
RainBlock: Faster Transaction Processing in Public Blockchains

Soujanya Ponnapalli1, Aashaka Shah1, Souvik Banerjee1,
Dahlia Malkhi2, Amy Tai3, Vijay Chidambaram1,3, and Michael Wei3

1University of Texas at Austin, 2Diem Association and Novi Financial, 3VMware Research

Abstract
We present RAINBLOCK, a public blockchain that achieves

high transaction throughput without modifying the proof-of-
work consensus. The chief insight behind RAINBLOCK is that
while consensus controls the rate at which new blocks are
added to the blockchain, the number of transactions in each
block is limited by I/O bottlenecks. Public blockchains like
Ethereum keep the number of transactions in each block low
so that all participating servers (miners) have enough time to
process a block before the next block is created. By removing
the I/O bottlenecks in transaction processing, RAINBLOCK al-
lows miners to process more transactions in the same amount
of time. RAINBLOCK makes two novel contributions: the RAIN-
BLOCK architecture that removes I/O from the critical path
of processing transactions (txs), and the distributed, multi-
versioned DSM-TREE data structure that stores the system
state efficiently. We evaluate RAINBLOCK using workloads
based on public Ethereum traces (including smart contracts).
We show that a single RAINBLOCK miner processes 27.4K txs
per second (27× higher than a single Ethereum miner). In a
geo-distributed setting with four regions spread across three
continents, RAINBLOCK miners process 20K txs per second.

1 Introduction
Blockchains maintain the history of transactions as an im-
mutable chain of blocks; each block has an ordered list of
transactions, and is processed after its parent or previous block.
Blockchains can be public, allowing untrusted servers to pro-
cess transactions [1,2], or private, allowing only a few specific
servers [17]. With their decentralized nature, fault tolerance,
transparency, and auditability, public blockchains have led to
several applications in a wide range of domains like crypto-
currencies [1, 2, 19], games [29], and healthcare [43].

In general, public blockchains work in the following man-
ner. Servers participating in the blockchain, termed miners, re-
ceive transactions from users. Miners execute the transactions
and package them up into blocks. A consensus protocol, like
proof-of-work (PoW) [34], decides the next block to be added
to the blockchain. With PoW, miners release a new block at a
regular cadence (e.g., every 10–12 seconds in Ethereum [2]).

Problem: Low throughput. Public blockchains suffer from
low transaction throughput. Two popular public blockchains,

Metric No state State: 10M Ratio

Time taken to mine txs (s) 1047 6340 6× ↑
# Txs per block 2150 833 2.5× ↓
Tx throughput (txs/s) 28.6 4.7 6× ↓

Table 1: Impact of system state on blockchain throughput.
This table shows the throughput of Ethereum with proof-of-
work consensus when 30K txs are mined using three miners,
in two scenarios: first, there are no accounts on the blockchain,
and in the second, 10M accounts have been added. Despite
no other difference, tx throughput is 6× lower in the second
scenario; we trace this to the I/O involved in processing txs.

Bitcoin [1] and Ethereum, process only tens of transactions
per second, limiting their applications [33, 65].

Prior work traces back the low throughput of blockchains
to their proof-of-work (PoW) consensus. PoW limits the
block creation rate so that miners have enough time to re-
ceive and process the previous block before the next block
is created [59]. This ensures that most of the miners are
building on the same previous block, preventing forks in the
blockchain. Researchers have proposed new consensus proto-
cols [5, 30, 31, 42, 46] to increase the transaction throughput.

Insight. We observe that while PoW limits the block creation
rate, it does not limit the block size (number of transactions
in each block). The block size is limited by the rate at which
miners can process transactions (§2). Processing transactions
involves executing a transaction and modifying the system
state accordingly; this becomes more expensive as the state
grows. Table 1 experimentally shows that when the number
of accounts increases, block size reduces in Ethereum even
with PoW consensus (only among three miners). The chief
insight in this paper is that if we could increase the rate at
which transactions are processed, we could increase the block
size safely, without modifying the PoW consensus protocol.

How can we increase the block size safely? Miners will
continue to release a block every 10–12s after proof-of-work;
however, miners can pack more transactions into each block
due to faster processing. Typically, increasing the block size
increases the time taken to transmit that block, and time taken
by miners to process the block. Previously, when Ethereum



Miners

I/O-Helpers
Submit

Update

Consensus

3

Storage nodes

DSM-Tree shards

21

Prefetch

Figure 1: RAINBLOCK architecture. I/O-Helpers read data
from in-memory storage nodes (out of the critical path) on
behalf of the miners. Miners execute txs without performing
I/O; storage nodes are updated asynchronously.

increased the maximum block size [21], it was observed that
the time taken to propagate the block increased marginally,
while the time taken to process transactions saw a significant
increase [22]. Thus, if we can increase the rate at which trans-
actions are processed, miners can pack more transactions into
each block. Note that as proof-of-work is not modified, the
safety properties will continue to hold. The block creation
rate, and the transaction confirmation latency will remain the
same. However, the rate at which transactions are confirmed
will increase as there will be more transactions in each block.

Approach: reducing I/O bottlenecks in tx processing. This
work takes the novel approach of increasing tx throughput by
tackling I/O bottlenecks in tx processing. Processing a trans-
action involves executing the transaction and verifying that
the execution result is valid. In Ethereum, both execution and
verification require reading and writing system state that is
stored in a Merkle tree [11,44] on local storage. Tx processing
is bottlenecked by I/O: for example, processing a single block
of 100 txs in Ethereum requires performing more than 10K
random I/O operations (100× higher) and takes hundreds of
milliseconds even on a datacenter-grade NVMe SSD (§2).

These I/O bottlenecks arise from two sources. First, the
Merkle tree is serialized and stored in a RocksDB [10] key-
value store. As a result, traversing the Merkle tree requires
multiple, expensive RocksDB reads [53]. Second, Ethereum
miners process txs one by one in the critical path; this re-
duces parallelism and allows I/O bottlenecks to limit the tx
throughput. These I/O bottlenecks are an intrinsic part of how
Ethereum (and more generally, public blockchains that use
Merkle trees) are designed [54]; merely upgrading to faster
storage (or even holding all state in memory) will not resolve
these problems. By removing these I/O bottlenecks, this work
accelerates tx processing, and allows miners to pack more txs
in each block, and thereby increases the overall throughput.

This work. This paper presents RAINBLOCK, a new architec-

ture for building public blockchains, that increases the overall
throughput with faster transaction processing. RAINBLOCK

tackles I/O bottlenecks by designing a custom storage solu-
tion for blockchains; at the heart of this storage is a novel data
structure, the Distributed, Sharded Merkle Tree (DSM-TREE).
The DSM-TREE stores data in a multi-versioned fashion across
shards, and allows concurrent reads and writes. DSM-TREE

eliminates the inherent serialization from using key-value
stores like RocksDB. RAINBLOCK deconstructs miners into
three entities: storage nodes that store data, miners that pro-
cess txs, and I/O-Helpers that fetch data and proofs from stor-
age nodes and provide them to miners, as shown in Figure 1.
By having I/O-Helpers prefetch data on behalf of miners, I/O
is removed from the critical path of tx processing; moreover,
multiple I/O-Helpers can prefetch data at the same time.

Challenges. The RAINBLOCK architecture has to solve several
challenges to be effective. For example, Ethereum considered
using stateless clients [24] with separate storage nodes; proofs
that validate the data sent (termed witnesses) are included in
the blocks. The size of these blocks that must be sent over
the network made the scheme impractical [25, 27], and the
proposal was abandoned [57]. RAINBLOCK handles this by
co-designing the storage nodes and caches at the miners, min-
imizing the data sent over the network. A second challenge is
prefetching data for Turing-complete smart contracts [56]. As
smart contracts can execute arbitrary code, it is not straight-
forward for the I/O-Helpers to prefetch all the required data.
RAINBLOCK solves this by having I/O-Helpers speculatively
pre-execute the transaction to obtain data and proofs. A third
related challenge is that I/O-Helpers may submit stale proofs
to the miners (miners may update storage after I/O-Helpers
finish reading). RAINBLOCK handles this by having miners
tolerate stale proofs whenever possible, via witness revision,
allowing transactions that would otherwise abort to execute.

Implementation. We implement the RAINBLOCK prototype
using Ethereum. We chose Ethereum as our implementation
base and comparison point for two reasons. First, Ethereum
has been operating as a public blockchain for nearly six years,
providing large amounts of data to test our assumptions. Sec-
ond, Ethereum supports Turing-complete smart contracts, al-
lowing the codification of complex decentralized applications.

Security and Trust. Ethereum has increased the block size
in the past [14], without triggering any negative events such
as increased forks [16]. RAINBLOCK does the exact same
thing, without changing the PoW consensus or block creation
rate; as a result, RAINBLOCK inherits the security guarantees
of Ethereum. RAINBLOCK introduces storage nodes and I/O-
Helpers; however, neither storage nodes, nor I/O-Helpers, nor
miners, trust each other. All data exchanged between these
entities is authenticated using Merkle trees and can be veri-
fied. As a result, the new architecture of RAINBLOCK, while
certainly increasing the complexity of the system, does not
change its core security or trust assumptions (§3.6).



Evaluation. To evaluate RAINBLOCK, we generate synthetic
workloads that mirror transactions on Ethereum mainnet. We
analyzed Ethereum transactions and observed that user ac-
counts involved in transactions have a Zipfian distribution:
90% of transactions involve the same 10% of user accounts.
We observed that only 10–15% of Ethereum transactions in-
voke smart contracts. We build a workload generator that faith-
fully reproduces these distributions. We evaluate RAINBLOCK

using these workloads and observe that a single RAINBLOCK

miner processes 27× more transactions than an Ethereum
miner; we provide a breakdown of the performance differ-
ence (§6). When the RAINBLOCK miners are geo-distributed
across three continents (thus incurring significant network
latency), RAINBLOCK throughput reduces only by 20% com-
pared to a single miner, achieving 20K transactions per second.
Since RAINBLOCK has the same proof-of-work consensus and
block creation rate as Ethereum, RAINBLOCK finalizes 20×
more transactions (with the same latency) as Ethereum.
In summary, this paper makes the following contributions:

• The novel RAINBLOCK architecture (§3)

• The novel DSM-TREE authenticated data structure (§4)

• Empirical evidence that throughput in public blockchains
can be increased without modifying PoW consensus (§6)

2 Background and Motivation
We provide some background on public blockchains and de-
tail the I/O bottlenecks in transaction processing.

2.1 Public Blockchains and Ethereum
Blockchains are decentralized databases with support for
transactions (txs). Blockchains log these txs as a chain of
blocks; every block stores an ordered list of txs along with
the cryptographic hash of its previous block (parent). Private
blockchains allow specific servers to extend the blockchains,
while public blockchains allow anyone to participate. As a
result, all participating servers in public blockchains are un-
trusted; any of them can be malicious. Public blockchains
depend on the non-malicious majority for correct behavior.

How do public blockchains work? We use Ethereum, a pop-
ular public blockchain, as reference. Servers that attempt to
add a new block to the blockchain are termed miners. Miners
receive txs submitted by users, execute these txs, and group
them into a block. We term executing txs and grouping into
a block as processing txs. Several miners compete to add a
block to the blockchain. Each miner tries to solve a proof-of-
work (PoW) puzzle; the miner that solves the puzzle attaches
the solution and broadcasts its block to other miners. Other
miners verify the PoW solution and the txs in the block, and
build on top of the block. A tx is confirmed or finalized once
ten blocks are built on top of the block containing the tx.

Typically, a miner has two threads as shown in Figure 2.
The worker thread executes and groups txs into a partial block.

Proof-of-work
(10-12s)

Worker Threads

Solve PoW to 
generate new block

Perform I/O in critical
path to process txs

BlockTWorkT+1

WorkT

Sealer Threads

Mining

Figure 2: How Ethereum miners work. The worker thread
processes txs, packages them into a future/partial block, and
hands them to the sealer thread. The sealer thread solves the
PoW puzzle (in 10–12s), and propose a new block; the worker
thread must process txs in this time-frame. I/O bottlenecks
result in worker threads packing fewer txs into each block.

The sealer thread obtains the partial block from the worker,
and then tries to solve the PoW puzzle; PoW consensus has
miners emitting a block every 10–12s, for example. While
the sealer thread is working on one block, the worker thread
tries to get the next block ready. Thus, the worker has about
10–12s to process txs; if it can process txs faster, it can pack
more txs into the partial block that it passes to the sealer.

2.2 Problem: Low throughput
Ethereum and other public blockchains suffer from low throu-
ghput: only tens of txs are added to the blockchain per second.
The low throughput comes from two factors. First, the PoW
consensus limits the block creation rate to one block every
10–12s so that a majority of miners can receive and process
a block before a new one is released; this ensures that every
miner is building on the same previous block, preventing forks
in the blockchain. Note that while PoW consensus limits the
block creation rate, it doesn’t directly limit the size of the
block. The factor limiting the block size is tx processing time:
the rate at which the worker thread can process txs limits the
maximum size of the block, as shown in Figure 2.

Tx processing. Processing a tx involves executing the tx and
modifying the system state like account values. Since miners
do not trust each other in a public blockchain, miners authen-
ticate data and can prove that the data they provide is correct.
This is done by maintaining a Merkle tree [44] over the data
and publishing the latest Merkle root in the blocks; another
miner is able to independently execute txs in a block and ver-
ify that its local Merkle root matches the root in the block. An
account value and its vertical path in the Merkle tree (termed
a witness) are sufficient to verify the correctness of that value.

Unfortunately, accessing and authenticating data becomes
more expensive as the total size of the data increases [64].
As a result, tx processing increasingly becomes bottlenecked
on I/O. We demonstrate this with an experiment. We create
two private Ethereum networks using the Geth client [13];



(a) Number of I/O operations

0M 1M 2M 3M 4M 5M 6M 7M
Block Number

0

2

4

6

8

10

W
itn

es
s S

ize
 (M

iB
)

(b) Witness sizes (c) Block processing latency

Figure 3: I/O bottlenecks in processing Ethereum txs. The increasing system state increases (a) the number of I/O operations
performed per block, and (b) the amount of authenticated data accessed (Merkle witnesses) per block. Further, (c) the direct
correlation between the block processing time and the number of I/O operations highlights the I/O bottleneck. Spikes in (a) I/O
operations and (b) witness sizes are due to a DDOS attack that targeted the system state [64] by creating dummy user accounts.

each network has three miners, 30K txs to mine, and the same
proof-of-work (PoW) configurations. While the first network
has only 3 miner accounts (total size: 220 MB), the second
has 10M additional accounts (total size: 4 GB). Note that
Ethereum currently has ≈130M accounts (total size: > 400
GB [12, 15]) in its blockchain state. Overall, the second net-
work takes 6× more time and 2.5× more blocks to mine all
txs using PoW consensus (Table 1). Using profilers, we see
that in the second scenario, the time spent solving the PoW
puzzle has increased proportionately; however, the worker
thread takes 6× more time to process txs, and 69% of this
time is spent in accessing and updating the authenticated sys-
tem state. Thus, miner’s tx processing rate depends on the
system state; this impacts the block size and overall through-
put. Ethereum uses the modified Merkle Patricia Trie [11] to
authenticate the state, we refer to it as the Merkle tree.

Empirical Study. We now study the I/O overheads observed
on the Ethereum public blockchain. We use the Parity 2.2.11
client [8] to initialize a new server that joins the Ethereum
network, and replays the blockchain (until 7.3 million blocks)
to measure various costs. Since we want to observe the histor-
ical I/O cost, we do not mine new blocks; rather, we replay
the blockchain and execute transactions in blocks that have
already been added, termed syncing. The I/O cost remains the
same as when mining the block for the first time.

Reading Eth. accounts results in multiple I/O operations.
For processing a single block with around 100 transactions,
Ethereum performs more than 10K random I/O operations
(two orders of difference). Most of these I/O operations are
performed for reading and updating user accounts in the
Merkle tree. Figure 3(a) shows the number of I/O operations
incurred in each block while processing txs, till 7.3 M blocks.

Data authentication causes significant I/O overhead. A
witness is the vertical path in the Merkle tree required to
verify a data item. Witness sizes represent the amount of data
read and modified per block while reading and updating paths
in the Merkle tree. In Ethereum, which uses secure 256-bit
cryptographic hashes, the witness size of a single 100 byte

user account (or value) can be above 4 KB, resulting in 40-
60× overhead. The witness size also increases as the total
data in the Ethereum state increases, as shown in Figure 3(b).

Tx processing is bottlenecked by I/O. We measure the time
taken to process (or sync) each block: executing the txs in that
block, and verifying if the resultant local Merkle root matches
with the Merkle root in that block. Processing an Ethereum
block with about 100 txs takes hundreds of milliseconds even
on a datacenter-grade NVMe SSD. Figure 3(c) shows the
direct correlation between the time taken to process Ethereum
blocks and the number of I/O operations performed, indicating
that tx processing in Ethereum has I/O bottlenecks.

Summary. The I/O bottlenecks stem from storing the Merkle
tree in an LSM-based [49] key-value store like RocksDB [10]
that has inherent I/O amplification [52, 53]; Merkle nodes are
indexed with their hash, randomizing node locations on disk.

2.3 Straw-man solutions
We consider some straw-man solutions and discuss why they
are not suitable for handling I/O bottlenecks in tx processing.

Storing entire system state in memory. Public blockchains
like Ethereum do not want to place restrictions on the hard-
ware specifications of miners. If every miner is required to
hold the entire authenticated state in memory, only machines
with large amounts of DRAM would be able to process trans-
actions. This solution breaks one of the central tenets of
Ethereum that contributes to the decentralization of its miners.

Increasing block size. Increasing the block size is the goal
of this work; however, doing this naively would not work. If
we simply increased the number of txs in each block, miners
receiving the block would need more time to process the large
block and build on top of it. As a result, the block creation
rate would have to be lowered to ensure that previous block
is processed by a majority of the miners before a new block
is released. Overall, tx throughput would not increase though
the block size increased. Over time, I/O bottlenecks exacer-
bate with the increasing state size, and new servers will take
longer to sync and participate in mining. This weakens decen-



tralization. Thus, tackling I/O bottlenecks is crucial to safely
increasing block size, and maintaining decentralization.

Alternative consensus protocols. Faster consensus protocol-
s would result in blocks being released quicker, increasing
the overall throughput. The goal in this work is to increase
throughput without changing the consensus, and thus is or-
thogonal to the work on new consensus protocols. Researchers
have noticed that even with faster consensus, blockchains ul-
timately run into the I/O bottlenecks in tx processing [67].

Thus, we need a mechanism to reduce the I/O bottlenecks
in transaction processing. RAINBLOCK achieves this goal with
a new architecture and a novel authenticated data structure, the
DSM-TREE. With faster transaction processing, RAINBLOCK

enables larger blocks and maintains decentralization, without
changing the PoW consensus or the block creation rate.

3 RainBlock
RAINBLOCK is a public blockchain based on Ethereum that
increases overall throughput with faster transaction process-
ing. RAINBLOCK minimizes the I/O bottlenecks in transaction
processing, allows miners to safely pack more transactions
into each block, and thereby increases the overall throughput.

3.1 Overview
RAINBLOCK minimizes I/O bottlenecks using two techniques.
First, it makes each I/O operation cheaper by storing system
state in the novel DSM-TREE. In contrast to Ethereum, which
accesses data from the RocksDB key-value store on SSDs
(where each RocksDB get operation takes between a few hun-
dred microseconds to a few milliseconds), RAINBLOCK stores
the system state in memory using the DSM-TREE. DSM-TREE

is a sharded, multi-versioned, in-memory authenticated data
structure. Second, RAINBLOCK introduces a new architecture
that removes I/O from the critical path. RAINBLOCK decon-
structs miners into three entities: storage nodes, miners, and
I/O-Helpers that read data from storage and submit to miners.
In the common case, miners can process txs without perform-
ing I/O. Neither miners, nor storage nodes, nor I/O-Helpers
trust each other: all data supplied by other entities is verified
using Merkle witnesses before use.

RAINBLOCK differs from Ethereum in exactly two aspects:
1) miners are replaced by storage nodes, miners, and I/O-
Helpers, and 2) the RocksDB-based storage is replaced with
DSM-Tree. Everything else, like the proof-of-work consensus
and the block creation rate, remains the same.

3.2 Building up the design step by step
In this section, we start with the problems that our study on
Ethereum highlights. We discuss how RAINBLOCK solves
these problems and addresses the resulting challenges.

Problem-I: storing authenticated state in key-value stores
leads to expensive I/O. Ethereum stores system state in a
Merkle tree [11], which is stored in the RocksDB [10] key-
value store. Traversing such a Merkle tree requires looking

up nodes using their hashes. Hashing is computationally ex-
pensive and results in the nodes of the tree being distributed
to random locations on storage. As a result, traversing the
Merkle tree to read a leaf value requires several random read
operations. Further, the log-structured merge tree [47] that
underlies RocksDB results in high I/O amplification [52, 53].

Solution: store state in an optimized in-memory represen-
tation. RAINBLOCK introduces an in-memory version of the
Merkle tree. Persisting the data is done via a write-ahead
log and checkpoints. Traversing the Merkle tree is decoupled
from hashing; obtaining the next node in the tree is a simple
pointer dereference (§4). Note that simply running RocksDB
in memory would not be effective, as serializing and hashing
Merkle nodes would still add significant overhead.

Resulting challenge: scalability and decentralization. As
the blockchain grows, the amount of state in the Merkle tree
will increase; soon, a single server’s DRAM will not be suffi-
cient. Furthermore, for maintaining decentralization, we can-
not require miners participating in the blockchain to have
significant amounts of DRAM.

Solution: decouple storage from miners and shard the
state. RAINBLOCK solves this problem using separate stor-
age nodes, each of which is a commodity server. RAINBLOCK

shards the Merkle tree into subtrees such that each subtree fits
in the memory of a storage node. As the amount of data in the
state increases, RAINBLOCK increases the number of shards.
In this manner, RAINBLOCK scales with commodity miners
and storage nodes without reducing the decentralization.

Problem-II: Miners perform slow I/O in the critical path.
Transaction processing in Ethereum includes performing slow
I/O operations in the critical path, and these transactions are
processed one at a time.

Solution: decouple I/O and transaction execution. RAIN-
BLOCK solves this problem by removing the burden of doing
I/O from the miners. RAINBLOCK introduces I/O-Helpers
that prefetch data and witnesses from the storage nodes and
submit them to the miners. Miners use this information to exe-
cute transactions without performing I/O and asynchronously
update the storage nodes. This architecture also increases
parallelism as multiple I/O-Helpers can be prefetching data
for different transactions at the same time.

Resulting challenge: Prefetching I/O for smart contracts.
One challenge with I/O-Helpers prefetching data is that
some transactions invoke smart contracts. Smart contracts are
Turing-complete programs that may execute arbitrary code.
Thus, how does the I/O-Helper know what data to prefetch?

Solution: pre-execute transactions to get their read and
write sets. RAINBLOCK solves this problem by having the
I/O-Helpers pre-execute txs. As part of this pre-execution, I/O-
Helpers read data and witnesses from the storage nodes. One
challenge is that the pre-execution may have different results
than when the miner executes the tx (e.g., the smart contract



A

B C D

E
F G H

Shard-0 Shard-6 Shard-15

C

G

B

E

r = 0

c = n

(A) I/O-Helpers prefetch witnesses

A’

B C D

E
F G H

Shard-0 Shard-6 Shard-15

C’

G’

B

E

r = 0

c = n

(B) Miners execute txns without I/O

A’

B C D

E
F G H

Shard-0 Shard-6 Shard-15

C’

G’

r = 0

c = n

(C) Shards update asynchronously

Figure 4: RAINBLOCK architecture. This figure shows how RAINBLOCK processes a transaction that reads and updates accounts
in two different shards that are along the paths ABE and ACG. (A) I/O-Helpers prefetch witnesses BE and CG from storage nodes
and submit them to the miners. (B) Miners verify the witnesses and use them to execute the transaction against their top layer
of the DSM-TREE. Then, miners update the storage nodes. (C) Storage nodes verify updates from miners and asynchronously
update their bottom layer, creating a new version of the modified Merkle nodes A′C′G′. Here, miners retain only the root node of
the DSM-TREE (r = 0), and the storage nodes send full un-compacted witnesses (c = n or c = ∞).

may execute different code based on the block it appears in).
We will describe how I/O-Helpers handle smart contracts
correctly despite stale data from pre-execution (§3.4).

Resulting challenge: Consistency in the face of concur-
rency. Another challenge that arises from decoupling I/O
from transaction execution is consistency. Multiple I/O-
Helpers are reading from the storage nodes, and multiple
miners are updating them in parallel. Using locks or other
similar mechanisms will reduce concurrency and throughput.

Solution: using the two-layered, multi-versioned DSM-
TREE. RAINBLOCK uses DSM-TREE to store the system state.
The DSM-TREE has two layers: the bottom layer is sharded
across the storage nodes and contains multiple versions. Every
write causes a new version to be created in a copy-on-write
manner; there are no in-place updates. As a result, concurrent
updates from miners simply create new versions and do not
conflict with each other. Further, each miner uses a DSM-
TREE top layer: a private, writeable, consistent snapshot of
the data, that reflects the miner’s latest version.

Resulting challenge: RAINBLOCK has higher network
traffic. Finally, the architecture of RAINBLOCK trades local
disk I/O for remote network I/O. As a result, RAINBLOCK re-
sults in more network utilization, and the network bandwidth
may become the bottleneck.

Solution: RAINBLOCK reduces network I/O via deduplica-
tion and the synergy between the DSM-TREE layers. RAIN-
BLOCK uses multiple optimizations to reduce network I/O.
First, the bottom and top layer of DSM-TREE collaborate with
each other to reduce network traffic. Second, when any com-
ponent of RAINBLOCK sends witnesses over the network, it

will batch witnesses and perform deduplication to ensure only
a single copy of each Merkle tree node is sent. Finally, miners
send logical updates to storage nodes rather than physical
updates as logical updates are smaller in size.

3.3 Architecture
RAINBLOCK introduces three kinds of participating entities:
I/O-Helpers, miners, and storage nodes. Users send txs to
I/O-Helpers, which pre-execute these txs and prefetch data
and witnesses from storage nodes. Figure 4(a) shows how
I/O-Helpers submit txs and the prefetched information to
miners. Miners are responsible for creating new blocks of
transactions and extending the blockchain; each miner main-
tains a private DSM-TREE top layer. Figure 4(b) shows how
miners use the submitted information to execute these trans-
actions without performing I/O. Finally, miners create a new
block, gossip it to other miners, and update the storage nodes.
Storage nodes are responsible for maintaining and serving the
system state. They use the multi-versioned bottom layer of the
DSM-TREE to provide consistent data to I/O-Helpers while
handling concurrent updates from miners. Figure 4(c) shows
how the miners asynchronously update the bottom layer of
the DSM-TREE at the storage nodes.

3.4 Speculative Pre-Execution
I/O-Helpers read all the witnesses required for executing a
tx from storage nodes. While this is straight-forward for sim-
ple txs, how do I/O-Helpers handle Turing-complete smart
contracts that may access arbitrary locations? I/O-Helpers
handle this by speculatively pre-executing the smart contract
to obtain the read and write set.

However, smart contracts can use the timestamp, or block



number of the block in which they appear, during their execu-
tion at the miner. These values are not yet known during their
pre-execution at the I/O-Helpers. I/O-Helpers speculatively
return an estimated value while pre-executing the contract.

Our analysis of Ethereum contracts shows that despite
providing estimated values, I/O-Helpers still successfully
prefetch the correct witnesses and node bags. For example,
the CryptoKitties mixGenes function references the current
block number and its hash. Since these numbers only affect
written values (and not the read set), substituting approximate
values does not affect the witnesses that are prefetched.

We observe that I/O-Helpers can pre-execute with stale
data and still prefetch the correct witnesses. For example,
many contracts are fixed-address contracts: their behavior de-
pends only on call inputs. To deal with rare variable-address
contracts, the miner may asynchronously read from storage
nodes after the transaction is submitted. Even in these cases,
the I/O-Helper will have retrieved some of the correct wit-
nesses required for the tx (e.g., the to and from accounts).

3.5 Life of a Transaction in RAINBLOCK

We outline the various actions that take place from the time a
tx is submitted, to when it becomes a part of the blockchain.

1. I/O-Helper pre-executes the transaction by fetching data
and witnesses from the storage nodes

2. I/O-Helper batches and deduplicates Merkle nodes across
multiple witnesses and sends these optimized witnesses
(termed node bags), txs, and data, to the miner

3. Miner verifies the node bags and advertises them to others.

4. Miner executes the tx using its top layer and the node bags,
without any I/O; miner caches all Merkle nodes it reads or
revises from these node bags in its top layer

5. Miner, on solving PoW, creates and advertises a new block
to other miners; miner also sends the block (with a new
Merkle root) and the logical updates to the storage nodes

6. Storage nodes first validate the block (check if PoW solu-
tion in the block solves the puzzle), and then persist the
logical updates and return successful to the miner.

7. Storage nodes apply the updates asynchronously, and
check if their Merkle root matches the root in the block

8. Other miners validate the block and gossip it to others.
Then miners execute its txs using node bags, and accept
the block by mining new blocks on top of this block

9. Once a majority of the miners receive, validate, and accept
the block, the tx becomes part of the blockchain

10. Once ten or more blocks are mined on this block, the tx
is confirmed; storage nodes garbage collect the associated
versions from the unconfirmed, competing blocks

3.6 Discussion
We note that RAINBLOCK differs from Ethereum in only two
aspects: its architecture and its storage. We discuss how these
affect trust, incentives, and security, and discuss the trade-offs.

Trust assumptions. RAINBLOCK does not require trust be-
tween any of its components. Miners operate without trusting
I/O-Helpers or the storage nodes, as miners re-execute trans-
actions and verify the data they receive from I/O-Helpers;
I/O-Helpers verify the data they read from storage nodes; and
storage nodes verify new blocks and updates from miners.

Incentives. RAINBLOCK shares elements of its architecture
with the Ethereum stateless clients proposal [24] that received
community support. The central question is how are the stor-
age nodes incentivized to store and serve the latest system
state? We propose a model where I/O-Helpers or users pay
storage nodes; stateless clients proposal had a similar solution
where users pay storage nodes for access to state via state
channels. I/O-Helpers or users can always detect if the data
served by storage nodes is incorrect or stale, and penalize any
malicious shards. We also believe an ecosystem will develop
around RAINBLOCK architecture, with commercial entities of-
fering active storage backups; market economics drives these
backups to provide and maintain the latest system state with
high availability. Note that I/O-Helpers are an optimization
and users can prefetch data themselves if required, or pay
the I/O-Helpers. Finally, RAINBLOCK miners behave similar
to the miners in Ethereum, and are incentivized to process
txs via block rewards. Miners are incentivized to broadcast
correct updates to storage nodes to aid the acceptance of their
fork. Thus, we outline a few ways to incentivize RAINBLOCK

components and leave the full solution to future work.

Security. RAINBLOCK provides similar security guarantees
as Ethereum, as it does not change the proof-of-work con-
sensus or trust assumptions between participating servers.
RAINBLOCK does not impact the block creation rate, as it
packs more transactions per block without changing the total
time taken to process a block of transactions.

Availability and DDoS attacks. RAINBLOCK decouples stor-
age from miners and has separate storage nodes. RAINBLOCK

requires only one replica of each storage shard to be available
for making progress. While DDoS attacks can be mounted
on storage nodes in RAINBLOCK, they are not new, cannot
tamper with the data, and do not impact the correctness of
RAINBLOCK; DDoS attacks are also possible on Ethereum
and have been successfully executed in the past [60, 64].

Trade-offs. RAINBLOCK introduces new storage nodes and
I/O-Helpers; while this adds more complexity into the system,
Ethereum was already considering adding storage nodes and
stateless clients. Thus, we believe the additional complexity
of RAINBLOCK is a good trade-off for its scalability and per-
formance benefits. RAINBLOCK trades off local storage I/O
for accessing memory over network, so the network may be-



come a bottleneck. RAINBLOCK recognizes this risk and uses
multiple techniques like utilizing the memory available at the
miners to cache the top layer of the DSM-TREE, and perform-
ing witness compaction and deduplication to reduce network
traffic (§4.3). Although RAINBLOCK uses extra resources for
separate storage nodes, storage nodes are shared across min-
ers, amortizing the costs. I/O-Helpers also use extra resources;
however, they are a performance optimization and can exe-
cute read-only txs without involving the miners. If users judge
I/O-Helpers not useful, users can prefetch from storage nodes,
or turn off prefetching, causing miners to perform I/O.

RAINBLOCK adoption. RAINBLOCK can be deployed incre-
mentally in principle. While RAINBLOCK miners rely on stor-
age nodes and I/O-helpers, other miners can use their local
RocksDB-based storage, as the two would be compatible.

4 DSM-Tree
RAINBLOCK stores the system state in the DSM-TREE data
structure. The Distributed, Sharded Merkle Tree (DSM-TREE)
is an in-memory, multi-versioned, sharded, two-layer variant
of the Merkle tree. We first present the in-memory representa-
tion of the two layers, then describe each layer in detail, and
then discuss how the layers collaborate and their trade-offs in
different configurations.

In-Memory Representation. DSM-TREE builds the Merkle
tree in memory using pointers. Tree traversal is decoupled
from hashing and node serializations: traversing the DSM-
TREE requires dereferencing pointers to the next Merkle node;
in contrast, Ethereum’s Merkle tree reads a Merkle node from
RocksDB using its hash, and then deserializes the node to
find the cryptographic hash of the next node. DSM-TREE uses
periodic checkpoints for persisting the data. The checkpoints
are only used to reconstruct the in-memory data structure in
case of failures; reads are always served from memory.

Lazy Hash Resolution. When a leaf node in a Merkle tree is
updated, hashes of nodes from the leaf to the root need to be
recomputed. Recomputing hashes is expensive as nodes have
to be serialized before being hashed. DSM-TREE defers this
recomputation; on writes, only the leaf nodes are updated; on
a subsequent read, all the modified nodes are rehashed exactly
once. Thus, lazy hash resolution improves performance sig-
nificantly by reducing the number of expensive node hashes
and RLP (Recursive Length Prefix) serializations [9].

4.1 Bottom Layer
The bottom layer consists of a number of shards. Each shard
is a vertical subtree of the Merkle tree, stored in DRAM. The
bottom layer supports multiple versions to allow concurrent
updates, as shown in Figure 5. The bottom layer has a write-
ahead log to persist logical updates.

Multi-versioning. Each write to the bottom layer creates a
new logical version of the tree, in a copy-on-write manner.
There are no in-place updates. This versioning is required as

DSM-TREE top layer at miners

A

h(D)h(C)h(B)

A’

h(D’)h(C)h(B)

B D

E H
Shard-0 Shard-15

A

h(C) h(D)

A

h(C)h(B)

A’

D’

H’

A’

h(D’)

DSM-TREE bottom layer sharded across storage nodes

Figure 5: DSM-TREE design in RAINBLOCK. This figure
shows the two-layered DSM-TREE where miners have their
private copy of the top layer for consistency and the bottom
layer is sharded for scalability. h(C) is a hash node for C.

miners may submit multiple blocks concurrently that poten-
tially conflict with each other; the bottom layer creates a new
version for each write. Thus, writes never conflict with each
other, and DSM-TREE does not require locking or additional
coordination among miners or I/O-Helpers.

Sharding. Each subtree at the root node of the Merkle tree is
a shard; root node in the modified Merkle Patricia Trie has 16
children, so DSM-TREE has 16 shards by default. Moreover,
individual subtrees in each shard can further be partitioned,
allowing shards to increase with the increasing system state.

Garbage collection. Garbage collection of versions is driven
by the higher-level blockchain semantics. When multiple
miners are working on competing forks of the blockchain,
multiple versions are maintained. Eventually, one of the forks
is confirmed and accepted as the mainline fork, and the others
are discarded; associated versions from discarded blocks are
garbage collected by the bottom layer of the DSM-TREE.

4.2 Top Layer
Given that the bottom layer maintains multiple versions across
multiple shards, what data should be read by the miners? To
resolve this question, miners use the top layer. Each miner
has a private top layer, that represents a consistent, writeable
snapshot of the system state; it contains the first few levels of
the Merkle tree, till a configurable retention level (r), and has
the Merkle root node that summarizes a consistent snapshot
of the entire system state. When a miner executes transactions,
all reads return values from this snapshot of the system.

As a miner executes txs, their top layer is updated, switch-
ing to another consistent view of the state as shown in Figure 5.
The miner asynchronously updates the bottom layer’s shards.



Caching and Pruning. The top layer acts as an in-memory
cache of witnesses for the miner. By design, the top layer
stores the recently used and the frequently changing parts
of the Merkle tree. When the miner receives witness from
I/O-Helpers, the top layer uses the witnesses to reconstruct a
partial Merkle tree that allows miners to execute transactions,
typically without performing I/O. The top layer also supports
pruning the partial Merkle tree to help miners reclaim memory.
Pruning replaces the nodes at the retention level (r + 1) with
Hash nodes. Hash nodes are placeholders that help miners to
identify the DSM-TREE shard which has the pruned nodes.

Witness Revision. The bottom layer of the DSM-TREE is up-
dated asynchronously by miners. As a result, the top layer
(miner) may receive stale witnesses from the bottom layer (via
I/O-Helpers). We introduce a new technique termed witness
revision to tolerate stale witnesses. A witness is determined
to be stale or incorrect because the Merkle root in the witness
doesn’t match the top layer’s Merkle root. However, this could
happen because of an unrelated update to another part of the
Merkle tree. For example, the top layer might contain one ver-
tical path; a different vertical path might have been updated.
The top layer detects when this happens, and revises the wit-
ness to make it current by applying updates to the witness that
are known to the miner. If the Merkle root matches now, then
the witness is accepted. Witness revision is similar to doing
git push (trying to upload your changes), finding out some-
thing else in the repository has changed, doing a git pull
(obtaining the changes in the repository) to merge changes,
and then doing a git push. With witness revision, the top
layer tolerates stale data from the bottom layer and allows
miners to execute non-conflicting transactions that would oth-
erwise get rejected. Note that, witness revision cannot revise
every potential stale witnesses. If the top layers are pruned
aggressively, they may have insufficient information to detect
if the changes are from an unrelated part of the Merkle tree.

4.3 Synergy between the layers
The top and bottom layers collaborate to reduce network traf-
fic. We also briefly discuss the potential DSM-TREE configu-
rations with r (retention at the top layer) and c (compaction
level at the bottom layer), and the tradeoffs involved.

Witness compaction. As the top layer of the DSM-TREE

stores the top levels of the Merkle tree, the storage nodes
need not send a full witness. Like the configurable retention
level at the top layer r, the bottom layer has a configurable
compaction level, c. If witnesses are larger than c, witnesses
are compacted by removing the top few Merkle nodes, and
are sent over the network. In addition, multiple witnesses are
batched and Merkle nodes are deduplicated (node bagging),
further reducing the network burden of transmitting witnesses.

Configurations. The DSM-TREE can be configured to operate
entirely from local memory without any network overhead, or
just from remote memory with high network utilization. For

example, if the top layer of the DSM-TREE has r = ∞, then
the top layer caches the entire Merkle tree and is fully served
from local memory. Similarly, if the bottom layer has c = n or
c = ∞, then un-compacted witnesses are sent over the network
and accessed entirely from remote memory, as shown in the
Figure 4. These parameters (r and c) can be tuned based on
the available memory and network capacity.

Tradeoffs. In a Merkle tree that has n levels, any DSM-TREE

configuration that satisfies c >= (n− r) allows the top layer
to use compacted witnesses from the bottom layer. Note that
having a higher r results in a lower number of transaction
aborts, as the top layer has more information to detect non-
conflicting updates and perform witness revision. The top
layers should therefore set r based on the amount of memory
available. Pruning the top layer should only be done under
memory pressure.

4.4 Summary
The DSM-TREE is a novel variant of the Merkle tree, modi-
fied for faster transaction processing in public blockchains.
DSM-TREE presents a new point in the design space of au-
thenticated data structures. DSM-TREE highlights the benefits
of in-memory pointer-based tree traversals in comparison to
using node hashes and RocksDB lookups. The top layer ex-
ploits the cache-friendliness of the Merkle tree (top nodes
are frequently read and updated), while the sharded bottom
layer relies on the fact that witness creation only requires a
vertical slice of the tree. DSM-TREE top layer uses witness
revision to handle stale data from concurrent updates. While
the DSM-TREE supports transactions and is exclusively used
with RAINBLOCK in this paper, it can be easily modified to
work with other blockchains and applications.

5 Implementation
We implement RAINBLOCK and DSM-TREE in Typescript, tar-
geting node.js. Miners and storage nodes use the DSM-TREE

library1. The performance critical portions of the code, such
as secp256kp1 key functions for signing transactions and
generating keccak hashes, are written as C++ node.js bind-
ings. To execute smart contracts, we implement bindings for
the Ethereum Virtual Machine Connector interface (EVMC)
and use Hera (v0.2.2). Hera can run contracts implemented
using Ethereum flavored WebAssembly (ewasm) or EVMC1
bytecode through transcompilation. The I/O-Helper is imple-
mented in C++. DSM-TREE and RAINBLOCK, together 15K
lines of code, are open source and available on Github2. RAIN-
BLOCK assumes 16 shards by default; this is configurable.

6 Evaluation
We seek to answer the following questions:

• What is the performance of a single miner? (§6.1)

1www.npmjs.com/package/@rainblock/merkle-patricia-tree
2https://github.com/RainBlock

www.npmjs.com/package/@rainblock/merkle-patricia-tree
https://github.com/RainBlock


System/optimization Get Put

In-memory Ethereum MPT 1x 1x
Pointer-based traversal 2.7× 2.3×
Batching and Lazy hash resolution 56× 69×
All optimizations 150× 160 ×

Table 2: Performance breakdown. The table shows the
throughput of DSM-TREE (relative to in-memory Ethereum
merkle tree) on gets and puts with different optimizations.

• What is the end-to-end performance of RAINBLOCK in a
geo-distributed setting? (§6.2)

• How is performance affected by tunable parameters? (§6.3)

• What are the overheads of RAINBLOCK? (§6.4)

Our technical report [50] contains more details for these
experiments, along with additional experimental results.

Experimental setup. We run the experiments in a cloud en-
vironment on instances which are similar to the m4.2xlarge
instance available on Amazon EC2 with 32GB of RAM and
48 threads per node. We use Ubuntu 18.04.02 LTS, and node.js
v11.14.0. For the end-to-end benchmarks, each storage node,
miner, and I/O-Helper is deployed on its own instance.

Workloads. We evaluate the performance of RAINBLOCK

against synthetically generated workloads that mirror trans-
actions on the Ethereum public mainnet blockchain. Since
Ethereum transactions are signed, they cannot be used in ex-
periments: we cannot change transaction data or the source
accounts, because we do not have the secp256k1 private key.
To tackle this challenge, we analyze the public blockchain to
extract salient features, and develop a synthetic workload gen-
erator which generates accounts with private keys we control
so our I/O-Helpers can run and submit signed transactions.

Synthetic Workload Generator. We analyze the transac-
tions in the Ethereum mainnet blockchain to build a synthetic
workload generator. We analyzed 100K recent (since block
7M) and 100K older blocks (between blocks 4M and 5M)
in the Ethereum blockchain to determine: 1) the distribution
of accounts involved in transactions, and 2) the fraction of
all transactions that invoke smart contracts. We observe that
10-15% of Ethereum transactions are contract calls and the
rest are simple transactions. This is true of both recent blocks
and older blocks. It is also the case that a small percentage of
accounts are involved in most of the transactions. Based the
analyzed data, we generate workloads where 90% of accounts
are called 10% of the time, and 10% of the accounts are called
90% of the time. Smart contracts are invoked 15% of the time.

6.1 Performance of a single miner
The performance of a single miner depends on three things:
the DSM-TREE data structure, the I/O-Helpers, and the top-

layer cache at the miner. We first evaluate the performance
of the DSM-TREE data structure, and then measure overall tx
processing performance on a single node varying the number
of I/O-Helpers. We then show the performance of the miner
when varying the retention level of the top-layer cache.

DSM-TREE performance. For a fair comparison, we config-
ure Ethereum to use an in-memory key-value store for storage.
Ethereum uses the in-memory Merkle Patricia-Trie (MPT) [6]
implemented using the memdown red-black tree [7]. We use
put operations to recreate the system state corresponding
to four million blocks on the Ethereum public chain. This
results in 1.19M accounts. We read all accounts sequentially
using get operations. Put operation creates or updates user
account with 160-bit Ethereum address; get operation returns
the RLP-encoded [9] Ethereum account at the address, along
with its witness containing RLP-encoded Merkle nodes. We
also compare the memory used.

Performance breakdown. DSM-TREE outperforms Ethe-
reum’s in-memory Merkle tree significantly in both gets and
puts, as shown in Table 2. Note that both data structures are
in memory, so the performance difference comes from other
optimizations. Eth MPT has to use node hashes to traverse
the Merkle Tree; in contrast, DSM-TREE uses pointers for
constructing the tree, and eliminates hashing. This feature im-
proves performance by 2.7×. Eth MPT has to hash and serial-
ize, or deserialize each node in the Merkle tree while writing
or reading them; DSM-TREE optimizes this with memoization
and batching. Memoization allows remembering the hashes
and RLP-encodings of unmodified Merkle nodes. Memoizing
RLP-encoded nodes in DSM-TREE increases get performance
by reducing redundant node de-serializations. Further, with
batching, common nodes in the upper part of the Merkle Tree
are only deserialized once, increasing the get performance
by 56× relative to MPT, bringing the overall performance
difference between DSM-TREE and Eth MPT to be 150×. A
good overall intuition for these performance improvements is
the difference between a linked list in memory versus a linked
list where each node is serialized and stored in an in-memory
key-value store using the node’s hash as its key.

The performance difference for puts is similar (160×). The
efficient memory representation of DSM-TREE contributes to
2.3× of this performance difference; the rest of the difference
is due to lazy hash resolution. Lazy hash resolution defers
recomputing the hashes of inner tree nodes until they are read.
As a result, only the leaf nodes are updated in the critical path.
If we force all the Merkle nodes to be updated and rehashed
after every thousand updates, the performance difference with
Eth MPT drops to 5× overall for puts.

Memory consumption. For the same system state with
1.19M accounts, DSM-TREE consumes 34× lower memory
(775 MB) than Ethereum MPT (25 GB). This results from
Eth MPT storing each node as a key-value pair. The reduced
memory consumption of DSM-TREE is important since we



Optimizations Config Txs/s

Baseline Ethereum, 1 miner 1K (1×)
RAINBLOCK 1 miner, 1 helper, r=0 2.6 K (2.6×)
Prefetch in parallel 1 miner; 4 helpers, r=0 7.7K (7×)
DSM-TREE tuning 1 miner; 4 helpers, r=7 27.4 K (27×)
Geo-distributed 4 miners; 16 helpers, r=8 20K (20×)

Table 3: Performance breakdown. The table shows the
throughput of RAINBLOCK with different optimizations. All
configs use 16 storage shards. Helpers indicate I/O-Helpers.
While parallel prefetching increases RAINBLOCK throughput
by 2.9× from 2.6K to 7.7K tps, the DSM-TREE top layer
caching and witness compaction further increase throughput
by 3.5×, from 7.7K to 27.4K tps.

want each shard to fit in the memory of a commodity server.

Overall performance. An Ethereum miner can process 1000
txs per second, if its system state is stored in an in-memory
key-value store. We measured the performance of a single
RAINBLOCK miner with one I/O-Helper when the top-layer
caching is disabled; the miner is accessing system state from
remote in-memory shards. In this setting, RAINBLOCK pro-
cesses 2600 txs per second (2.6× higher than Ethereum).

Performance with multiple I/O-Helpers. Increasing the
number of I/O-Helpers, increases the performance of RAIN-
BLOCK, till up to four I/O-Helpers per miner. With four I/O-
Helpers, parallel prefetching increases performance to 7700
txs per second (2.9× higher). Thus, RAINBLOCK miner (with
four I/O-Helpers) outperforms an Ethereum miner by 7.7×.

Performance with DSM-TREE tuning. When we configure
the top layer of the DSM-TREE to retain the first seven levels
(r = 7, c = n− 7), the miner can process 27400 tps (3.5×
higher than when top layer caching and witness compaction
was disabled, and 27× higher than a single Ethereum miner).

6.2 End-to-End Geo-distributed Experiment
We run a geo-distributed experiment, with varying numbers
of regions across three continents. Each region has four I/O-
Helpers, one miner, and 16 storage nodes, caching eight levels
of the DSM-TREE tree (r = 8, c = n−8).

RAINBLOCK in a single region has a throughput of 25000
txs per second; this is slightly reduced from the 27400 tps
in the previous section since the storage nodes are being
accessed over a wide-area network. When we scale to four
regions, the throughput drops to 20000 txs per second, thus
retaining 80% of the single-region performance. When we
ran a workload consisting purely of smart contracts (OmiseGO
Token), RAINBLOCK achieved 17900 tps. Table 3 captures
RAINBLOCK performance in various settings, from a single
miner with one I/O-Helper to the geo-distributed experiment.

Tx confirmation latency remains the same as in Ethereum,

as RAINBLOCK and Ethereum share the same block creation
and confirmation logic (confirmed after ten blocks build on the
block containing the tx). As more txs are present in each block,
more txs are confirmed per second. These experiments use the
same PoW consensus in Ethereum, thus demonstrating that
RAINBLOCK achieves higher tx throughput without modifying
the consensus protocol.

6.3 Perf impact of tunable parameters
We discuss the impact of varying two configuration parame-
ters: the retention level r (number of Merkle tree levels stored
at the top layer), and the compaction level c (bottom c levels
of the witnesses are sent over the network by the shards).

Impact of tuning retention level. Increasing the retention
level at miners increases overall tx throughput, but also in-
creases the memory requirements at the miners. Pruning the
cache to a certain retention level (r) helps reclaim the mem-
ory consumed by miners. For the Merkle tree constructed in
the geo-distributed experiment described previously, miners
caching till a tree depth of five (r = 5) consumes only 40%
of the memory consumed by storing the full DSM-TREE in
memory. As we increase the number of I/O-Helpers, the im-
pact of higher r decreases. For example, in the geo-distributed
experiment in a single region, there was no performance dif-
ference between r = 7 and r = 8 with four I/O-Helpers, but
performance improved by 35% between r = 7 and r = 8 with
two I/O-Helpers.

Retention Level and Tx Abort rate. If the top layer doesn’t
cache enough levels, stale witnesses cannot be revised, lead-
ing to tx aborts. We evaluate RAINBLOCK with 16 storage
shards, 1 miner, and 4 clients, with various r and c config-
urations to measure the transaction abort rate. Increasing r
reduces the transaction abort rate. Further, when there are
a large number of accounts, the contention on Merkle tree
nodes reduces, increasing the number of witnesses that can
be revised and thus, reducing the abort rate for a fixed r. With
1M accounts and r=6, RAINBLOCK aborts less than two txs
per second. In cases where the txs get aborted, I/O-Helpers or
users themselves can fetch up-to-date witnesses from storage
nodes and resubmit transactions to miners.

Tuning compaction level. A lower compaction level c in-
creases the DSM-TREE shard throughput for I/O-Helpers (as
it reduces the size of witnesses transmitted over network);
with 10M accounts in state and c = n, shards process ac-
count reads at 1.36K ops/sec and with c = n−6, they process
9.4K ops/sec (7× increase in throughput per shard). The com-
paction level should be tuned alongside the retention level,
with c >= (n− r) for a Merkle tree with n levels.

6.4 Overheads
RAINBLOCK has two main sources of overhead. First, it trades
local storage I/O for network I/O, hence resulting in more
network traffic. Second, it requires the participation of more



commodity servers as I/O-Helpers and storage nodes. We
discuss these overheads and how RAINBLOCK mitigates them.

Network bandwidth requirements. RAINBLOCK can be con-
figured to produce blocks of a given size. For example, if the
network can only handle 1 MB blocks, RAINBLOCK can be
configured to produce blocks of this size. In our experiments,
we do not constrain RAINBLOCK, and see that RAINBLOCK

can pack about 240K transactions into each block (480×
higher than Ethereum), on average, with the same proof-of-
work consensus and block creation time. RAINBLOCK blocks
are about 24MB in size, compared to the recent Ethereum
blocks that are 40-60 KB. Our geo-distributed experiment
used 24 MB blocks over the wide-area-network without run-
ning into network bottlenecks. The second source of network
traffic is gossiping witnesses between miners. Using witness
compaction, and node bagging (batching and deduplication),
RAINBLOCK reduces witness sizes by 95%, allowing miners
to advertise witnesses with commodity network bandwidths.
Our witnesses sent over the network were a few KB in size.

Additional resources. RAINBLOCK requires I/O-Helpers and
storage nodes. While storage nodes keep all state in memory,
the state is sharded so that each shard fits in the DRAM of a
commodity server. Storage nodes are shared among all miners,
and hence they do not significantly increase the overall cluster
requirements; I/O-Helpers can also be shared by miners.

7 Related Work
In this section, we place our contributions RAINBLOCK and
DSM-TREE in the context of prior research.

Stateless Clients. The Stateless Clients [24] proposal seeks
to insert witnesses into blocks, allowing miners to process
a block without I/O. Despite active discussions [3, 25, 27],
this proposal has not been implemented due to large witness
sizes [57]; a single, simple transaction can have 4-6KB wit-
ness sizes, resulting in 40-60× the network overhead. In con-
trast, DSM-TREE reduces witness sizes by 95%; RAINBLOCK

does not insert witnesses in blocks, and uses I/O-Helpers to
reduce the I/O burden on miners.

Hyperledger Fabric. Fabric [17] is private while RAIN-
BLOCK is public, resulting in significant differences. Fabric
introduces a new execute-order-validate architecture where
txs are executed only on a subset of servers. In RAINBLOCK

all miners execute every transaction. While Fabric relies on
signatures from trusted nodes (which can become the bottle-
neck), RAINBLOCK uses witnesses from untrusted servers to
authenticate data. Peers in Fabric store the entire state, while
RAINBLOCK storage nodes store partitions of the system state.
RAINBLOCK improves performance with I/O-efficient transac-
tion processing, while Fabric derives high performance from
optimistic execution and efficient consensus.

Sharding. Sharding the blockchain into independent parallel
chains that operate on subsets of state [36, 39, 41, 61, 62, 70]

reduces I/O overheads; however, requires syncing the inde-
pendent chains for consistency, is less resilient to failures or
attacks [51, 55, 69], and require complex cross-shard transac-
tions protocols. In contrast, RAINBLOCK does not shard the
blockchain; the storage is sharded, but all miners add to a sin-
gle chain. RAINBLOCK does not require locking or additional
communication for executing transactions across multiple
storage shards. Payment channels [4, 32, 35, 38, 40, 45] that
offload work to side chains are complementary to our work.

Dynamic accumulators. Merkle trees belong to a general
family of dynamic accumulators [20, 26]. Merkle trees, al-
low fast processing but, proofs grow with the underlying
state. Constant-size dynamic accumulators based on RSA
signatures [20, 26] have fixed size proofs but, have low
processing rates; improving their performance is an ongo-
ing effort [23]. DSM-TREE provides a practical solution to
achieve high processing rates and small witness sizes. Re-
cent work has proposed many new authenticated data struc-
tures [18, 28, 37, 53, 54, 58, 66, 68]. In contrast to these works,
DSM-TREE scales Ethereum’s Merkle Patricia trie [11] with-
out changing its core structure, or how proofs are generated.

Transaction execution. RAINBLOCK adopts a design similar
to Solar [71] and vCorfu [63], where transactions are executed
based on data from sharded storage. RAINBLOCK modifies
the design for decentralized applications and authenticated
data structures. This allows RAINBLOCK to execute transac-
tions on sharded state without requiring locking or additional
coordination among miners. Similar to RAMCloud [48], the
DSM-TREE design argues that large random-access data struc-
tures can get higher throughput and scalability when served
from memory over the network.

8 Conclusion

We have presented RAINBLOCK, a public blockchain architec-
ture that increases transaction throughput without changing
the proof-of-work consensus protocol. RAINBLOCK achieves
this by tackling the I/O bottleneck in transaction processing,
allowing miners to pack more transactions into each block.
RAINBLOCK introduces a novel architecture that moves I/O off
the critical path, and the DSM-TREE, a new authenticated data
structure that provides cheap access to system state. Please
refer to our technical report [50] for more details about RAIN-
BLOCK and the DSM-TREE. The RAINBLOCK prototype is
publicly available at https://github.com/RainBlock and
we welcome working with the community on its adoption.

Acknowledgements

We thank our shepherd, Abhinav Duggal, and the anonymous
reviewers at ATC’21, VLDB’21, NSDI’20, and SOSP’19 for
their insightful comments and suggestions. This work was
supported by NSF CAREER #1751277, and donations from
VMware, Google, and Facebook.

https://github.com/RainBlock


References
[1] Bitcoin. https://bitcoin.org/en/, 2019.

[2] Ethereum. https://github.com/ethereum/, 2019.

[3] Ethereum improvement proposals repository. https:
//github.com/ethereum/EIPs, 2019.

[4] Fast, cheap, scalable token transfers for ethereum.
https://raiden.network/, 2019.

[5] Hybrid casper ffg. https://github.com/ethereum/
EIPs/blob/master/EIPS/eip-1011.md, 2019.

[6] Implementation of the modified merkle patricia tree as
specified in the Ethereum’s yellow paper. https://
github.com/ethereumjs/merkle-patricia-tree,
2019.

[7] In-memory abstract-leveldown store for node.js and
browsers. https://github.com/Level/memdown,
2019.

[8] Parity ethereum 2.2.11-stable. https://github.com/
paritytech/parity-ethereum/releases/tag/v2.
2.11, 2019.

[9] Recursive Length Prefix Encoding. https://github.
com/ethereum/wiki/wiki/RLP, 2019.

[10] RocksDB | A persistent key-value store. http://
rocksdb.org, 2019.

[11] The modified Merkle Patricia tree. https://github.
com/ethereum/wiki/wiki/Patricia-Tree, 2019.

[12] Full Node sync with Default Settings. https://
etherscan.io/chartsync/chaindefault, 2020.

[13] Geth ethereum 1.9.25-stable. https://github.com/
ethereum/go-ethereum/tree/v1.9.25, 2020.

[14] Ethereum average gas limit chart. https://
etherscan.io/chart/gaslimit, 2021.

[15] Number of unique addresses in ethereum. https://
etherscan.io/chart/address, 2021.

[16] Uncles per day. daily count of uncles generated by the
ethereum network. https://www.etherchain.org/
charts/unclesPerDay, 2021.

[17] Elli Androulaki, Artem Barger, Vita Bortnikov, Chris-
tian Cachin, Konstantinos Christidis, Angelo De Caro,
David Enyeart, Christopher Ferris, Gennady Laventman,
Yacov Manevich, et al. Hyperledger fabric: a distributed
operating system for permissioned blockchains. In Pro-
ceedings of the Thirteenth EuroSys Conference, page 30.
ACM, 2018.

[18] Maurice Bailleu, Jörg Thalheim, Pramod Bhatotia,
Christof Fetzer, Michio Honda, and Kapil Vaswani.
{SPEICHER}: Securing lsm-based key-value stores us-
ing shielded execution. In 17th {USENIX} Conference
on File and Storage Technologies ({FAST} 19), pages
173–190, 2019.

[19] BCNext. The nxt cryptocurrency. https://nxt.org,
November, 2013.

[20] Josh Benaloh and Michael De Mare. One-way accumu-
lators: A decentralized alternative to digital signatures.
In Workshop on the Theory and Application of of Cryp-
tographic Techniques, pages 274–285. Springer, 1993.

[21] The block. Ethereum miners are in-
creasing the network’s gas limit by 25 =
https://www.theblockcrypto.com/linked/69053/ethereum-
miners-vote-for-25-gas-limit-increase„ June 20, 2020.

[22] bloXroute Labs. Increasing eth’s gas limit: What we can
safely do today. = https://ethresear.ch/t/increasing-eth-s-
gas-limit-what-we-can-safely-do-today/8121„ October
2020.

[23] Dan Boneh, Benedikt Bünz, and Ben Fisch. Batching
techniques for accumulators with applications to iops
and stateless blockchains. In Annual International Cryp-
tology Conference, pages 561–586. Springer, 2019.

[24] Vitalik Buterin. The Stateless Clients Con-
cept. https://ethresear.ch/t/the-stateless-\
client-concept/172, 2017.

[25] Vitalik Buterin. Detailed analysis of stateless
client witness size, and gains from batching and
multi-state roots. https://ethresear.ch/t/
detailed-analysis-of-stateless-client-\
witness-size-and-gains-from-batching-and-\
multi-state-roots/862, 2019.

[26] Jan Camenisch and Anna Lysyanskaya. Dynamic ac-
cumulators and application to efficient revocation of
anonymous credentials. In Annual International Cryp-
tology Conference, pages 61–76. Springer, 2002.

[27] Alexander Chepurnoy. A possible solution to stateless
clients. https://ethresear.ch/t/a-possible-\
solution-to-stateless-clients/4094, 2019.

[28] Alexander Chepurnoy, Charalampos Papamanthou, and
Yupeng Zhang. Edrax: A cryptocurrency with stateless
transaction validation. 2018.

[29] Tonya M Evans. Cryptokitties, cryptography, and copy-
right. AIPLA QUARTERLY JOURNAL, 47(2):219, 2019.

https://bitcoin.org/en/
https://github.com/ethereum/
https://github.com/ethereum/EIPs
https://github.com/ethereum/EIPs
https://raiden.network/
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1011.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1011.md
https://github.com/ethereumjs/merkle-patricia-tree
https://github.com/ethereumjs/merkle-patricia-tree
https://github.com/Level/memdown
https://github.com/paritytech/parity-ethereum/releases/tag/v2.2.11
https://github.com/paritytech/parity-ethereum/releases/tag/v2.2.11
https://github.com/paritytech/parity-ethereum/releases/tag/v2.2.11
https://github.com/ethereum/wiki/wiki/RLP
https://github.com/ethereum/wiki/wiki/RLP
http://rocksdb.org
http://rocksdb.org
https://github.com/ethereum/wiki/wiki/Patricia-Tree
https://github.com/ethereum/wiki/wiki/Patricia-Tree
https://etherscan.io/chartsync/chaindefault
https://etherscan.io/chartsync/chaindefault
https://github.com/ethereum/go-ethereum/tree/v1.9.25
https://github.com/ethereum/go-ethereum/tree/v1.9.25
https://etherscan.io/chart/gaslimit
https://etherscan.io/chart/gaslimit
https://etherscan.io/chart/address
https://etherscan.io/chart/address
https://www.etherchain.org/charts/unclesPerDay
https://www.etherchain.org/charts/unclesPerDay
https://nxt.org
=
=
https://ethresear.ch/t/the-stateless-\ client-concept/172
https://ethresear.ch/t/the-stateless-\ client-concept/172
https://ethresear.ch/t/detailed-analysis-of-stateless-client-\ witness-size-and-gains-from-batching-and-\ multi-state-roots/862
https://ethresear.ch/t/detailed-analysis-of-stateless-client-\ witness-size-and-gains-from-batching-and-\ multi-state-roots/862
https://ethresear.ch/t/detailed-analysis-of-stateless-client-\ witness-size-and-gains-from-batching-and-\ multi-state-roots/862
https://ethresear.ch/t/detailed-analysis-of-stateless-client-\ witness-size-and-gains-from-batching-and-\ multi-state-roots/862
https://ethresear.ch/t/a-possible-\ solution-to-stateless-clients/4094
https://ethresear.ch/t/a-possible-\ solution-to-stateless-clients/4094


[30] Ittay Eyal, Adem Efe Gencer, Emin Gun Sirer, and Rob-
bert Van Renesse. Bitcoin-ng: A scalable blockchain
protocol. In 13th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 16), pages
45–59, Santa Clara, CA, 2016. USENIX Association.

[31] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vla-
chos, and Nickolai Zeldovich. Algorand: Scaling byzan-
tine agreements for cryptocurrencies. In Proceedings of
the 26th Symposium on Operating Systems Principles,
SOSP ’17, pages 51–68, New York, NY, USA, 2017.
ACM.

[32] Matthew Green and Ian Miers. Bolt: Anonymous pay-
ment channels for decentralized currencies. In Proceed-
ings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, pages 473–489, 2017.

[33] Zane Huffman. CryptoKitties is Clogging the Ethereum
Network. https://themerkle.com/cryptokitt\
ies-is-clogging-the-ethereum-network/, 2019.

[34] Markus Jakobsson and Ari Juels. Proofs of work and
bread pudding protocols. In Communications and Mul-
timedia Security, 1999.

[35] Thaddeus Dryja Joseph Poon. The bitcoin
lightning network: Scalable off-chain instant pay-
ments. https://lightning.network/lightning-\
network-paper.pdf, 2019.

[36] Vitalik Buterin Joseph Poon. Plasma: Scalable au-
tonomous smart contracts. https://plasma.io/
plasma.pdf, 2019.

[37] Janakirama Kalidhindi, Alex Kazorian, Aneesh Khera,
and Cibi Pari. Angela: A sparse, distributed, and highly
concurrent merkle tree. 2018.

[38] Rami Khalil and Arthur Gervais. Revive: Rebalancing
off-blockchain payment networks. In Proceedings of
the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pages 439–453, 2017.

[39] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly,
E. Syta, and B. Ford. Omniledger: A secure, scale-
out, decentralized ledger via sharding. In 2018 IEEE
Symposium on Security and Privacy (SP), pages 583–
598, May 2018.

[40] Marta Lokhava, Giuliano Losa, David Mazières, Gray-
don Hoare, Nicolas Barry, Eli Gafni, Jonathan Jove,
Rafał Malinowsky, and Jed McCaleb. Fast and secure
global payments with stellar. In Proceedings of the
27th ACM Symposium on Operating Systems Principles,
pages 80–96, 2019.

[41] Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal
Baweja, Seth Gilbert, and Prateek Saxena. A secure
sharding protocol for open blockchains. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’16, pages 17–30, New
York, NY, USA, 2016. ACM.

[42] Loi Luu, Yaron Velner, Jason Teutsch, and Prateek Sax-
ena. Smartpool: Practical decentralized pooled mining.
In 26th USENIX Security Symposium (USENIX Security
17), pages 1409–1426, Vancouver, BC, 2017. USENIX
Association.

[43] Thomas McGhin, Kim-Kwang Raymond Choo,
Charles Zhechao Liu, and Debiao He. Blockchain
in healthcare applications: Research challenges and
opportunities. Journal of Network and Computer
Applications, 135:62–75, 2019.

[44] Ralph C Merkle. A digital signature based on a conven-
tional encryption function. In Conference on the theory
and application of cryptographic techniques, pages 369–
378. Springer, 1987.

[45] Andrew Miller, Iddo Bentov, Ranjit Kumaresan, and
Patrick McCorry. Sprites: Payment channels that go
faster than lightning. CoRR abs/1702.05812, 306, 2017.

[46] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and
Dawn Song. The honey badger of bft protocols. In Pro-
ceedings of the 2016 ACM SIGSAC Conference on Com-
puter and Communications Security, CCS ’16, pages
31–42, New York, NY, USA, 2016. ACM.

[47] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Eliz-
abeth O’Neil. The log-structured merge-tree (lsm-tree).
Acta Informatica, 33(4):351–385, 1996.

[48] John K. Ousterhout, Arjun Gopalan, Ashish Gupta,
Ankita Kejriwal, Collin Lee, Behnam Montazeri, Diego
Ongaro, Seo Jin Park, Henry Qin, Mendel Rosenblum,
Stephen M. Rumble, Ryan Stutsman, and Stephen Yang.
The ramcloud storage system. ACM Trans. Comput.
Syst., 33(3):7:1–7:55, 2015.

[49] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Eliz-
abeth O’Neil. The log-structured merge-tree (lsm-tree).
Acta Informatica, 33(4):351–385, 1996.

[50] Soujanya Ponnapalli, Aashaka Shah, Amy Tai, Sou-
vik Banerjee, Vijay Chidambaram, Dahlia Malkhi, and
Michael Wei. Rainblock: Faster transaction processing
in public blockchains, 2020.

[51] Tayebeh Rajab, Mohammad Hossein Manshaei, Mo-
hammad Dakhilalian, Murtuza Jadliwala, and Moham-
mad Ashiqur Rahman. On the feasibility of sybil at-
tacks in shard-based permissionless blockchains. arXiv
preprint arXiv:2002.06531, 2020.

https://themerkle.com/cryptokitt\ ies-is-clogging-the-ethereum-network/
https://themerkle.com/cryptokitt\ ies-is-clogging-the-ethereum-network/
https://lightning.network/lightning-\ network-paper.pdf
https://lightning.network/lightning-\ network-paper.pdf
https://plasma.io/plasma.pdf
https://plasma.io/plasma.pdf


[52] Pandian Raju, Rohan Kadekodi, Vijay Chidambaram,
and Ittai Abraham. PebblesDB: Building Key-Value
Stores using Fragmented Log-Structured Merge Trees.
In Proceedings of the 26th ACM Symposium on Oper-
ating Systems Principles (SOSP ’17), Shanghai, China,
October 2017.

[53] Pandian Raju, Soujanya Ponnapalli, Evan Kaminsky,
Gilad Oved, Zachary Keener, Vijay Chidambaram, and
Ittai Abraham. mLSM: Making Authenticated Storage
Faster in Ethereum. In 10th USENIX Workshop on Hot
Topics in Storage and File Systems (HotStorage 18),
Boston, MA, 2018. USENIX Association.

[54] Leonid Reyzin, Dmitry Meshkov, Alexander Chepurnoy,
and Sasha Ivanov. Improving authenticated dynamic
dictionaries, with applications to cryptocurrencies. In
International Conference on Financial Cryptography
and Data Security, pages 376–392. Springer, 2017.

[55] Alberto Sonnino, Shehar Bano, Mustafa Al-Bassam, and
George Danezis. Replay attacks and defenses against
cross-shard consensus in sharded distributed ledgers.
arXiv preprint arXiv:1901.11218, 2019.

[56] Nick Szabo. Smart contracts. Unpublished manuscript,
1994.

[57] Peter Szilagyi. Are stateless clients a dead end?
https://www.reddit.com/r/ethereum/comments/
e8ujfy/are_stateless_clients_a_dead_end/,
December, 10, 2019.

[58] Alin Tomescu, Ittai Abraham, Vitalik Buterin, Justin
Drake, Dankrad Feist, and Dmitry Khovratovich. Ag-
gregatable subvector commitments for stateless cryp-
tocurrencies. IACR Cryptol. ePrint Arch., 2020:527,
2020.

[59] Vitalik Buterin. Toward a 12-second Block
Time. https://blog.ethereum.org/2014/07/11/
toward-a-12-second-block-time/, 2014.

[60] Vitalik Buterin. Transaction spam attack: Next
Steps. https://blog.ethereum.org/2016/09/22/
transaction-spam-attack-next-steps/, 2016.

[61] Marko Vukolić. The quest for scalable blockchain fab-
ric: Proof-of-work vs. bft replication. In International
workshop on open problems in network security, pages
112–125. Springer, 2015.

[62] Jiaping Wang and Hao Wang. Monoxide: Scale out
blockchains with asynchronous consensus zones. In
16th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 19), pages 95–112, Boston,
MA, February 2019. USENIX Association.

[63] Michael Wei, Amy Tai, Christopher J Rossbach, Ittai
Abraham, Maithem Munshed, Medhavi Dhawan, Jim
Stabile, Udi Wieder, Scott Fritchie, Steven Swanson,
et al. vcorfu: A cloud-scale object store on a shared log.
In 14th {USENIX} Symposium on Networked Systems
Design and Implementation ({NSDI} 17), pages 35–49,
2017.

[64] Jeffrey Wilcke. The Ethereum network is
currently undergoing a DoS attack. https:
//ethereum.github.io/blog/2016/09/22/
ethereum-network-currently-undergoing-\
dos-attack/, 2016.

[65] JI Wong. Cryptokitties is causing ethereum network
congestion (2017).

[66] Cheng Xu, Ce Zhang, and Jianliang Xu. vchain: En-
abling verifiable boolean range queries over blockchain
databases. In Proceedings of the 2019 international con-
ference on management of data, pages 141–158, 2019.

[67] Lei Yang, Vivek Bagaria, Gerui Wang, Mohammad Al-
izadeh, David Tse, Giulia Fanti, and Pramod Viswanath.
Prism: Scaling bitcoin by 10,000 x. arXiv preprint
arXiv:1909.11261, 2019.

[68] Mingchao Yu, Saeid Sahraei, Songze Li, Salman Aves-
timehr, Sreeram Kannan, and Pramod Viswanath. Coded
merkle tree: Solving data availability attacks in
blockchains. arXiv preprint arXiv:1910.01247, 2019.

[69] Jusik Yun, Yunyeong Goh, and Jong-Moon Chung.
Trust-based shard distribution scheme for fault-tolerant
shard blockchain networks. IEEE Access, 7:135164–
135175, 2019.

[70] Mahdi Zamani, Mahnush Movahedi, and Mariana
Raykova. Rapidchain: Scaling blockchain via full shard-
ing. In Proceedings of the 2018 ACM SIGSAC Confer-
ence on Computer and Communications Security, CCS
’18, pages 931–948, New York, NY, USA, 2018. ACM.

[71] Tao Zhu, Zhuoyue Zhao, Feifei Li, Weining Qian,
Aoying Zhou, Dong Xie, Ryan Stutsman, Haining
Li, and Huiqi Hu. Solar: towards a shared-
everything database on distributed log-structured stor-
age. In 2018 {USENIX} Annual Technical Conference
({USENIX}{ATC} 18), pages 795–807, 2018.

https://www.reddit.com/r/ethereum/comments/e8ujfy/are_stateless_clients_a_dead_end/
https://www.reddit.com/r/ethereum/comments/e8ujfy/are_stateless_clients_a_dead_end/
https://blog.ethereum.org/2014/07/11/toward-a-12-second-block-time/
https://blog.ethereum.org/2014/07/11/toward-a-12-second-block-time/
https://blog.ethereum.org/2016/09/22/transaction-spam-attack-next-steps/
https://blog.ethereum.org/2016/09/22/transaction-spam-attack-next-steps/
https://ethereum.github.io/blog/2016/09/22/ethereum-network-currently-undergoing-\ dos-attack/
https://ethereum.github.io/blog/2016/09/22/ethereum-network-currently-undergoing-\ dos-attack/
https://ethereum.github.io/blog/2016/09/22/ethereum-network-currently-undergoing-\ dos-attack/
https://ethereum.github.io/blog/2016/09/22/ethereum-network-currently-undergoing-\ dos-attack/

	Introduction
	Background and Motivation
	Public Blockchains and Ethereum
	Problem: Low throughput
	Straw-man solutions

	RainBlock
	Overview
	Building up the design step by step
	Architecture
	Speculative Pre-Execution
	Life of a Transaction in RainBlock
	Discussion

	DSM-Tree
	Bottom Layer
	Top Layer
	Synergy between the layers
	Summary

	Implementation
	Evaluation
	Performance of a single miner
	End-to-End Geo-distributed Experiment
	Perf impact of tunable parameters
	Overheads

	Related Work
	Conclusion

