as part of ECMP/WCMP. Across
hosts, this action drives down hotspots in the network, and lowers
the latency of RPCs.

PLB is used fleetwide at Google for TCP and Pony Express traffic.
We could deploy it when other designs were infeasible because
PLB requires only small transport modifications and switch con-
figuration changes, and is backwards-compatible. It has produced
excellent gains: the median utilization imbalance of highly-loaded
ToR uplinks in Google datacenters fell by 60%, packet drops corre-
spondingly fell by 33%, and the tail latency (99p) of small RPCs fell
by 20%. PLB is also a general solution that works for settings from
datacenters to backbone networks, as well as different transports.

CCS CONCEPTS
• Networks → End nodes; Data path algorithms;

KEYWORDS
Congestion control, Datacenter fabric, Load balancing, Distributed
ACM Reference Format:
Mubashir Adnan Qureshi, Yuchung Cheng, Qianwen Yin, Qiaobin Fu, Gau-
tam Kumar, Masoud Moshref, Junhua Yan, Van Jacobson, David Wetherall, 
Abdul Kabbani. 2022. PLB: Congestion Signals are Simple and Effective for 
Network Load Balancing. In ACM SIGCOMM 2022 Conference (SIGCOMM
’22), August 22–26, 2022, Amsterdam, Netherlands. ACM, New York, NY, USA, 
12 pages. https://doi.org/10.1145/3544216.3544226

1 INTRODUCTION
Modern networks scale capacity by using many links in parallel,
often in Clos topologies. This design leads to routes with many
paths from a source to each destination. In this setting, effective
mechanisms for spreading load across the available network paths
are vital for application performance and network efficiency.

The most widely-used load balancing mechanism is ECMP [40]
(Equal Cost Multi-Path), in which each flow is randomly hashed
∗This author contributed to work while at Google

SIGCOMM ’22, August 22–26, 2022, Amsterdam, Netherlands
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9420-8/22/08.
https://doi.org/10.1145/3544216.3544226

to one of the set of switch outputs, or more generally WCMP
(Weighted Cost Multi-Path) [45], which is a weighted version for
a non-uniform allocation. However, it is well-known that ECMP
does not produce a balanced load and can exacerbate congestion
hotspots, which has led to many alternative designs [3, 4, 9, 15, 19,
20, 24, 26, 27, 31, 37, 39, 41, 43, 44].

We observed hotspots degrading performance when there was
unused capacity in Google datacenters. When we sought to mitigate
them, we were largely unable to apply the designs in the literature.
They would have added significant complexity to the network,
resulting in increased costs, reliability risks, and slow evolution. For
example, regardless of their other merits, it is expensive and time-
consuming to adopt schemes that require new switch processing
(e.g., CONGA [4]), difficult to deploy solutions that make wholesale
transport changes (e.g., MPTCP [9]), and risky to rely on designs
with global controllers (e.g., Hedera [3]). Even simple and attractive
ideas like switch flowlets [39] pose per flow state scaling challenges.

Given this difficulty, we developed our own load balancing de-
sign, called PLB (Protective Load Balancing). PLB leverages existing
transports to identify flows that are experiencing congestion and
need to be repathed. It builds on earlier work on FlowBender [24]
with two ideas. Where FlowBender lacked an architecturally clean
way to repath connections, PLB uses the IPv6 Flow Label for this
role. The switch simply forwards IPv6 packets with ECMP/WCMP
flow hashing on the usual four-tuple plus the Flow Label; this con-
figuration is supported by modern switch hardware. It lets hosts
randomly change the path of a flow within the set of available
paths without application involvement. Where FlowBender sim-
ply moved connections when they experienced congestion, PLB
prefers to repath after idle periods to minimize transport interac-
tions due to packet reordering. This strategy makes small RPCs
repath more often than large RPCs at hotspots, resulting in lower
tail latencies. PLB still operates at near-RTT timescales to respond
to volatile workloads, and quickly removes connections from con-
gested paths. Across hosts, this behavior probabilistically diffuses
load away from congestion hotspots towards coldspots to increase
the effective carrying capacity of the network.

PLB is used throughout the Google fleet for datacenter and back-
bone traffic, covering all internal applications and services. We
report its impact with A/B production measurements for RPCs us-
ing TCP and low-latency messaging using Pony Express [33]. We
find large gains across the board for the network infrastructure and
applications. After deploying PLB, the median utilization imbalance
of highly-loaded ToRs in Google datacenter networks fell by 60%,
packet drops correspondingly fell by 33%, and the tail latency (99p)
of small RPCs fell by 20%.

We claim both the design of PLB and production experience
with its global deployment as contributions. Specifically, the design
of PLB shows how the IPv6 Flow Label can cleanly separate the
roles of pathing and connection demultiplexing. And the heuristic

207

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3544216.3544226
https://doi.org/10.1145/3544216.3544226
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3544216.3544226&domain=pdf&date_stamp=2022-08-22


Figure 1: Pre-PLB CDF of𝑚𝑎𝑥 −𝑚𝑖𝑛 uplink utilization for busy ToRs
of repathing after idle is highly effective for heavy-tailed traffic
at optimizing small RPC latency and large RPC throughput. In
terms of production experience (§4), we believe this to be the first
paper that reports on link utilization imbalance in datacenters.
Among other lessons (§6), we value the robustness of PLB, including
how it coexists with traditional ECMP traffic and compensates for
sub-optimal WCMP weights. Finally, while our design for PLB
was constrained for production deployment, we believe it has an
excellent cost/benefit compared to other designs, as we explain in
§7. To this end, we have open-sourced PLB code for TCP [21]. This
work does not raise any ethical issues.

2 PROBLEM & SOLUTION REQUIREMENTS
2.1 ECMP and Hotspots
The impetus for our work on load balancing is congestion hotspots.
We observed hotspots in datacenter fabrics where some Top of
Rack (ToR) switch ports were busy while others were not, and some
fabric switches were busy while other equivalent ones were not.
In a balanced network, in which the workload is well-matched to
carrying capacity, this should not happen. Rather, utilization should
increase uniformly across groups of ports and switches until the
busy part of the network is overloaded as a whole. When there is
imbalance then the effective capacity of the network is lowered,
sometimes substantially for the affected users.

We traced the imbalance to ECMP/WCMP. ECMP randomly
maps each 4-tuple, e.g., TCP connection, to a switch output to
spread load across the links to a destination; WCMP is a weighted
version of ECMP for a non-uniform allocation. They are a critical
part of networks such as datacenters that scale capacity by using
many parallel links. Both rely on the assumption that when there are
many flows then each link will have roughly the expected number
of flows, and hence have a balanced load. But this does not happen
in practice because ECMP/WCMP ignore flow sizes.

Datacenter workloads are known to be heavy-tailed: most bytes
traversing the network are carried in a small fraction of the
RPCs [7, 36]. For instance, in Google datacenters, only a single-
digit percentage of RPCs are longer than 64KB but they make up
over three-quarters of the overall traffic. In effect, only a propor-
tionally small number of flows matter in terms of load. When ECMP
randomly assigns those few flows to links then per the Binomial
distribution uneven assignments are likely.

We see this effect throughout Google datacenters. To show it,
we focus on busy ToRs because imbalance only degrades perfor-
mance at high utilization. We define a busy ToR using an arbitrary
threshold of >70% utilization (bytes over a 30s interval) on any of
its uplink ports for over 4 hours in a day. To measure imbalance, we
define the Load Imbalance (LI) to be𝑚𝑎𝑥 −𝑚𝑖𝑛 utilization across
the ToR uplinks (toward the datacenter core switches) for each ToR,
again over 30s.

Figure 1 shows the CDF of LI for the uplinks of 1000+ busy ToRs
for a whole day. This data comes from before PLB was deployed.
Around a third of the measurements have >10% utilization spread,
and many have a much larger spread. This imbalance may seem
minor, but it is detrimental beyond causing performance variation.
There are always locations of overload in datacenters, despite the
best provisioning and traffic engineering efforts, due to hetero-
geneity and workload variability. Imbalance raises the maximum
port utilization at these locations, which super-linearly increases
queuing and packet drops [36]. We will see later that PLB greatly
reduces the overall network loss by reducing imbalance.

We see the same kind of imbalance at datacenter fabric switches,
and even backbone switches. It is reduced with greater flow ag-
gregation but does not resolve due to the heavy-tailed workload –
imbalance is a network-wide issue.

2.2 Solution Requirements

The problem we seek to solve is how to assign flows to the available
paths to minimize the network traffic at hotspots. A hotspot is a
congested switch output port that has significant queuing or loss.
Routing and traffic engineering compute the available paths; they
are unchanged by our solution. Note that this formulation does
not require link utilization to be balanced at all locations, only at
points of congestion. This is because our end goal is to improve
application performance.

Any solution used in production must accommodate the het-
erogeneity of the Google fleet. Network fabrics are composed of
multiple generations of switches from multiple vendors. Network
designs are similar at a high level but differ in many respects. Hosts
use multiple transports with different forms of congestion control.
And applications generate a diverse set of workloads which can
change quickly.

This heterogeneity leads us to focus on incrementally-deployable
solutions that build on the installed base of switches and hosts. In
particular, we limit our consideration of switches to configuration
changes only. It takes several years to replace switches in the fleet.
If we need new hardware along network paths then the benefits of
a solution will not be realized for a long time. Hosts’ software can
be far more easily upgraded. However, we limit our consideration
to solutions that work with the existing transports, since it would
take years to migrate to new protocols. Even with these restrictions,
a solution must be incrementally deployable for incremental ben-
efit. It is not possible to upgrade even an individual datacenter at
once. The network also supports a mix of local and remote traffic,
including Internet traffic originating outside Google that is beyond
our control.

We do not believe these solution requirements are unique to
Google. All large providers likely face the pressures we have de-
scribed. Solutions that are simple and general will always have a
strong value proposition because of the combination of reduced
costs with broad applicability. We also do not believe that our prag-
matic choices lead to a solution that is inferior to state-of-the-art
designs. We find PLB to be highly effective, and contrast it to related
work (§7) to explain the differences.

2.3 Congestion-Aware Approach

Our approach for PLB is to use congestion as a signal to drive re-
balancing. This approach arose from our unsuccessful explorations
with obliviously spreading traffic. We first broke TCP connections

208



Figure 2: Flowlets of 1MB use the uplinks unevenly and with lower ag-
gregate throughput than PLB.

into flowlets, each subject to ECMP, to address the flow size prob-
lem. The hope was that over many flowlets, the link utilization
would even out. But at each moment the number of flows is not in-
creased. Consider a ToR with 8 uplinks and 32 flows, for an expected
4 flows per uplink. From the Binomial distribution, we have a 20%
chance of underloading links with ≤ 2 flows, and 20% chance of
overloading links with ≥ 6 flows. If we repath all flows every 1s or
100ms or 10ms then we simply change which links are underloaded
and overloaded.

In fact, we repathed connections every 1MB and the result was
worse. This is because connections on lightly-loaded links send
faster, so they are repathed more often, which clumps connections
on heavily-loaded links, where they run more slowly. Eventually
the clumps break up and reform elsewhere so the utilization of each
link fluctuates. Figure 2 shows this flowlet experiment on the left
side; the link utilizations vary over time and from each other, by
up to 2X. PLB is shown on the right side for comparison. It has
balanced utilization that is higher in aggregate as links are not
under-used.

Congestion-aware designs also lend themselves to incremental
deployment as they work when only a portion of the traffic is load-
balanced. The load-balanced traffic will respond to congestion even
if it is caused by legacy traffic. Conversely, designs that obliviously
spray traffic across the datacenter amplify the impact of other points
of congestion.

We were inspired by the FlowBender [24] congestion-aware
design. However, it requires overloading the VLAN tag, which
means that VLANs could no longer be used freely, and limited
the length of network paths that could be influenced. After our
datacenters transitioned to IPv6, the IPv6 Flow Label [6] provides
exactly the architectural support we need. It identifies packets from
a host that require the same network handling; hosts should label
connections for this purpose. Its value has no other semantics that
need to be maintained. And switches are encouraged to use it for
load balancing [12].

3 PLB DESIGN

3.1 High-Level Design
PLB is a host design that integrates load-balancing with the trans-
port for IPv6 traffic. It is complementary to ECMP/WCMP routing,
except that flow hashing is extended to include the Flow Label in
addition to the usual 4-tuple.

PLB design has two parts: congestion detection and re-pathing.
A sender host detects a connection is experiencing congestion
via the transport. It then repaths the connection by assigning it
a new, randomly-generated Flow Label for subsequent outgoing
packets. This action has the effect of selecting the flows that col-
lide to form hotspots and probabilistically spreading them across

the available paths, repeating as necessary to minimize hashing
collisions. PLB uses the existing congestion signals in the corre-
sponding transport’s congestion control and doesn’t require any
additional congestion instrumentation. This design is applicable to
many transport protocols and network settings. We present PLB
design details for TCP and Pony Express.
3.2 PLB for TCP
We develop PLB-TCP with BBRv2 [10] congestion control, with-
out any specific change to BBRv2. (We discuss other interactions
between PLB and congestion control later in this section.) The
entire PLB-TCP implementation is about 50 lines of code in the
Linux kernel TCP stack. PLB is backwards-compatible, and can be
incrementally enabled on senders to repath flows when both sides
support ECN, and switches are configured for Flow Label hashing
and ECN marking.
Detecting congestion. A PLB-TCP sender uses a simple DCTCP-
like heuristic [5] to detect that a connection is congested. The
pseudocode is depicted in Algorithm 1. Switches mark CE on pack-
ets when the queue exceeds a certain threshold. The receiver echos
back CE marks to the sender. This is all existing TCP/IP behavior
for ECN. For every ACK received, the sender calls TCP_CongDetec-
tion(). The sender computes the fraction of packets with CE marks
per round-trip. When this fraction is larger than a constant 𝐾 , we
say the round is congested. After experiencing𝑀 consecutive con-
gested rounds, we mark the flow as congested. The flow remains
congested only while consecutive rounds are congested. We give
values for 𝐾 ,𝑀 and other parameters later.

Algorithm 1: PLB congestion detection algorithm. Default
𝐾=0.5
1 function TCP_CongDetection(ACK)
2 is_congested = (ACK has CE echoed)
3 PLBDetection(ACK, is_congested)
4 end
5 function Swift_CongDetection(ACK)
6 is_congested = (ACK RTT > swift_target_delay)
7 PLBDetection(ACK, is_congested)
8 end
9 function PLBDetection(ACK, is_congested)
10 pkts_delivered += pkts_acknowledged
11 if is_congested then
12 pkts_congested += pkts_acknowledged
13 end
14 for every round trip do
15 if pkts_congested ≥ K * pkts_delivered then
16 congested_rounds++
17 else
18 congested_rounds=0
19 end
20 pkts_delivered = 0
21 pkts_congested = 0
22 end
23 end

Repathing with minimal reordering. PLB repaths by changing
the Flow Label on subsequent packets over the connection. How-
ever, this can lead to packet reordering at the receiver when PLB

209



Algorithm 2: PLB repathing for a TCP or Pony Express
sender. A data packet is a TSO jumbo frame in TCP. Default
𝑀=3, 𝑁=12.
1 SendDataPacket():
2 if (congested_rounds ≥ M AND pkts_in_flight = 0) OR

congested_rounds ≥ N OR RTO_retransmit then
3 Assign flow to a new random flow label
4 congested_rounds=0
5 Proceed to rest of the sending routine

naively moves a flow away from a longer path with high queuing
to a shorter one. For modern TCP stacks, RACK [13] minimizes
false loss recoveries due to reordering but reordering still poses a
challenge for Generic Receive Offload (GRO). GRO aggregates con-
secutive TCP segments into a jumbo frame of up to 64KB, which is
passed to the kernel TCP stack, where it triggers a single stretched
ACK. Hence GRO substantially reduces NIC upcalls and ACKs for
high-speed transfers, which results in large CPU savings. When
packets are received out-of-order, GRO aggregation ends early. This
inflicts a high CPU penalty at both the sender and receiver.

To avoid reordering, PLB tries to defer repathing a congested
flow until the flow becomes idle. When the flow restarts, no pack-
ets are inflight and a path change will not cause reordering. This
strategy is effective because most RPCs are small. Distributed ap-
plications commonly use sharding and distribute RPCs over many
connections, so small RPCs are likely sent on idle connections. To
handle the remaining heavy flows that send large RPCs and are
rarely idle, we force a repath after 𝑁 consecutive congested rounds.
This logic is shown in Algorithm 2. Here, we restrict Flow Label
changes to TCP Segmentation Offload (TSO) jumbo frame bound-
aries to increase the likelihood of in-order reception of TSO bursts.
At worst, packet reordering may occur every 𝑁 round-trips, which
we find infrequent enough to avoid CPU penalties and spurious
loss recovery.
Moving small RPCs away from heavy flows. Datacenter traffic
is known to be heavy-tailed: Google datacenter applications mostly
use persistent connections to send RPCs. The vast majority of RPCs
are smaller than 64KB but they make up less than a quarter of
overall traffic. In this situation, the heavy flows that make up the
bulk of the traffic cause significant queuing [34] that impacts the
latency of small RPCs. Triggering repathing quickly upon restart
from idle is beneficial for reducing the tail latency of small RPCs.
Since the connections that send small RPCs idle frequently, PLB
conveniently tends to move them off the paths of the big queues
contributed by heavy flows or large RPCs.

Note that PLB does not assume or depend on RPC traffic patterns.
It only exploits the idle periods in between RPCs due to distributed
nature of datacenter applications. Rehashing due to PLB is a Markov
process where the transition to a new random path depends on
the congestion along the current path. The likelihood of hitting
congestion on the new path depends on the available bandwidth.
Dealing with link failures. PLB also repaths when a Retransmis-
sion TimeOut (RTO) occurs. This can happen under exceptional
situations when the TCP feedback loop is broken, such as link fail-
ures and small transfers under heavy congestion. Small transfers
(e.g. single packet RPCs) are vulnerable because they have fewACKs
to return CE marks. While ECN is the common case for detecting
congestion, we find RTO to be a key part of a complete solution.

3.3 PLB Congestion Detection for Pony Express
Applications within Google use a transport called Pony Express [33]
as well as TCP. Pony Express runs in user-space and accesses the
NIC directly for low-latency transfers [38]. The PLB-Pony Express
implementation is also about 50 lines of code, and is used in con-
junction with Swift delay-based congestion control [30].

PLB-Pony Express only differs from PLB-TCP in how it detects
congestion, as depicted in Algorithm 1. For every ACK received,
the sender calls Swift_CongDetection(). Instead of ECN marks, Swift
congestion control in Pony Express uses NIC timestamps tomeasure
the network path and queuing delay, and aims to keep the RTT
below a target value. For each round-trip, PLB computes the fraction
of RTT measurements exceeding 𝑠𝑤𝑖 𝑓 𝑡_𝑡𝑎𝑟𝑔𝑒𝑡_𝑑𝑒𝑙𝑎𝑦. The target
delay is a Swift configuration parameter based on expected path
propagation delays and a queuing target. As with TCP, we detect
congestion when there are 𝑀 consecutive round-trips with at least
a 𝐾 fraction of high RTTs.

Pony Express does not use TSO and GRO as it bypasses the
kernel. However, it is still important to minimize reordering to
avoid spurious loss recovery and congestion reactions. To do so,
we use the same repathing logic in Algorithm 2.
3.4 Algorithm Dynamics
We describe how PLB interacts with congestion control, and how
it converges to a network-wide load balance.
Interaction with congestion control. We use timescale separa-
tion to let PLB and congestion control operate concurrently with-
out adverse interactions. When a flow experiences congestion, PLB
waits several round trips (configured by𝑀 ,𝑁 in Algorithm 2) before
repathing. This gives congestion control time to react to transient
issues. If PLB were to repath immediately, then congestion con-
trol would become an open-loop, with every round-trip potentially
measuring a different path. Similarly, PLB prefers to repath after
idle, at the start of an application duty cycle. Congestion state is
likely stale at this time and probing is already required to acquire
fresh state. In this way, PLB does not require modifications to the
underlying congestion control module.

On the other hand, we do not want to endure prolonged heavy
congestion (i.e. large 𝑁 , 𝐾 in Algorithm 1). This could lower perfor-
mance as congestion control may slow the flows down instead of
PLB seeking more available bandwidth. We conducted a parameter
sweep and empirically found that 𝐾 = 0.5,𝑀 = 3 and 𝑁 = 12 strikes
a good balance across a range of workloads. We found no particular
sensitivity, only the need for different𝑀 and 𝑁 to simultaneously
repath more quickly to speed small RPCs, and more slowly to avoid
disrupting large RPCs. For other workload patterns, different values
may work better. For example, a lower 𝐾 value may be needed if
the switch ECN marking threshold is high. A higher𝑀 is needed if
the corresponding congestion control needs more round trips to
react and stabilize congestion.

There is a further interaction for link failures. During a failure,
flows on failed links will experience RTOs and PLBwill repath them,
which will tend to shift load away from the failed links. This is all as
expected. However, if the workload is larger than the now reduced
capacity, then flows are more likely to experience congestion than
normal. In this situation, we do not want to repath again and risk
shifting flows back to the failed link, which would trigger yet more
repathing. Instead, PLB damps repathing after an RTO by pausing
the PLBDetection() module in Algorithm 1. We damp for a short
interval based on the expected link recovery time to let the network

210



recompute routes and congestion control reduce the workload. To
avoid synchronization across flows, the pause time is randomly
selected between one to two times the expected recovery time.
PLB as Thermal Diffusion. To see how PLB balances load, con-
sider the uplinks of a ToR switch. When the imbalance is high with
most flows clumped on few uplinks, host repathing is highly likely
to increase the spread of the flows, and quickly reduce the mag-
nitude of the imbalance. When the imbalance is slight, then few
flows will be repathed. The system will then explore low imbalance
states until a balanced state is found by chance – these states are
sticky as heavy flows will remain in them for their duration with
no further repathing.

The same argument applies across switches, since host repathing
explores all available paths. In fact, we can make a much stronger
statement. Much as the analysis of Kelly [28] and Low [32] shows
that the independent action of host congestion control achieves
global bandwidth fair shares, we can leverage theoretical results to
say that the independent action of PLB hosts achieves a global load
balance.

The seminal work of Feller [16] relates discreteMarkov processes
to the Fokker-Planck equation that describes diffusion processes.
Under very general conditions, it lets us relate PLB to a thermal diffu-
sion process. For this to hold, we require a measure of temperature,
which comes from hotspots as the volume of traffic experiencing
congestion, and an action that probabilistically follows a gradient,
which is provided by spreading. As with thermal diffusion, PLB will
then cool the global network to an equilibrium state.

In practice, datacenter workloads have high connection churn
rate and heavy tail distribution, PLB actively tries to remove
hotspots created by hashing imbalance or due to large flows
clumped together. What we do not know is how quickly PLB will
cool the network. This is important in practice because the network
workload changes quickly, which means that the system is always
moving towards equilibrium. PLB has excellent prospects because
it reacts at near RTT timescales by using transport signals. In the
next section, we examine how PLB performs in production.

4 PLB IN PRODUCTION

We deployed PLB for TCP and Pony Express on all Google dat-
acenter servers. Our production network consists of many large
datacenters spread across the globe. They support a multitude of
applications, ranging from storage workloads to latency-sensitive
workloads like in-memory key-value stores. IPv6 usage is wide-
spread, and all switches use the Flow Label in addition to the four-
tuple for ECMP/WCMP hashing. There are no other changes to
network controllers or traffic engineering (e.g. ECMP and WCMP
weights, routing).

PLB covers nearly all internal application transfers within the
datacenters and across the B4 [23] backbone. TCP uses BBRv2 [10]
congestion control, while Pony Express uses Swift [30] congestion
control. Both protocols share the same underlying networks hence
their PLB implementations interact with each other.

PLB allows rapid deployment because it can be unilaterally en-
abled at the sender on a per-flow basis without even restarting a
flow. Hence PLB was deployed quickly and progressively without
disrupting applications in individual datacenters. It can also be
selectively disabled for troubleshooting, although we did not need
to do so.

4.1 Evaluation Methodology

We compare measurements from before and after the deployment
of PLB to assess its benefits. As the global rollout takes many days,
we measure each datacenter for one day before and one day after
the local PLB deployment. The two days are within a week. We then
aggregate results to see fleetwide trends. For confidentiality reasons,
we normalize the measurement scale. This method provides better
workload stability than using a single period for all datacenters.

The effects of PLB are directly visible at switches, where hotspots
are reduced, so we begin here. We focus on changes in utilization
imbalance and packet discard metrics. Load imbalance is computed
as𝑚𝑎𝑥 −𝑚𝑖𝑛 utilization over the switch ports, which we term as LI,
with more details given below. It is an imperfect but useful metric
for load balancing behavior. PLB reduces imbalance that causes
congestion, but does not otherwise drive it to zero. Nor is balanced
utilization the target operating point in the less common case of
flows in asymmetric topology. As well as being artificially high,
LI can be artificially low during overload, when link utilization
becomes saturated. Despite these caveats, reductions in imbalance
due to PLB always reflect network improvements. Similarly, while
switch discards are caused by both high link load and unbalanced
link load, reductions in discards due to PLB always reflect network
improvements.

Then we follow up with transport measurements to confirm
that network improvements translate into application gains. We
focus on RPC network transfer latencies to see changes in latency
distribution for small and large RPCs. Finally, we check transport
metrics, e.g., spurious retransmissions, for unwanted side-effects.

4.2 Improving Load Balance

We use our global telemetry monitoring to obtain for each switch
port 30-second counters of the number of bytes forwarded and
packets discarded due to output buffer overruns. From this teleme-
try, we derive datapoints for: (i) Load Imbalance (LI), the𝑚𝑎𝑥 −𝑚𝑖𝑛
utilization over the switch ports; (ii) Aggregate discards, the sum of
discards across the ports; and (iii) Maximum/Minimum utilization
over the ports.

Our datacenter SDN controller [17] uses WCMP for traffic engi-
neering. ToR uplinks mostly use ECMP unless the datacenter fabric
capacity is partially drained (e.g. for maintenance or upgrade). For
ToRs, we compute these metrics across all the uplink ports feeding
the fabric core.
Top of Rack (ToR) uplinks. ToRs are an excellent test case for
load balancing because they are the first point of over-subscription
for application traffic, and have relatively few flows that require
careful assignment for balance. We start on busy switches where
imbalancematters themost. Asmentioned earlier, we say a switch is
busy if it has maximum utilization of >70% utilization for 4+ hours
a day. Note flows experience congestion below 100% utilization
because the datapoints average bursty traffic over 30 seconds.

Figure 3 shows the LI distribution of a particular datacenter that
was badly unbalanced. Only 1% of the flows were elephants, but
hashing collisions due to the birthday paradox [29] skewed the
port utilization. After PLB rollout, the 50𝑡ℎ and 99𝑡ℎ percentile LI
were reduced by 70%, with a clear shift in mass to lower LI. The
average LI for busy ToRs fell from 13% to 4.5%, which is a substantial
utilization drop. Packet discards at those switches fell by ∼50%. This
case shows how PLB can help when ECMP falls short.

211



Figure 3: PDF of LI of uplinks of busy ToRs in a badly unbalanced data-
center

Next we study the ToR uplinks across the entire fleet. At such a
large operation scale, ToRs across the fleet cover a range of utiliza-
tion levels with varying load imbalance states. We want to evaluate
the effects of PLB for these different combinations of utilization and
load imbalance. For every ToR in our fleet, we collect the following
two metrics from measurements spanning one day before and after
PLB rollout: (1) LI and (2) Minimum port utilization. Minimum port
utilization along with LI define the utilization range across ToR
uplink ports over 30s measurement interval.

Figure 4: Percentage change in bin count after PLB is enabled where
(x,y)=(min_utilization,LI). Red(hot) indicates increase in bin count
whereas blue(cool) indicates a decrease.

We compute 2D histogram of data before and after the roll-
out, 𝐻𝑏𝑒 𝑓 𝑜𝑟𝑒 and 𝐻𝑎𝑓 𝑡𝑒𝑟 respectively. 𝐻 is the normalized num-
ber of measurement samples in each bin, where a bin (x,y) cor-
responds to minimum utilization=x and LI=y. Figure 4 shows
(𝐻𝑎𝑓 𝑡𝑒𝑟 − 𝐻𝑏𝑒𝑓 𝑜𝑟𝑒 )/𝑚𝑎𝑥 (𝐻𝑏𝑒 𝑓 𝑜𝑟𝑒 , 𝐻𝑎𝑓 𝑡𝑒𝑟 ). The color of each bin
reflects the percentage change the bin underwent when PLB was
enabled. A red bin indicates increase in bin count whereas blue
color shows a decrease.

The effect of PLB is evident across the board in that it moves
mass away (blue shade) from high LI regions towards 0 (the deep
red) across all utilization levels. For high LI and high utilization
regions B and C, the percentage decrease is also higher, as shown
by a darker shade of blue. Near the tail of utilization in region B, we
see the impact of PLB on the hottest ToRs in our fleet: it strongly
pushes the load towards balance. At low utilization and low LI
region A, the ports are less utilized and congested. They show less
mass shift away, as indicated by a white to light shade of blue. The
increase in mass around (0.05, 0.6) is because of routing changes
due to drains that PLB simply shows more clearly. The sharp and
large increase in volume of LI=0 bins show how PLB is effective
across all utilization levels, and especially at higher levels. For busy

ToRs across all our datacenters, PLB reduced 50𝑡ℎ percentile LI by
60% and 99𝑡ℎ percentile by 25%.
Datacenter core switches. For switches deeper in the fabric, like
switch ports feeding the spine (aggregation layer) and fabric border
gateway switch ports feeding the WAN, the load-balancing is more
sophisticated. Topology asymmetry causes switches between the
two layers, e.g. aggregation and spine, to be connected through
different numbers of links. The connected group is referred to as a
block. The SDN controller uses WCMP to assign weights per block
to optimally distribute the workload across multiple paths inside
the datacenter to handle the capacity differences [17].

Despite the routing optimization, highly transient workload can
still cause imbalance and congestion to trigger PLB. Since the flow
label change affects every hop on the path, PLB may steer a flow
not only within the links in a congested block, but also away from a
congested block entirely. This reduces the imbalance in eachWCMP
group (where links have equal weights) and across different WCMP
groups.

As an example, we study the imbalance of a datacenter with
heavily used spine switches, before and after PLB rollout. Figure
5b shows the maximum utilization across ports of all aggregation
blocks in that datacenter. PLB shifts and flattens the peak from
0.6 max utilization towards 0.5 by load balancing traffic across all
blocks by moving traffic away from hotspots. Figure 5a shows the
significant reduction in LI across busy aggregation blocks, by both
PLB moving traffic among the links in each block, or to other blocks.
Figure 5c tells a similar story for the border links directed towards
the WAN, where overall LI distribution shifts towards left by ∼2.5%.
These examples demonstrate PLB helps significantly where it is
needed the most (i.e. network hotspots).

To confirm that PLB delivers a consistent gain, we computed the
same metrics across the fleet. Across spine blocks, we observed a
LI reduction in 50𝑡ℎ percentile by 46% and 99𝑡ℎ percentile by 30%.
For fabric border switches to WAN, 50𝑡ℎ percentile is reduced by
41% and 99𝑡ℎ percentile by 24%.

4.3 Reducing Packet Drops

Lower packet discard rates at switches provide compelling evi-
dence that PLB is alleviating congestion by lowering the maximum
link utilization. Since the packet discard rate at individual ports is
volatile, we inspect cumulative discards over long time scales to
visualize the impact of PLB.

Figure 6: Cumulative Discards across ToR Uplinks

212



(a) LI (%) across busy aggregation blocks (b) Max util across all aggregation blocks (c) LI (%) across border switches feeding WAN
Figure 5: Impact of PLB on core switches in individual datacenters

Figure 7: Cumulative Discards across spine switches

Figures 6 and 7 show the cumulative discards for busy ToR
switches and spine blocks in one Jupiter fabric before (left) and after
(right) the PLB rollout over 7 days. Cumulative discards are the sum
of the 30 second packet drop counters for all switch ports versus
time; each colored curve represents a single switch/block. Wiggles
in the curves correspond to short-term changes in behavior due
to events, while the overall slope of the line gives the long-term
discard rate.

We see that, for this datacenter with PLB, the long-term discard
rate for busy ToR switches and spine blocks fell by 50% and 80%
respectively. The absolute number of discards is normalized in the
graphs, but the ToR discards are more than an order of magnitude
higher than spine discards. This is expected since the ToRs are the
first point of over-subscription and have greater imbalance since
the datacenter topologies are designed to evenly distribute the ToR
traffic across the spine blocks. Correspondingly, we see that the
ToR curves uniformly shift to lower long-term discard rates, while
the spine blocks are affected more unequally, as there are fewer
places at which imbalance need to be corrected.

Fleetwide graphs would have been too cluttered to show at this
level, but the long-term discard rate for all busy ToRs and spine
blocks went down by 33% and 15% respectively. That is, PLB can
avoid a large portion of the packet drops for the entire fleet by
improving on ECMP/WCMP.

Note that LI is computed over 30s and may underestimate the
instantaneous load as burst arrivals get averaged out over 30s.
However, PLB’s goal is to reduce the sustained load imbalance
instead of transient ones. LI does capture these long term congestion
episodes. As shown in this section, improvement in LI directly
translates into lowering of maximum utilization across switch ports
and aggregate packet discards.
4.4 Reducing Application Latency
We study two representative workloads to show that the network
gains we have presented correspond to application benefits: a stor-
age service using TCP, and a distributed file system using Pony
Express.

Storage Service (TCP). Storage comprises the majority of data-
center traffic at Google. It is used by many applications for both
reads and writes via RPCs over TCP. ToRs hosting these storage
servers can easily become hotspots due to rapid workload changes.

We study RPC network transfer latency of small and large RPCs.
The data is sampled from our fleet telemetry system that instru-
ments applications which use RPCs with kernel network times-
tamps. For a TCP write system call, we measure the transfer latency
from when the first byte leaves the sender till the ACK is received.
This latency includes the network delays and congestion control
reactions and loss recovery. It does not include TCP ACK delay at
the receiver, which is factored out.

Figure 8: Latency for small(≤1KB) RPCs of storage workload

Figure 9: Latency for large (2MB+) RPCs of storage workload

We compare the RPC transfer latency of the storage servers in
one representative datacenter for 7 days before and after the PLB
deployment, excluding the rollout time window; we did not observe
any significant change of the overall workload in this period. Note
that this data covers RPCs whether or not they are impacted by
switch hotspots and can benefit from PLB, so even small improve-
ments are significant.

Figure 8 shows how the tail latency for small RPCs (≤1KB) de-
creased after PLB deployment. These small RPCs are often control
messages for the storage system that need to be delivered quickly.

213



Their latency is lower-bounded by the physical propagation delay
(which PLB cannot change). We see the 99th percentile has dropped
by about 20%, while the first 25th percentile has very slightly in-
creased. This is because before PLB a fraction of these transfers
suffer much heavier congestion due to load imbalance. After PLB,
all small transfers experience more similar congestion hence the
curve tends to level out.

On the other hand, the latency of large RPCs (≥2MB), which
carry storage chunks, is reduced across all percentiles, as shown in
Figure 9. The reduction starts at ∼5% and increases to 10% at 99p.
This is because as PLB resolves collisions by spreading heavy flows
it is finding more bandwidth and increasing the effective capacity
for all flows.
Distributed File System (Pony Express). Next we look at a ser-
vice that is sensitive to tail latency: transactions that fail to complete
by the deadline are cancelled and prompt a more expensive recov-
ery. The deadline should be high enough that it is missed only in
exceptional situations, and low enough that recovery commences
quickly. This service runs in a separate datacenter from the previous
storage service.

Figure 10: Op Latency over one day before/after PLB rollout. Note that
the y-axis starts from the 99th percentile

We see a reduction in the op latency when we compare the
10 days before and after PLB rollout. Op latency, which includes
both the network and host delays, sees an obvious improvement
between 99 and 99.9 percentiles, as shown in Figure 10, with up to
∼20% improvement at 99.5 percentile. The lower tail has reduced
application errors as the file operation has tight deadlines. Figure
11 shows that PLB shifts the curve of the hourly deadline-exceeded
rate to the left, reducing the median by 66%. That is, better handling
of network congestion can reduce application errors.

Figure 11: Hourly Deadline Exceeded Error Rate

4.5 Transport Layer Health
The PLB algorithm (§3.2 and §3.3) prefers to defer repathing until
restart from idle to minimize reordering, and changes the Flow

Label at TSO jumbo frame boundaries to minimize CPU costs. How-
ever, reordering may still occur if repathing happens during active
sending, so we check that the transport remains healthy when
running PLB.

First, we observed no noticeable CPU penalty with PLB deploy-
ment for both TCP and Pony Express. Second, we checked for
spurious retransmissions that signal false loss recovery. We mea-
sured the spurious retransmission ratio for each flow as the number
of packets reported in duplicate SACK options [18] for TCP (and
the equivalent for Pony Express) divided by the total retransmitted
packets.

Figure 12: Little change in TCP spurious retransmissions.

Figure 12 shows that PLB-TCP has little effect on spurious re-
transmissions. Interestingly, the ratio is somewhat reduced below
the 80th percentile and somewhat increased beyond that. We spec-
ulate that PLB is reducing the spurious retransmissions caused by
the TCP Tail Loss Probe (TLP) [13]. TLP is the retransmission of
the last unacknowledged packet (without repathing). It becomes
spurious when the TCP sender underestimates the packet delivery
rate due to a sudden congestion episode. As PLB reduces conges-
tion for many small RPCs, it reduces this failure mode. Meanwhile,
PLB repathing may still incur reordering that falsely triggers loss
recovery on the smaller number of large transfers experiencing
congestion. Pony Express has a similar inconsequential change of
spurious retransmissions.

4.6 Summary
Our results consistently show that PLB: reduces switch link load
imbalance; reduces switch packet drops; lowers application RPC tail
latency and deadline misses; and incurs negligible transport CPU
or retransmission penalties by repathing. PLB cannot help when
there are no congestion hotspots, but where there are, it is highly
effective. These results hold across our production fleet for TCP
and Pony Express, and for ToR, spine, and WAN border switches.

5 TESTBED EVALUATION
We complement the production results with controlled testbed ex-
periments to let us evaluate specific aspects of PLB. For widespread
use, it is important that PLB works well in a variety of challenging
situations:

(1) Poor WCMP weights. The WCMP weights that match traffic
to capacity may be suboptimal for many reasons. Does PLB
reduce congestion when this happens?

(2) Network failures. How does PLB react to link failures, which
may congest the remaining links, and link repairs, which
suddenly increase capacity?

214



Small RPCs Large RPCs LI #Repaths
p50 p99 p50 p99

1:1 PLB ON 1 3.5 5.33 20 1x 1x
1:2 PLB ON 1 3.5 5.33 20 1.3x 1.06x
1:2 PLB OFF 1.06 4.25 6.33 43 2x

Table 1: Normalized Transfer Latency, LI and #repaths over TCPwith 1:2
routing weight split across ToR uplinks.

(3) Co-existence. How does PLB interact with non-PLB traffic
and co-exist with different transports (e.g. congestion control
using ECN vs delay)?

We will see that PLB performs well in all these scenarios.

5.1 WCMP Interactions

ECMP is for situations that need an equal amount of traffic on each
path. This is not always the case because outgoing links may not
have the same capacity, and so WCMP adds weights to allow non-
equal allocations. However, even WCMP weights may not match
the network workload to its carrying capacity. Weights are often ap-
proximate due to switch table space limitations. Moreover, network
topologies change abruptly with failures and datacenter workloads
can change faster than updates from the SDN controller [17]. It is
important that PLB reduce hotspots even in these scenarios.

To evaluate WCMP interactions, we use two ToRs in a produc-
tion datacenter. The ToRs do not carry other traffic to minimize
interference. Each ToR has 4 uplinks of 40 Gbps and 12 hosts that
are connected via 40 Gbps links such that the ToR uplinks are over-
subscribed. Hosts under one ToR act as clients, and connect in an
all-to-all fashion to hosts under the other ToR, which act as servers.
The clients use TCP and send small requests (16kB) over a total of
1440 connections and large requests (1MB) over 144 connections;
the servers send 1-byte responses. Each connection sends RPCs in
a closed loop, one after the other. Note that consecutive RPCs have
(small) idle gaps due to application turn-around time.
1:2 WCMP Imbalance. In this experiment, we assign a weight
of 2 to half the client ToR uplinks and weight 1 to the rest even
though all paths have the same capacity. This imbalanced setup
simulates suboptimal weights due to approximations in WCMP or
traffic engineering, or capacity loss due to a failure. Actual capacity
along all paths is the same but double traffic is routed towards paths
with weight 2 with the expectation of double capacity along those
paths.

Table 1 shows the LI and latency metrics for small and large
RPCs for the baseline 1:1 weights with PLB ON, and the 1:2 weights
with and without PLB. We see that PLB with 1:2 imbalance achieves
performance close to the baseline by moving connections away
from the congested paths. There is no latency degradation and little
network degradation as the LI rises to 1.3X. Repathing across all
connections increases from 470/sec to 500/sec (1.06X) since PLB
needs to work harder to move traffic off congested links, but 99.9%
of the repaths still happen after restarting from idle. Conversely,
without PLB, both the latency and network are significantly de-
graded. The 99p latency for small and large RPCs increase by 20%
and 115% respectively, and load imbalance rises 2x. These results
show that PLB is very effective at matching traffic to the available
capacity even when the WCMP weights are only approximate.
1:100 WCMP Imbalance. To understand the limits of PLB, we
also experiment with extreme imbalance. We use the same setup
and metrics as before with weights of 100 and 1. This setup might

Small RPCs Large RPCs LI #Repaths
p50 p99 p50 p99

1:1 PLB ON 1 3.5 5.33 20 1x 1x
1:100 PLB ON 0.91 2.5 12.3 46.67 3.5x 14x
1:100 PLB OFF 10.83 14.16 225 300 100x
Table 2: Normalized Transfer Latency, LI and #repaths over TCP with
1:100 routing weight split across ToR uplinks

represent a misconfiguration where the network has inadvertently
been put in a broken state.

Table 2 shows a surprising result. Without PLB, a portion of
network is largely unusable. Load imbalance grows by 100x as
the paths with weight of 1 are little used, which lowers aggregate
throughput by ∼20%. Due to congestion, the 50p and 99p latency
rise by 10x and 3x, respectively, for small RPCs, and by 41x and
14x, respectively, for large RPCs. With PLB, it is a different story.
Repathing increases 14x over the baseline as PLB must work very
hard to overcome the 99% chance of picking a congested link. Load
imbalance then falls to 3.5x, latency falls to 2.5x or better, and the
aggregate throughput recovers. That is, PLB can achieve degraded
but usable performance despite the disastrous choice of weights.

Interestingly, the latency of small RPCs actually improves with
PLB and 100:1 weights. The chance of repathing to a link of weight
1 is only 1%. Small RPCs repath more frequently in response to
congestion and eventually find the links with low utilization, which
reduces their 50p and 99p latency. Large RPCs are less likely to
find these links, and more likely to congest them and be moved
away. They see 50p and 99p latency increases of 130%. These results
highlights how PLB differentiates small and large RPCs.

5.2 Link Failure and Recovery
We evaluate how PLB-TCP repaths traffic in response to link failure
and recovery. We use the same setup as §5.1 with uniform weights.
We simulate a link failure by disabling one of the four destination
(server) ToR uplinks such that it drops all packets routed towards
it for ∼20 minutes. Routing does not remove the failed link from
paths. Recall (§3.4) that connections pause ECN-triggered repathing
after an RTO to avoid returning to a failed link right away. We use
a pause period of 1 to 2 minutes.

Figure 13 shows the time series of link utilization as the link fails
and recovers. Note that while the 30-second average link utilization
before the failure is 60%, the instantaneous utilization can reach
100% and trigger PLB repathing. When the link fails, impacted
connections timeout, and PLB repaths them until they are spread
over the working links (and no longer RTO). The working links
become less balanced after the failure because some of the flows
on them have disabled PLB for 1-2 minutes following an RTO. This
happens throughout the failure as flows that experience congestion
repath and are unlucky enough to move to the failed link, from
which they must RTO to recover.

Despite some link imbalance, none of the connections are
aborted. During the failure, the 50p and 99p latency of large RPCs
increases by 22% and 140%, respectively, as to the working paths
become more congested. For small RPCs, 50p latency increases by
12% whereas the 99p increase is negligible. Small RPCs repath more
often (before and after PLB pauses) so they are more likely to find a
less congested path. Finally, when the link recovers, PLB smoothly
re-balances all links since there is no further RTO.

This test demonstrates that PLB is resilient to link failures, even
prolonged ones that are not quickly repaired by routing. It is a vast

215



(a) Link Utilization

(b) Normalized small RPC (16kB) transfer latency

(c) Normalized large RPC(1MB) transfer latency
Figure 13: PLB behavior during link failure and recovery

improvement from the situation without PLB: RPCs using the failed
link would be stuck until the TCP connection is reset, at which time
they would abort and require application recovery.

5.3 Co-existence with Non-PLB Traffic
By design, PLB can be deployed to hosts incrementally to repath
their traffic away from hotspots. The other hosts (even those re-
ceiving PLB traffic) do not need to be upgraded because PLB will
react to congestion regardless of the cause. This is an important
consideration in multi-tenant systems since tenants may upgrade
at different times.

To evaluate this co-existence, we use another testbed1. Each
ToR has 8 uplinks of 100Gbps and is connected to 18 hosts via
50Gbps links. Hosts under one ToR act as clients and the others
act as servers. We send small 16KB RPCs over a total of 180 (18 x
10) connections and large 1MB RPCs over 90 (18 x 5) connections,
all using TCP. There is no production traffic between these ToRs,
though the test traffic does interact with production traffic in the
fabric. PLB is enabled for 4 clients (∼20% PLB) and disabled for the
other 14 clients (∼80% non-PLB). We also run an iteration where
PLB is disabled for all clients to get a baseline for comparison.

We find that even this modest 20% deployment benefits PLB
hosts and also non-PLB hosts. Table 3 gives the transfer latencies
normalized using the baseline. PLB helps directly by moving flows
that experience congestion to less-used paths. This shows up in
the tail of large RPCs. The same movement indirectly helps the
non-PLB flows because they face less competition for bandwidth.
The system improvement is also seen in the ToR LI, which falls from
14% for the baseline (PLB disabled) to 6% (57% reduction). With
these dynamics, PLB can deliver most of its benefit well before it is
fully deployed.

5.4 Incast Fairness
Surprisingly, we observed that PLB helps with incast congestion
by balancing load on the ingress links of the bottleneck switch,
e.g., a destination ToR. This benefit is especially noticeable in cer-
tain switches with a chip architecture for which ingress imbalance
causes egress unfairness. In these switches, the ports are split into

1Our experiments were run at different times, requiring a new testbed.

Small RPCs Large RPCs
p50 p99 p99.99 p50 p99 p99.99

PLB 0.97 1.57 2.43 4.56 14.38 19.01
non-PLB 1 1.61 2.74 5 15.24 20.52
Baseline 1 1.60 2.94 4.85 16.73 23.28

Table 3: Transfer latencies with 20% PLB and 80% non-PLB traffic. Nor-
malized using 100% non-PLB traffic.

Figure 14: Scheduling over multiple port groups in a switch
Max-Min
Throughput
Unfairness

Op Latency(ms)

median p99 p99.9 p99.99
PLB ON 6.04% 0.90 7.04 15.31 28.78
PLB OFF 16.50% 1.07 7.40 17.02 35.26

Table 4: PLB improves incast fairness.

groups, each with its own data path and buffer. When many in-
put ports contend for the same output port, the switch scheduler
round-robins over the groups. This structure is shown in Figure 14.
If the incast flows are unbalanced across these groups, then some
flows will receive less service and see higher drops and lower band-
width than other senders [1]. With PLB, the balance across groups
is improved and fairness increases.

We show this benefit with an incast experiment on switches
with two port groups. 45 servers send Pony Express traffic to the
same destination client continuously over persistent connections.
22 servers are in the local rack, and 23 servers are in a remote
rack. The results in Table 4 show that PLB reduced the throughput
unfairness (max-min throughput divided by the fair-share) across
servers by 60%. Latency is also reduced at both the median (15%)
and tail (99.99p down by 18%). In effect, PLB has repathed around an
unexpected hop internal to the switch that can become congested.

Note we focus on continuous incast workload instead of one-
shot incast. The former workload causes persistent load imbalance
and congestion which are more common and problematic in data-
centers. Since PLB requires several round trips to react, it is not
active in the startup phase of transient incast workload.
5.5 Applicability Across Congestion Controls
Our results show that PLB works with BBRv2 and Swift conges-
tion control. We also study a third form of congestion control,
BBR.swift [11]. This study lets us compare delay and ECN conges-
tion controllers with the same TCP transport. Our intent is not to
recommend one congestion control over another, but to show that
PLB has broad applicability.

We use the testbed setup of §5.3 with small and large RPCs. We
do one run for BBRv2, and another for BBR.swift. As expected, we
did not observe significant differences in load balance or latency
metrics. The LI values for each run remain within 1% of each other,
while latency metrics remain within 5% of each other. The small
latency difference favors BBR.swift and is due to subtle congestion
signal and reaction differences. ECN is more noisy under bursty
traffic, while delay is better at capping the tail latency.

6 LESSONS LEARNED
We give qualitative experiences to complement our results.

216



Problem. Initially, we were unclear about the extent of the load
imbalance problem in practice, as reducing imbalance only helps
between underload and overload. Our fleetwide results show that
there is a large opportunity for improvement, even when the net-
work is optimized with WCMP. Moreover, heavy-tails imply that
load imbalance is not resolved by aggregation. We see it at ToRs,
fabric core switches, and gateways to the WAN. This led to our
focus on hotspots.
Design. The most striking feature of PLB is that it leverages trans-
port protocols. This was a pragmatic choice for us, but we have
found it to have important synergies. It lets us change the end-to-
end path, rather than outputs at a single switch, so that upstream
choices can push traffic away from downstream hotspots. It lets us
repath after application idle periods, not simply packet timing gaps,
which smoothly integrates load balancing and congestion control.
The two need to play well together for application gains.

Congestion is a powerful metric for aligning traffic to the true car-
rying capacity. Designs that align traffic levels with WCMP weights
can fail to resolve problems when the weights do not reflect the
actual capacity or match the current workload (§4.2). Designs that
equalize traffic along paths can fail to model behaviors that affect
performance, such as switch chip limitations (§5.4). PLB defensively
protects applications from suffering these harmful imbalances.
Deployment. We were pleasantly surprised by the extent of
backwards-compatibility we could achieve, and the benefits of par-
tial deployments. Switch upgrades generally need to precede host
upgrades to deliver a benefit, but both can roll out in waves. Senders
can turn on PLB for their connections at any time, without receiver
upgrades or coordination. PLB delivers benefits to adopters when it
is enabled, even if legacy traffic is causing congestion. In fact, PLB
helps legacy traffic by moving traffic away from legacy hotspots
(§5.3). PLB was smoothly rolled out globally without any interrup-
tion.
Limitations. PLB assumes IPv6 traffic, which is not yet the stan-
dard for the public Internet and may not be an option for some
providers. It also requires the ability to modify host stacks and
configure switches to use the IPv6 Flow Label. While convenient
for us, we acknowledge that these requirements may not be viable
for others. We hope that sharing our experience with PLB will lead
to more widespread host and switch support for load balancing
using the Flow Label.

7 RELATEDWORK

There are many load balancing designs in the literature, but to
the best of our knowledge none have been deployed at scale in
datacenters.

The closest prior work is FlowBender [24] which needs to over-
load the VLAN tags to repath. We improve with a Flow Label archi-
tecture, preferential repathing of small transfers, greater attention
to packet reordering, and other learnings.

Many switch designs spread load over output ports with a lo-
cal measure of load. Vendor dynamic load balancing [2, 22] shifts
flows based on link utilization, LocalFlow [37] bin-packs flows into
outputs, Flare [39] spreads flowlets to even the load, and Drill [20]
and DeTail [43] pick less-loaded outputs for each packet. Unlike
PLB, these schemes do not handle asymmetric scenarios, which
are important in datacenters. They are also prone to greater packet

reordering, and require stateful switch processing that PLB does
not.

Similarly, some host designs spread load over paths with static
rules. Presto [31] spreads TSO-sized bursts across paths, while
RPS [15] randomly sprays packets. These designs have the same
difficulty with asymmetric scenarios and reordering as above. In
addition, and unlike PLB, they do not interact well with unbalanced
legacy traffic.

Other designsmake balancing decisions based on the path load or
congestion. At switches, CONGA[4], HULA [27] and Expeditus [42]
exchange remote state to send flowlets along less-utilized paths.
PLB also makes congestion-aware decisions, but it does not need
switch support or extra control messages to do so. Nor does it
restrict its design to apply to datacenter networks. LetFlow [41] is
an interesting case because it randomly sprays flowlets but argues
that transport behavior biases towards congestion-aware decisions.
PLB makes congestion-aware decisions directly, without depending
on transport behavior that may change, e.g., flowlets may reflect
application duty cycles with pacing.

Host based congestion-aware load balancing designs are closest
to PLB. Hermes [44] senses and avoids congestion, but it relies
on actively probing path conditions. This is expensive for volatile
traffic and unnecessary with PLB. Clove [26] detects congestion
with ECN or INT [25], but it relies on overlay and virtualization
technologies that are not always present. PLB integrates with the
transport directly, and does not probe paths. MPTCP [9] breaks
a connection into subflows that are adaptively filled to increase
throughput.

Finally, Hedera [3], Mahout [14], MicroTE [8], FastPass [35]
use a centralized approach to load balancing. By its nature, this
approach requires control messages to collect information at the
central server, which makes it hard for such designs to scale and
be responsive at global scale. PLB free-rides the congestion state
that already exists at hosts to make globally optimal decisions.

8 CONCLUSION
PLB is a load balancing solution that repaths IPv6 flows which
experience congestion, driving down link imbalance and hotspots
in the network. It is simple, requiring <50 lines of code update to
transports plus ECMP/WCMP flow hashing on the Flow Label. It
is general, being applicable to TCP and Pony Express on networks
from datacenters to backbones. And our results show that it is
highly effective at lowering link imbalance, packet loss, and the
tail of RPC transfer latency. Global deployment of PLB gives us
confidence that PLB provides across the board benefits in practice.

We hope that this paper will encourage others to leverage the
IPv6 Flow Label, and that PLBwill becomewidely available as a load
balancing solution. We have open-sourced PLB code for TCP [21].
Acknowledgements:We would like to thank the anonymous re-
viewers and our shepherd James Hongyi Zeng for their insightful
feedback. We are also grateful to Neal Cardwell and Kevin Yang for
their invaluable help on PLB design and implementation.

217



REFERENCES
[1] 2018. Tolly Report: Mellanox Spectrum Switch vs. Broadcom Tom-

ahawk. https://community.mellanox.com/s/article/tolly-report--mellanox-
spectrum-switch-vs--broadcom-tomahawk. (2018).

[2] 2018. Trident 3 Dynamic Load Balancing. https://www.broadcom.com/video/
b468431136744543913129cd6a0caa30. (2018).

[3] Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath Raghavan, Nelson
Huang, Amin Vahdat, et al. 2010. Hedera: dynamic flow scheduling for data
center networks.. In Nsdi, Vol. 10. San Jose, USA, 89–92.

[4] Mohammad Alizadeh, Tom Edsall, et al. 2014. CONGA: Distributed congestion-
aware load balancing for datacenters. In Proceedings of the 2014 ACM conference
on SIGCOMM. 503–514.

[5] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Padhye,
Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. 2010.
Data Center TCP (DCTCP). In SIGCOMM.

[6] S Amante, B Carpenter, S Jiang, and J Rajahalme. 2011. RFC 6437: IPv6 flow label
specification. IETF, November (2011).

[7] Theophilus Benson, Aditya Akella, and David A. Maltz. 2010. Network Traffic
Characteristics of Data Centers in the Wild. In IMC. 267–280. https://doi.org/
10.1145/1879141.1879175

[8] Theophilus Benson, Ashok Anand, Aditya Akella, and Ming Zhang. 2011. Mi-
croTE: Fine grained traffic engineering for data centers. In Proceedings of the
seventh conference on emerging networking experiments and technologies. 1–12.

[9] Olivier Bonaventure, Christoph Paasch, Gregory Detal, et al. 2017. Use cases and
operational experience with multipath TCP. RFC 8041 (2017).

[10] Neal Cardwell, Yuchung Cheng, et al. 2019. BBR v2: A Model-based Congestion
Control. IETF 105. https://datatracker.ietf .org/meeting/105/materials/slides-105-
iccrg-bbr-v2-a-model-based-congestion-control-00. (2019).

[11] Neal Cardwell, Yuchung Cheng, et al. 2020. BBR Update:1: BBR.Swift; 2: Scalable
Loss Handling. IETF 109. https://datatracker.ietf .org/meeting/109/materials/
slides-109-iccrg-update-on-bbrv2-00. (Nov 2020).

[12] Brian Carpenter and Shane Amante. 2011. Using the IPv6 flow label for equal cost
multipath routing and link aggregation in tunnels. Technical Report. RFC 6438,
November.

[13] Yuchung Cheng, Neal Cardwell, Nandita Dukkipati, and Priyaranjan Jha. 2021.
RFC 8985 The RACK-TLP Loss Detection Algorithm for TCP. (2021).

[14] Andrew R Curtis, Wonho Kim, and Praveen Yalagandula. 2011. Mahout: Low-
overhead datacenter trafficmanagement using end-host-based elephant detection.
In 2011 Proceedings IEEE INFOCOM. IEEE, 1629–1637.

[15] Advait Abhay Dixit, Pawan Prakash, Y. Charlie Hu, and Ramana Rao Kompella.
2013. On the impact of packet spraying in data center networks.. In INFOCOM.

[16] William Feller. 1954. Diffusion processes in one dimension. Trans. Amer. Math.
Soc. 77, 1 (1954), 1–31.

[17] Andrew D Ferguson, Steve Gribble, Chi-Yao Hong, Charles Edwin Killian, et al.
2021. Orion: Google’s Software-Defined Networking Control Plane.. In NSDI.
83–98.

[18] Sally Floyd, Jamshid Mahdavi, Matt Mathis, and Matt Podolsky. 2000. RFC2883:
An extension to the selective acknowledgement (SACK) option for TCP. (2000).

[19] Yilong Geng, Vimalkumar Jeyakumar, Abdul Kabbani, and Mohammad Alizadeh.
2016. Juggler: a practical reordering resilient network stack for datacenters. In
Proceedings of the Eleventh European Conference on Computer Systems. 1–16.

[20] Soudeh Ghorbani, Zibin Yang, P Brighten Godfrey, Yashar Ganjali, and Amin
Firoozshahian. 2017. Drill: Micro load balancing for low-latency data center
networks. In Proceedings of the ACM SIGCOMM. 225–238.

[21] Google. 2022. TCP-PLB source code. (2022). https://github.com/google/plb.
[22] Douglas Richard Hanks. [n. d.]. Juniper QFX10000 Series. Chapter 4. Perfor-

mance and Scale. https://www.oreilly.com/library/view/juniper-qfx10000-series/
9781491922248/ch04.html. ([n. d.]).

[23] Chi-Yao Hong, Subhasree Mandal, et al. 2018. B4 and after: managing hierarchy,
partitioning, and asymmetry for availability and scale in google’s software-
defined WAN. In Proceedings of the ACM SIGCOMM. 74–87.

[24] Abdul Kabbani, Balajee Vamanan, Jahangir Hasan, and Fabien Duchene. 2014.
Flowbender: Flow-level adaptive routing for improved latency and throughput

in datacenter networks. In Proceedings of ACM CoNEXT. 149–160.
[25] Abdulkadir Karaagac and Jeroen Hoebeke. [n. d.]. In-band Network Telemetry for

6TiSCH Networks. Internet-Draft draft-karaagac-6tisch-int-00. Internet Engineer-
ing Task Force. https://datatracker.ietf .org/doc/html/draft-karaagac-6tisch-int-
00 Work in Progress.

[26] Naga Katta, Aditi Ghag, Mukesh Hira, Isaac Keslassy, Aran Bergman, Changhoon
Kim, and Jennifer Rexford. 2017. Clove: Congestion-aware load balancing at
the virtual edge. In Proceedings of the 13th International Conference on emerging
Networking EXperiments and Technologies. 323–335.

[27] Naga Katta, Mukesh Hira, Changhoon Kim, Anirudh Sivaraman, and Jennifer
Rexford. 2016. Hula: Scalable load balancing using programmable data planes. In
Proceedings of the Symposium on SDN Research. 1–12.

[28] Frank Kelly. 2003. Fairness and stability of end-to-end congestion control. Euro-
pean journal of control 9, 2-3 (2003), 159–176.

[29] William Knight and D. M. Bloom. 1973. E2386. The American Mathematical
Monthly 80, 10 (1973), 1141–1142. http://www.jstor.org/stable/2318556

[30] GautamKumar, Nandita Dukkipati, et al. 2020. Swift: Delay is Simple and Effective
for Congestion Control in the Datacenter. In Proceedings of the SIGCOMM.

[31] Ming Li, Deepak Ganesan, and Prashant Shenoy. 2009. PRESTO: Feedback-driven
data management in sensor networks. IEEE/ACM Transactions on Networking 17,
4 (2009), 1256–1269.

[32] Steven H Low. 2003. A duality model of TCP and queue management algorithms.
IEEE/ACM Transactions On Networking 11, 4 (2003), 525–536.

[33] Michael Marty, Marc de Kruijf, et al. 2019. Snap: a Microkernel Approach to Host
Networking. In SOSP.

[34] Kihong Park, Gitae Kim, and Mark E Crovella. 1997. Effect of traffic self-
similarity on network performance. In Performance and Control of Network Sys-
tems, Vol. 3231. International Society for Optics and Photonics, 296–310.

[35] Jonathan Perry, Amy Ousterhout, Hari Balakrishnan, Devavrat Shah, and Hans
Fugal. 2014. Fastpass: A centralized zero-queue datacenter network. (2014).

[36] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C Snoeren.
2015. Inside the social network’s (datacenter) network. In Proceedings of the ACM
SIGCOMM. 123–137.

[37] Siddhartha Sen, David Shue, Sunghwan Ihm, and Michael J Freedman. 2013. Scal-
able, optimal flow routing in datacenters via local link balancing. In Proceedings
of the ninth ACM conference on Emerging networking experiments and technologies.
151–162.

[38] Arjun Singhvi, Aditya Akella, Dan Gibson, Thomas F Wenisch, et al. 2020. 1RMA:
Re-Envisioning Remote Memory Access for Multi-Tenant Datacenters. In Pro-
ceedings of the ACM SIGCOMM. 708–721.

[39] Shan Sinha, Srikanth Kandula, and Dina Katabi. 2004. Harnessing TCP’s bursti-
ness with flowlet switching. In Proc. 3rd ACMWorkshop on Hot Topics in Networks
(Hotnets-III).

[40] D Thaler and C Hopps. 2000. RFC 2991 Multipath Issues in Unicast and Multicast
Next-Hop Selection. (2000).

[41] Erico Vanini, Rong Pan, Mohammad Alizadeh, Parvin Taheri, and Tom Edsall.
2017. Let it flow: Resilient asymmetric load balancing with flowlet switching.
In 14th {USENIX} Symposium on Networked Systems Design and Implementation
({NSDI} 17). 407–420.

[42] Peng Wang, Hong Xu, Zhixiong Niu, Dongsu Han, and Yongqiang Xiong. 2016.
Expeditus: Congestion-aware load balancing in clos data center networks. In
Proceedings of the Seventh ACM Symposium on Cloud Computing. 442–455.

[43] David Zats, Tathagata Das, Prashanth Mohan, Dhruba Borthakur, and Randy
Katz. 2012. DeTail: Reducing the flow completion time tail in datacenter networks.
In Proceedings of the ACM SIGCOMM. 139–150.

[44] Hong Zhang, Junxue Zhang, Wei Bai, Kai Chen, and Mosharaf Chowdhury.
2017. Resilient datacenter load balancing in the wild. In Proceedings of the ACM
SIGCOMM. 253–266.

[45] Junlan Zhou, Malveeka Tewari, Min Zhu, Abdul Kabbani, Leon Poutievski, Arjun
Singh, and Amin Vahdat. 2014. WCMP: Weighted cost multipathing for improved
fairness in data centers. In Proceedings of the Ninth European Conference on
Computer Systems. 1–14.

218

https://community.mellanox.com/s/article/tolly-report--mellanox-spectrum-switch-vs--broadcom-tomahawk
https://community.mellanox.com/s/article/tolly-report--mellanox-spectrum-switch-vs--broadcom-tomahawk
https://www.broadcom.com/video/b468431136744543913129cd6a0caa30
https://www.broadcom.com/video/b468431136744543913129cd6a0caa30
https://doi.org/10.1145/1879141.1879175
https://doi.org/10.1145/1879141.1879175
https://datatracker.ietf.org/meeting/105/materials/slides-105-iccrg-bbr-v2-a-model-based-congestion-control-00
https://datatracker.ietf.org/meeting/105/materials/slides-105-iccrg-bbr-v2-a-model-based-congestion-control-00
https://datatracker.ietf.org/meeting/109/materials/slides-109-iccrg-update-on-bbrv2-00
https://datatracker.ietf.org/meeting/109/materials/slides-109-iccrg-update-on-bbrv2-00
https://github.com/google/plb
https://www.oreilly.com/library/view/juniper-qfx10000-series/9781491922248/ch04.html
https://www.oreilly.com/library/view/juniper-qfx10000-series/9781491922248/ch04.html
https://datatracker.ietf.org/doc/html/draft-karaagac-6tisch-int-00
https://datatracker.ietf.org/doc/html/draft-karaagac-6tisch-int-00
http://www.jstor.org/stable/2318556

	Abstract
	1 Introduction
	2 Problem & Solution Requirements
	2.1 ECMP and Hotspots
	2.2 Solution Requirements
	2.3 Congestion-Aware Approach

	3 PLB Design
	3.1 High-Level Design
	3.2 PLB for TCP
	3.3 PLB Congestion Detection for Pony Express
	3.4 Algorithm Dynamics

	4 PLB in Production
	4.1 Evaluation Methodology
	4.2 Improving Load Balance
	4.3 Reducing Packet Drops
	4.4 Reducing Application Latency
	4.5 Transport Layer Health
	4.6 Summary

	5 Testbed Evaluation
	5.1 WCMP Interactions
	5.2 Link Failure and Recovery
	5.3 Co-existence with Non-PLB Traffic
	5.4 Incast Fairness
	5.5 Applicability Across Congestion Controls

	6 Lessons Learned
	7 Related Work
	8 Conclusion
	References

