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Deep Neural Networks ( DNNs )

• Widely used for a variety of tasks

Image Classification
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Language Translation 2
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DNN Training

Input Dataset

Minibatch Forward pass Backward pass Weight update

Iteration

Model

Wi, bi

Epoch =  One complete pass over the dataset

Wi, bi

Learned model 
parameters

n
epochs

DNN training is compute-intensive and time-consuming!
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DNN Checkpointing

GPU time

Epoch boundaries

In memory
Model – random 

weights
Model – learned 

weights

In memoryMigration/Crash

Wasted GPU cycles

Any interruption can wipe out the model parameters learned so far in memory, 
restarting this expensive process!
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DNN Checkpointing

GPU time

Epoch boundaries

In memory
Model – random 

weights
Model – learned 

weights

In memory

Checkpoint

Migration/Crash

Wasted GPU cycles

• Learned model parameters are written to persistent storage every so often 
during training for fault-tolerance:
• The VMs may migrate, expire, or crash (e.g., spot instances), jobs may migrate (e.g., 

shared GPU clusters) 
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State of DNN Checkpointing Today

• Synchronous checkpoints => Large checkpoint stalls

• Manual checkpointing frequency => Typically performed at epoch 
boundaries

• But epoch times are increasing due to higher computational 
complexity of models and increasing dataset sizes

• Frequent interruptions : for e.g. preemptions in low-cost spot VMs

Need fine-grained, iteration-level checkpointing 
6



Challenges for fine-grained checkpointing

Checkpointing 
frequency

How often to 
checkpoint?

Checkpoint
stalls

How to minimize the 
cost of a checkpoint?

Data invariant

How to resume correctly 
from a checkpoint?

• Every epoch processes all the items in the dataset exactly once, in a random shuffled order
• Must hold when training resumes after an interruption in the middle of an epoch
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Challenges for fine-grained checkpointing

Checkpointing 
frequency

Checkpoint
stalls

Data invariant

How often to 
checkpoint?

How to minimize the 
cost of a checkpoint?

How to resume correctly 
from a checkpoint?

Our work addresses these challenges to provide an automated, frequent 
checkpointing framework for DNN training
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CheckFreq

• Fine-grained, automated checkpointing framework for DNN training

• Strikes a balance between low overhead and high frequency of 
checkpointing => new checkpointing policy and mechanism

• Exploits the DNN computational model to perform pipelined in-
memory snapshots, GPU-based snapshots, and adaptive tuning of 
checkpointing frequency 

• CheckFreq reduces the recovery time for popular DNNs from hours to 
seconds during job interruptions 

Source code :  https://github.com/msr-fiddle/CheckFreq
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Outline

• Background and Motivation

• CheckFreq – Design
• Checkpointing Mechanism

• Checkpointing Policy

• Evaluation

10



CheckFreq Design

How to perform correct, low-cost 
checkpointing?

Mechanism Policy

When to checkpoint?

2-phase DNN-aware checkpointing

Resumable data iterator

Systematic online profiling

Adaptive rate tuning

Low checkpoint stalls

Maintain data invariant

Initial checkpointing frequency

Manages interference from other jobs
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2-Phase Checkpointing

• Synchronous checkpointing introduces checkpoint stalls => Runtime 
overhead

• Low-cost checkpointing mechanism that is split into a pipelined 
snapshot() and persist() phase

Snapshot() : Serialize and copy into a user-space buffer

Persist() : Write out the serialized contents to disk
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Example

• Consider a policy that checkpoints every three iterations. 
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Weight update

Forward pass

Backward pass

Checkpoint (CPU)

(a) Baseline : Synchronous checkpointing

Example
1 1 1Training (GPU)
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Weight update

Snapshotting

Disk IO

Forward pass

Backward pass

1 1 1
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Weight update

Snapshotting

Disk IO

Forward pass
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Checkpoint stall

1 1 1
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18



Weight update

Snapshotting
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Forward pass
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Checkpoint stall
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Weight update
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GPU-optimized Snapshots

• Cost of serialization and snapshot() is upto 10x lower when done on 
the GPU

• To further reduce the checkpoint cost, CheckFreq snapshots on the 
GPU, and asynchronously writes it to CPU memory if it profiles spare 
memory on the GPU

• If GPU memory is fully utilized, it falls back to pipelined, CPU-side 
snapshots
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Outline

• Background and Motivation

• CheckFreq – Design
• Checkpointing Mechanism

• Checkpointing Policy

• Evaluation
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Checkpointing policy

• Determines when to initiate a checkpoint

• Checkpoints every k iterations, such that 
• the cost of one checkpoint can be amortized over k iterations

• Runtime overhead introduced due to checkpointing is within a small user-
given percentage of the actual compute time (say 5%)
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Systematic Online Profiling

• CheckFreq’s data iterator automatically profiles several iteration-level 
and checkpoint-specific metrics

Iteration time
Time for weight 

update
Time for GPU 

snapshot()
Time for CPU 

snapshot()

Available disk 
throughput Checkpoint size

Peak GPU 
memory util

Total GPU 
memory

Algorithmically determines the checkpointing frequency such that: 
• Overhead due to checkpoint stalls is within the user-given limit
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• Checkpointing Policy

• Evaluation
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Experimental Setup

• Checkfreq is integrated with PyTorch
• Uses the state-of-the-art NVIDIA DALI data loading library to support 

resumability

• Experiments are performed on two different servers from an internal 
GPU cluster at Microsoft

1. Conf-Volta :  Server with eight V100 GPUs (32GiB), with a SSD

2. Conf-Pascal : Server with eight 1080Ti GPUs (11GiB), with a HDD
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Models and Experiments

• We evaluate CheckFreq on 7 different DNNs : 
• ResNet18, ResNet50, ResNext101, DenseNet121, VGG16, InceptionV3 on Imagenet-1k 

• Bert-Large pretraining on Wikipedia & BookCorpus dataset

• Experiments to evaluate:

Accuracy implications of 
data invariant

Checkpoint 
stalls 

Recovery Time

Breakdown of benefits 
due to pipelining

Adaptive frequency 
tuning 

End-to-end training 
with interruptions
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CheckFreq reduces checkpoint stalls

• Train VGG16 for 300 iterations on Conf-Volta
• Checkpointing mechanisms :

• Synchronous
• Persist() pipelining only
• CheckFreq - Persist() and snapshot() pipelining 

• Checkpointing frequency : 15 iterations
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CheckFreq reduces checkpoint stalls
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CheckFreq reduces checkpoint stalls
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CheckFreq reduces checkpoint stalls

• Performing asynchronous IO reduces checkpoint cost by 2x but still 
results in significant stalls
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CheckFreq reduces checkpoint stalls

• CheckFreq further reduces stalls by carefully pipelining checkpointing 
with compute

0

1

2

3

4

5

1 9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0

5

1
1

3

1
2

1

1
2

9

1
3

7

1
4

5

1
5

3

1
6

1

1
6

9

1
7

7

1
8

5

1
9

3

2
0

1

2
0

9

2
1

7

2
2

5

2
3

3

2
4

1

2
4

9

2
5

7

2
6

5

2
7

3

2
8

1

2
8

9

2
9

7

Ti
m

e
 f

o
r 

a 
it

e
ra

ti
o

n
 (

s)

Iteration #

Synchronous Persist() pipelining CheckFreq

38



Overall Training Overhead
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Overall Training Overhead

• When the baseline checkpointing mechanism is performed at a frequency 
chosen by CheckFreq, it introduces 20 – 70% overhead in training time
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CheckFreq lowers recovery time

Model
Epoch-based 

(s)
CheckFreq

(s)

Res18

Res50

VGG16

ResNext

DenseNet

Inception

BERT

• Recovery time : Time spent by the model to recover to the same state as it was 
before interruption
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CheckFreq lowers recovery time

Model
Epoch-based 

(s)
CheckFreq

(s)

Res18 840 5

Res50 2100 24

VGG16 5700 25

ResNext 7080 32

DenseNet 2340 7

Inception 3000 27

BERT 4920 85

• CheckFreq reduces recovery time during an interruption from hours to seconds

• Recovery time : Time spent by the model to recover to the same state as it was 
before interruption
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Conclusion

• CheckFreq provides an automatic, fine-grained checkpointing 
framework for DNN training

• CheckFreq allows frequent checkpointing while incurring a low cost

• When the job is interrupted, CheckFreq reduces recovery time for 
popular DNNs from hours to seconds
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Thank you!

Contact : jaya@cs.utexas.edu

Source code :  https://github.com/msr-fiddle/CheckFreq
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