PNUTS ano
Welighted Voting

Vijay Chidambaram
CS 380 D (Feb 8)

PNUTS

* Distributed database built by Yahoo
* Paper describes a production system

* Goals:
o Scalability
 Low latency, predictable latency
* Must handle attacks: flash crowds, denial of service
» High Availability

* Eventual Consistency

PNUTS

Data model: relational table
Pub-Sub system: Yahoo Message Broker
Each record has a master

Uses a guaranteed message delivery service

Data and Query Model

Relational tables
Each row has a primary row
Rows can have binary blobs

Queries:
e Point access

 Range access

Consistency Model

* AP]
 Read-any
 Read-critical(version)
* Read-latest
* Write

e Jest-and-set-write(version)

Consistency Model

Per-record “timeline” consistency
No multi-record guarantee
Per-record sequential consistency

All record operations go to a master

Architecture

Regionl S Region 2
RN LD ? LD NN \

t Message Routers
broker Tablet

Data Storage and Retrieval

* (Groups of records are called tablets
 Each server has 100s-1000s of tablet
* Each tablet is stored in a single server in a region

e Tablet size: 100s of MB or a few GBs

Data Storage

Storage Unit: get(), scan(), set()
Message broker is where the update is committed

Router: identifies which tablet and server contain
data

Ordered data: key range sharded into tablets
Unordered data: do the same with hash(key)
Mapping information stored in memory

True source of mapping info: tablet controller

Yahoo Message Broker (YMB)

Recelved messages are logged and replicated

When update has been applied to all replicas, log
IS pruned

YMB servers are present in different regions
Cross-region traffic is limited to YMB
Messages are ordered within a YMB region

Across regions, different ordering is possible

YMB Consistency

Update considered “committed” once YMB acks it
A committed update may not be visible to other replicas

Master replica for a given record is stored inside that
record

Tablet master can be different from record master
Tablet master serializes updates to record

Record master is the “true” copy of the data

 Update is considered “committed” once record master gets
it

Recovery

* Request copy
* Checkpoint all inflight updates

* Apply copy

Query Processing

e Scatter-gather engine is used

e Server has the engine, not the client

* Done to reduce network connections to the server

* Allows optimization over the whole scatter-gather call
* Range queries are broken up

* (Clients keep a continuation object to continue the
range query

Notifications

User can subscribe to notifications

Built on top of pub/sub architecture
Accomplished by talking to the YMB broken
Each tablet has a topic that user subscribe to

Whenever tablet is updated or split, notitications
can be sent out

PNUTS Applications

e User database

* Social Applications

 Metadata for file systems

* Listings Management

e Session Data

Weighted Voting for Replicas

Updating Replicas

Goal: you want to replicate data, and read any of
the replicas to get the data

Problem: how do you update the replicas?
Obvious solution: Write to all replicas
Can we do better?

Turns out we can

Quorum-based Reads and Writes

* All reads go to R replicas
* All writes go to W replicas

* As long as we have R+W=>N, we have strong
consistency

 Why” Condition implies at least one overlapping server
between R and W

e We need version numbers to detect which is the
latest copy of the data

Weighted Voting

Weighted Voting is similar to Quorums
Each server gets N votes instead of 1
Extra read-only copies get no votes at all

Each file Is assigned some number of votes K

* |f each server gets one vote, this is the number of replicas of the
file

To read, you need R votes.
To write W votes. Condition: R + W > K

Can tune R, W, K per file to meet performance requirements

(Guarantees

 Every read will always see the latest write
e Tuning:
« Condition:R+W > K

e R =1, reads are efficient, writes are slow
 Every replica has to be updated
e W =1 writes are efficient, reads are slow

e FEvery replica has to be read

 Most systems are read-heavy, as a result R is set to
between 1 and 3

Tuning

* (Giving each server one vote: decentralized quorum
system with high availability, low performance

* (Giving one server all the votes: centralized system
with high performance, low availability

Tuning

Examplel Example2 Example)

Latency (msec)
Representative 1 75 75 75
Representative 2 65 100 750
Representative) 6S 150 750
Voting Configuration (li0.0) <22.1.l) <1il.l>
'w 1 3 3
Read
Latency (msec) 65 75 75

Blocking Probsbility 10x102 20x104 10x10%
Write

Latency (msec) 75 100 750
Blocking Probability 10X102 10x102 30x102

Weak Representatives

* Possibly stale, read-only copies of the data

* |t you read only a weak representative, no
guarantees are given about the data

* |n others words, it is a local cached copy

Atomicity of operations

 Each read or write Is an atomic, isolated operation
at each copy

* While the read Is going on, there is no other writer
at that copy (similarly for writes)

Transactional Isolation

First lock all files the tx wants to read/write
Perform reads/writes

Unlock

This guarantees serializable transactions

Obtaining the locks has to be done with a total
order, otherwise deadlock is possible

A tx can hold locks for a max time period

| ocks Used

Three locks:
read lock, intention-to-write lock, commit lock

S —
No R -Write it
No Lock Yes Yes Yes Yes
Read Yes Yes Yes No
[-Write Yes Yes No No
Commit Yes No No No

Violet

e All of this was implemented in the Violet distributed
system

* Violet was used to sync personal and private
calendars

* Think of it as a very primitive Google Calendar or
Outlook Calendar

