
Brief Announcement: Algorithms for Distance Sensitivity Oracles
on the PRAM

Vignesh Manoharan

The University of Texas at Austin

Austin, TX, USA

vigneshm@cs.utexas.edu

Vijaya Ramachandran

The University of Texas at Austin

Austin, TX, USA

vlr@cs.utexas.edu

Abstract
The distance sensitivity oracle (DSO) problem asks us to preprocess

a given graph 𝐺 = (𝑉 , 𝐸) in order to answer queries of the form

𝑑 (𝑥,𝑦, 𝑒), which denotes the shortest path distance in𝐺 from vertex

𝑥 to vertex 𝑦 when edge 𝑒 is removed. This is an important problem

for network communication, and it has been extensively studied

in the sequential setting [2, 4, 8, 9] and recently in the distributed

CONGEST model [7]. However, no prior DSO results tailored to the

parallel setting were known. We present the first PRAM algorithms

to construct DSOs in directed weighted graphs, that can answer a

query in 𝑂 (1) time with a single processor after preprocessing.

CCS Concepts
• Theory of computation → Shortest paths; Shared mem-
ory algorithms; •Mathematics of computing → Graph algo-
rithms.

Keywords
Parallel Algorithms, Distance Sensitivity Oracles

ACM Reference Format:
Vignesh Manoharan and Vijaya Ramachandran. 2025. Brief Announcement:

Algorithms for Distance Sensitivity Oracles on the PRAM. In 37th ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA ’25), July
28–August 1, 2025, Portland, OR, USA. ACM, New York, NY, USA, 5 pages.

https://doi.org/10.1145/3694906.3743333

1 Introduction
In a network modeled by a graph 𝐺 = (𝑉 , 𝐸), we investigate the
problem of computing shortest path distances when an edge 𝑒 ∈ 𝐸

fails. Specifically, we need to answer queries 𝑑 (𝑠, 𝑡, 𝑒) for 𝑠, 𝑡 ∈
𝑉 , 𝑒 ∈ 𝐸, where 𝑑 (𝑠, 𝑡, 𝑒) is the shortest path distance from 𝑠 to 𝑡

in 𝐺 when edge 𝑒 is removed. This is a fundamental problem in

network communication for routing under an arbitrary edge failure.

Let |𝑉 | = 𝑛, |𝐸 | = 𝑚. Since explicitly computing all distances

would be prohibitively expensive due to output size, we instead

consider Distance Sensitivity Oracles (DSOs). In the DSO problem,

we first preprocess the graph𝐺 to construct an oracle that stores

certain information in order to answer queries quickly. Note that

without any preprocessing, we can answer a query using a single

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

SPAA ’25, Portland, OR, USA
© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1258-6/25/07

https://doi.org/10.1145/3694906.3743333

source shortest path (SSSP) computation. The goal in DSO construc-

tion is to obtain a faster query time, ideally constant query time,

while keeping the preprocessing cost reasonable.

The DSO problem has received considerable attention in the se-

quential setting. Starting from [4], algorithms with different trade-

offs between query time and preprocessing time were obtained, cul-

minating in an efficient algorithm with preprocessing time 𝑂̃ (𝑚𝑛),
which constructs a distance sensitivity oracle of size 𝑂̃ (𝑛2) that
can answer any query in 𝑂 (1) time [2]. This construction nearly

matches the best runtime of APSP. Other algorithms addressed DSO

for dense graphs [8], and higher query time [9]. Recently, the DSO

problem was studied in the distributed CONGEST model [7] where

the input graph models the communication network itself.

Despite the importance of the DSO problem, no non-trivial DSO

constructions are known for the parallel setting. In this paper, we

present PRAM algorithms for computing DSOs in directed weighted

graphs. All our algorithms involve a preprocessing step, after which

queries can be answered in𝑂 (1) time using a single processor. Our

algorithms have a range of tradeoffs between work and parallel

time used for preprocessing, described in Section 1.2.

1.1 Preliminaries
Let 𝐺 = (𝑉 , 𝐸) be a directed weighted graph, let |𝑉 | = 𝑛, |𝐸 | = 𝑚.

Each edge (𝑠, 𝑡) ∈ 𝐸 (for 𝑠, 𝑡 ∈ 𝑉) has a non-negative integer weight

𝑤 (𝑠, 𝑡). We denote the shortest path distance from 𝑠 to 𝑡 by 𝑑 (𝑠, 𝑡).
We use 𝑑 (𝑠, 𝑡, 𝑒), for 𝑠, 𝑡 ∈ 𝑉 , 𝑒 ∈ 𝐸, to denote the shortest path

distance from 𝑠 to 𝑡 in the graph𝐺 − {𝑒}, i.e., the graph𝐺 with edge

𝑒 removed, also known as the replacement path distance.

We use the work-depth model to present our algorithms, sim-

ilar to other PRAM results [3, 5]. Our work and time bounds are

presented in 𝑂̃ format which hides polylog factors and are valid

for EREW, CREW, CRCW models of PRAM due to known standard

reductions between these models.

1.2 Results
We present algorithms for DSO in directed weighted graphs with

integer weights. Integer weights are needed in our algorithms only

for computing SSSP where we utilize the PRAM algorithms of [3, 6].

Otherwise, our results hold for real weighted graphs. All of our

preprocessing algorithms are randomized, and are correct w.h.p. in

𝑛. In all our algorithms, we construct an 𝑂̃ (𝑛2)-sized oracle that

can answer any query in 𝑂 (1) time on a single processor.

Our first algorithm DSO-A with bounds shown in Theorem 1.1

implements the sequential DSO of [2] on the PRAM. This algorithm

is work-efficient for constant query cost, matching the preprocess-

ing, space and query time of the DSO in [2]. This is described in

Section 3.

628

https://orcid.org/0000-0003-0561-8558
https://orcid.org/0000-0001-7561-5235
https://doi.org/10.1145/3694906.3743333
https://doi.org/10.1145/3694906.3743333
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3694906.3743333&domain=pdf&date_stamp=2025-07-16

SPAA ’25, July 28–August 1, 2025, Portland, OR, USA Vignesh Manoharan and Vijaya Ramachandran

Theorem 1.1. We can construct a DSO for directed weighted
graphs on the PRAM with preprocessing cost of 𝑂̃ (𝑚𝑛) work and
𝑂̃ (𝑛1/2+𝑜 (1)) parallel time. The constructed oracle has size 𝑂̃ (𝑛2),
and can answer any query in 𝑂 (1) work.

We present a fast algorithm DSO-B with bounds shown in The-

orem 1.2 that is work efficient for dense graphs (𝑚 = Θ(𝑛2)). The
work also matches the current best work of PRAM APSP in 𝑂̃ (1)
parallel time. This result is described in Section 4.2.1.

Theorem 1.2. We can construct a DSO for directed weighted
graphs on the PRAM with preprocessing cost of 𝑂̃ (𝑛3) work and 𝑂̃ (1)
parallel time. The constructed oracle has size 𝑂̃ (𝑛2), and can answer
any query in 𝑂 (1) work.

We use the notion of hop-limited DSOs in DSO-B, and use a

sequential technique from [8] to construct a
3

2
ℎ-hop limited DSO

given a ℎ-hop limited DSO (1 ≤ ℎ ≤ 𝑛) at the cost of increased

preprocessing. This extension, which is described in Section 4.1

consists of two steps: constructing a
3

2
ℎ-hop limited DSO with

high query time using vertex sampling (in Section 4.1.1), and then

reducing the query time to𝑂 (1) using the framework of [2] and the

PRAMAPSP algorithm of [5] (in Section 4.1.2). Using a simple 2-hop

DSO construction as a base case together with repeated application

of the parallel DSO extension procedure gives us the result.

Theorem 1.3 gives a tradeoff between work and parallel time in

algorithm DSO-C (Section 4.2.2).

Theorem 1.3. We can construct a DSO for directed weighted
graphs on the PRAM with preprocessing cost of 𝑂̃ (𝑚𝑛ℎ + (𝑛3/ℎ))
work and 𝑂̃ (ℎ) parallel time, for any 1 ≤ ℎ ≤ 𝑛. The constructed
oracle has size 𝑂̃ (𝑛2), and can answer any query in 𝑂 (1) work.

In Theorem 1.3, we can chooseℎ = 𝑜

(
min

(
𝑛2

𝑚 ,
√
𝑛

))
to obtain an

algorithm that achieves sub-

√
𝑛 parallel time with sub-𝑛3 work as

long as𝑚 = 𝑜 (𝑛2), i.e., the graph is not fully dense. Theorem 1.3 is

only meaningful for ℎ ≤ 𝑂̃ (𝑛1/2+𝑜 (1)) due to Theorem 1.1. We use

a hop limited approach similar to Theorem 1.2, but we use a more

sophisticated base case construction that directly constructs a ℎ-

hop limited DSO with a graph sampling technique, using ideas from

a sequential DSO algorithm [9]. After the base case construction,

we repeatedly apply the DSO extension procedure (in Section 4.1).

2 Framework for Distance Sensitivity Oracle
Our PRAM algorithms for DSO use techniques from sequential DSO

algorithms [2, 4, 8, 9]. In this section, we describe a framework for

DSO construction due to Bernstein and Karger [2]. In Sections 3

and 4, we will use different implementations of this framework

along with other techniques in our PRAM algorithms. We present

our results for edge removal (this can bemodified for vertex removal

as in [2]). Recall that the sequential DSO construction of [2] has

𝑂̃ (𝑚𝑛) preprocessing time, 𝑂̃ (𝑛2) space requirement, and 𝑂 (1)
query time.

The DSO framework of [2] is described in Algorithm 1. Each

vertex is assigned a priority 𝑘 ∈ {1, 2, . . . log𝑛}, and a vertex with

priority 𝑘 is called a 𝑘-center. In each 𝑥-𝑦 shortest path, for 𝑥,𝑦 ∈ 𝑉 ,

the algorithm identifies a sequence of centers of strictly increasing

priority up to the maximum, followed by strictly decreasing priority

to𝑦. A center 𝑥 covers an edge 𝑒 , if 𝑒 is on its outgoing (or incoming)

shortest path tree, and there is no center of higher priority on the

shortest path from 𝑥 to 𝑒 . Thus, the sequence of centers partitions

the path into intervals that are covered by their endpoint centers.

By randomly sampling 𝑘-centers with probability Θ(1/2𝑘), a center
of priority 𝑘 only has to cover edges within 𝑂̃ (2𝑘) hops from it.

The algorithm precomputes distances 𝑑 (𝑥,𝑦, 𝑒) for all 𝑦 ∈ 𝑉

and edges 𝑒 ∈ 𝐸 that are covered by center 𝑥 . Furthermore, the

algorithm uses the notion of a bottleneck edge for an interval, which

is the edge in the interval that maximizes the replacement path

distance when it is removed. The following data is computed during

preprocessing, where 𝑥,𝑦 ∈ 𝑉 , 𝑒 ∈ 𝐸 and 𝑖 ∈ {1, 2, . . . 2 log𝑛} :
• 𝐶𝑅 [𝑥,𝑦, 𝑖]: first center of priority-≥ 𝑖 on 𝑥-𝑦 shortest path.

• 𝐶𝐿[𝑥,𝑦, 𝑖]: first center of priority-≥ 𝑖 on reversed 𝑦-𝑥 short-

est path (edge directions flipped).

• 𝐵𝐶𝑃 [𝑥,𝑦]: biggest center priority on 𝑥-𝑦 shortest path.

• 𝐷𝑖 [𝑥,𝑦, 𝑒]: distance 𝑑 (𝑥,𝑦, 𝑒), where 𝑥 is a center of priority

𝑖 that covers 𝑒 .

• 𝐵𝑉 [𝑥,𝑦, 𝑖]: bottleneck edge of interval 𝑖 on 𝑥-𝑦 shortest path.

• 𝐷𝐵𝑉 [𝑥,𝑦, 𝑖]: distance 𝑑 (𝑥,𝑦, 𝐵𝑉 [𝑥,𝑦, 𝑖]), for each interval 𝑖 .

This preprocessing data takes up a total of 𝑂̃ (𝑛2) space. After
preprocessing, a query can be answered by looking up𝑂 (1) values,
as shown in Algorithm 1.

Algorithm 1 Framework from [2] for DSO with 𝑂 (1) query.
Input: Directed weighted graph 𝐺 = (𝑉 , 𝐸).
1: Preprocessing Algorithm :

2: Every vertex is randomly assigned a priority 𝑘 with probability

Θ(1

2
𝑘), for 𝑘 = 1, 2, . . . log𝑛.

3: For each 𝑥,𝑦 ∈ 𝑉 , 𝑖 ≤ log𝑛, compute

𝐶𝑅 [𝑥,𝑦, 𝑖],𝐶𝐿[𝑥,𝑦, 𝑖], 𝐵𝐶𝑃 [𝑥,𝑦], .
4: For each 𝑥 ∈ 𝑉 and edge 𝑒 covered by 𝑥 , for each 𝑦 ∈ 𝑉 ,

compute 𝐷𝑖 [𝑥,𝑦, 𝑒] (𝑖 = priority of 𝑥).

5: For each 𝑥,𝑦 ∈ 𝑉 , 𝑖 ≤ log𝑛, compute bottleneck vertex

𝐵𝑉 [𝑥,𝑦, 𝑖] using binary search and an RMQ data structure [1]

on the computed 𝐷𝑖 [𝑥,𝑦, 𝑒] values.
6: For each 𝑥,𝑦 ∈ 𝑉 , 𝑖 ≤ log𝑛, compute distance 𝐷𝐵𝑉 [𝑥,𝑦, 𝑖]

when vertex 𝐵𝑉 [𝑥,𝑦, 𝑖] is removed.

7: Query Algorithm, given query 𝑑 (𝑥,𝑦, 𝑒) :
8: Let edge 𝑒 = (𝑢, 𝑣). Let 𝑖 = 𝐵𝐶𝑃 [𝑥,𝑢], 𝑗 = 𝐵𝐶𝑃 [𝑣,𝑦].
9: Compute 𝑐𝑥 = 𝐶𝐿[𝑥,𝑦, 𝑖] and 𝑐𝑦 = 𝐶𝑅 [𝑥,𝑦, 𝑗]. ⊲ Edge 𝑒 is cov-

ered by 𝑐𝑥 and 𝑐𝑦
10: Output 𝑑 (𝑥,𝑦, 𝑒) = min{𝑑 (𝑥, 𝑐𝑥) + 𝐷𝑖 [𝑐𝑥 , 𝑦, 𝑒], 𝐷𝑖 [𝑥, 𝑐𝑦, 𝑣] +

𝑑 (𝑐𝑦, 𝑦), 𝐷𝐵𝑉 [𝑥,𝑦, 𝑖]}

In the next two sections, we present PRAM algorithms that use

this framework, implementing the steps using different methods.

All our algorithms finally compute the same preprocessing data

as [2], so the oracle can be stored in 𝑂̃ (𝑛2) space and can answer

a query in 𝑂 (1) work on a single processor. In Section 3 we show

how to directly implement Algorithm 1 efficiently on the PRAM,

to obtain a work-efficient preprocessing algorithm that runs is

𝑂̃ (𝑛1/2+𝑜 (1)) parallel time. In Section 4, we use this framework

in addition to hop-limited DSO construction techniques to obtain

faster preprocessing algorithms.

629

Brief Announcement: Algorithms for Distance Sensitivity Oracles on the PRAM SPAA ’25, July 28–August 1, 2025, Portland, OR, USA

3 Work-Efficient PRAM DSO
In this section, we prove Theorem 1.1 by presenting PRAM algo-

rithm DSO-A which implements Algorithm 1. DSO-A preprocesses

the input graph in 𝑂̃ (𝑚𝑛) work and 𝑂̃ (𝑛1/2+𝑜 (1)) parallel time. The

constructed oracle has 𝑂̃ (𝑛2) size and can answer any query in𝑂 (1)
work. This algorithm uses excluded shortest paths computations,

where given a graph 𝐺 = (𝑉 , 𝐸), set of edges 𝑃 ⊆ 𝐸 and a source

𝑥 ∈ 𝑉 , we need to compute distances 𝑑 (𝑥,𝑦, 𝑒) for all 𝑦 ∈ 𝑉 , 𝑒 ∈ 𝑃 .

If the set 𝑃 is independent, i.e., the edges are in the outgoing shortest

path tree of 𝑥 and the subtrees rooted at any pair of edges in 𝑃 are

disjoint, then we can compute all excluded shortest paths distances

using one SSSP computation [4].

Proof of Theorem 1.1. We showhowwe implement Algorithm 1

on the PRAM. The computation in line 3 is implemented using

𝑂 (𝑛 log𝑛) SSSPs as follows. For each vertex 𝑥 ∈ 𝑉 and priority

1 ≤ 𝑖 ≤ log𝑛, we can readily modify an SSSP computation from 𝑥

to compute the relevant center information 𝐶𝑅 [𝑥,𝑦, 𝑖], 𝐵𝐶𝑃 [𝑥,𝑦].
We repeat this on the reversed graph for 𝐶𝐿[𝑥,𝑦, 𝑖].

To implement line 4, note that each center 𝑥 of priority 𝑘 covers

edges within 𝑂̃ (2𝑘) depth in its outgoing shortest path tree w.h.p.

in 𝑛. The set of edges at a given depth 𝑗 in the outgoing shortest

path tree of 𝑥 is independent, so we use one excluded shortest paths

computation for these edges. For depths 1 ≤ 𝑗 ≤ 𝑂̃ (2𝑘), we use
𝑂̃ (2𝑘) exclude computations, and each exclude involves one SSSP

computation. Since we have 𝑂̃ (𝑛/2𝑘) vertices of priority 𝑘 , and

𝑂 (log𝑛) priorities, we get a total of 𝑂̃ (𝑛) SSSP computations over

all 𝑥 ∈ 𝑉 w.h.p. in 𝑛. Finding bottleneck vertices in line 5 uses a

range minimum query (RMQ) data structure, which is implemented

on the PRAM with linear work and 𝑂 (log∗ 𝑛) parallel time for

preprocessing and 𝑂 (1) work per query [1].

To implement line 6, we perform 𝑂̃ (𝑛) SSSP computations as fol-

lows. The algorithm of [2] constructs a graph with vertices (𝑥,𝑦, 𝑖)
for each interval 𝑖 on 𝑥-𝑦 shortest path for 𝑥,𝑦 ∈ 𝑉 , 𝑖 ≤ log𝑛, and

an additional vertex 𝑠 . The edges are between (𝑥,𝑦, 𝑖) to (𝑥,𝑦′, 𝑗)
with weight𝑤 (𝑦′, 𝑦) for each edge (𝑦′, 𝑦) ∈ 𝐸, and additional edges

from 𝑠 to (𝑥,𝑦, 𝑖). Then, they directly compute SSSP on this graph.

We instead construct 𝑛 graphs 𝐺𝑥 , one for each 𝑥 ∈ 𝑉 , with vertex

𝑠 and vertices (𝑥,𝑦, 𝑖),∀𝑦 ∈ 𝑉 , 𝑖 ≤ log𝑛. Since there are no edges

between different 𝐺𝑥 ,𝐺𝑦 , we can compute SSSP separately in each

𝐺𝑥 , which has 𝑂̃ (𝑛) vertices and 𝑂̃ (𝑚 + 𝑛) edges. This computes

𝐷𝐵𝑉 [𝑥,𝑦, 𝑖] as the shortest distance from 𝑠 to vertex (𝑥,𝑦, 𝑖) in 𝐺𝑥 .

In total, we perform 𝑂̃ (𝑛) SSSP computations, which takes a total

of 𝑂̃ (𝑚𝑛) work and 𝑂̃ (𝑛1/2+𝑜 (1)) time using the PRAM algorithm

of [3]. Line 5 takes 𝑂̃ (𝑛2) work and 𝑂̃ (1) time, and other lines

take 𝑂 (𝑛) work. The correctness of our algorithm readily follows

from the correctness of [2], and the oracle has the same 𝑂̃ (𝑛2) size
as the construction of [2]. The query algorithm is the same as in

Algorithm 1, which takes 𝑂 (1) work per query. □

4 Faster PRAM DSO for Dense Graphs
In this section, we present PRAM algorithms that can beat the

𝑂̃ (𝑛1/2+𝑜 (1)) parallel time of the preprocessing algorithm presented

in Section 3. Our method constructs a series of hop limited DSOs

in order to ultimately obtain a complete DSO. We first describe the

hop limited DSO constructions, and then show how we use it in

our algorithms.

4.1 Hop-limited DSO
Let 𝑑ℎ (𝑥,𝑦, 𝑒), for any 1 ≤ ℎ ≤ 𝑛, denote the minimum weight

path among all 𝑥-𝑦 paths of at most ℎ edges not containing edge 𝑒 .

In an ℎ-hop limited DSO we needed to preprocess an input graph

𝐺 = (𝑉 , 𝐸) to answer queries 𝑑ℎ (𝑥,𝑦, 𝑒) for any 𝑥,𝑦 ∈ 𝑉 , 𝑒 ∈ 𝐸.

Note that an 𝑛-DSO is simply a complete DSO. In this section, we

describe a two-step DSO extension procedure to construct
3

2
ℎ-hop

limited DSO from an ℎ-hop limited DSO, adapting a sequential

technique of Ren [8].

Lemma 4.1. Let 1 ≤ ℎ ≤ 𝑛. Given anℎ-hop DSOwith preprocessing
cost 𝑃𝑤 work and 𝑃𝑡 parallel time (𝑃𝑡 ≤ 𝑛) which answers a query in
𝑂̃ (1) work, we can construct a 3

2
ℎ-hop DSO with preprocessing cost

𝑃𝑤 + 𝑂̃ (𝑚𝑛 + (𝑛3/ℎ) + (𝑛/𝑃𝑡)3) work and 𝑃𝑡 + 𝑂̃ (1) parallel time,
which can answer any query in 𝑂 (1) work.

Proof. The two-step procedure is as follows: The first step,

proven in Lemma 4.2 of Section 4.1.1, constructs a
3

2
ℎ-hop DSO

with preprocessing cost of 𝑃𝑤 +𝑂 (𝑛) and 𝑃𝑡 +𝑂 (1) parallel time

and cost per query of 𝑂̃ (𝑛/ℎ) work and 𝑂̃ (1) parallel time.

The second step, proven in Lemma 4.3 of Section 4.1.2, reduces

the query cost to𝑂 (1) work. We construct a
3

2
ℎ-hop DSOwith𝑂 (1)

work per query and preprocessing cost of 𝑃𝑤 + 𝑂̃ (𝑚𝑛 + (𝑛3/ℎ) +
(𝑛/𝑃𝑡)3) work and 𝑃𝑡 + 𝑂̃ (1) time. □

4.1.1 Extended hop DSO with high query time. Assume that we are

given a ℎ-hop limited DSO with 𝑂 (1) query time. The following

observation is from [8]: Let 𝑠 be a vertex on a
3

2
ℎ-hop replacement

path from 𝑢 to 𝑣 such that 𝑠 is at most ℎ-hops from both 𝑢 and 𝑣

along this path. Then, 𝑑 3

2
ℎ (𝑢, 𝑣, 𝑒) = 𝑑ℎ (𝑢, 𝑠, 𝑒) + 𝑑ℎ (𝑠, 𝑣, 𝑒), as the

two subpaths 𝑢-𝑠 and 𝑠-𝑣 have distances 𝑑ℎ (𝑢, 𝑠, 𝑒) and 𝑑ℎ (𝑠, 𝑣, 𝑒)
respectively. We use this result in the following lemma.

Lemma 4.2. Given an ℎ-hop DSO with 𝑃𝑤 work and 𝑃𝑡 parallel
time for preprocessing and 𝑂̃ (1) work for query, we can construct a
3

2
ℎ-hop DSO with preprocessing cost 𝑃𝑤 +𝑂 (𝑛) work and 𝑃𝑡 +𝑂 (1)

time, which answers a query in 𝑂̃ (𝑛/ℎ) work and 𝑂̃ (1) time.

Proof. Sample each vertex into a set 𝑆 with probabilityΘ(log𝑛/ℎ)
so that any path of length

ℎ
2
is hit by a sampled vertex w.h.p in 𝑛.

Note that |𝑆 | = 𝑂̃ (𝑛/ℎ) w.h.p. in 𝑛. To answer a query, we compute

𝑑 3

2
ℎ (𝑢, 𝑣, 𝑒) = min𝑠∈𝑆 𝑑ℎ (𝑢, 𝑠, 𝑒) + 𝑑ℎ (𝑠, 𝑣, 𝑒). This is correct w.h.p.

in 𝑛: The path with distance 𝑑ℎ (𝑢, 𝑠, 𝑒) + 𝑑ℎ (𝑠, 𝑣, 𝑒) is a valid 𝑢-𝑣

path not containing 𝑒 for any 𝑠 ∈ 𝑉 . Consider the subpath of the

3

2
ℎ-hop replacement path containing vertices within ℎ hops of both

𝑢 and 𝑣 . This segment has length of at least
ℎ
2
and therefore has a

sampled vertex 𝑠 ∈ 𝑆 w.h.p. in 𝑛. This 𝑠 gives us the correct distance

𝑑 3

2
ℎ (𝑢, 𝑣, 𝑒) by the above observation.

The preprocessing algorithm of the
3

2
ℎ-hop DSO is to first sample

and store 𝑆 , which takes𝑂 (𝑛) work and𝑂 (1) time. Then, we run the

preprocessing algorithm of the inputℎ-hop DSO. A query computes

the minimum over 𝑂 (|𝑆 |) = 𝑂̃ (𝑛/ℎ) ℎ-hop distances, which are

computed using queries to the ℎ-hop DSO. This takes 𝑂̃ (𝑛/ℎ) work
and 𝑂̃ (1) time per

3

2
ℎ-hop query. □

630

SPAA ’25, July 28–August 1, 2025, Portland, OR, USA Vignesh Manoharan and Vijaya Ramachandran

4.1.2 Reducing to𝑂 (1) query time. Now, we convert a given ℎ-hop
DSO with high query time into an ℎ-hop DSO with 𝑂 (1) query
time using additional preprocessing by implementing Algorithm 1.

Lemma 4.3. Given an ℎ-hop DSO with 𝑃𝑤 work and 𝑃𝑡 parallel
time for preprocessing and 𝑞 work and 𝑂̃ (1) time for query, we can
construct a 3

2
ℎ-hop DSO with 𝑃𝑤 + 𝑂̃ (𝑚𝑛 + 𝑛2 · 𝑞 + (𝑛/𝑃𝑡)3) work

and 𝑃𝑡 + 𝑂̃ (1) time for preprocessing and 𝑂 (1) work for query.

Proof. We show how we implement each preprocessing step of

Algorithm 1, after which we can use the query algorithm described

there. Line 5 is implemented in 𝑂̃ (𝑛2) work and 𝑂̃ (1) time as in

Section 3. Lines 3,4,6 are implemented differently, as follows.

Line 3: To compute 𝐶𝑅,𝐶𝐿 and 𝐵𝐶𝑃 values for each interval on

the shortest path between each vertex pair 𝑥,𝑦 ∈ 𝑉 , for a fixed 𝑖 ,

we do a modified APSP. To compute 𝐶𝑅 [𝑥,𝑦, 𝑖], we track the first

center of priority ≥ 𝑖 in addition to 𝑑 (𝑥,𝑦). When combining dis-

tances during APSP, we also update the𝐶𝑅 value. This modification

is readily done to the PRAM APSP algorithm in [5]. The values

𝐶𝐿, 𝐵𝐶𝑃 are computed in a similar way. For 1 ≤ 𝑖 ≤ log𝑛, we per-

form 𝑂 (log𝑛) APSP computations which takes 𝑂̃ (𝑚𝑛 + (𝑛/𝑃𝑡)3)
work and parallel time 𝑃𝑡 using the algorithm of [5].

Lines 4,6: These lines require computing ℎ-hop replacement

distances, for which we use queries to the input ℎ-hop DSO with 𝑞

work per query. We run the preprocessing algorithm of the given

DSO, in parallel to line 3. Then, in line 4, we compute distance

𝑑 (𝑥,𝑦, 𝑒) for each edge 𝑒 on the 𝑥-𝑦 shortest path that is covered

by center 𝑥 . The number of such distances for a fixed vertex 𝑦

is ≤ 2𝑛 as each edge is covered by the endpoint centers of the

interval containing it. This is a total of𝑂 (𝑛2) distances for all𝑦 ∈ 𝑉 .

Line 6 thus computes 𝑂̃ (𝑛2) distances. So, we have an additional

preprocessing cost of 𝑂̃ (𝑛2𝑞) work and 𝑂̃ (1) time. □

4.2 Faster DSO constructions for Dense Graphs
4.2.1 Preprocessing algorithm for DSO in 𝑂̃ (𝑛3) work and 𝑂̃ (1) time.
In this section, we present algorithm DSO-B that takes 𝑂̃ (𝑛3) work
and 𝑂̃ (1) parallel time to construct an oracle of size 𝑂̃ (𝑛2), that
can answer a query in𝑂 (1) time. We first construct a 2-hop limited

DSO with high query time and apply Lemma 4.3 to obtain a 2-hop

DSO with 𝑂 (1) query time. Then, we repeatedly apply Lemma 4.1

for 𝑂 (log𝑛) steps until we obtain a 𝑛-hop DSO – which is just a

complete DSO.

Base Case:Our base DSO is a 2-hop limited DSO,with a query cost

of 𝑂 (𝑛) work, and 𝑂̃ (1) parallel time. This needs no preprocessing,

as 𝑑2 (𝑥,𝑦, 𝑒) = min𝑠∈𝑉 𝑤 (𝑥, 𝑠) + 𝑤 (𝑠,𝑦), where the minimum is

over 𝑠 ∈ 𝑉 such that (𝑥, 𝑠), (𝑠,𝑦) ∈ 𝐸 and 𝑒 ≠ (𝑥, 𝑠), (𝑠,𝑦). We

now apply Lemma 4.3 to reduce this query time, with parameters

𝑃𝑡 = 𝑂̃ (1), 𝑞 = 𝑛, to obtain a 2-hop DSO with preprocessing cost of

𝑂̃ (𝑛3) work and 𝑂̃ (1) parallel time and 𝑂 (1) work query.

Obtaining complete DSO: We apply Lemma 4.1 with 𝑃𝑤 = 𝑂̃ (𝑛3)
and 𝑃𝑡 = 𝑂̃ (1). We repeat this procedure 𝑂 (log𝑛) times until we

obtain a 𝑛-hop DSO with 𝑂 (1) query. Over all 𝑂 (log𝑛) steps, we
get a total of 𝑂̃ (𝑛3) work and 𝑂̃ (1) parallel time.

Note that the final query is just looking up 𝑂 (1) values precom-

puted by the 𝑛-hop DSO. Thus, we only maintain preprocessed

data for the 𝑛-hop DSO, which has size 𝑂̃ (𝑛2), and the intermediate

DSOs can be discarded.

4.2.2 DSO with improved work-time tradeoff. In this section, we

present algorithm DSO-C that performs 𝑂̃ (𝑚𝑛ℎ + (𝑛3/ℎ)) work
and 𝑂̃ (ℎ) parallel time for preprocessing, for any 2 ≤ ℎ ≤ 𝑛, to

construct an oracle of size 𝑂̃ (𝑛2) that answers a query in𝑂 (1) work.
Our preprocessing algorithm follows a scheme similar to DSO-B in

the previous section, but uses a different base case.

Base Case:We present a method to construct anℎ-hop DSO using

a sequential graph sampling method of [9]. We sample 𝑂̃ (ℎ) graphs
𝐺𝑖 by removing every edge with probability (1/ℎ), independently
at random. In [9], it is proven that for any path P of ℎ hops not

containing edge 𝑒 , w.h.p. in 𝑛, there is at least one graph 𝐺𝑖 that

includes all edges of P but not 𝑒 . Additionally for a specific edge 𝑒 ,

w.h.p. in 𝑛, there are only 𝑂 (log𝑛) graphs 𝐺𝑖 that do not contain

𝑒 . If 𝑑𝑖 (𝑥,𝑦) is the shortest path distance in 𝐺𝑖 , then 𝑑 (𝑥,𝑦, 𝑒) =

min𝑖:𝑒∉𝐺𝑖
𝑑𝑖 (𝑥,𝑦), w.h.p. in 𝑛.

To construct an ℎ-hop DSO, we sample 𝑂̃ (ℎ) graphs as described
above and then compute ℎ-hop limited APSP distances in each

sampled graph𝐺𝑖 . We compute ℎ-hop SSSP from each vertex of 𝐺𝑖

in 𝑂̃ (𝑚𝑛) work and 𝑂̃ (ℎ) parallel time using an 𝑂̃ (𝑚)-work 𝑂̃ (ℎ)-
time hop-limited shortest path algorithm (Lemma 5.3 of [3]). We

also store the identities of the set of graphs𝐺𝑖 that do not contain

𝑒 , for each edge 𝑒 ∈ 𝐸. Thus, after preprocessing, we can answer

a query in 𝑂 (log𝑛) time using the precomputed 𝑑𝑖 (𝑥,𝑦) distances.
Since we have 𝑂̃ (ℎ) graphs, we obtain a DSO with preprocessing

cost of 𝑂̃ (𝑚𝑛ℎ) work and 𝑂̃ (ℎ) parallel time, with 𝑂̃ (1) work query.
Obtaining complete DSO: Similar to DSO-B, we repeatedly apply

Lemma 4.1 𝑂 (log𝑛) times to construct an 𝑛-hop DSO from an ℎ-

hop DSO. We use parameters 𝑃𝑤 = 𝑂̃ (𝑚𝑛ℎ) and 𝑃𝑡 = 𝑂̃ (ℎ). In an

extension step where we construct a
3

2
𝑘-hop DSO from a 𝑘-hop

DSO for some 𝑘 ≥ ℎ, we incur an additional preprocessing cost of

𝑂̃ (𝑛3

𝑘
+ 𝑛3

𝑘3
) = 𝑂̃ (𝑛3

ℎ
) work and 𝑂̃ (ℎ) parallel time. Adding up the

costs for 𝑂 (log𝑛) steps, preprocessing cost is 𝑂̃ (𝑚𝑛ℎ + 𝑛3

ℎ
) work

and 𝑂̃ (ℎ) parallel time. We only store preprocessing data for the

final 𝑛-DSO, so the oracle has size 𝑂̃ (𝑛2).

5 Conclusion and Open Problems
We have presented the first non-trivial PRAM algorithms for DSO

under single edge failure: We constructed a work-efficient algo-

rithm for dense graphs with 𝑂̃ (𝑛3) work and 𝑂̃ (1) parallel time,

matching APSP. We also presented a work-efficient algorithm for

sparse graphs with preprocessing work 𝑂̃ (𝑚𝑛) matching sequen-

tial DSO [2] but with parallel time 𝑂̃ (𝑛1/2+𝑜 (1)). While we have

presented a work-time tradeoff algorithm that can achieve sub-

√
𝑛

parallel time, it is not work-efficient. An open problem is whether

there is a work-efficient DSO preprocessing algorithm with 𝑂̃ (𝑚𝑛)
work and 𝑂̃ (𝑛1/3) parallel time, matching the current best work-

efficient PRAM algorithm for APSP [5]. A larger open problem is

whether we can reduce the parallel time beyond 𝑛1/3 for both APSP

and DSO, while maintaining 𝑂̃ (𝑚𝑛) work.

Acknowledgments
This work was supported in part by NSF grant CCF-2008241.

631

Brief Announcement: Algorithms for Distance Sensitivity Oracles on the PRAM SPAA ’25, July 28–August 1, 2025, Portland, OR, USA

References
[1] Omer Berkman and Uzi Vishkin. 1993. Recursive Star-Tree Parallel Data Structure.

SIAM J. Comput. 22, 2 (1993), 221–242.
[2] Aaron Bernstein and David R. Karger. 2009. A nearly optimal oracle for avoiding

failed vertices and edges. In Proceedings of the 41st Annual ACM Symposium on
Theory of Computing, STOC 2009. ACM, Bethesda, MD, USA, 101–110.

[3] Nairen Cao and Jeremy T. Fineman. 2023. Parallel Exact Shortest Paths in Al-

most Linear Work and Square Root Depth. In Proceedings of the 2023 ACM-SIAM
Symposium on Discrete Algorithms, SODA 2023. SIAM, Florence, Italy, 4354–4372.

[4] Camil Demetrescu, Mikkel Thorup, Rezaul Alam Chowdhury, and Vijaya Ra-

machandran. 2008. Oracles for Distances Avoiding a Failed Node or Link. SIAM J.
Comput. 37, 5 (2008), 1299–1318.

[5] Adam Karczmarz and Piotr Sankowski. 2021. A Deterministic Parallel APSP

Algorithm and its Applications. In Proceedings of the 2021 ACM-SIAM Symposium
on Discrete Algorithms, SODA 2021. SIAM, Virtual Conference, 255–272.

[6] Philip N. Klein and Sairam Subramanian. 1997. A Randomized Parallel Algorithm

for Single-Source Shortest Paths. J. Algorithms 25, 2 (1997), 205–220.
[7] Vignesh Manoharan and Vijaya Ramachandran. 2025. Distributed Distance Sen-

sitivity Oracles. In Structural Information and Communication Complexity - 32nd
International Colloquium, SIROCCO 2025, Proceedings (LNCS, Vol. 15671). Springer,
Delphi, Greece, 366–383.

[8] Hanlin Ren. 2022. Improved distance sensitivity oracles with subcubic preprocess-

ing time. J. Comput. Syst. Sci. 123 (2022), 159–170.
[9] Oren Weimann and Raphael Yuster. 2013. Replacement Paths and Distance Sensi-

tivity Oracles via Fast Matrix Multiplication. ACM Trans. Algorithms 9, 2 (2013),
14:1–14:13.

632

	Abstract
	1 Introduction
	1.1 Preliminaries
	1.2 Results

	2 Framework for Distance Sensitivity Oracle
	3 Work-Efficient PRAM DSO
	4 Faster PRAM DSO for Dense Graphs
	4.1 Hop-limited DSO
	4.2 Faster DSO constructions for Dense Graphs

	5 Conclusion and Open Problems
	Acknowledgments
	References

