
CheckFreq
Frequent, Fine-Grained DNN Checkpointing

Jayashree Mohan, Amar Phanishayee, Vijay Chidambaram

1

Deep Neural Networks (DNNs)

• Widely used for a variety of tasks

Image Classification

Cat Dog

Language Translation 2

Duck

Dog

Dog

Text To Speech

Object detection

DNN Training

Input Dataset

Minibatch Forward pass Backward pass Weight update

Iteration

Model

Wi, bi

Epoch = One complete pass over the dataset

Wi, bi

Learned model
parameters

n
epochs

DNN training is compute-intensive and time-consuming!

3

DNN Checkpointing

GPU time

Epoch boundaries

In memory
Model – random

weights
Model – learned

weights

In memoryMigration/Crash

Wasted GPU cycles

Any interruption can wipe out the model parameters learned so far in memory,
restarting this expensive process!

4

DNN Checkpointing

GPU time

Epoch boundaries

In memory
Model – random

weights
Model – learned

weights

In memory

Checkpoint

Migration/Crash

Wasted GPU cycles

• Learned model parameters are written to persistent storage every so often
during training for fault-tolerance:
• The VMs may migrate, expire, or crash (e.g., spot instances), jobs may migrate (e.g.,

shared GPU clusters)

5

State of DNN Checkpointing Today

• Synchronous checkpoints => Large checkpoint stalls

• Manual checkpointing frequency => Typically performed at epoch
boundaries

• But epoch times are increasing due to higher computational
complexity of models and increasing dataset sizes

• Frequent interruptions : for e.g. preemptions in low-cost spot VMs

Need fine-grained, iteration-level checkpointing
6

Challenges for fine-grained checkpointing

Checkpointing
frequency

How often to
checkpoint?

Checkpoint
stalls

How to minimize the
cost of a checkpoint?

Data invariant

How to resume correctly
from a checkpoint?

• Every epoch processes all the items in the dataset exactly once, in a random shuffled order
• Must hold when training resumes after an interruption in the middle of an epoch

7

Challenges for fine-grained checkpointing

Checkpointing
frequency

Checkpoint
stalls

Data invariant

How often to
checkpoint?

How to minimize the
cost of a checkpoint?

How to resume correctly
from a checkpoint?

Our work addresses these challenges to provide an automated, frequent
checkpointing framework for DNN training

8

CheckFreq

• Fine-grained, automated checkpointing framework for DNN training

• Strikes a balance between low overhead and high frequency of
checkpointing => new checkpointing policy and mechanism

• Exploits the DNN computational model to perform pipelined in-
memory snapshots, GPU-based snapshots, and adaptive tuning of
checkpointing frequency

• CheckFreq reduces the recovery time for popular DNNs from hours to
seconds during job interruptions

Source code : https://github.com/msr-fiddle/CheckFreq

9

Outline

• Background and Motivation

• CheckFreq – Design
• Checkpointing Mechanism

• Checkpointing Policy

• Evaluation

10

CheckFreq Design

How to perform correct, low-cost
checkpointing?

Mechanism Policy

When to checkpoint?

2-phase DNN-aware checkpointing

Resumable data iterator

Systematic online profiling

Adaptive rate tuning

Low checkpoint stalls

Maintain data invariant

Initial checkpointing frequency

Manages interference from other jobs
11

CheckFreq Design

How to perform correct, low-cost
checkpointing?

Mechanism Policy

When to checkpoint?

2-phase DNN-aware checkpointing

Resumable data iterator

Systematic online profiling

Adaptive rate tuning

Low checkpoint stalls

Maintain data invariant

Initial checkpointing frequency

Manages interference from other jobs

Recovery
Guarantees

12

Outline

• Background and Motivation

• CheckFreq – Design
• Checkpointing Mechanism

• Checkpointing Policy

• Evaluation

13

2-Phase Checkpointing

• Synchronous checkpointing introduces checkpoint stalls => Runtime
overhead

• Low-cost checkpointing mechanism that is split into a pipelined
snapshot() and persist() phase

Snapshot() : Serialize and copy into a user-space buffer

Persist() : Write out the serialized contents to disk

14

Example

• Consider a policy that checkpoints every three iterations.

15

Weight update

Forward pass

Backward pass

Checkpoint (CPU)

(a) Baseline : Synchronous checkpointing

Example
1 1 1Training (GPU)

16

Weight update

Snapshotting

Disk IO

Forward pass

Backward pass

1 1 1

11

Training (GPU)

Checkpoint (CPU)

(a) Baseline : Synchronous checkpointing

Example

17

Weight update

Snapshotting

Disk IO

Forward pass

Backward pass

Checkpoint stall

1 1 1

11

Training (GPU)

Checkpoint (CPU)

(a) Baseline : Synchronous checkpointing

Example

18

Weight update

Snapshotting

Disk IO

Forward pass

Backward pass

Checkpoint stall

1 1 1 3 3 3

11

2 2 2 4 4 4

4 4

Training (GPU)

Checkpoint (CPU)

(a) Baseline : Synchronous checkpointing

Example

19

Weight update

Snapshotting

Disk IO

Forward pass

Backward pass

Checkpoint stall

1 1 1 3 3 3

11

2 2 2 4 4 4

4 4

Training (GPU)

Checkpoint (CPU)

(a) Baseline : Synchronous checkpointing

Training (GPU)

Checkpoint (CPU)

(b) Only persist() pipelining

1 1 1

Example

20

Weight update

Snapshotting

Disk IO

Forward pass

Backward pass

Checkpoint stall

1 1 1 3 3 3

11

2 2 2 4 4 4

4 4

Training (GPU)

Checkpoint (CPU)

(a) Baseline : Synchronous checkpointing

Training (GPU)

Checkpoint (CPU)

(b) Only persist() pipelining

1 1 1

1

Example

21

Weight update

Snapshotting

Disk IO

Forward pass

Backward pass

Checkpoint stall

1 1 1 3 3 3

11

2 2 2 4 4 4

4 4

Training (GPU)

Checkpoint (CPU)

(a) Baseline : Synchronous checkpointing

Training (GPU)

Checkpoint (CPU)

(b) Only persist() pipelining

1 1 1 3 3 3

11

2 2 2 4 4 4

4 4

5 5 5 6 6 6

Example

22

1 1 1

1

2 2 2Training (GPU)

Checkpoint (CPU)

Weight update

Snapshotting

Disk IO

Forward pass

Backward pass

Checkpoint stall

(c) Snapshot() and persist() pipelining

1 1 1 3 3 3

11

2 2 2 4 4 4

4 4

Training (GPU)

Checkpoint (CPU)

(a) Baseline : Synchronous checkpointing

Training (GPU)

Checkpoint (CPU)

(b) Only persist() pipelining

1 1 1 3 3 3

11

2 2 2 4 4 4

4 4

5 5 5 6 6 6

Example

23

1 1 1 3 3 3

11

2 2 2 4 4 4Training (GPU)

Checkpoint (CPU)

Weight update

Snapshotting

Disk IO

Forward pass

Backward pass

Checkpoint stall

(c) Snapshot() and persist() pipelining

1 1 1 3 3 3

11

2 2 2 4 4 4

4 4

Training (GPU)

Checkpoint (CPU)

(a) Baseline : Synchronous checkpointing

Training (GPU)

Checkpoint (CPU)

(b) Only persist() pipelining

1 1 1 3 3 3

11

2 2 2 4 4 4

4 4

5 5 5 6 6 6

Example

24

1 1 1 3 3 3

11

2 2 2 4 4 4

4 4

5 5 5 6 6 6Training (GPU)

Checkpoint (CPU)

Weight update

Snapshotting

Disk IO

Forward pass

Backward pass

Checkpoint stall

(c) Snapshot() and persist() pipelining

1 1 1 3 3 3

11

2 2 2 4 4 4

4 4

Training (GPU)

Checkpoint (CPU)

(a) Baseline : Synchronous checkpointing

Training (GPU)

Checkpoint (CPU)

(b) Only persist() pipelining

1 1 1 3 3 3

11

2 2 2 4 4 4

4 4

5 5 5 6 6 6

Example

25

GPU-optimized Snapshots

• Cost of serialization and snapshot() is upto 10x lower when done on
the GPU

• To further reduce the checkpoint cost, CheckFreq snapshots on the
GPU, and asynchronously writes it to CPU memory if it profiles spare
memory on the GPU

• If GPU memory is fully utilized, it falls back to pipelined, CPU-side
snapshots

26

Outline

• Background and Motivation

• CheckFreq – Design
• Checkpointing Mechanism

• Checkpointing Policy

• Evaluation

27

Checkpointing policy

• Determines when to initiate a checkpoint

• Checkpoints every k iterations, such that
• the cost of one checkpoint can be amortized over k iterations

• Runtime overhead introduced due to checkpointing is within a small user-
given percentage of the actual compute time (say 5%)

28

Systematic Online Profiling

• CheckFreq’s data iterator automatically profiles several iteration-level
and checkpoint-specific metrics

Iteration time
Time for weight

update
Time for GPU

snapshot()
Time for CPU

snapshot()

Available disk
throughput Checkpoint size

Peak GPU
memory util

Total GPU
memory

Algorithmically determines the checkpointing frequency such that:
• Overhead due to checkpoint stalls is within the user-given limit

29

Outline

• Background and Motivation

• CheckFreq – Design
• Checkpointing Mechanism

• Checkpointing Policy

• Evaluation

30

Experimental Setup

• Checkfreq is integrated with PyTorch
• Uses the state-of-the-art NVIDIA DALI data loading library to support

resumability

• Experiments are performed on two different servers from an internal
GPU cluster at Microsoft

1. Conf-Volta : Server with eight V100 GPUs (32GiB), with a SSD

2. Conf-Pascal : Server with eight 1080Ti GPUs (11GiB), with a HDD

31

Models and Experiments

• We evaluate CheckFreq on 7 different DNNs :
• ResNet18, ResNet50, ResNext101, DenseNet121, VGG16, InceptionV3 on Imagenet-1k

• Bert-Large pretraining on Wikipedia & BookCorpus dataset

• Experiments to evaluate:

Accuracy implications of
data invariant

Checkpoint
stalls

Recovery Time

Breakdown of benefits
due to pipelining

Adaptive frequency
tuning

End-to-end training
with interruptions

32

Models and Experiments

• We evaluate CheckFreq on 7 different DNNs :
• ResNet18, ResNet50, ResNext101, DenseNet121, VGG16, InceptionV3 on Imagenet-1k

• Bert-Large pretraining on Wikipedia & BookCorpus dataset

• Experiments to evaluate:

Accuracy implications of
data invariant

Checkpoint
stalls

Recovery Time

Breakdown of benefits
due to pipelining

Adaptive frequency
tuning

End-to-end training
with interruptions

33

CheckFreq reduces checkpoint stalls

• Train VGG16 for 300 iterations on Conf-Volta
• Checkpointing mechanisms :

• Synchronous
• Persist() pipelining only
• CheckFreq - Persist() and snapshot() pipelining

• Checkpointing frequency : 15 iterations

34

CheckFreq reduces checkpoint stalls

0

1

2

3

4

5

1 9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0

5

1
1

3

1
2

1

1
2

9

1
3

7

1
4

5

1
5

3

1
6

1

1
6

9

1
7

7

1
8

5

1
9

3

2
0

1

2
0

9

2
1

7

2
2

5

2
3

3

2
4

1

2
4

9

2
5

7

2
6

5

2
7

3

2
8

1

2
8

9

2
9

7

Ti
m

e
 f

o
r

a
it

e
ra

ti
o

n
 (

s)

Iteration #

Synchronous

35

CheckFreq reduces checkpoint stalls

0

1

2

3

4

5

1 9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0

5

1
1

3

1
2

1

1
2

9

1
3

7

1
4

5

1
5

3

1
6

1

1
6

9

1
7

7

1
8

5

1
9

3

2
0

1

2
0

9

2
1

7

2
2

5

2
3

3

2
4

1

2
4

9

2
5

7

2
6

5

2
7

3

2
8

1

2
8

9

2
9

7

Ti
m

e
 f

o
r

a
it

e
ra

ti
o

n
 (

s)

Iteration #

Synchronous

36

CheckFreq reduces checkpoint stalls

• Performing asynchronous IO reduces checkpoint cost by 2x but still
results in significant stalls

0

1

2

3

4

5

1 9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0

5

1
1

3

1
2

1

1
2

9

1
3

7

1
4

5

1
5

3

1
6

1

1
6

9

1
7

7

1
8

5

1
9

3

2
0

1

2
0

9

2
1

7

2
2

5

2
3

3

2
4

1

2
4

9

2
5

7

2
6

5

2
7

3

2
8

1

2
8

9

2
9

7

Ti
m

e
 f

o
r

a
it

e
ra

ti
o

n
 (

s)

Iteration #

Synchronous Persist() pipelining

37

CheckFreq reduces checkpoint stalls

• CheckFreq further reduces stalls by carefully pipelining checkpointing
with compute

0

1

2

3

4

5

1 9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0

5

1
1

3

1
2

1

1
2

9

1
3

7

1
4

5

1
5

3

1
6

1

1
6

9

1
7

7

1
8

5

1
9

3

2
0

1

2
0

9

2
1

7

2
2

5

2
3

3

2
4

1

2
4

9

2
5

7

2
6

5

2
7

3

2
8

1

2
8

9

2
9

7

Ti
m

e
 f

o
r

a
it

e
ra

ti
o

n
 (

s)

Iteration #

Synchronous Persist() pipelining CheckFreq

38

Overall Training Overhead

0

10

20

30

40

50

60

70

80

Res50 ResNext Res18 Inception VGG16 DenseNet BERT

P
e

rc
e

n
t

O
ve

rh
e

ad
Baseline CheckFreq

39

Overall Training Overhead

• When the baseline checkpointing mechanism is performed at a frequency
chosen by CheckFreq, it introduces 20 – 70% overhead in training time

0

10

20

30

40

50

60

70

80

Res50 ResNext Res18 Inception VGG16 DenseNet BERT

P
e

rc
e

n
t

O
ve

rh
e

ad
Baseline CheckFreq

40

CheckFreq lowers recovery time

Model
Epoch-based

(s)
CheckFreq

(s)

Res18

Res50

VGG16

ResNext

DenseNet

Inception

BERT

• Recovery time : Time spent by the model to recover to the same state as it was
before interruption

41

CheckFreq lowers recovery time

Model
Epoch-based

(s)
CheckFreq

(s)

Res18 840 5

Res50 2100 24

VGG16 5700 25

ResNext 7080 32

DenseNet 2340 7

Inception 3000 27

BERT 4920 85

• CheckFreq reduces recovery time during an interruption from hours to seconds

• Recovery time : Time spent by the model to recover to the same state as it was
before interruption

42

Conclusion

• CheckFreq provides an automatic, fine-grained checkpointing
framework for DNN training

• CheckFreq allows frequent checkpointing while incurring a low cost

• When the job is interrupted, CheckFreq reduces recovery time for
popular DNNs from hours to seconds

43

Thank you!

Contact : jaya@cs.utexas.edu

Source code : https://github.com/msr-fiddle/CheckFreq

44

