Brief Announcement: Algorithms for Distance Sensitivity Oracles
on the PRAM

Vignesh Manoharan
The University of Texas at Austin
Austin, TX, USA
vigneshm@cs.utexas.edu

Abstract

The distance sensitivity oracle (DSO) problem asks us to preprocess
a given graph G = (V,E) in order to answer queries of the form
d(x,y, e), which denotes the shortest path distance in G from vertex
x to vertex y when edge e is removed. This is an important problem
for network communication, and it has been extensively studied
in the sequential setting [2, 4, 8, 9] and recently in the distributed
CONGEST model [7]. However, no prior DSO results tailored to the
parallel setting were known. We present the first PRAM algorithms
to construct DSOs in directed weighted graphs, that can answer a
query in O(1) time with a single processor after preprocessing.

CCS Concepts

« Theory of computation — Shortest paths; Shared mem-
ory algorithms; « Mathematics of computing — Graph algo-
rithms.

Keywords

Parallel Algorithms, Distance Sensitivity Oracles

ACM Reference Format:

Vignesh Manoharan and Vijaya Ramachandran. 2025. Brief Announcement:
Algorithms for Distance Sensitivity Oracles on the PRAM. In 37th ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA °25), July
28-August 1, 2025, Portland, OR, USA. ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/3694906.3743333

1 Introduction

In a network modeled by a graph G = (V, E), we investigate the
problem of computing shortest path distances when an edge e € E
fails. Specifically, we need to answer queries d(s,t,e) for s,t €
V,e € E, where d(s, t, e) is the shortest path distance from s to ¢
in G when edge e is removed. This is a fundamental problem in
network communication for routing under an arbitrary edge failure.

Let |V| = n,|E| = m. Since explicitly computing all distances
would be prohibitively expensive due to output size, we instead
consider Distance Sensitivity Oracles (DSOs). In the DSO problem,
we first preprocess the graph G to construct an oracle that stores
certain information in order to answer queries quickly. Note that
without any preprocessing, we can answer a query using a single

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SPAA °25, Portland, OR, USA

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1258-6/25/07

https://doi.org/10.1145/3694906.3743333

Vijaya Ramachandran
The University of Texas at Austin
Austin, TX, USA
vlr@cs.utexas.edu

source shortest path (SSSP) computation. The goal in DSO construc-
tion is to obtain a faster query time, ideally constant query time,
while keeping the preprocessing cost reasonable.

The DSO problem has received considerable attention in the se-
quential setting. Starting from [4], algorithms with different trade-
offs between query time and preprocessing time were obtained, cul-
minating in an efficient algorithm with preprocessing time O(mn),
which constructs a distance sensitivity oracle of size O(n?) that
can answer any query in O(1) time [2]. This construction nearly
matches the best runtime of APSP. Other algorithms addressed DSO
for dense graphs [8], and higher query time [9]. Recently, the DSO
problem was studied in the distributed CONGEST model [7] where
the input graph models the communication network itself.

Despite the importance of the DSO problem, no non-trivial DSO
constructions are known for the parallel setting. In this paper, we
present PRAM algorithms for computing DSOs in directed weighted
graphs. All our algorithms involve a preprocessing step, after which
queries can be answered in O(1) time using a single processor. Our
algorithms have a range of tradeoffs between work and parallel
time used for preprocessing, described in Section 1.2.

1.1 Preliminaries

Let G = (V, E) be a directed weighted graph, let |V| = n, |E| = m.
Each edge (s, t) € E (for s, t € V) has a non-negative integer weight
w(s, t). We denote the shortest path distance from s to ¢ by d(s, t).
We use d(s, t,e), for s,t € V,e € E, to denote the shortest path
distance from s to t in the graph G — {e}, i.e., the graph G with edge
e removed, also known as the replacement path distance.

We use the work-depth model to present our algorithms, sim-
ilar to other PRAM results [3, 5]. Our work and time bounds are
presented in O format which hides polylog factors and are valid
for EREW, CREW, CRCW models of PRAM due to known standard
reductions between these models.

1.2 Results

We present algorithms for DSO in directed weighted graphs with
integer weights. Integer weights are needed in our algorithms only
for computing SSSP where we utilize the PRAM algorithms of [3, 6].
Otherwise, our results hold for real weighted graphs. All of our
preprocessing algorithms are randomized, and are correct w.h.p. in
n. In all our algorithms, we construct an O(n?)-sized oracle that
can answer any query in O(1) time on a single processor.

Our first algorithm DSO-A with bounds shown in Theorem 1.1
implements the sequential DSO of [2] on the PRAM. This algorithm
is work-efficient for constant query cost, matching the preprocess-
ing, space and query time of the DSO in [2]. This is described in
Section 3.

https://orcid.org/0000-0003-0561-8558
https://orcid.org/0000-0001-7561-5235
https://doi.org/10.1145/3694906.3743333
https://doi.org/10.1145/3694906.3743333
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3694906.3743333&domain=pdf&date_stamp=2025-07-16

SPAA °25, July 28-August 1, 2025, Portland, OR, USA

THEOREM 1.1. We can construct a DSO for directed weighted
graphs on the PRAM with preprocessing cost of O(mn) work and
O(n1/2+°<1)) parallel time. The constructed oracle has size O(n?),
and can answer any query in O(1) work.

We present a fast algorithm DSO-B with bounds shown in The-
orem 1.2 that is work efficient for dense graphs (m = ©(n?)). The
work also matches the current best work of PRAM APSP in O(1)
parallel time. This result is described in Section 4.2.1.

THEOREM 1.2. We can construct a DSO for directed weighted
graphs on the PRAM with preprocessing cost of O(n®) work and O(1)
parallel time. The constructed oracle has size (j(nz), and can answer
any query in O(1) work.

We use the notion of hop-limited DSOs in DSO-B, and use a
sequential technique from [8] to construct a %h—hop limited DSO
given a h-hop limited DSO (1 < h < n) at the cost of increased
preprocessing. This extension, which is described in Section 4.1
consists of two steps: constructing a %h—hop limited DSO with
high query time using vertex sampling (in Section 4.1.1), and then
reducing the query time to O(1) using the framework of [2] and the
PRAM APSP algorithm of [5] (in Section 4.1.2). Using a simple 2-hop
DSO construction as a base case together with repeated application
of the parallel DSO extension procedure gives us the result.

Theorem 1.3 gives a tradeoff between work and parallel time in
algorithm DSO-C (Section 4.2.2).

THEOREM 1.3. We can construct a DSO for directed weighted
graphs on the PRAM with preprocessing cost of O(mnh + (n®/h))
work and O(h) parallel time, for any 1 < h < n. The constructed
oracle has size O(n?), and can answer any query in O(1) work.

o . 2 .
In Theorem 1.3, we can choose h = 0 (mln ("m, \/ﬁ)) to obtain an

algorithm that achieves sub-/n parallel time with sub-n> work as

long as m = 6(n?), i.e., the graph is not fully dense. Theorem 1.3 is
only meaningful for h < O(n!/2**(1)) due to Theorem 1.1. We use
a hop limited approach similar to Theorem 1.2, but we use a more
sophisticated base case construction that directly constructs a h-
hop limited DSO with a graph sampling technique, using ideas from
a sequential DSO algorithm [9]. After the base case construction,
we repeatedly apply the DSO extension procedure (in Section 4.1).

2 Framework for Distance Sensitivity Oracle

Our PRAM algorithms for DSO use techniques from sequential DSO
algorithms [2, 4, 8, 9]. In this section, we describe a framework for
DSO construction due to Bernstein and Karger [2]. In Sections 3
and 4, we will use different implementations of this framework
along with other techniques in our PRAM algorithms. We present
our results for edge removal (this can be modified for vertex removal
as in [2]). Recall that the sequential DSO construction of [2] has
O(mn) preprocessing time, O(n®) space requirement, and O(1)
query time.

The DSO framework of [2] is described in Algorithm 1. Each
vertex is assigned a priority k € {1,2,...logn}, and a vertex with
priority k is called a k-center. In each x-y shortest path, forx,y € V,
the algorithm identifies a sequence of centers of strictly increasing
priority up to the maximum, followed by strictly decreasing priority

629

Vignesh Manoharan and Vijaya Ramachandran

to y. A center x covers an edge e, if e is on its outgoing (or incoming)
shortest path tree, and there is no center of higher priority on the
shortest path from x to e. Thus, the sequence of centers partitions
the path into intervals that are covered by their endpoint centers.
By randomly sampling k-centers with probability ©(1/2X), a center
of priority k only has to cover edges within O(2%) hops from it.
The algorithm precomputes distances d(x,y,e) forally € V
and edges e € E that are covered by center x. Furthermore, the
algorithm uses the notion of a bottleneck edge for an interval, which
is the edge in the interval that maximizes the replacement path
distance when it is removed. The following data is computed during
preprocessing, where x,y € V,e € Eand i € {1,2,...2logn} :

CR[x,y, i]: first center of priority-> i on x-y shortest path.
CL|[x,y, i]: first center of priority-> i on reversed y-x short-
est path (edge directions flipped).

BCP|[x,y]: biggest center priority on x-y shortest path.
Dj[x,y, e]: distance d(x,y, e), where x is a center of priority
i that covers e.

e BV|[x,y,i]: bottleneck edge of interval i on x-y shortest path.
e DBV|x,y,i]: distance d(x,y, BV [x,y, i]), for each interval i.

This preprocessing data takes up a total of O(n?) space. After
preprocessing, a query can be answered by looking up O(1) values,
as shown in Algorithm 1.

Algorithm 1 Framework from [2] for DSO with O(1) query.

Input: Directed weighted graph G = (V, E).

1: Preprocessing Algorithm :

2: Every vertex is randomly assigned a priority k with probability
@(zlk), fork =1,2,...logn.

3: For each x,y € V, i < logn, compute
CR[x,y,i],CL[x,y,i], BCP[x,y], .

4: For each x € V and edge e covered by x, for eachy € V,
compute D;[x, y, e] (i = priority of x).

5: For each x,y € V,i < logn, compute bottleneck vertex
BV [x,y, i] using binary search and an RMQ data structure [1]
on the computed D;[x, y, e] values.

6: For each x,y € V, i < logn, compute distance DBV [x, y, i]
when vertex BV [x, y, i] is removed.

7: Query Algorithm, given query d(x,y, e) :

8: Let edge e = (u,v). Let i = BCP[x,u], j = BCP[uv,y].

9: Compute ¢y = CL[x,y,i] and ¢y = CR[x,y, j]. > Edge e is cov-

ered by cx andcy
Output d(x,y,) = min{d(x, cx) + Di[cx, y, €], Di[x, cys v] +
d(cy.y), DBV [x,y,i]}

10:

In the next two sections, we present PRAM algorithms that use
this framework, implementing the steps using different methods.
All our algorithms finally compute the same preprocessing data
as [2], so the oracle can be stored in O(n?) space and can answer
a query in O(1) work on a single processor. In Section 3 we show
how to directly implement Algorithm 1 efficiently on the PRAM,
to obtain a work-efficient preprocessing algorithm that runs is
O(nlt/2+o(1)) parallel time. In Section 4, we use this framework
in addition to hop-limited DSO construction techniques to obtain
faster preprocessing algorithms.

Brief Announcement: Algorithms for Distance Sensitivity Oracles on the PRAM

3 Work-Efficient PRAM DSO

In this section, we prove Theorem 1.1 by presenting PRAM algo-
rithm DSO-A which implements Algorithm 1. DSO-A preprocesses
the input graph in O(mn) work and O(n!/2+°(1)) parallel time. The
constructed oracle has O(n?) size and can answer any query in O(1)
work. This algorithm uses excluded shortest paths computations,
where given a graph G = (V, E), set of edges P C E and a source
x € V, we need to compute distances d(x,y,e) forally € V,e € P.
If the set P is independent, i.e., the edges are in the outgoing shortest
path tree of x and the subtrees rooted at any pair of edges in P are
disjoint, then we can compute all excluded shortest paths distances
using one SSSP computation [4].

Proor oF THEOREM 1.1. We show how we implement Algorithm 1
on the PRAM. The computation in line 3 is implemented using
O(nlogn) SSSPs as follows. For each vertex x € V and priority
1 < i < logn, we can readily modify an SSSP computation from x
to compute the relevant center information CR[x, y, i], BCP[x, y].
We repeat this on the reversed graph for CL[x, y, i].

To implement line 4, note that each center x of priority k covers
edges within O(2) depth in its outgoing shortest path tree w.h.p.
in n. The set of edges at a given depth j in the outgoing shortest
path tree of x is independent, so we use one excluded shortest paths
computation for these edges. For depths 1 < j < 0(2%), we use
O(Zk) exclude computations, and each exclude involves one SSSP
computation. Since we have O(n/2K) vertices of priority k, and
O(log n) priorities, we get a total of O(n) SSSP computations over
all x € V w.h.p. in n. Finding bottleneck vertices in line 5 uses a
range minimum query (RMQ) data structure, which is implemented
on the PRAM with linear work and O(log* n) parallel time for
preprocessing and O(1) work per query [1].

To implement line 6, we perform O(n) SSSP computations as fol-
lows. The algorithm of [2] constructs a graph with vertices (x, y, i)
for each interval i on x-y shortest path for x,y € V,i < logn, and
an additional vertex s. The edges are between (x, y,1) to (x,v’, j)
with weight w(y’, y) for each edge (v’, y) € E, and additional edges
from s to (x,y, i). Then, they directly compute SSSP on this graph.
We instead construct n graphs Gy, one for each x € V, with vertex
s and vertices (x,y,1),Yy € V,i < logn. Since there are no edges
between different Gy, Gy, we can compute SSSP separately in each
Gy, which has O(n) vertices and O(m + n) edges. This computes
DBV |[x,y,i] as the shortest distance from s to vertex (x, y, i) in Gy.

In total, we perform O(n) SSSP computations, which takes a total
of O(mn) work and O(n'/2*0(1)) time using the PRAM algorithm
of [3]. Line 5 takes O(n?) work and O(1) time, and other lines
take O(n) work. The correctness of our algorithm readily follows
from the correctness of [2], and the oracle has the same O(n?) size
as the construction of [2]. The query algorithm is the same as in
Algorithm 1, which takes O(1) work per query. O

4 Faster PRAM DSO for Dense Graphs

In this section, we present PRAM algorithms that can beat the
O(nt/Z+o(1)) parallel time of the preprocessing algorithm presented
in Section 3. Our method constructs a series of hop limited DSOs
in order to ultimately obtain a complete DSO. We first describe the

630

SPAA °25, July 28-August 1, 2025, Portland, OR, USA

hop limited DSO constructions, and then show how we use it in
our algorithms.

4.1 Hop-limited DSO

Let dp(x,y,e), for any 1 < h < n, denote the minimum weight
path among all x-y paths of at most h edges not containing edge e.
In an h-hop limited DSO we needed to preprocess an input graph
G = (V,E) to answer queries dj,(x,y,e) for any x,y € V,e € E.
Note that an n-DSO is simply a complete DSO. In this section, we
describe a two-step DSO extension procedure to construct %h-hop
limited DSO from an h-hop limited DSO, adapting a sequential
technique of Ren [8].

LEMMA 4.1. Let1 < h < n. Given an h-hop DSO with preprocessing
cost P, work and Py parallel time (P; < n) which answers a query in
O(1) work, we can construct a %h—hop DSO with preprocessing cost
Py, + O(mn + (n®/h) + (n/P:)3) work and Py + O(1) parallel time,
which can answer any query in O(1) work.

ProoOF. The two-step procedure is as follows: The first step,
proven in Lemma 4.2 of Section 4.1.1, constructs a %h—hop DSO
with preprocessing cost of P, + O(n) and P; + O(1) parallel time
and cost per query of O(n/h) work and O(1) parallel time.

The second step, proven in Lemma 4.3 of Section 4.1.2, reduces
the query cost to O(1) work. We construct a %h-hop DSO with O(1)
work per query and preprocessing cost of P, + O(mn + (n3/h) +
(n/P;)3) work and P; + O(1) time. m]

4.1.1 Extended hop DSO with high query time. Assume that we are
given a h-hop limited DSO with O(1) query time. The following
observation is from [8]: Let s be a vertex on a %h—hop replacement
path from u to v such that s is at most h-hops from both u and v
along this path. Then, d%h(u, v,e) = dp(u,s,e) +dy(s,0,e), as the
two subpaths u-s and s-v have distances dy, (u, s, e) and dj,(s, v, €)
respectively. We use this result in the following lemma.

LEMMA 4.2. Given an h-hop DSO with P,, work and P; parallel
time for preprocessing and O(1) work for query, we can construct a
%h-hop DSO with preprocessing cost P, + O(n) work and Py + O(1)

time, which answers a query in O(n/h) work and O(1) time.

Proor. Sample each vertex into a set S with probability ®(log n/h)

so that any path of length % is hit by a sampled vertex w.h.p in n.
Note that |S| = O(n/h) w.h.p. in n. To answer a query, we compute
d%h(u, v,e) = minges d(u, s,) + dy (s, v,). This is correct w.h.p.
in n: The path with distance dj,(u,s, e) + dy(s,v,) is a valid u-v
path not containing e for any s € V. Consider the subpath of the
%h-hop replacement path containing vertices within h hops of both
u and . This segment has length of at least g and therefore has a
sampled vertex s € S wh.p. in n. This s gives us the correct distance
d 3 h(u, v,) by the above observation.

The preprocessing algorithm of the %h—hop DSO is to first sample
and store S, which takes O(n) work and O(1) time. Then, we run the
preprocessing algorithm of the input h-hop DSO. A query computes
the minimum over O(|S|) = O(n/h) h-hop distances, which are
computed using queries to the A-hop DSO. This takes O(n/h) work
and O(1) time per %h—hop query. O

SPAA °25, July 28-August 1, 2025, Portland, OR, USA

4.1.2 Reducing to O(1) query time. Now, we convert a given h-hop
DSO with high query time into an h-hop DSO with O(1) query
time using additional preprocessing by implementing Algorithm 1.

LEMMA 4.3. Given an h-hop DSO with P, work and P; parallel
time for preprocessing and q work and O(1) time for query, we can
construct a %h—hop DSO with P, + O(mn + n® - q+ (n/P;)3) work
and Py + O(1) time for preprocessing and O(1) work for query.

Proor. We show how we implement each preprocessing step of
Algorithm 1, after which we can use the query algorithm described
there. Line 5 is implemented in O(n?) work and O(1) time as in
Section 3. Lines 3,4,6 are implemented differently, as follows.

Line 3: To compute CR, CL and BCP values for each interval on
the shortest path between each vertex pair x,y € V, for a fixed i,
we do a modified APSP. To compute CR[x, y, i], we track the first
center of priority > i in addition to d(x, y). When combining dis-
tances during APSP, we also update the CR value. This modification
is readily done to the PRAM APSP algorithm in [5]. The values
CL, BCP are computed in a similar way. For 1 < i < logn, we per-
form O(logn) APSP computations which takes O(mn + (n/P;)?)
work and parallel time P; using the algorithm of [5].

Lines 4,6: These lines require computing h-hop replacement
distances, for which we use queries to the input h-hop DSO with ¢
work per query. We run the preprocessing algorithm of the given
DSO, in parallel to line 3. Then, in line 4, we compute distance
d(x,y, e) for each edge e on the x-y shortest path that is covered
by center x. The number of such distances for a fixed vertex y
is < 2n as each edge is covered by the endpoint centers of the
interval containing it. This is a total of O(n?) distances forally € V.
Line 6 thus computes O(n?) distances. So, we have an additional
preprocessing cost of O(n?q) work and O(1) time. O

4.2 Faster DSO constructions for Dense Graphs

4.2.1 Preprocessing algorithm for DSO in O(n®) work and O(1) time.
In this section, we present algorithm DSO-B that takes O(n?) work
and (5(1) parallel time to construct an oracle of size O(n?), that
can answer a query in O(1) time. We first construct a 2-hop limited
DSO with high query time and apply Lemma 4.3 to obtain a 2-hop
DSO with O(1) query time. Then, we repeatedly apply Lemma 4.1
for O(log n) steps until we obtain a n-hop DSO - which is just a
complete DSO.

Base Case: Our base DSO is a 2-hop limited DSO, with a query cost
of O(n) work, and O(1) parallel time. This needs no preprocessing,
as da(x,y,e) = mingey w(x,s) + w(s, y), where the minimum is
over s € V such that (x,s),(s,y) € E and e # (x,s),(s,y). We
now apply Lemma 4.3 to reduce this query time, with parameters
P; = O(1), q = n, to obtain a 2-hop DSO with preprocessing cost of
O(n®) work and O(1) parallel time and O(1) work query.

Obtaining complete DSO: We apply Lemma 4.1 with P,, = O(n®)
and P; = O(1). We repeat this procedure O(logn) times until we
obtain a n-hop DSO with O(1) query. Over all O(log n) steps, we
get a total of O(n®) work and O(1) parallel time.

Note that the final query is just looking up O(1) values precom-
puted by the n-hop DSO. Thus, we only maintain preprocessed
data for the n-hop DSO, which has size O(n?), and the intermediate
DSOs can be discarded.

631

Vignesh Manoharan and Vijaya Ramachandran

4.2.2 DSO with improved work-time tradeoff. In this section, we
present algorithm DSO-C that performs O(mnh + (n3/h)) work
and O(h) parallel time for preprocessing, for any 2 < h < n, to
construct an oracle of size O(n?) that answers a query in O(1) work.
Our preprocessing algorithm follows a scheme similar to DSO-B in
the previous section, but uses a different base case.

Base Case: We present a method to construct an h-hop DSO using
a sequential graph sampling method of [9]. We sample O(h) graphs
G; by removing every edge with probability (1/h), independently
at random. In [9], it is proven that for any path # of h hops not
containing edge e, w.h.p. in n, there is at least one graph G; that
includes all edges of but not e. Additionally for a specific edge e,
w.h.p. in n, there are only O(log n) graphs G; that do not contain
e. If dj(x,y) is the shortest path distance in G;, then d(x,y,e) =
min;.e¢, di(x,y), wh.p.in n.

To construct an h-hop DSO, we sample O(h) graphs as described
above and then compute h-hop limited APSP distances in each
sampled graph G;. We compute h-hop SSSP from each vertex of G;
in O(mn) work and O(h) parallel time using an O(m)-work O(h)-
time hop-limited shortest path algorithm (Lemma 5.3 of [3]). We
also store the identities of the set of graphs G; that do not contain
e, for each edge e € E. Thus, after preprocessing, we can answer
a query in O(log n) time using the precomputed d; (x, y) distances.
Since we have O(h) graphs, we obtain a DSO with preprocessing
cost of O(mnh) work and O(h) parallel time, with O(1) work query.

Obtaining complete DSO: Similar to DSO-B, we repeatedly apply
Lemma 4.1 O(log n) times to construct an n-hop DSO from an h-
hop DSO. We use parameters P,, = O(mnh) and P; = O(h).In an
extension step where we construct a %k—hop DSO from a k-hop
DSO for some k > h, we incur an additional preprocessing cost of
O~(%3 + Z—z) = (3("73) work and O(h) parallel time. Adding up the
costs for O(log n) steps, preprocessing cost is O(mnh + "73) work

and O(h) parallel time. We only store preprocessing data for the
final n-DSO, so the oracle has size O(n?).

5 Conclusion and Open Problems

We have presented the first non-trivial PRAM algorithms for DSO
under single edge failure: We constructed a work-efficient algo-
rithm for dense graphs with O(n®) work and O(1) parallel time,
matching APSP. We also presented a work-efficient algorithm for
sparse graphs with preprocessing work O(mn) matching sequen-
tial DSO [2] but with parallel time O(n!/2+°(1)). While we have
presented a work-time tradeoff algorithm that can achieve sub-v/n
parallel time, it is not work-efficient. An open problem is whether
there is a work-efficient DSO preprocessing algorithm with O(mn)
work and O(n'/3) parallel time, matching the current best work-
efficient PRAM algorithm for APSP [5]. A larger open problem is
whether we can reduce the parallel time beyond n!/3 for both APSP
and DSO, while maintaining O(mn) work.

Acknowledgments
This work was supported in part by NSF grant CCF-2008241.

Brief Announcement: Algorithms for Distance Sensitivity Oracles on the PRAM

References

[1] Omer Berkman and Uzi Vishkin. 1993. Recursive Star-Tree Parallel Data Structure.
SIAM J. Comput. 22, 2 (1993), 221-242.

[2] Aaron Bernstein and David R. Karger. 2009. A nearly optimal oracle for avoiding
failed vertices and edges. In Proceedings of the 41st Annual ACM Symposium on
Theory of Computing, STOC 2009. ACM, Bethesda, MD, USA, 101-110.

[3] Nairen Cao and Jeremy T. Fineman. 2023. Parallel Exact Shortest Paths in Al-
most Linear Work and Square Root Depth. In Proceedings of the 2023 ACM-SIAM
Symposium on Discrete Algorithms, SODA 2023. SIAM, Florence, Italy, 4354-4372.

[4] Camil Demetrescu, Mikkel Thorup, Rezaul Alam Chowdhury, and Vijaya Ra-
machandran. 2008. Oracles for Distances Avoiding a Failed Node or Link. SIAM 7.
Comput. 37, 5 (2008), 1299-1318.

632

SPAA °25, July 28-August 1, 2025, Portland, OR, USA

[5] Adam Karczmarz and Piotr Sankowski. 2021. A Deterministic Parallel APSP

Algorithm and its Applications. In Proceedings of the 2021 ACM-SIAM Symposium
on Discrete Algorithms, SODA 2021. SIAM, Virtual Conference, 255-272.

Philip N. Klein and Sairam Subramanian. 1997. A Randomized Parallel Algorithm
for Single-Source Shortest Paths. J. Algorithms 25, 2 (1997), 205-220.

Vignesh Manoharan and Vijaya Ramachandran. 2025. Distributed Distance Sen-
sitivity Oracles. In Structural Information and Communication Complexity - 32nd
International Colloquium, SIROCCO 2025, Proceedings (LNCS, Vol. 15671). Springer,
Delphi, Greece, 366—-383.

Hanlin Ren. 2022. Improved distance sensitivity oracles with subcubic preprocess-
ing time. J. Comput. Syst. Sci. 123 (2022), 159-170.

Oren Weimann and Raphael Yuster. 2013. Replacement Paths and Distance Sensi-
tivity Oracles via Fast Matrix Multiplication. ACM Trans. Algorithms 9, 2 (2013),
14:1-14:13.

	Abstract
	1 Introduction
	1.1 Preliminaries
	1.2 Results

	2 Framework for Distance Sensitivity Oracle
	3 Work-Efficient PRAM DSO
	4 Faster PRAM DSO for Dense Graphs
	4.1 Hop-limited DSO
	4.2 Faster DSO constructions for Dense Graphs

	5 Conclusion and Open Problems
	Acknowledgments
	References

