
Finding Crash-Consistency Bugs with Bounded Black-Box Crash Testing

Jayashree Mohan∗ 1 Ashlie Martinez∗ 1 Soujanya Ponnapalli1 Pandian Raju1

Vijay Chidambaram1,2

1University of Texas at Austin 2VMware Research

Abstract
We present a new approach to testing file-system crash
consistency: bounded black-box crash testing (B3). B3

tests the file system in a black-box manner using work-
loads of file-system operations. Since the space of pos-
sible workloads is infinite, B3 bounds this space based
on parameters such as the number of file-system oper-
ations or which operations to include, and exhaustively
generates workloads within this bounded space. Each
workload is tested on the target file system by simulat-
ing power-loss crashes while the workload is being exe-
cuted, and checking if the file system recovers to a cor-
rect state after each crash. B3 builds upon insights de-
rived from our study of crash-consistency bugs reported
in Linux file systems in the last five years. We observed
that most reported bugs can be reproduced using small
workloads of three or fewer file-system operations on a
newly-created file system, and that all reported bugs re-
sult from crashes after fsync() related system calls.
We build two tools, CRASHMONKEY and ACE, to demon-
strate the effectiveness of this approach. Our tools are
able to find 24 out of the 26 crash-consistency bugs re-
ported in the last five years. Our tools also revealed
10 new crash-consistency bugs in widely-used, mature
Linux file systems, seven of which existed in the kernel
since 2014. The new bugs result in severe consequences
like broken rename atomicity and loss of persisted files.

1 Introduction
A file system is crash consistent if it always recovers to a
correct state after a crash due to a power loss or a kernel
panic. The file-system state is correct if the file system’s
internal data structures are consistent, and files that were
persisted before the crash are not lost or corrupted. When
developers added delayed allocation to the ext4 file sys-
tem [37] in 2009, they introduced a crash-consistency
bug that led to wide-spread data loss [24]. Given the po-
tential consequences of crash-consistency bugs and the

∗Both authors contributed equally

fact that even professionally-managed datacenters occa-
sionally suffer from power losses [39–42, 60, 61], it is
important to ensure that file systems are crash consistent.

Unfortunately, there is little to no crash-consistency
testing today for widely-used Linux file systems such as
ext4, xfs [55], btrfs [51], and F2FS [25]. The current
practice in the Linux file-system community is to not do
any proactive crash-consistency testing. If a user reports
a crash-consistency bug, the file-system developers will
then reactively write a test to capture that bug. Linux file-
system developers use xfstests [16], an ad-hoc col-
lection of correctness tests, to perform regression testing.
xfstests contains a total of 482 correctness tests that
are applicable to all POSIX file systems. Of these 482
tests, only 26 (5%) are crash-consistency tests. Thus,
file-system developers have no easy way of systemati-
cally testing the crash consistency of their file systems.

This paper introduces a new approach to testing file-
system crash consistency: bounded black-box crash test-
ing (B3). B3 is a black-box testing approach: no file-
system code is modified. B3 works by exhaustively gen-
erating workloads within a bounded space, simulating
a crash after persistence operations like fsync() in
the workload, and finally testing whether the file sys-
tem recovers correctly from the crash. We implement the
B3 approach by building two tools, CRASHMONKEY and
ACE. Our tools are able to find 24 out of the 26 crash-
consistency bugs reported in the last five years, across
seven kernel versions and three file systems. Further-
more, the systematic nature of B3 allows our tools to
find new bugs: CRASHMONKEY and ACE find 10 bugs
in widely-used Linux file systems which lead to severe
consequences such as rename() not being atomic and
files disappearing after fsync(). We have reported all
new bugs; developers have submitted patches for four,
and are working to fix the rest.

We formulated B3 based on our study of all 26 crash-
consistency bugs in ext4, xfs, btrfs, and F2FS reported in
the last five years (§3). Our study provided key insights

1

that made B3 feasible: most reported bugs involved a
small number of file-system operations on a new file sys-
tem, with a crash right after a persistence point (a call to
fsync(), fdatasync(), or sync that flushes data
to persistent storage). Most bugs could be found or re-
produced simply by systematic testing on a small space
of workloads, with crashes only after persistence points.
Note that without these insights which bound the work-
load space, B3 is infeasible: there are infinite workloads
that can be run on infinite file-system images.

Choosing to crash the system only after persistence
points is the one of the key decisions that makes B3

tractable. B3 does not explore bugs that arise due to
crashes in the middle of a file-system operation because
file-system guarantees are undefined in such scenarios.
Moreover, B3 cannot reliably assume that the on-storage
file-system state has been modified if there is no per-
sistence point. Crashing only after persistence points
bounds the work to be done to test crash consistency, and
also provides clear correctness criteria: files and direc-
tories which were successfully persisted before the crash
must survive the crash and not be corrupted.

B3 bounds the space of workloads in several other
ways. First, B3 restricts the number of file-system op-
erations in the workload, and simulates crashes only af-
ter persistence points. Second, B3 restricts the files and
directories that function as arguments to the file-system
operations in the workload. Finally, B3 restricts the ini-
tial state of the system to be a small, new file system. To-
gether, these bounds greatly reduce the space of possible
workloads, allowing CRASHMONKEY and ACE to exhaus-
tively generate and test workloads.

An approach like B3 is only feasible if we can auto-
matically and efficiently check crash consistency for ar-
bitrary workloads. We built CRASHMONKEY, a frame-
work that simulates crashes during workload execution
and tests for consistency on the recovered file-system
image. CRASHMONKEY first profiles a given workload,
capturing all the IO resulting from the workload. It then
replays IO requests until a persistence point to create a
new file-system image we term a crash state. At each
persistence point, CRASHMONKEY also captures a snap-
shot of files and directories which have been explicitly
persisted (and should therefore survive a crash). CRASH-
MONKEY then mounts the file system in each crash state,
allows the file system to recover, and uses it’s own fine-
grained checks to validate if persisted data and metadata
are available and correct. Thus, CRASHMONKEY is able
to check crash consistency for arbitrary workloads auto-
matically, without any manual effort from the user. This
property is key to realizing the B3 approach.

We built the Automatic Crash Explorer (ACE) to ex-
haustively generate workloads given user constraints and
file-system semantics. ACE first generates a sequence of
file-system operations; e.g., a link() followed by a
rename(). Next, ACE fills in the arguments of each
file-system operation. It then exhaustively generates
workloads where each file-system operation can option-
ally be followed by an fsync(), fdatasync(), or
a global sync command. Finally, ACE adds operations
to satisfy any dependencies (e.g., a file must exist before
being renamed). Thus, given a set of constraints, ACE

generates an exhaustive set of workloads, each of which
is tested with CRASHMONKEY on the target file system.

B3 offers a new point in the spectrum of techniques
addressing file-system crash consistency, alongside veri-
fied file systems [8, 9, 53] and model checking [63, 64].
Unlike these approaches, B3 targets widely deployed file
systems written in low-level languages, and does not re-
quire annotating or modifying file-system code.

However, B3 is not without limitations as it is not
guaranteed to find all crash-consistency bugs. Currently,
ACE’s bounds do not expose bugs that require a large
number of operations or exhaustion of file-system re-
sources. While CRASHMONKEY can test such a work-
load, ACE will not be able to automatically generate the
workload. Despite these limitations, we are hopeful that
the black-box nature and ease-of-use of our tools will en-
courage their adoption in the file-system community, un-
like model checking and verified file systems. We are
encouraged that researchers at Hanyang University are
using our tools to test the crash consistency of their re-
search file system, BarrierFS [62].

This paper makes the following contributions:
• A detailed analysis of crash-consistency bugs re-

ported across three widely-used file systems and
seven kernel versions in the last five years (§3)
• The bounded black-box crash testing approach (§4)
• The design and implementation of CRASHMONKEY

and ACE1 (§5)
• Experimental results demonstrating that our tools

are able to efficiently find existing and new bugs
across widely-used Linux file systems (§6)

2 Background
We first provide some background on file-system crash
consistency, why crash-consistency bugs occur, and why
it is important to test file-system crash consistency.

Crash consistency. A file system is crash-consistent if a
number of invariants about the file-system state hold af-
ter a crash due to power loss or a kernel panic [10, 38].

1 https://github.com/utsaslab/crashmonkey

2

https://github.com/utsaslab/crashmonkey

Typically, these invariants include using resources only
after initialization (e.g., path-names point to initialized
metadata such as inodes), safely reusing resources after
deletion (e.g., two files shouldn’t think they both own
the same data block), and atomically performing cer-
tain operations such as renaming a file. Conventionally,
crash consistency is only concerned with internal file-
system integrity. A bug that loses previously persisted
data would not be considered a crash-consistency bug as
long as the file system remains internally consistent. In
this paper, we widen the definition to include data loss.
Thus, if a file system loses persisted data or files after
a crash, we consider it a crash-consistency bug. The
Linux file-system developers agree with this wider defi-
nition of crash consistency [15, 56]. However, it is im-
portant to note that data or metadata that has not been
explicitly persisted does not fall under our definition; file
systems are allowed to lose such data in case of power
loss. Finally, there is an important difference between
crash-consistency bugs and file-system correctness bugs:
crash-consistency bugs do not lead to incorrect behavior
if no crash occurs.

Why crash-consistency bugs occur. The root of crash
consistency bugs is the fact that most file-system opera-
tions only modify in-memory state. For example, when
a user creates a file, the new file exists only in memory
until it is explicitly persisted via the fsync() call or by
a background thread which periodically writes out dirty
in-memory data and metadata.

Modern file systems are complex and keep a signifi-
cant number of metadata-related data structures in mem-
ory. For example, btrfs organizes its metadata as B+
trees [51]. Modifications to these data structures are ac-
cumulated in memory and written to storage either on
fsync(), or by a background thread. Developers could
make two common types of mistakes while persisting
these in-memory structures, which consequently lead to
crash-consistency bugs. The first is neglecting to update
certain fields of the data structure. For example, btrfs had
a bug where the field in the file inode that determined
whether it should be persisted was not updated. As a re-
sult, fsync() on the file became a no-op, causing data
loss on a crash [28]. The second is improperly order-
ing data and metadata when persisting it. For example,
when delayed allocation was introduced in ext4, applica-
tions that used rename to atomically update files lost data
since the rename could be persisted before the file’s new
data [24]. Despite the fact that the errors that cause crash-
consistency bugs are very different in these two cases, the
fundamental problem is that some in-memory state that
is required to recover correctly is not written to disk.

1 create foo
2 link foo bar
3 sync
4 unlink bar
5 create bar
6 fsync bar
7 CRASH!

Figure 1: Example crash-consistency bug. The figure
shows the workload to expose a crash-consistency bug
that was reported in the btrfs file system in Feb 2018 [33].
The bug causes the file system to become un-mountable.

POSIX and file-system guarantees. Nominally, Linux
file systems implement the POSIX API, providing guar-
antees as laid out in the POSIX standard [18]. Unfor-
tunately, POSIX is extremely vague. For example, un-
der POSIX it is legal for fsync() to not make data
durable [48]. Mac OSX takes advantage of this legality,
and requires users to employ fcntl(F FULLFSYNC)
to make data durable [3]. As a result, file systems of-
ten offer guarantees above and beyond what is required
by POSIX. For example, on ext4, persisting a new file
will also persist its directory entry. Unfortunately, these
guarantees vary across different file systems, so we con-
tacted the developers of each file system to ensure we are
testing the guarantees that they seek to provide.

Example of a crash-consistency bug. Figure 1 shows
a crash-consistency bug in btrfs that causes the file
system to become un-mountable (unavailable) after the
crash. Resolving the bug requires file-system repair us-
ing btrfs-check; for lay users, this requires guidance
of the developers [7]. This bug occurs on btrfs because
the unlink affects two different data structures which be-
come out of sync if there is a crash. On recovery, btrfs
tries to unlink bar twice, producing an error.

Why testing crash consistency is important.
File-system researchers are developing new crash-
consistency techniques [13, 14, 46] and de-
signing new file systems that increase perfor-
mance [1, 5, 21, 23, 50, 54, 68, 69]. Meanwhile,
Linux file systems such as btrfs include a number of
optimizations that affect the ordering of IO requests, and
hence, crash consistency. However, crash consistency
is subtle and hard to get right, and a mistake could lead
to silent data corruption and data loss. Thus, changes
affecting crash consistency should be carefully tested.

State of crash-consistency testing today.
xfstests [16] is a regression test suite to check
file-system correctness, with a small proportion (5%)
of crash-consistency tests. These tests are aimed at
avoiding the recurrence of the same bug over time, but

3

Consequence # bugs

Corruption 19

Data Inconsistency 6

Un-mountable file system 3

Total 28

Kernel Version # bugs

3.12 3

3.13 9

3.16 1

4.1.1 2

4.4 9

4.15 3

4.16 (latest) 1

Total 28

File System # bugs

ext4 2

F2FS 2

btrfs 24

Total 28

of ops required # bugs

1 3

2 14

3 9

Total 26

Table 1: Analyzing crash-consistency bugs. The ta-
bles break down the 26 unique crash-consistency bugs
reported over the last five years (since 2013) by differ-
ent criteria. Two bugs were reported on two different file
systems, leading to a total of 28 bugs.

do not generalize to identifying variants of the bug. Ad-
ditionally, each of these test cases requires the developer
to write a checker describing the correct behavior of
the file system after a crash. Given the infinite space of
workloads, it is extremely hard to handcraft workloads
that could reveal bugs. These factors make xfstests
insufficient to identify new crash-consistency bugs.

3 Studying Crash-Consistency Bugs
We present an analysis of 26 unique crash-consistency
bugs reported by users over the last five years on widely-
used Linux file systems [58]. We find these bugs ei-
ther by examining mailing list messages or looking at the
crash-consistency tests in the xfstests regression test
suite. Few of the crash-consistency tests in xfstests
link to the bugs that resulted in the test being written.

Due to the nature of crash-consistency bugs (all in-
memory information is lost upon crash), it is hard to tie
them to a specific workload. As a result, the number of
reported bugs is low. We believe there are many crash-
consistency bugs that go unreported in the wild.

We analyze the bugs based on consequence, kernel
version, file system, and the number of file-system oper-
ations required to reproduce them. There are 26 unique
bugs spread across ext4, F2FS, and btrfs. Each unique

bug requires a unique set of file-system operations to re-
produce. Two bugs occur on two file systems (F2FS and
ext4, F2FS and btrfs), leading to a total of 28 bugs.

Table 1 presents some statistics about the crash-
consistency bugs. The table presents the kernel version
in which the bug was reported. If the bug report did
not include a version, it presents the latest kernel ver-
sion in which B3 could reproduce the bug (the two bugs
that B3 could not reproduce appear in kernel 3.13). The
bugs have severe consequences, ranging from file-system
corruption to the file system becoming un-mountable.
The four most common file-system operations involved
in crash-consistency bugs were write(), link(),
unlink(), and rename(). Most reported bugs re-
sulted from either reusing filenames in multiple file-
system operations or write operations to overlapping file
regions. Most reported bugs could be reproduced with
three or fewer file-system operations.

Examples. Table 2 showcases a few of the crash-
consistency bugs. Bug #1 [27] involves creating two
files in a directory and persisting only one of them. btrfs
log recovery incorrectly counts the directory size, mak-
ing the directory un-removable thereafter. Bug #2 [29]
involves creating a hard link to an already existing file.
A crash results in btrfs recovering the file with a size
0, thereby making its data inaccessible. A similar bug
(#5 [19]) manifests in ext4 in the direct write path, where
the write succeeds and blocks are allocated, but the file
size is incorrectly updated to be zero, leading to data loss.

Complexity leads to bugs. The ext4 file system has
undergone more than 15 years of development, and, as
a result, has only two bugs. The btrfs and F2FS file
systems are more recent: btrfs was introduced in 2007,
while F2FS was introduced in 2012. In particular, btrfs
is an extremely complex file system that provides fea-
tures such as snapshots, cloning, out-of-band deduplica-
tion, and compression. btrfs maintains its metadata (such
as inodes and bitmaps) in the form of various copy-on-
write B+ trees. This makes achieving crash consistency
tricky, as the updates have to be propagated to several
trees. Thus, it is not surprising that most reported crash-
consistency bugs occurred in btrfs. As file systems be-
come more complex in the future, we expect to see a
corresponding increase in crash-consistency bugs.

Crash-consistency bugs are hard to find. Despite the
fact that the file systems we examined were widely used,
some bugs have remained hidden in them for years. For
example, btrfs had a crash-consistency bug that was only
discovered seven years after it was introduced. The
bug was caused by incorrectly processing a hard link in

4

Bug # File System Consequence # of ops ops involved (excluding persistence operations)

1 btrfs Directory un-removable 2 creat(A/x), creat(A/y)

2 btrfs Persisted data lost 2 pwrite(x), link(x,y)

3 btrfs Directory un-removable 3 link(x,A/x), link(x,A/y), unlink(A/y)

4 F2FS Persisted file disappears 3 pwrite(x), rename(x,y), pwrite(x)

5 ext4 Persisted data lost 2 pwrite(x), direct write(x)

Table 2: Examples of crash-consistency bugs. The table shows some of the crash-consistency bugs reported in the
last five years. The bugs have severe consequences, ranging from losing user data to making directories un-removable.

btrfs’s data structures. When a hard link is added, the
directory entry is added to one data structure, while the
inode is added to another data structure. When a crash
occurred, only one of these data structures would be cor-
rectly recovered, resulting in the directory containing the
hard link becoming un-removable [30]. This bug was
present since the log tree was added in 2008; however,
the bug was only discovered in 2015.

Systematic testing is required. Once the hard link bug
in btrfs was discovered, the btrfs developers quickly fixed
it. However, they only fixed one code path that could lead
to the bug. The same bug could be triggered in another
code path, a fact that was only discovered four months
after the original bug was reported. While the original
bug workload required creating hard links and calling
fsync() on the original file and parent directory, this
one required calling fsync() on a sibling in the direc-
tory where the hard link was created [31]. Systematic
testing of the file system would have revealed that the
bug could be triggered via an alternate code path.

Small workloads can reveal bugs on an empty file sys-
tem. Most of the reported bugs do not require a special
file-system image or a large number of file-system opera-
tions to reproduce. 24 out of the 26 reported bugs require
three or fewer core file-system operations to reproduce
on an empty file system. This count is low because we
do not count dependent operations: for example, a file
has to exist before being renamed and a directory has to
exist before a file can be created inside it. Such depen-
dent operations can be inferred given the core file-system
operations. Of the remaining two bugs, one required a
special command (dropcaches) to be run during the
workload for the bug to manifest. The other bug required
specific setup: 3000 hard links had to already exist (forc-
ing an external reflink) for the bug to manifest.

Reported bugs involve a crash after persistence. All
reported bugs involved a crash right after a persistence
point: a call to fsync(), fdatasync(), or the
global sync command. These commands are important

because file-system operations only modify in-memory
metadata and data by default. Only persistence points
reliably change the file-system state on storage. There-
fore, unless a file or directory has been persisted, it
cannot be expected to survive a crash. While crashes
could technically occur at any point, a user cannot com-
plain if a file that has not been persisted goes missing
after a crash. Thus, every crash-consistency bug in-
volves persisted data or metadata that is affected by the
bug after a crash, and a workload that does not have a
persistence point cannot lead to a reproducible crash-
consistency bug. This also points to an effective way to
find crash-consistency bugs: perform a sequence of file-
system operations, change on-storage file-system state
with fsync() or similar calls, crash, and then check
files and directories that were previously persisted.

4 B3: Bounded Black-Box Crash Testing
Based on the insights from our study of crash-
consistency bugs, we introduce a new approach to testing
file-system crash consistency: Bounded Black-Box crash
testing (B3). B3 is a black-box testing approach built
upon the insight that most reported crash-consistency
bugs can be found by systematically testing small se-
quences of file-system operations on a new file system.
B3 exercises the file system through its system-call API,
and observes the file-system behavior via read and write
IO. As a result, B3 does not require annotating or modi-
fying file-system source code.

4.1 Overview

B3 generates sequences of file-system operations, called
workloads. Since the space of possible workloads is in-
finite, B3 bounds the space of workloads using insights
from the study. Within the determined bounds, B3 ex-
haustively generates and tests all possible workloads.
Each workload is tested by simulating a crash after each
persistence point, and checking if the file system recovers
to a correct state. B3 performs fine-grained correctness
checks on the recovered file-system state; only files and

5

directories that were explicitly persisted are checked. B3

checks for both data and metadata (size, link count, and
block count) consistency for files and directories.

Crash points. The main insight from the study that
makes an approach like B3 feasible is the choice of crash
points; a crash is simulated only after each persistence
point in the workload instead of in the middle of file-
system operations. This design choice was motivated by
two factors. First, file-system guarantees are undefined
if a crash occurs in the middle of a file-system opera-
tion; only files and directories that were previously suc-
cessfully persisted need to survive the crash. File-system
developers are overloaded, and bugs involving data or
metadata that has not been explicitly persisted is given
low priority (and sometimes not acknowledged as a bug).
Second, if we crash in the middle of an operation, there
are a number of correct states the file system could re-
cover to. If a file-system operation translates to n block
IO requests, there could be 2n different on-disk crash
states if we crashed anywhere during the operation. Re-
stricting crashes to occur after persistence points bounds
this space linearly in the number of operations compris-
ing the workload. The small set of crash points and cor-
rect states makes automated testing easier. Our choice of
crash points naturally leads to bugs where persisted data
and metadata is corrupted or missing and file-system de-
velopers are strongly motivated to fix such bugs.

4.2 Bounds used by B3

Based on our study of crash-consistency bugs, B3 bounds
the space of possible workloads in several ways:

1. Number of operations. B3 bounds the number of
file-system operations (termed the sequence length)
in the workload. A seq-X workload has X core
file-system operations in it, not counting dependent
operations such as creating a file before renaming it.

2. Files and directories in workload. We observe
that in the reported bugs, errors result from the reuse
of a small set of files for metadata operations. Thus,
B3 restricts workloads to use few files per directory,
and a low directory depth. This restriction automat-
ically reduces the inputs for metadata-related oper-
ations such as rename().

3. Data operations. The study also indicated that
bugs related to data inconsistency mainly occur due
to writes to overlapping file ranges. In most cases,
the bugs are not dependent on the exact offset and
length used in the writes, but on the interaction be-
tween the overlapping regions from writes. The
study indicates that a broad classification of writes

such as appends to the end of a file, overwrites to
overlapping regions of file, etc. is sufficient to find
crash-consistency bugs.

4. Initial file-system state. Most of the bugs analyzed
in the study did not require a specific initial file-
system state (or a large file system) to be revealed.
Moreover, most of the studied bugs could be repro-
duced starting from the same, small file-system im-
age. Therefore, B3 can test all workloads starting
from the same initial file-system state.

4.3 Fine-grained correctness checking

B3 uses fine-grained correctness checks to validate the
data and metadata of persisted files and directories in
each crash state. Since fsck is both time-consuming
to run and can miss data loss/corruption bugs, it is not a
suitable checker for B3.

4.4 Limitations

The B3 approach has a number of limitations:
1. B3 does not make any guarantees about finding

all crash-consistency bugs. It is sound but incom-
plete. However, because B3 tests exhaustively, if the
workload that triggers the bug falls within the con-
strained workload space, B3 will find it. Therefore,
the effectiveness of B3 depends upon the bounds
chosen and the number of workloads tested.

2. B3 focuses on a specific class of bugs. It does not
simulate a crash in the middle of a file-system oper-
ation and it does not re-order IO requests to create
different crash states. The implicit assumption is
that the core crash-consistency mechanism, such as
journaling [49] or copy-on-write [20, 52], is work-
ing correctly. Instead, we assume that it is the rest of
the file system that has bugs. The crash-consistency
bug study indicates this assumption is reasonable.

3. B3 focuses on workloads where files and directories
are explicitly persisted. If we created a file, waited
one hour, then crashed, and found that the file was
gone after the file-system recovered, this would also
be a crash-consistency bug. However, B3 does not
explore such workloads as they take a significant
amount of time to run and are not easily reproduced
in a deterministic fashion.

4. Due to its black-box nature, B3 cannot pinpoint the
exact lines of code that result in the observed bug.
Once a bug has been revealed by B3, finding the root
cause requires further investigation. However, B3

aids in investigating the root cause of the bug since
it provides a way to reproduce the bug in a deter-
ministic fashion.

6

Automatic Crash Explorer (Ace)

Target File System

..

CrashMonkey
Crash State Generator Auto

Checker
Oracle

Crash State

Snapshot Generator

Workload 1 Workload n

Bounds (length, operations, args)

Output:
Bug Report with workload, crash point, file system,
kernel version, expected state, state after crash.

Figure 2: System architecture. Given bounds for ex-
ploration, ACE generates a set of workloads. Each work-
load is then fed to CRASHMONKEY, which generates a
set of crash states and corresponding oracles. The Au-
toChecker compares persisted files in each oracle/crash
state pair; a mismatch indicates a bug.

Despite its shortcomings, we believe B3 is a useful ad-
dition to the arsenal of techniques for testing file-system
crash consistency. The true strengths of B3 lie in its sys-
tematic nature and the fact that it does not require any
changes to existing systems. Therefore, it is ideal for
complex and widely-used file systems written in low-
level languages like C, where stronger approaches like
verification cannot be easily used.

5 CrashMonkey and Ace
We realize the B3 approach by building two tools,
CRASHMONKEY and ACE. As shown in Figure 2, CRASH-
MONKEY is responsible for simulating crashes at differ-
ent points of a given workload and testing if the file sys-
tem recovers correctly after each simulated crash, while
the Automatic Crash Explorer (ACE) is responsible for
exhaustively generating workloads in a bounded space.

5.1 CrashMonkey

CRASHMONKEY uses record-and-replay techniques to
simulate a crash in the middle of the workload and test if
the file system recovers to a correct state after the crash.
For maximum portability, CRASHMONKEY treats the file
system as a black box, only requiring that the file system
implement the POSIX API.

Overview. CRASHMONKEY operates in three phases as
shown in Figure 3. In the first phase, CRASHMONKEY

profiles the workload by collecting information about all
file-system operations and IO requests made during the

Initial
FS State

Final
FS StateRecord IO

.. ..

Initial
FS

State
Replay IO up to Persistence

point

Record IO up to Persistence
point and safely unmount

Oracle
Auto

Checker
Bug

Report

Block IO due to
workload

Block IO forced due
to unmount

Persistence point

Crash
State

Figure 3: CRASHMONKEY operation. CRASHMONKEY

first records the block IO requests that the workload
translates to, capturing reference images called oracles
after each persistence point. CRASHMONKEY then gener-
ates crash states by replaying the recorded IO and tests
for consistency against the corresponding oracle.

workload. The second phase replays IO requests until
a persistence point to create a crash state. The crash
state represents the state of storage if the system had
crashed after a persistence operation completed. CRASH-
MONKEY then mounts the file system in the crash state
and allows the file system to perform recovery. At each
persistence point, CRASHMONKEY also captures a refer-
ence file-system image, termed the oracle, by safely un-
mounting it so the file system completes any pending
operations or checkpointing. The oracle represents the
expected state of the file system after a crash. In the ab-
sence of bugs, persisted files should be the same in the
oracle and the crash state after recovery. In the third
phase, CRASHMONKEY’s AutoChecker tests for correct-
ness by comparing the persisted files and directories in
the oracle with the crash state after recovery.

CRASHMONKEY is implemented as two kernel mod-
ules and a set of user-space utilities. The kernel modules
consist of 1300 lines of C code which can be compiled
and inserted into the kernel at run time, thus avoiding
the need for long kernel re-compilations. The user-space
utilities consist of 4800 lines of C++ code. CRASHMON-
KEY’s separation into kernel modules and user-space util-
ities allows rapid porting to a different kernel version;
only the kernel modules need to be ported to the target
kernel. This allowed us to port CRASHMONKEY to seven
kernels to reproduce the bugs studied in §3.

Profiling workloads. CRASHMONKEY profiles work-
loads at two levels of the storage stack: it records block
IO requests, and it records system calls. It uses two ker-
nel modules to record block IO requests and create crash
states and oracles.

The first kernel module records all IO requests gener-
ated by the workload using a wrapper block device on

7

B3 bound Insight from the study Bound chosen by ACE

Number of operations Small workloads of 2-3 core operations Maximum # of core ops in a workload is three

Files and directories Reuse file and directory names 2 directories of depth 2, each with 2 unique files

Data operations Coarse grained, overlapping ranges of writes Overwrites to start, middle & end of file, and appends

Initial file-system state No need of a special initial state or large image Start with a clean file-system image of size 100MB

Table 3: Bounds used by ACE. The table shows the specific values picked by ACE for each B3 bound.

which the target file system is mounted. The wrapper de-
vice records both data and metadata for IO requests (such
as sector number, IO size, and flags). Each persistence
point in the workload causes a special checkpoint request
to be inserted into the stream of IO requests recorded.
The checkpoint is simply an empty block IO request with
a special flag, to correlate the completion of a persistence
operation with the low-level block IO stream. All the
data recorded by the wrapper device is communicated to
the user-space utilities via ioctl calls.

The second kernel module in CRASHMONKEY is an
in-memory, copy-on-write block device that facilitates
snapshots. CRASHMONKEY creates a snapshot of the file
system before the profiling phase begins, which repre-
sents the base disk image. CRASHMONKEY provides fast,
writable snapshots by replaying the IO recorded during
profiling on top of the base disk image to generate a crash
state. Snapshots are also saved at each persistence point
in the workload to create oracles. Furthermore, since
the snapshots are copy-on-write, resetting a snapshot to
the base image simply means dropping the modified data
blocks, making it efficient.

CRASHMONKEY also records all open(), close(),
fsync(), fdatasync(), rename(), sync(), and
msync() calls in the workload so that when the work-
load does a persistence operation such as fsync(fd),
CRASHMONKEY is able to correlate fdwith a file that was
opened earlier. This allows CRASHMONKEY to track the
set of files and directories that were explicitly persisted
at any point in the workload. This information is used by
CRASHMONKEY’s AutoChecker to ensure that only files
and directories explicitly persisted at a given point in the
workload are compared. CRASHMONKEY uses its own
set of functions that wrap system calls which manipulate
files to record the required information.

Constructing crash states. To create a crash state,
CRASHMONKEY starts from the initial state of the file
system (before the workload was run), and uses a util-
ity similar to dd to replay all recorded IO requests from
the start of the workload until the next checkpoint in the
IO stream. The resultant crash state represents the state
of the storage just after the persistence-related call com-

pleted on the storage device. Since the IO stream re-
play ends directly after the next persistence point in the
stream, the generated crash point represents a file-system
state that is considered uncleanly unmounted. Therefore,
when the file system is mounted again, the kernel may
run file-system specific recovery code.

Automatically testing correctness. CRASHMONKEY’s
AutoChecker is able to test for correctness automatically
because it has three key pieces of information: it knows
which files were persisted, it has the correct data and
metadata of those files in the oracle, and it has the ac-
tual data and metadata of the corresponding files in the
crash state after recovery. Testing correctness is a simple
matter of comparing data and metadata of persisted files
in the oracle and the crash state.

CRASHMONKEY avoids using fsck because its run-
time is proportional to the amount of data in the file sys-
tem (not the amount of data changed) and it does not
detect the loss or corruption of user data. Instead, when
a crash state is re-mounted, CRASHMONKEY allows the
file system to run its recovery mechanism, like journal
replay, which is usually more lightweight than fsck.
fsck is run only if the recovered file system is un-
mountable. To check consistency, CRASHMONKEY uses
its own read and write checks after recovery. The read
checks used by CRASHMONKEY confirm that persisted
files and directories are accurately recovered. The write
checks test if a bug makes it impossible to modify files
or directories. For example, a btrfs bug made a directory
un-removable due to a stale file handle [27].

Since each file system has slightly different consis-
tency guarantees, we reached out to developers of each
file system we tested, to understand the guarantees pro-
vided by that file system. In some cases, our conversa-
tions prompted the developers to explicitly write down
the persistence guarantees of their file systems for the
first time [57]. During this process, we confirmed that
most file systems such as ext4 and btrfs implement a
stronger set of guarantees than the POSIX standard. For
example, while POSIX requires an fsync() on both a
newly created file and its parent directory to ensure the
file is present after a crash, many Linux file systems do

8

not require the fsync() of the parent directory. Based
on the response from developers, we report bugs that vi-
olate the guarantees each file system aims to provide.

5.2 Automatic Crash Explorer (Ace)

ACE exhaustively generates workloads satisfying the
given bounds. ACE has two components, the workload
synthesizer and the adapter for CRASHMONKEY.

Workload synthesizer. The workload synthesizer ex-
haustively generates workloads within the state space de-
fined by the user specified bounds. The workloads gener-
ated in this stage are represented in a high-level language,
similar to the one depicted in Figure 4.

CrashMonkey Adapter. A custom adapter converts the
workload generated by the synthesizer into an equivalent
C++ test file that CRASHMONKEY can work with. This
adapter handles the insertion of wrapped file-system op-
erations that CRASHMONKEY tracks. Additionally, it in-
serts a special function-call at every persistence point,
which translates to the checkpoint IO. It is easy to ex-
tend ACE to be used with other record-and-replay tools
like dm-log-writes [4] by building custom adapters.

Table 3 shows how we used the insights from the study
to assign specific values for B3 bounds when we run
ACE. Given these bounds, ACE uses a multi-phase pro-
cess to generate workloads that are then fed into CRASH-
MONKEY. Figure 4 illustrates the four phases ACE goes
through to generate a seq-2 workload.

Phase 1: Select operations and generate workloads.
ACE first selects file-system operations for the given se-
quence length to make what we term the skeleton. By de-
fault, file-system operations can be repeated in the work-
load. The user may also supply bounds such as requir-
ing only a subset of file-system operations be used (e.g.,
to focus testing on new operations). ACE then exhaus-
tively generates workloads satisfying the given bounds.
For example, if the user specified the seq-2 workload
could only contain six file-system operations, ACE will
generate 6∗6 = 36 skeletons in phase one.

Phase 2: Select parameters. For each skeleton gen-
erated in phase one, ACE then selects the parameters
(system-call arguments) for each file-system operation.
By default, ACE uses two files at the top level and
two sub-directories with two files each as arguments for
metadata-related operations. ACE also understands the
semantics of file-system operations and exploits it to
eliminate the generation of symmetrical workloads. For
example, consider two operations link(foo, bar)
and link(bar, foo). The idea is to link two files
within the same directory, but the order of file names

chosen does not matter. In this example, one of the work-
loads would be discarded, thus reducing the total number
of workloads to be tested for the sequence.

For data operations, ACE chooses between whether a
write is an overwrite at the beginning, middle, or end
of the file or simply an append operation. Furthermore,
since our study showed that crash-consistency bugs oc-
cur when data operations overlap, ACE tries to overlap
data operations in phase two.

Each skeleton generated in phase one can lead to mul-
tiple workloads (based on different parameters) in phase
two. However, at the end of this phase, each generated
workload has a sequence of file-system operations with
all arguments identified.

Phase 3: Add persistence points. ACE optionally adds
a persistence point after each file-system operation in the
workload, but ACE does not require every operation to be
followed by a persistence point. However, ACE ensures
that the last operation in a workload is always followed
by a persistence point so that it is not truncated to a work-
load of lower sequence length. The file or directory to
be persisted in each call is selected from the same set
of files and directories used by phase two, and, for each
workload generated by phase two, phase three can gener-
ate multiple workloads by adding persistence points after
different sets of file-system operations.

Phase 4: Add dependencies. Finally, ACE satisfies vari-
ous dependencies to ensure the workload can execute on
a POSIX file system. For example, a file has to exist be-
fore being renamed or written to. Similarly, directories
have to be created if any operations on their files are in-
volved. Figure 4 shows how A, B, and A/foo are created
as dependencies in the workload. As a result, a seq-2
workload can have more than two file-system operations
in the final workloads. At the end of this phase, ACE com-
piles each workload from the high-level language into a
C++ program that can be passed to CRASHMONKEY.

Implementation. ACE consists of 2500 lines of Python
code, and currently supports 14 file-system operations.
All bugs analyzed in our study used one of these 14 file-
system operations. It is straightforward to expand ACE to
support more operations.

Running Ace with relaxed bounds. It is easy to re-
lax the bounds used by ACE to generate more workloads;
this comes at the cost of computational time used to test
the extra workloads. Care should be taken when relax-
ing the bounds, since the number of workloads increases
at a rapid rate. For example, ACE generates about 1.5M
workloads with three core file-system operations. Re-
laxing the default bound on the set of files and direc-

9

Phase 1:
Select operations

Phase 2:
Select parameters

Phase 3:
Add persistence points

Phase 4:
Add dependencies

 1 rename()
 2 link()

1 rename(A/foo,B/bar)
2 link(B/bar, A/bar)

1 rename(A/foo,B/bar)
 sync()
2 link(B/bar, A/bar)
 fsync(A/bar)

 mkdir(A)
 mkdir(B)
 create(A/foo)
1 rename(A/foo,B/bar)
 sync()
2 link(B/bar, A/bar)
 fsync(A/bar)

Figure 4: Workload generation in ACE. The figure shows the different phases involved in workload generation in
ACE. Given the sequence length, ACE first selects the operations, then selects the parameters for each operation, then
optionally adds persistence points after each operation, and finally satisfies file and directory dependencies for the
workload. The final workload may have more operations than the original sequence length.

tories to add one additional nested directory, increases
the number of workloads generated to 3.7M. This simple
change results in 2.5× more workloads. Note that in-
creasing the number file-system operations in the work-
load leads to an increase in the number of phase-1 skele-
tons generated, and adding more files to the argument
set increase the number of phase-2 workloads that can be
created. Therefore, the workload space must be carefully
expanded.

5.3 Testing and Bug Analysis

Testing Strategy. Given a target file system, we first
exhaustively generate seq-1 workloads and test them
using CRASHMONKEY. We then proceed to seq-2, and
then seq-3 workloads. By generating and testing work-
loads in this order, CRASHMONKEY only needs to simu-
late a crash at one point per workload. For example, even
if a seq-2 workload has two persistence points, crash-
ing after the first persistence point would be equivalent
to an already-explored seq-1 workload.

Analyzing Bug Reports. One of the challenges with a
black-box approach like B3 is that a single bug could re-
sult in many different workloads failing correctness tests.
We present two cases of multiple test failures in work-
loads, and how we mitigate them.

First, workloads in different sequences can fail be-
cause of the same bug. Our testing strategy is designed
to mitigate this: if a bug causes incorrect behavior with
a single file-system operation, it should be caught by a
seq-1 workload. Therefore, if we catch a bug only
in a seq-2 workload, it implies the bug results from
the interaction of the two file-system operations. Ideally,
we would run seq-1, report any bugs, and apply bug-
fix patches given by developers before running seq-2.
However, for quicker testing, ACE maintains a database
of all previously found bugs which includes the core file-

link(foo, bar)
write(foo, 0, 4096)

Inconsistent data

link(A/foo, A/bar)
write(A/foo, 0, 4096)

Inconsistent data

rename(foo, bar)
creat(foo)

File Missing

rename(foo, A/bar)
creat(foo)

File Missing

link()
write()

Inconsistent
data

rename()
creat()

File Missing

Final Reports

Bug Reports

GROUP BY
skeleton and
consequence

Figure 5: Post-processing. The figure shows how gener-
ated bug reports are processed to eliminate duplicates.

system operations that produced each bug and the conse-
quence of the bug. For all new bugs reports generated by
CRASHMONKEY and ACE, it first compares the workload
and the consequence with the database of known bugs. If
there is a match, ACE does not report the bug to the user.

Second, similar workloads in the same sequence could
fail correctness tests due to the same bug. For efficient
analysis, we group together bug reports by the conse-
quence (e.g., file missing), and the skeleton (the sequence
of core file-system operations that comprise the work-
load) that triggered the bug, as shown in Figure 5. Us-
ing the skeleton instead of the fully fleshed-out work-
load allows us to identify similar bugs. For example, the
bug that causes appended data to be lost will repeat four
times, once with each of the files in our file set. We can
group these bug reports together and only inspect one
bug report from each group. After verifying each bug,
we report it to developers.

10

6 Evaluation
We evaluate the utility and performance of the B3 ap-
proach by answering the following questions:
• Do CRASHMONKEY and ACE find known bugs and

new bugs in Linux file systems in a reasonable pe-
riod of time? (§6.2)
• What is the performance of CRASHMONKEY? (§6.3)
• What is the performance of ACE? (§6.4)
• How much memory and CPU does CRASHMONKEY

consume? (§6.5)

6.1 Experimental Setup

B3 requires testing a large number of workloads in a sys-
tematic manner. To accomplish this testing, we deploy
CRASHMONKEY on Chameleon Cloud [26], an experi-
mental testbed for large-scale computation.

We employ a cluster of 65 nodes on Chameleon Cloud.
Each node has 40 cores, 48 GB RAM, and 128 GB
SSD. We install 12 VirtualBox virtual machines running
Ubuntu 16.04 LTS on each node, each with 2 GB RAM
and 10 GB storage. Each virtual machine runs one in-
stance of CRASHMONKEY. Thus, we have a total of 780
virtual machines testing workloads with CRASHMONKEY

in parallel. We found we are limited to 780 virtual ma-
chines by the storage available to each physical node.

On a local server, we generate the workloads with ACE

and divide them into sets of workloads to be tested on
each virtual machine. We then copy the workloads over
the network to each physical Chameleon node, and, from
each node, copy them to the virtual machines.

6.2 Bug Finding

Determining Workloads. Our goal was to test whether
the B3 approach was useful and practical, not to exhaus-
tively find every crash-consistency bug. Therefore, we
wanted to limit the computational time spent on testing
to a few days. Thus, we needed to determine what work-
loads to test with our computational budget.

Our study of crash-consistency bugs indicated that it
would be useful to test small workloads of length one,
two, and three. However, we estimated that testing all 25
million possible workloads of length three was infeasible
within our target time-frame. We had to further restrict
the set of workloads that we tested. We used our study
to guide us in this task. At a minimum, we wanted to
select bounds that would generate the workloads that re-
produced the reported bugs. Using this as a guideline, we
came up with a set of workloads that was broad enough to
reproduce existing bugs (and potentially find new bugs),
but small enough that we could test the workloads in a
few days on our research cluster.

Workloads. We test workloads of length one (seq-1),
two (seq-2), and three (seq-3). We further separate
workloads of length three into three groups: one focus-
ing on data operations (seq-3-data), one focusing on
metadata operations (seq-3-metadata), and one fo-
cusing on metadata operations involving a file at depth
three (seq-3-nested) (by default, we use depth two).

The seq-1 and seq-2workloads use a set of 14 file-
system operations. For seq-3 workloads, we narrow
down the list of operations, based on what category the
workload is in. The complete list of file-system opera-
tions tested in each category is shown in Table 4.

Testing Strategy. We tested seq-1 and seq-2 work-
loads on ext4, xfs, F2FS, and btrfs, but did not find any
new bugs in ext4 or xfs. We focused on F2FS and btrfs
for the larger seq-3 workloads. In total, we spend 48
hours testing all 3.37 million workloads per file system
on the 65-node research cluster described earlier. Table 4
presents the number of workloads in each set, and the
time taken to test them (for each file system). All the
tests are run only on 4.16 kernel. To reproduce reported
bugs, we employ the following strategy. We encode the
workload that triggers previously reported bugs in ACE.
In the course of workload generation, when ACE gener-
ates a workload identical to the encoded one, it is added
to a list. This list of workloads is run on the kernel ver-
sions reported in Table 1, to validate that the workload
produced by ACE can indeed reproduce the bug.

Cost of Computation. We believe the amount of com-
putational effort required to find crash-consistency bugs
with CRASHMONKEY and ACE is reasonable. For ex-
ample, if we were to rent 780 t2.small instances on
Amazon to run ACE and CRASHMONKEY for 48 hours,
at the current rate of $0.023 per hour for on-demand in-
stances [2], it would cost 780∗48∗0.023 = $861.12. For
the complete 25M workload set, the cost of computation
would go up by 7.5×, totaling $6.4K. Thus, we can test
each file system for less than $7K. Alternatively, a com-
pany can provision physical nodes to run the tests; we
believe this would not be hard for a large company.

Results. CRASHMONKEY and ACE found 10 new crash-
consistency bugs [59] in btrfs and F2FS, in addition to
reproducing 24 out of 26 bugs reported over the past five
years. We studied the bug reports for the new bugs to
ensure they were unique and not different manifestations
of the same underlying bug. We verified each unique bug
triggers a different code path in the kernel, indicating the
root cause of each bug is not the same underlying code.

All new bugs were reported to file-system developers
and acknowledged [11, 12, 43, 44]. Developers have

11

Sequence File-system operations tested # of workloads Run time

type (minutes)

seq-1
creat, mkdir, falloc, buffered write, mmap, link

300 1

seq-2 direct-IO write, unlink, rmdir, setxattr 254K 215

removexattr, remove, unlink, truncate

seq-3-data buffered write, mmap, direct-IO write, falloc 120K 102

seq-3-metadata buffered write, link, unlink, rename 1.5M 1274

seq-3-nested link, rename 1.5M 1274

Total 3.37M 2866

Table 4: Workloads tested. The table shows the number of workloads tested in each set, along with the time taken to
test these workloads in parallel on 65 physical machines and the file-system operations tested in each category. Overall,
we tested 3.37 million workloads in two days, reproducing 24 known bugs and finding 10 new crash-consistency bugs.

submitted patches for four bugs [32, 35, 66, 67], and are
working on patches for the others [34]. Table 5 presents
the new bugs discovered by CRASHMONKEY and ACE.
We make several observations based on these results.

The discovered bugs have severe consequences. The
newly discovered bugs result in either data loss (due to
missing files or directories) or file-system corruption.
More importantly, the missing files and directories have
been explicitly persisted with an fsync() call and thus
should survive crashes.

Small workloads are sufficient to reveal new bugs.
One might expect only workloads with two or more file-
system operations to expose bugs. However, the re-
sults show that even workloads consisting of a single
file-system operation, if tested systematically, can reveal
bugs. For example, three bugs were found by seq-1
workloads, where CRASHMONKEY and ACE only tested
300 workloads in a systematic fashion. Interestingly,
variants of these bugs have been patched previously, and
it was sufficient to simply change parameters to file-
system operations to trigger the same bug through a dif-
ferent code-path.

An F2FS bug found by CRASHMONKEY and ACE

is a good example of finding variants of previously
patched bugs. The previously patched bug manifested
when fallocate() was used with the KEEP SIZE
flag; this allocates blocks to a file but does not in-
crease the file size. By calling fallocate() with
the KEEP SIZE flag, developers found that F2FS only
checked the file size to see if a file had been up-
dated. Thus, fdatasync() on the file would have
no result. After a crash, the file recovered to an in-
correct size, thereby not respecting the KEEP SIZE
flag. This bug was patched in Nov 2017 [65]; how-

ever, the fallocate() system call has several more
flags like ZERO RANGE, PUNCH HOLE, etc., and devel-
opers failed to systematically test all possible parameter
options of the system call. Therefore, our tools iden-
tified and reported that the same bug can appear when
ZERO RANGE is used. Though this bug was recently
patched by developers, it provides more evidence that the
state of crash-consistency testing today is insufficient,
and that systematic testing is required.

Crash-consistency bugs are hard to find manually.
CRASHMONKEY and ACE found eight new bugs in btrfs
in kernel 4.16. Interestingly, seven of these bugs have
been present since kernel 3.13, which was released in
2014. The ability of our tools to find four-year-old crash-
consistency bugs within two days of testing on a research
cluster of modest size speaks to both the difficulty of
manually finding these bugs, and the power of system-
atic approaches like B3.

Broken rename atomicity bug. ACE generated sev-
eral workloads that broke the rename atomicity of btrfs.
The workloads consist of first creating and persisting a
file such as A/bar. Next, the workload creates an-
other file B/bar, and tries to replace the original file,
A/bar, with the new file. The expectation is that we are
able to read either the original file, A/bar, or the new
file, B/bar. However, btrfs can lose both A/bar and
B/bar if it crashes at the wrong time. While losing re-
name atomicity is bad, the most interesting part of this
bug is that fsync() must be called on an un-related
sibling file, like A/foo, before the crash. This shows
that workloads revealing crash-consistency bugs are hard
for a developer to find manually since they don’t always
involve obvious sequences of operations.

12

Bug # File System Consequence # of ops Bug present since

1 btrfs Rename atomicity broken (file disappears) 3 2014

2 btrfs Rename atomicity broken (file in both locations) 3 2018

3 btrfs Directory not persisted by fsync* 3 2014

4 btrfs Rename not persisted by fsync 3 2014

5 btrfs Hard links not persisted by fsync 2 2014

6 btrfs Directory entry missing after fsync on directory 2 2014

7 btrfs Fsync on file does not persist all its paths 1 2014

8 btrfs Allocated blocks lost after fsync* 1 2014

9 F2FS File recovers to incorrect size* 1 2015

10 F2FS Persisted file disappears* 2 2016

Table 5: Newly discovered bugs. The table shows the new bugs found by CRASHMONKEY and ACE. The bugs have
severe consequences, ranging from losing allocated blocks to entire files and directories disappearing. The bugs have
been present for several years in the kernel, showing the need for systematic testing. Note that even workloads with
single file-system operation have resulted in bugs. Developers have submitted a patch for bugs marked with *.

6.3 CrashMonkey Performance

CRASHMONKEY has three phases of operation: profiling
the given workload, constructing crash states, and testing
crash-consistency. Given a workload, the end-to-end la-
tency to generate a bug report is 4.6 seconds. The main
bottleneck is the kernel itself: mounting a file system re-
quires up-to a second of delay (if CRASHMONKEY checks
file-system state earlier, it sometimes gets an error). Sim-
ilarly, once the workload is done, we also wait for two
seconds to ensure the storage subsystem has processed
the writes, and that we can unmount the file system with-
out affecting the writes. These delays account for 84%
of the time spent profiling.

After profiling, constructing crash states is relatively
fast: CRASHMONKEY only requires 20 ms to construct
each crash state. Furthermore, since CRASHMONKEY

uses fine-grained correctness tests, checking crash con-
sistency with both read and write tests takes only 20 ms.

6.4 Ace Performance

ACE generated all the workloads that were tested (3.37M)
in 374 minutes (≈ 150 workloads generated per second).
Despite this high cost, it is important to note that gener-
ating workloads is a one-time cost. Once the workloads
are generated, CRASHMONKEY can test these workloads
on different file systems without any reconfiguration.

Deploying these workloads to the 780 virtual ma-
chines on Chameleon took 237 minutes: 34 minutes to
group the workloads by virtual machines, 199 minutes to
copy workloads to the Chameleon nodes, and 4 minutes
to copy workloads to the virtual machines on each node.

These numbers reflect the time taken for a single local

server to generate and push the workloads to Chameleon.
By utilizing more servers and employing a more sophisti-
cated strategy for generating workloads, we could reduce
the time required to generate and push workloads.

6.5 Resource Consumption

The total memory consumption by CRASHMONKEY aver-
aged across 10 randomly chosen workloads and the three
sequence lengths is 20.12 MB. The low memory con-
sumption results from the copy-on-write nature of the
wrapper block device. Since ACE’s workloads typically
modify small amounts of data or metadata, the modified
pages are few in number, resulting in low memory con-
sumption. Furthermore, CRASHMONKEY uses persistent
storage only for storing the workloads (480 KB per work-
load). Finally, the CPU consumption of CRASHMONKEY,
as reported by top, was negligible (less than 1 percent).

7 Related Work

B3 offers a new point in the spectrum of techniques ad-
dressing file-system crash consistency, alongside verified
file systems and model checking. We now place B3 in the
context of prior approaches.

Verified File Systems. Recent work focuses on creating
new, verified file systems from a specification [8, 9, 53].
These file systems are proven to have strong crash-
consistency guarantees. However, the techniques em-
ployed are not useful for testing the crash consistency of
existing, widely-used Linux file systems written in low-
level languages like C. The B3 approach targets such file
systems, which are not amenable to verification.

13

Formal Crash-Consistency Models. Ferrite [6] formal-
izes crash-consistency models and can be used to test if
a given ordering relationship holds in a file system; how-
ever, it is hard to determine what relationships to test.
The authors used Ferrite to test a few simple relation-
ships such as prefix append. On the other hand, ACE and
CRASHMONKEY explore a wider range of workloads, and
use oracles and developer-provided guarantees to auto-
matically test correctness after a crash.

Model Checking. B3 is closely related to in-situ
model checking approaches such as EXPLODE [63] and
FiSC [64]. However, unlike B3, EXPLODE and FiSC re-
quire modifications to the buffer cache (to see all order-
ings of IO requests) and changes to the file-system code
to expose choice points for efficient checking, a complex
and time-consuming task. B3 does not require changing
any file-system code and it is conceptually simpler than
in-situ model checking approaches, while still being ef-
fective at finding crash-consistency bugs.

Though the B3 approach does not have the guarantees
of verification or the power of model checking, it has the
advantage of being easy to use (due to its black-box na-
ture), being able to systematically test file systems (due
to its exhaustive nature), and being able to catch crash-
consistency bugs occurring on mature file systems.

Fuzzing. The B3 approach bears some similarity to fuzz-
testing techniques which explore inputs that will reveal
bugs in the target system. The effectiveness of fuzzers is
determined by the careful selection of uncommon inputs
that would trigger exceptional behavior. However, B3

does not randomize input selection. Neither does it use
any sophisticated strategy to select workloads to test. In-
stead, B3 exhaustively generates workloads in a bounded
space, with the bounds informed by our study or pro-
vided by the user. While there exists fuzzers to test the
correctness of system calls [17, 22, 45], there seem to be
no fuzzing techniques to expose crash-consistency bugs.
The effort by Nossum and Casasnovas [45] is closest to
our work, where they generate file-system images that
are likely to expose bugs during the normal operation of
the file system (non-crash-consistency bugs).

Record and Replay Frameworks. CRASHMONKEY is
similar to prior record-and-replay frameworks such as
dm-log-writes [4], Block Order Breaker [47], and
work by Zheng et al. [70]. Unlike dm-log-writes,
which requires manual correctness tests or running
fsck, CRASHMONKEY is able to automatically test
crash-consistency in an efficient manner.

Similar to CRASHMONKEY, the Block Order Breaker
(BOB) [47] also creates crash states from recorded IO.

However, BOB is only used to show that different file
systems persist file-system operations in significantly
different ways. The Application-Level Intelligent Crash
Explorer (ALICE), explores application-level crash vul-
nerabilities in databases, key value stores etc. The major
drawback with ALICE and BOB is that they require the
user to handcraft workloads and provide an appropriate
checker for each workload. They lack systematic explo-
ration of the workload space and do not understand per-
sistence points, making it is extremely hard for a user to
write bug-triggering workloads manually.

The logging and replay framework from Zheng et
al. [70] is focused on testing whether databases provide
ACID guarantees, works only on iSCSI disks, and uses
only four workloads. CRASHMONKEY is able to test mil-
lions of workloads, and ACE allows us to generate a much
wider ranger of workloads to test.

We previewed the ideas behind CRASHMONKEY in a
workshop paper [36]. Since then, several features have
been added to CRASHMONKEY with the prominent one
being automatic crash-consistency testing.

8 Conclusion
This paper presents Bounded Black-Box Crash Testing
(B3), a new approach to testing file-system crash consis-
tency. We study 26 crash-consistency bugs reported in
Linux file systems over the past five years and find that
most reported bugs could be exposed by testing small
workloads in a systematic fashion. We exploit this in-
sight to build two tools, CRASHMONKEY and ACE, that
systematically test crash consistency. Running for two
days on a research cluster of 65 machines, CRASHMON-
KEY and ACE reproduced 24 known bugs and found 10
new bugs in widely-used Linux file systems.

We have made CRASHMONKEY and ACE available
(with demo, documentation, and a single line command
to run seq-1 workloads) at https://github.
com/utsaslab/crashmonkey. We encourage de-
velopers and researchers to test their file systems against
the workloads included in the repository.

Acknowledgments
We would like to thank our shepherd, Angela Demke
Brown, the anonymous reviewers, and the members of
Systems and Storage Lab and LASR group for their feed-
back and guidance. We would like to thank Sonika Garg,
Subrat Mainali, and Fabio Domingues for their contri-
butions to the CrashMonkey codebase. This work was
supported by generous donations from VMware, Google,
and Facebook. Any opinions, findings, and conclusions,
or recommendations expressed herein are those of the au-
thors and do not reflect the views of other institutions.

14

https://github.com/utsaslab/crashmonkey
https://github.com/utsaslab/crashmonkey

References
[1] A. Aghayev, T. Ts’o, G. Gibson, and P. Desnoy-

ers. Evolving ext4 for shingled disks. In 15th
USENIX Conference on File and Storage Technolo-
gies (FAST 17), pages 105–120, Santa Clara, CA,
2017. USENIX Association.

[2] Amazon. Amazon ec2 on-demand pric-
ing. https://aws.amazon.com/ec2/
pricing/on-demand/.

[3] Apple. fsync(2) mac os x developer tools man-
ual page. https://developer.apple.
com/legacy/library/documentation/
Darwin/Reference/ManPages/man2/
fsync.2.html.

[4] J. Bacik. dm: log writes target. https:
//www.redhat.com/archives/dm-
devel/2014-December/msg00047.html.

[5] S. S. Bhat, R. Eqbal, A. T. Clements, M. F.
Kaashoek, and N. Zeldovich. Scaling a file system
to many cores using an operation log. In Proceed-
ings of the 26th Symposium on Operating Systems
Principles, Shanghai, China, October 28-31, 2017,
pages 69–86. ACM, 2017.

[6] J. Bornholt, A. Kaufmann, J. Li, A. Krishna-
murthy, E. Torlak, and X. Wang. Specifying and
checking file system crash-consistency models. In
T. Conte and Y. Zhou, editors, Proceedings of the
Twenty-First International Conference on Architec-
tural Support for Programming Languages and Op-
erating Systems, ASPLOS ’16, Atlanta, GA, USA,
April 2-6, 2016, pages 83–98. ACM, 2016.

[7] btrfs Wiki. btrfs check. https://btrfs.
wiki.kernel.org/index.php/Manpage/
btrfs-check.

[8] H. Chen, T. Chajed, A. Konradi, S. Wang, A. Ileri,
A. Chlipala, M. F. Kaashoek, and N. Zeldovich.
Verifying a high-performance crash-safe file sys-
tem using a tree specification. In Proceedings of
the 26th Symposium on Operating Systems Princi-
ples, Shanghai, China, October 28-31, 2017, pages
270–286. ACM, 2017.

[9] H. Chen, D. Ziegler, T. Chajed, A. Chlipala, M. F.
Kaashoek, and N. Zeldovich. Using crash hoare
logic for certifying the FSCQ file system. In
E. L. Miller and S. Hand, editors, Proceedings of

the 25th Symposium on Operating Systems Princi-
ples, SOSP 2015, Monterey, CA, USA, October 4-7,
2015, pages 18–37. ACM, 2015.

[10] V. Chidambaram. Orderless and Eventually
Durable File Systems. PhD thesis, University of
Wisconsin, Madison, Aug 2015.

[11] V. Chidambaram. btrfs: strange behavior (possible
bugs) in btrfs. https://www.spinics.net/
lists/linux-btrfs/msg77929.html,
Apr 2018.

[12] V. Chidambaram. btrfs: symlink not persisted
even after fsync. https://www.spinics.
net/lists/fstests/msg09379.html,
Apr 2018.

[13] V. Chidambaram, T. S. Pillai, A. C. Arpaci-
Dusseau, and R. H. Arpaci-Dusseau. Optimistic
Crash Consistency. In Proceedings of the 24th
ACM Symposium on Operating Systems Principles
(SOSP ’13), Farmington, PA, November 2013.

[14] V. Chidambaram, T. Sharma, A. C. Arpaci-
Dusseau, and R. H. Arpaci-Dusseau. Consistency
Without Ordering. In Proceedings of the 10th
USENIX Symposium on File and Storage Technolo-
gies (FAST ’12), pages 101–116, San Jose, Califor-
nia, Feb. 2012.

[15] D. Chinner. btrfs: symlink not persisted even
after fsync. https://www.spinics.net/
lists/fstests/msg09363.html, Apr
2018.

[16] J. Corbet. Toward better testing. https://lwn.
net/Articles/591985/, 2014.

[17] D. Drysdale. Coverage-guided kernel fuzzing with
syzkaller. Linux Weekly News, 2:33, 2016.

[18] T. O. Group. The open group base specifica-
tions issue 7. http://pubs.opengroup.
org/onlinepubs/9699919799/, 2018.

[19] E. Guan. ext4: update idisksize if direct write
past ondisk size. https://marc.info/?l=
linux-ext4&m=151669669030547&w=2,
Jan 2018.

[20] D. Hitz, J. Lau, and M. Malcolm. File System De-
sign for an NFS File Server Appliance. In Proceed-
ings of the 1994 USENIX Winter Technical Confer-
ence, Berkeley, CA, January 1994.

15

https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/ec2/pricing/on-demand/
https://developer.apple.com/legacy/library/documentation/Darwin/Reference/ManPages/man2/fsync.2.html
https://developer.apple.com/legacy/library/documentation/Darwin/Reference/ManPages/man2/fsync.2.html
https://developer.apple.com/legacy/library/documentation/Darwin/Reference/ManPages/man2/fsync.2.html
https://developer.apple.com/legacy/library/documentation/Darwin/Reference/ManPages/man2/fsync.2.html
https://www.redhat.com/archives/dm-devel/2014-December/msg00047.html
https://www.redhat.com/archives/dm-devel/2014-December/msg00047.html
https://www.redhat.com/archives/dm-devel/2014-December/msg00047.html
https://btrfs.wiki.kernel.org/index.php/Manpage/btrfs-check
https://btrfs.wiki.kernel.org/index.php/Manpage/btrfs-check
https://btrfs.wiki.kernel.org/index.php/Manpage/btrfs-check
https://www.spinics.net/lists/linux-btrfs/msg77929.html
https://www.spinics.net/lists/linux-btrfs/msg77929.html
https://www.spinics.net/lists/fstests/msg09379.html
https://www.spinics.net/lists/fstests/msg09379.html
https://www.spinics.net/lists/fstests/msg09363.html
https://www.spinics.net/lists/fstests/msg09363.html
https://lwn.net/Articles/591985/
https://lwn.net/Articles/591985/
http://pubs.opengroup.org/onlinepubs/9699919799/
http://pubs.opengroup.org/onlinepubs/9699919799/
https://marc.info/?l=linux-ext4&m=151669669030547&w=2
https://marc.info/?l=linux-ext4&m=151669669030547&w=2

[21] Y. Hu, Z. Zhu, I. Neal, Y. Kwon, T. Cheng, V. Chi-
dambaram, and E. Witchel. TxFS: Leveraging
File-System Crash Consistency to Provide ACID
Transactions. In The 2018 USENIX Annual Tech-
nical Conference (ATC ’18), Boston, MA, 2018.
USENIX Association.

[22] D. Jones. Trinity: A system call fuzzer. In Proceed-
ings of the 13th Ottawa Linux Symposium, pages,
2011.

[23] H. Kumar, Y. Patel, R. Kesavan, and S. Makam.
High performance metadata integrity protection in
the WAFL copy-on-write file system. In 15th
USENIX Conference on File and Storage Technolo-
gies (FAST 17), pages 197–212, Santa Clara, CA,
2017. USENIX Association.

[24] U. B. LaunchPad. Bug #317781: Ext4 Data
Loss. https://bugs.launchpad.net/
ubuntu/+source/linux/+bug/317781?
comments=all.

[25] C. Lee, D. Sim, J.-Y. Hwang, and S. Cho. F2fs: A
new file system for flash storage. In Proceedings of
the 13th USENIX Conference on File and Storage
Technologies, FAST’15, pages 273–286, Berkeley,
CA, USA, 2015. USENIX Association.

[26] J. Mambretti, J. Chen, and F. Yeh. Next genera-
tion clouds, the chameleon cloud testbed, and soft-
ware defined networking (sdn). In Cloud Comput-
ing Research and Innovation (ICCCRI), 2015 Inter-
national Conference on, pages 73–79. IEEE, 2015.

[27] F. Manana. btrfs: fix directory recovery from
fsync log. https://patchwork.kernel.
org/patch/4864571/, Sep 2014.

[28] F. Manana. btrfs: add missing inode update
when punching hole. https://patchwork.
kernel.org/patch/5830801/, Feb 2015.

[29] F. Manana. btrfs: fix fsync data loss after adding
hard link to inode. https://patchwork.
kernel.org/patch/5822681/, Feb 2015.

[30] F. Manana. btrfs: fix metadata inconsistencies
after directory fsync. https://patchwork.
kernel.org/patch/6058101/, March
2015.

[31] F. Manana. btrfs: fix stale directory entries af-
ter fsync log replay. https://patchwork.
kernel.org/patch/6852751/, July 2015.

[32] F. Manana. btrfs: blocks allocated beyond eof are
lost. https://www.spinics.net/lists/
linux-btrfs/msg75108.html, Feb 2018.

[33] F. Manana. btrfs: fix log replay failure af-
ter unlink and link combination. https:
//www.spinics.net/lists/linux-
btrfs/msg75204.html, Feb 2018.

[34] F. Manana. btrfs: strange behavior (possible
bugs) in btrfs. https://www.spinics.net/
lists/linux-btrfs/msg81425.html,
Aug 2018.

[35] F. Manana. btrfs: sync log after log-
ging new name. https://www.mail-
archive.com/linux-btrfs@vger.
kernel.org/msg77875.html, Jun 2018.

[36] A. Martinez and V. Chidambaram. Crashmonkey:
a framework to systematically test file-system crash
consistency. In Proceedings of the 9th USENIX
Conference on Hot Topics in Storage and File Sys-
tems, pages 6–6. USENIX Association, 2017.

[37] A. Mathur, M. Cao, S. Bhattacharya, A. Dilger,
A. Tomas, and L. Vivier. The new ext4 filesys-
tem: current status and future plans. In Proceedings
of the Linux symposium, volume 2, pages 21–33,
2007.

[38] M. K. McKusick, G. R. Ganger, et al. Soft
updates: A technique for eliminating most syn-
chronous writes in the fast filesystem. In USENIX
Annual Technical Conference, FREENIX Track,
pages 1–17, 1999.

[39] R. McMillan. Amazon Blames Generators
For Blackout That Crushed Netflix. http:
//www.wired.com/wiredenterprise/
2012/07/amazonexplains/, 2012.

[40] R. Miller. Power Outage Hits London Data Center.
http://www.datacenterknowledge.
com/archives/2012/07/10/power-
outage-hits-london-data-center/,
2012.

[41] R. Miller. Data Center Outage Cited In
Visa Downtime Across Canada. http:
//www.datacenterknowledge.com/
archives/2013/01/28/data-center-
outage-cited-in-visa-downtime-
across-canada/, 2013.

16

https://bugs.launchpad.net/ubuntu/+source/linux/+bug/317781?comments=all
https://bugs.launchpad.net/ubuntu/+source/linux/+bug/317781?comments=all
https://bugs.launchpad.net/ubuntu/+source/linux/+bug/317781?comments=all
https://patchwork.kernel.org/patch/4864571/
https://patchwork.kernel.org/patch/4864571/
https://patchwork.kernel.org/patch/5830801/
https://patchwork.kernel.org/patch/5830801/
https://patchwork.kernel.org/patch/5822681/
https://patchwork.kernel.org/patch/5822681/
https://patchwork.kernel.org/patch/6058101/
https://patchwork.kernel.org/patch/6058101/
https://patchwork.kernel.org/patch/6852751/
https://patchwork.kernel.org/patch/6852751/
https://www.spinics.net/lists/linux-btrfs/msg75108.html
https://www.spinics.net/lists/linux-btrfs/msg75108.html
https://www.spinics.net/lists/linux-btrfs/msg75204.html
https://www.spinics.net/lists/linux-btrfs/msg75204.html
https://www.spinics.net/lists/linux-btrfs/msg75204.html
https://www.spinics.net/lists/linux-btrfs/msg81425.html
https://www.spinics.net/lists/linux-btrfs/msg81425.html
https://www.mail-archive.com/linux-btrfs@vger.kernel.org/msg77875.html
https://www.mail-archive.com/linux-btrfs@vger.kernel.org/msg77875.html
https://www.mail-archive.com/linux-btrfs@vger.kernel.org/msg77875.html
http://www.wired.com/wiredenterprise/2012/07/amazon explains/
http://www.wired.com/wiredenterprise/2012/07/amazon explains/
http://www.wired.com/wiredenterprise/2012/07/amazon explains/
http://www.datacenterknowledge.com/archives/2012/07/10/power-outage-hits-london-data-center/
http://www.datacenterknowledge.com/archives/2012/07/10/power-outage-hits-london-data-center/
http://www.datacenterknowledge.com/archives/2012/07/10/power-outage-hits-london-data-center/
http://www.datacenterknowledge.com/archives/2013/01/28/data-center-outage-cited- in-visa-downtime-across-canada/
http://www.datacenterknowledge.com/archives/2013/01/28/data-center-outage-cited- in-visa-downtime-across-canada/
http://www.datacenterknowledge.com/archives/2013/01/28/data-center-outage-cited- in-visa-downtime-across-canada/
http://www.datacenterknowledge.com/archives/2013/01/28/data-center-outage-cited- in-visa-downtime-across-canada/
http://www.datacenterknowledge.com/archives/2013/01/28/data-center-outage-cited- in-visa-downtime-across-canada/

[42] R. Miller. Power Outage Knocks Dreamhost
Customers Offline. http://www.
datacenterknowledge.com/archives/
2013/03/20/power-outage-knocks-
dreamhost-customers-offline/, 2013.

[43] J. Mohan. btrfs: hard link not persisted on fsync.
https://www.spinics.net/lists/
linux-btrfs/msg76878.html, Apr 2018.

[44] J. Mohan. btrfs: inconsistent behavior of fsync in
btrfs. https://www.spinics.net/lists/
linux-btrfs/msg77219.html, Apr 2018.

[45] V. Nossum and Q. Casasnovas. Filesystem fuzzing
with american fuzzy lop. https://lwn.net/
Articles/685182/, 2016.

[46] T. S. Pillai, R. Alagappan, L. Lu, V. Chidambaram,
A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau.
Application Crash Consistency and Performance
with CCFS. In 15th USENIX Conference on File
and Storage Technologies (FAST 17), pages 181–
196, Santa Clara, CA, 2017. USENIX Association.

[47] T. S. Pillai, V. Chidambaram, R. Alagappan, S. Al-
Kiswany, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. All File Systems Are Not Created Equal:
On the Complexity of Crafting Crash-Consistent
Applications. In Proceedings of the 11th Sympo-
sium on Operating Systems Design and Implemen-
tation (OSDI ’14), Broomfield, CO, October 2014.

[48] POSIX. fsync: The open group base specifications
issue 6. http://pubs.opengroup.org/
onlinepubs/009695399/functions/
fsync.html.

[49] V. Prabhakaran, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau. Analysis and Evolution of Jour-
naling File Systems. In The Proceedings of the
USENIX Annual Technical Conference (USENIX
’05), pages 105–120, Anaheim, CA, April 2005.

[50] E. Rho, K. Joshi, S.-U. Shin, N. J. Shetty, J. Hwang,
S. Cho, D. D. Lee, and J. Jeong. Fstream: Man-
aging flash streams in the file system. In 16th
USENIX Conference on File and Storage Tech-
nologies (FAST 18), pages 257–264, Oakland, CA,
2018. USENIX Association.

[51] O. Rodeh, J. Bacik, and C. Mason. Btrfs: The linux
b-tree filesystem. ACM Transactions on Storage
(TOS), 9(3):9, 2013.

[52] M. Rosenblum and J. Ousterhout. The Design
and Implementation of a Log-Structured File Sys-
tem. ACM Trans. Comput. Syst., 10(1):26–52, Feb.
1992.

[53] H. Sigurbjarnarson, J. Bornholt, E. Torlak, and
X. Wang. Push-button verification of file systems
via crash refinement. In Proceedings of the 12th
USENIX Conference on Operating Systems Design
and Implementation, OSDI’16, pages 1–16, Berke-
ley, CA, USA, 2016. USENIX Association.

[54] Y. Son, S. Kim, H. Y. Yeom, and H. Han. High-
performance transaction processing in journaling
file systems. In 16th USENIX Conference on File
and Storage Technologies (FAST 18), pages 227–
240, Oakland, CA, 2018. USENIX Association.

[55] A. Sweeney, D. Doucette, W. Hu, C. Anderson,
M. Nishimoto, and G. Peck. Scalability in the XFS
File System. In Proceedings of the USENIX Annual
Technical Conference (USENIX ’96), San Diego,
California, Jan. 1996.

[56] T. Y. Ts’o. btrfs: Inconsistent behavior of fsync in
btrfs. https://www.spinics.net/lists/
linux-btrfs/msg77389.html, Apr 2018.

[57] T. Y. Ts’o. btrfs: Inconsistent behavior of fsync in
btrfs. https://www.spinics.net/lists/
linux-btrfs/msg77340.html, Apr 2018.

[58] UTSASLab. Crash-consistency bugs studied
and reproduced. https://github.com/
utsaslab/crashmonkey/blob/master/
reproducedBugs.md.

[59] UTSASLab. New crash-consistency bugs
found. https://github.com/utsaslab/
crashmonkey/blob/master/newBugs.
md.

[60] J. Verge. Internap Data Center Outage
Takes Down Livestream And Stackexchange.
http://www.datacenterknowledge.
com/archives/2014/05/16/internap-
data-center-outage-takes-
livestream-stackexchange/, 2014.

[61] R. S. V. Wolffradt. Fire In Your Data Center:
No Power, No Access, Now What? http:
//www.govtech.com/state/Fire-in-
your-Data-Center-No-Power-No-
Access-Now-What.html, 2014.

17

http://www.datacenterknowledge.com/archives/2013/03/20/power-outage- knocks-dreamhost-customers-offline/
http://www.datacenterknowledge.com/archives/2013/03/20/power-outage- knocks-dreamhost-customers-offline/
http://www.datacenterknowledge.com/archives/2013/03/20/power-outage- knocks-dreamhost-customers-offline/
http://www.datacenterknowledge.com/archives/2013/03/20/power-outage- knocks-dreamhost-customers-offline/
https://www.spinics.net/lists/linux-btrfs/msg76878.html
https://www.spinics.net/lists/linux-btrfs/msg76878.html
https://www.spinics.net/lists/linux-btrfs/msg77219.html
https://www.spinics.net/lists/linux-btrfs/msg77219.html
https://lwn.net/Articles/685182/
https://lwn.net/Articles/685182/
http://pubs.opengroup.org/onlinepubs/009695399/functions/fsync.html
http://pubs.opengroup.org/onlinepubs/009695399/functions/fsync.html
http://pubs.opengroup.org/onlinepubs/009695399/functions/fsync.html
https://www.spinics.net/lists/linux-btrfs/msg77389.html
https://www.spinics.net/lists/linux-btrfs/msg77389.html
https://www.spinics.net/lists/linux-btrfs/msg77340.html
https://www.spinics.net/lists/linux-btrfs/msg77340.html
https://github.com/utsaslab/crashmonkey/blob/master/reproducedBugs.md
https://github.com/utsaslab/crashmonkey/blob/master/reproducedBugs.md
https://github.com/utsaslab/crashmonkey/blob/master/reproducedBugs.md
https://github.com/utsaslab/crashmonkey/blob/master/newBugs.md
https://github.com/utsaslab/crashmonkey/blob/master/newBugs.md
https://github.com/utsaslab/crashmonkey/blob/master/newBugs.md
http://www.datacenterknowledge.com/archives/2014/05/16/internap- data-center-outage- takes-livestream- stackexchange/
http://www.datacenterknowledge.com/archives/2014/05/16/internap- data-center-outage- takes-livestream- stackexchange/
http://www.datacenterknowledge.com/archives/2014/05/16/internap- data-center-outage- takes-livestream- stackexchange/
http://www.datacenterknowledge.com/archives/2014/05/16/internap- data-center-outage- takes-livestream- stackexchange/
http://www.govtech.com/state/Fire-in-your-Data-Center-No-Power-No-Access-Now-What.html
http://www.govtech.com/state/Fire-in-your-Data-Center-No-Power-No-Access-Now-What.html
http://www.govtech.com/state/Fire-in-your-Data-Center-No-Power-No-Access-Now-What.html
http://www.govtech.com/state/Fire-in-your-Data-Center-No-Power-No-Access-Now-What.html

[62] Y. Won, J. Jung, G. Choi, J. Oh, S. Son, J. Hwang,
and S. Cho. Barrier-enabled io stack for flash
storage. In Proceedings of the 16th USENIX
Conference on File and Storage Technologies,
FAST’18, pages 211–226, Berkeley, CA, USA,
2018. USENIX Association.

[63] J. Yang, C. Sar, and D. Engler. EXPLODE: A
Lightweight, General System for Finding Serious
Storage System Errors. In Proceedings of the
7th Symposium on Operating Systems Design and
Implementation (OSDI ’06), Seattle, Washington,
Nov. 2006.

[64] J. Yang, P. Twohey, D. R. Engler, and M. Musu-
vathi. Using model checking to find serious file sys-
tem errors (awarded best paper!). In E. A. Brewer
and P. Chen, editors, 6th Symposium on Operating
System Design and Implementation (OSDI 2004),
San Francisco, California, USA, December 6-8,
2004, pages 273–288. USENIX Association, 2004.

[65] C. Yu. f2fs: keep isize once block is reserved
cross eof. https://sourceforge.net/
p/linux-f2fs/mailman/message/
36104201/, Nov 2017.

[66] C. Yu. f2fs: enforce fsync mode=strict for renamed
directory. https://lkml.org/lkml/2018/
4/25/674, Apr 2018.

[67] C. Yu. f2fs: fix to set keep size bit in
f2fs zero range. https://lore.kernel.
org/patchwork/patch/889955/, Feb
2018.

[68] J. Yuan, Y. Zhan, W. Jannen, P. Pandey, A. Aksh-
intala, K. Chandnani, P. Deo, Z. Kasheff, L. Walsh,
M. Bender, M. Farach-Colton, R. Johnson, B. C.
Kuszmaul, and D. E. Porter. Optimizing every op-
eration in a write-optimized file system. In 14th
USENIX Conference on File and Storage Technolo-
gies (FAST 16), pages 1–14, Santa Clara, CA, 2016.
USENIX Association.

[69] S. Zhang, H. Catanese, and A. A.-I. Wang. The
composite-file file system: Decoupling the one-to-
one mapping of files and metadata for better per-
formance. In 14th USENIX Conference on File
and Storage Technologies (FAST 16), pages 15–22,
Santa Clara, CA, 2016. USENIX Association.

[70] M. Zheng, J. Tucek, D. Huang, F. Qin, M. Lillib-
ridge, E. S. Yang, B. W. Zhao, and S. Singh. Tor-
turing databases for fun and profit. In 11th USENIX

Symposium on Operating Systems Design and Im-
plementation (OSDI 14), pages 449–464, Broom-
field, CO, 2014. USENIX Association.

18

https://sourceforge.net/p/linux-f2fs/mailman/message/36104201/
https://sourceforge.net/p/linux-f2fs/mailman/message/36104201/
https://sourceforge.net/p/linux-f2fs/mailman/message/36104201/
https://lkml.org/lkml/2018/4/25/674
https://lkml.org/lkml/2018/4/25/674
https://lore.kernel.org/patchwork/patch/889955/
https://lore.kernel.org/patchwork/patch/889955/

	Introduction
	Background
	Studying Crash-Consistency Bugs
	B3: Bounded Black-Box Crash Testing
	Overview
	Bounds used by B3
	Fine-grained correctness checking
	Limitations

	CrashMonkey and Ace
	CrashMonkey
	Automatic Crash Explorer (Ace)
	Testing and Bug Analysis

	Evaluation
	Experimental Setup
	Bug Finding
	CrashMonkey Performance
	Ace Performance
	Resource Consumption

	Related Work
	Conclusion

