
PNUTS and
Weighted Voting

Vijay Chidambaram
CS 380 D (Feb 8)

PNUTS
• Distributed database built by Yahoo
• Paper describes a production system
• Goals:

• Scalability

• Low latency, predictable latency

• Must handle attacks: flash crowds, denial of service

• High Availability

• Eventual Consistency

PNUTS

• Data model: relational table
• Pub-Sub system: Yahoo Message Broker
• Each record has a master
• Uses a guaranteed message delivery service

Data and Query Model

• Relational tables
• Each row has a primary row
• Rows can have binary blobs
• Queries:

• Point access

• Range access

Consistency Model

• API
• Read-any

• Read-critical(version)

• Read-latest

• Write

• Test-and-set-write(version)

Consistency Model

• Per-record “timeline” consistency
• No multi-record guarantee
• Per-record sequential consistency
• All record operations go to a master

Architecture

Data Storage and Retrieval

• Groups of records are called tablets
• Each server has 100s-1000s of tablet
• Each tablet is stored in a single server in a region
• Tablet size: 100s of MB or a few GBs

Data Storage
• Storage Unit: get(), scan(), set()
• Message broker is where the update is committed
• Router: identifies which tablet and server contain

data
• Ordered data: key range sharded into tablets
• Unordered data: do the same with hash(key)
• Mapping information stored in memory
• True source of mapping info: tablet controller

Yahoo Message Broker (YMB)

• Received messages are logged and replicated
• When update has been applied to all replicas, log

is pruned
• YMB servers are present in different regions
• Cross-region traffic is limited to YMB
• Messages are ordered within a YMB region
• Across regions, different ordering is possible

YMB Consistency
• Update considered “committed” once YMB acks it

• A committed update may not be visible to other replicas

• Master replica for a given record is stored inside that
record

• Tablet master can be different from record master
• Tablet master serializes updates to record
• Record master is the “true” copy of the data

• Update is considered “committed” once record master gets
it

Recovery

• Request copy
• Checkpoint all inflight updates
• Apply copy

Query Processing
• Scatter-gather engine is used
• Server has the engine, not the client

• Done to reduce network connections to the server

• Allows optimization over the whole scatter-gather call

• Range queries are broken up
• Clients keep a continuation object to continue the

range query

Notifications

• User can subscribe to notifications
• Built on top of pub/sub architecture
• Accomplished by talking to the YMB broken
• Each tablet has a topic that user subscribe to
• Whenever tablet is updated or split, notifications

can be sent out

PNUTS Applications

• User database
• Social Applications
• Metadata for file systems
• Listings Management
• Session Data

Weighted Voting for Replicas

Updating Replicas

• Goal: you want to replicate data, and read any of
the replicas to get the data

• Problem: how do you update the replicas?
• Obvious solution: Write to all replicas
• Can we do better?
• Turns out we can

Quorum-based Reads and Writes

• All reads go to R replicas
• All writes go to W replicas
• As long as we have R+W>N, we have strong

consistency
• Why? Condition implies at least one overlapping server

between R and W

• We need version numbers to detect which is the
latest copy of the data

Weighted Voting
• Weighted Voting is similar to Quorums
• Each server gets N votes instead of 1
• Extra read-only copies get no votes at all
• Each file is assigned some number of votes K

• If each server gets one vote, this is the number of replicas of the
file

• To read, you need R votes.
• To write W votes. Condition: R + W > K
• Can tune R, W, K per file to meet performance requirements

Guarantees
• Every read will always see the latest write
• Tuning:

• Condition: R + W > K

• R = 1, reads are efficient, writes are slow
• Every replica has to be updated

• W = 1, writes are efficient, reads are slow
• Every replica has to be read

• Most systems are read-heavy, as a result R is set to
between 1 and 3

Tuning

• Giving each server one vote: decentralized quorum
system with high availability, low performance

• Giving one server all the votes: centralized system
with high performance, low availability

Tuning

Weak Representatives

• Possibly stale, read-only copies of the data
• If you read only a weak representative, no

guarantees are given about the data
• In others words, it is a local cached copy

Atomicity of operations

• Each read or write is an atomic, isolated operation
at each copy

• While the read is going on, there is no other writer
at that copy (similarly for writes)

Transactional Isolation
• First lock all files the tx wants to read/write
• Perform reads/writes
• Unlock
• This guarantees serializable transactions
• Obtaining the locks has to be done with a total

order, otherwise deadlock is possible
• A tx can hold locks for a max time period

Locks Used
Three locks:

read lock, intention-to-write lock, commit lock

Violet

• All of this was implemented in the Violet distributed
system

• Violet was used to sync personal and private
calendars

• Think of it as a very primitive Google Calendar or
Outlook Calendar

