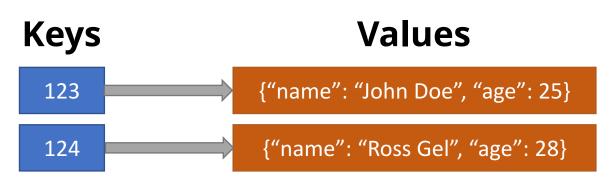
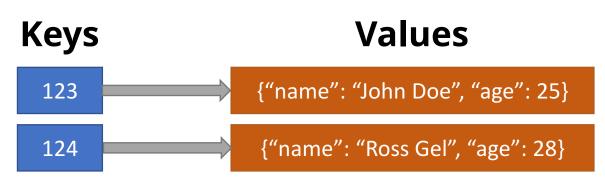
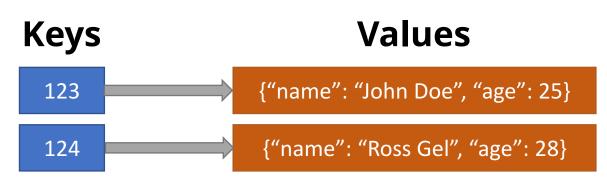
PebblesDB: Building Key-Value Stores using Fragmented Log Structured Merge Trees

Pandian Raju¹, Rohan Kadekodi¹, Vijay Chidambaram^{1,2}, Ittai Abraham² ¹The University of Texas at Austin ²VMware Research

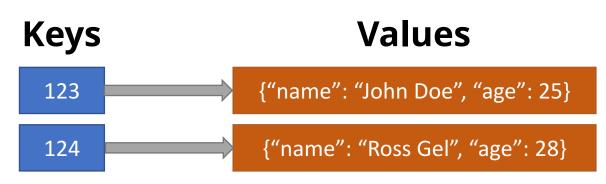




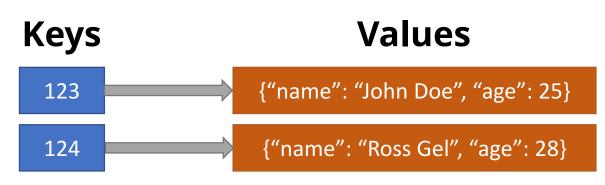
- Insertions:
- Point lookups:
- Range Queries:



- Insertions: put(key, value)
- Point lookups:
- Range Queries:



- Insertions: put(key, value)
- Point lookups: get(key)
- Range Queries:



- Insertions: put(key, value)
- Point lookups: get(key)
- Range Queries: get_range(key1, key2)

Key-Value Stores - widely used

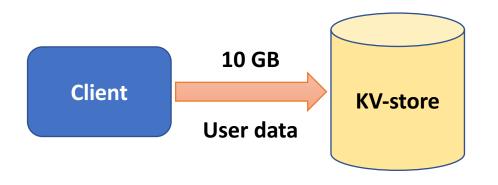
- Google's **BigTable** powers Search, Analytics, Maps and Gmail
- Facebook's RocksDB is used as storage engine in production systems of many companies

Write-optimized data structures

- Log Structured Merge Tree (LSM) is a write-optimized data structure used in key-value stores
- Provides high write throughput with good read throughput, but suffers high write amplification

Write-optimized data structures

- Log Structured Merge Tree (LSM) is a write-optimized data structure used in key-value stores
- Provides high write throughput with good read throughput, but suffers high write amplification
- Write amplification Ratio of amount of write IO to amount of user data

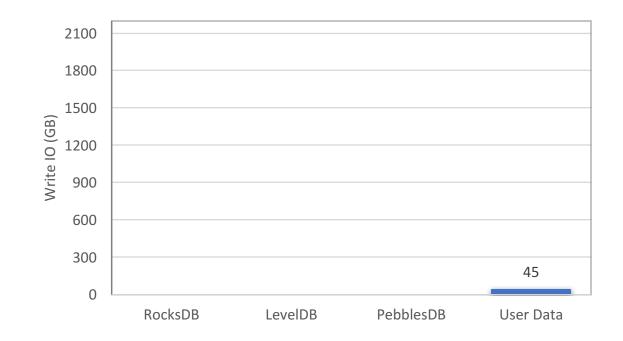


If total write I/O is 200 GB

Write amplification = 20

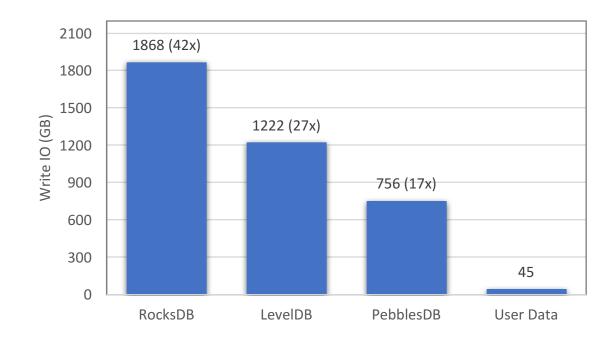
Write amplification in LSM based KV stores

- Inserted 500M key-value pairs
- Key: 16 bytes, Value: 128 bytes
- Total user data: ~45 GB



Write amplification in LSM based KV stores

- Inserted 500M key-value pairs
- Key: 16 bytes, Value: 128 bytes
- Total user data: ~45 GB



Why is write amplification bad?

- Reduces the write throughput
- Flash devices wear out after limited write cycles

(Intel SSD DC P4600 – can last ~5 years assuming ~5 TB write per day)

RocksDB can write ~500 GB of user data per day to a SSD to last 1.25 years

Data source: https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/data-center-ssds/dc-p4600-series/dc-p4600-1-6tb-2-5inch-3d1.html

PebblesDB

High performance write-optimized key-value store

Built using new data structure Fragmented Log-Structured Merge Tree

Achieves 3-6.7x higher write throughput and 2.4-3x lesser write amplification compared to RocksDB

Gets the highest write throughput and least write amplification as a backend store to MongoDB

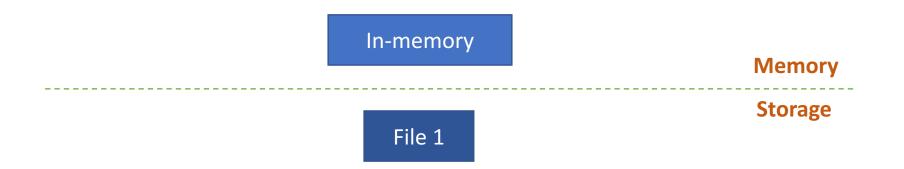
Outline

- Log-Structured Merge Tree (LSM)
- Fragmented Log-Structured Merge Tree (FLSM)
- Building PebblesDB using FLSM
- Evaluation
- Conclusion

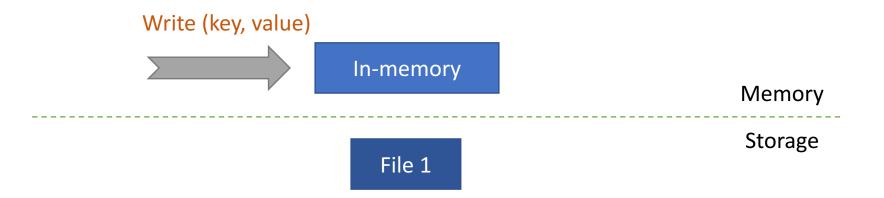
Outline

• Log-Structured Merge Tree (LSM)

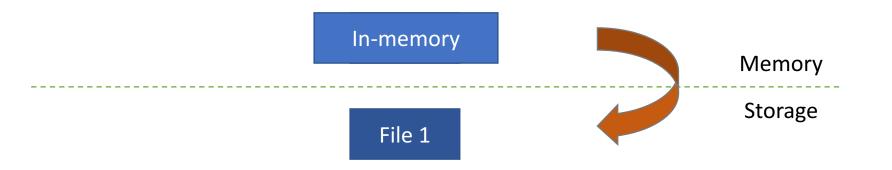
- Fragmented Log-Structured Merge Tree (FLSM)
- Building PebblesDB using FLSM
- Evaluation
- Conclusion



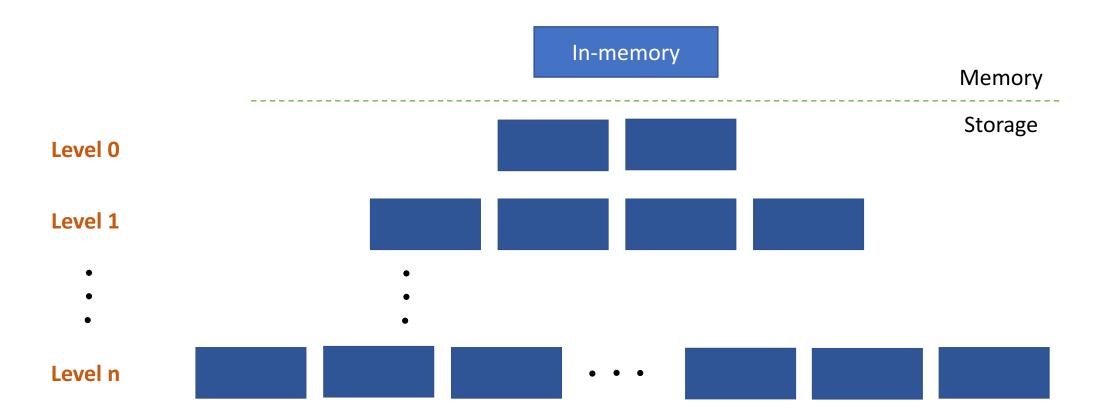
Data is stored both in memory and storage



Writes are directly put to memory



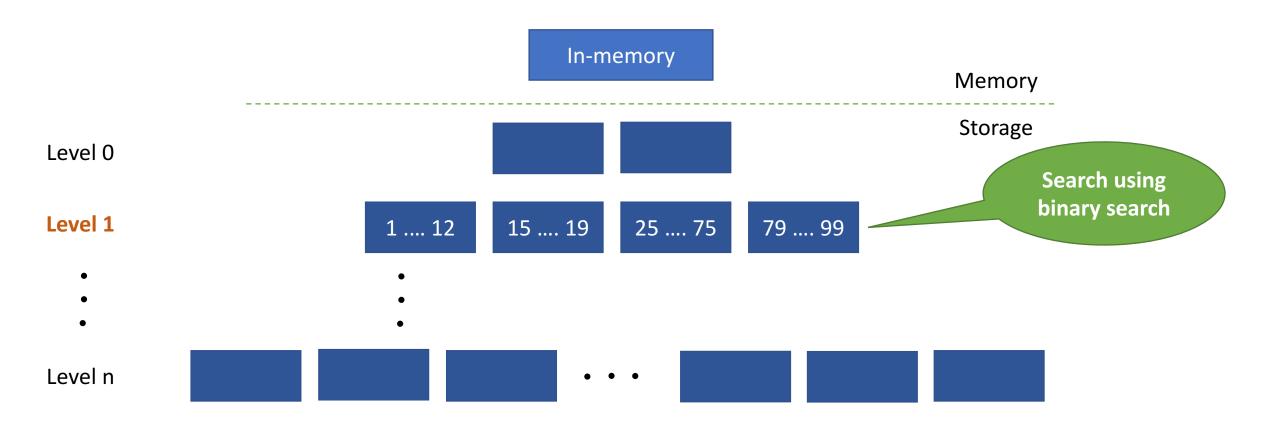
In-memory data is periodically written as files to storage (sequential I/O)



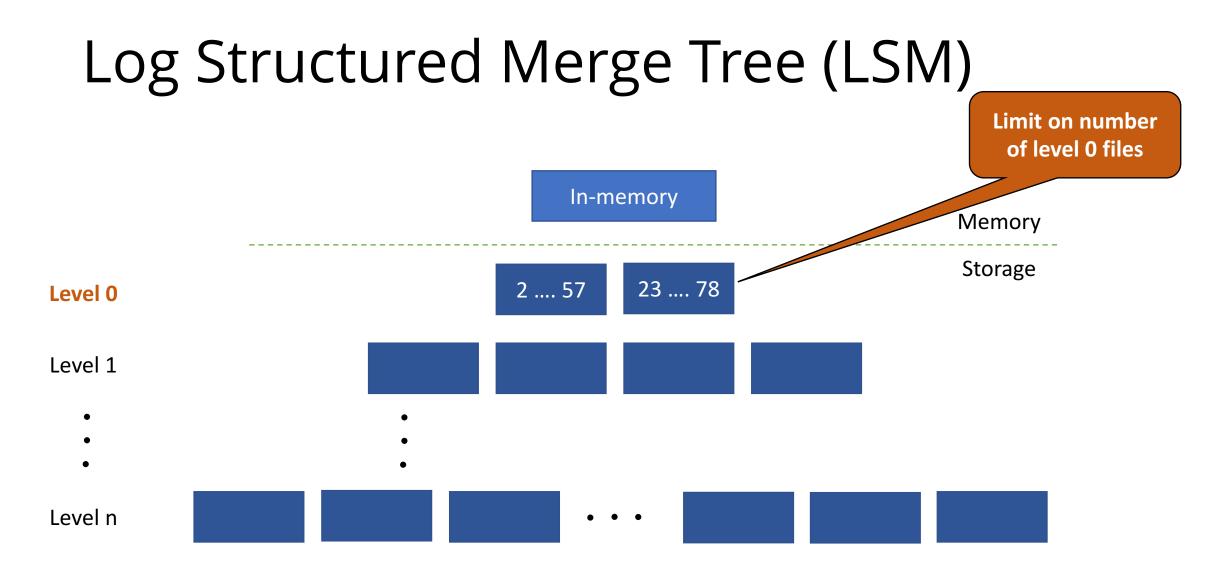
Files on storage are logically arranged in different levels

Log Structured Merge Tree (LSM) In-memory Memory Storage Level 0 Level 1 ٠ Level n • •

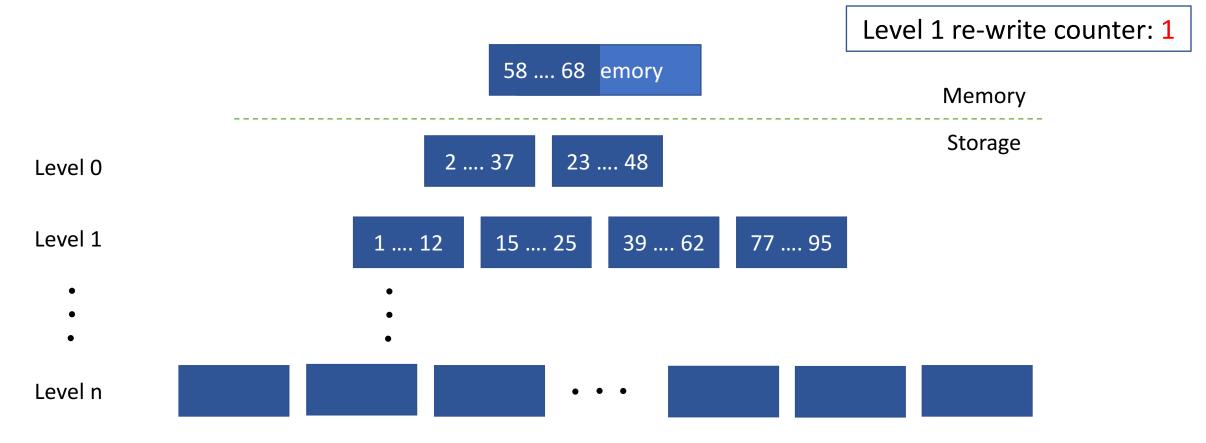
Compaction pushes data to higher numbered levels



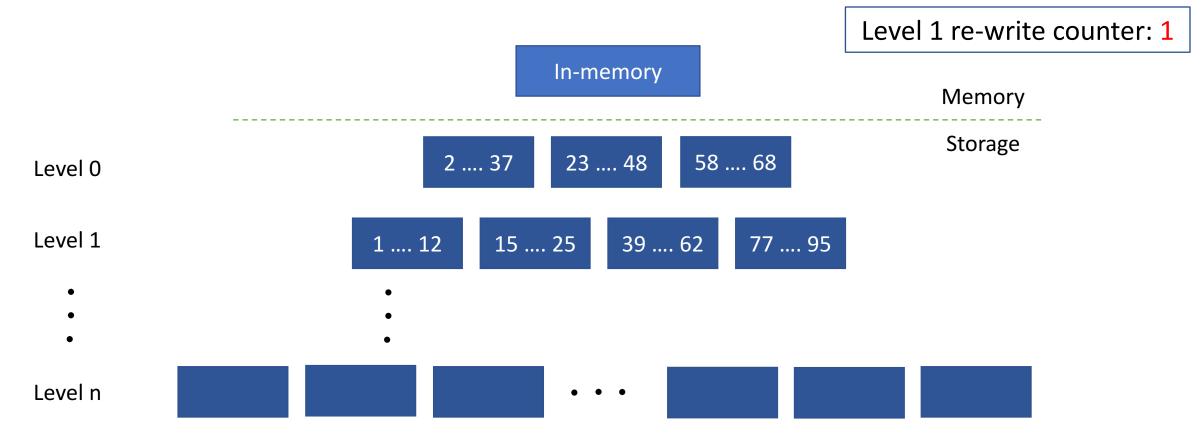
Files are sorted and have non-overlapping key ranges



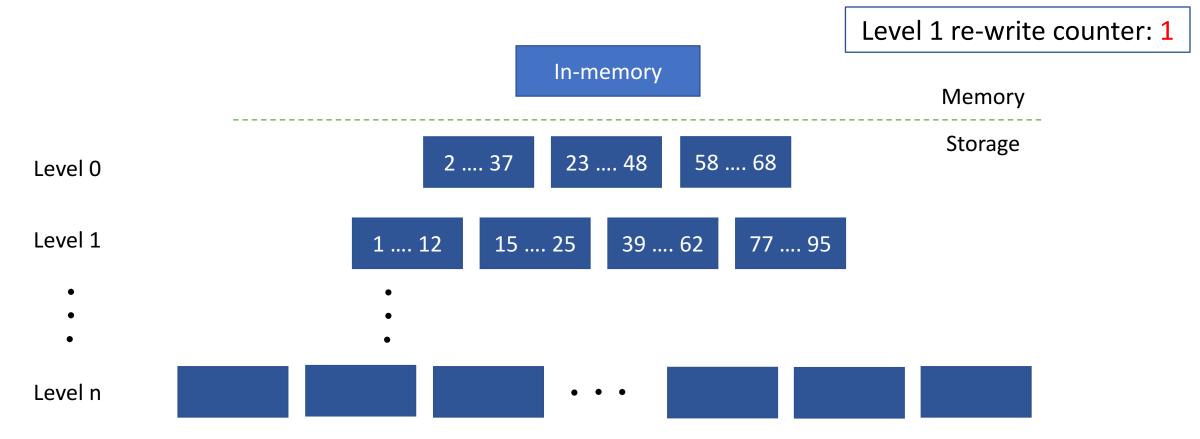
Level 0 can have files with overlapping (but sorted) key ranges



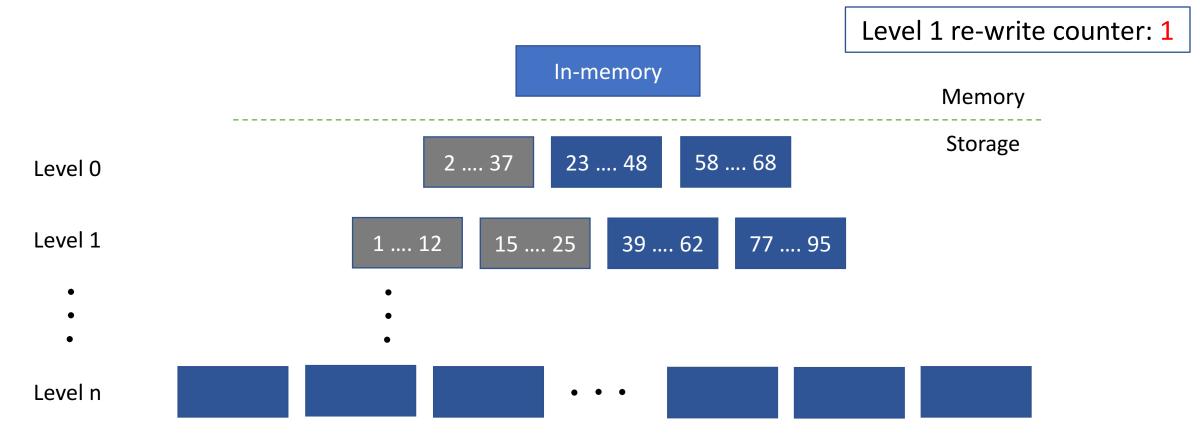
Max files in level 0 is configured to be 2



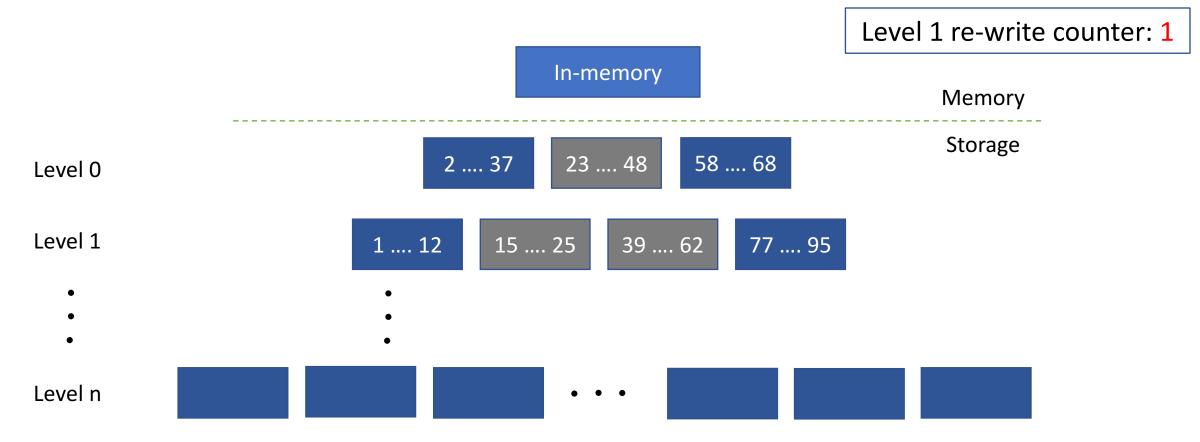
Level 0 has 3 files (> 2), which triggers a compaction



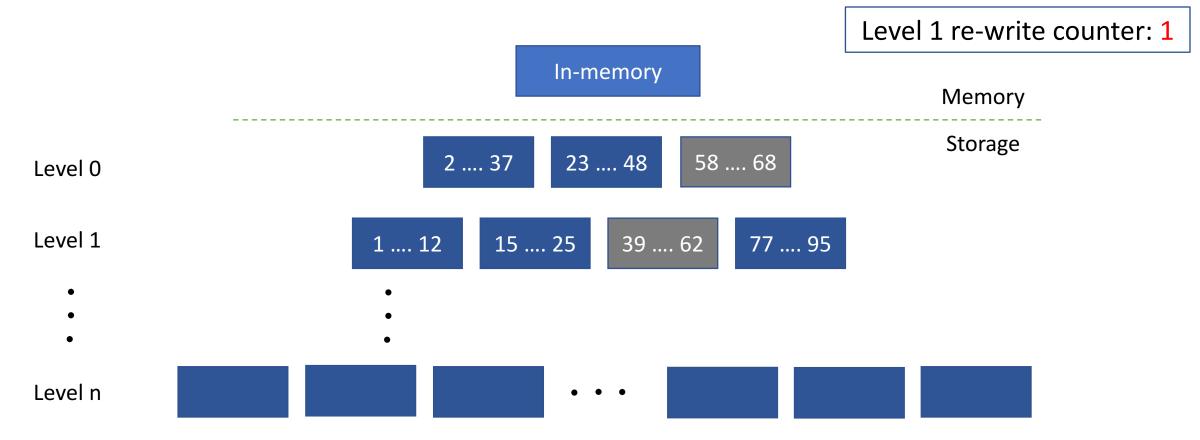
* Files are immutable * Sorted non-overlapping files



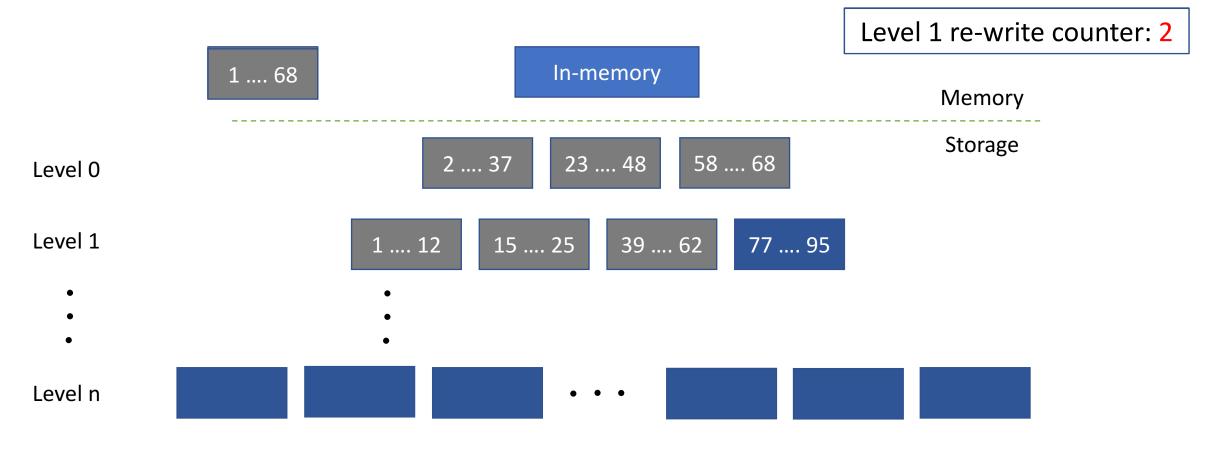
Set of overlapping files between levels 0 and 1



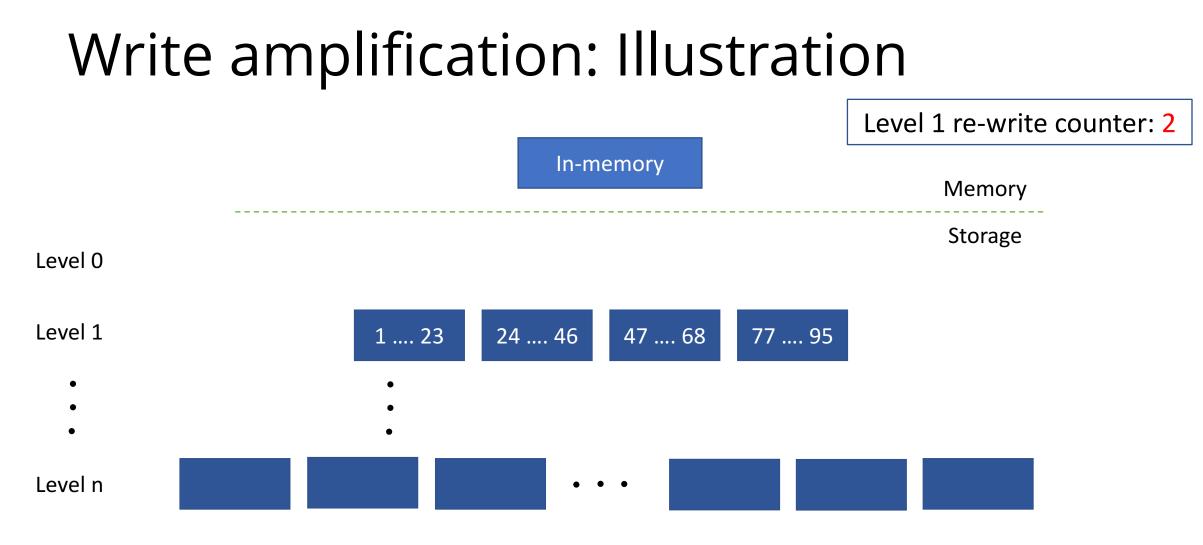
Set of overlapping files between levels 0 and 1



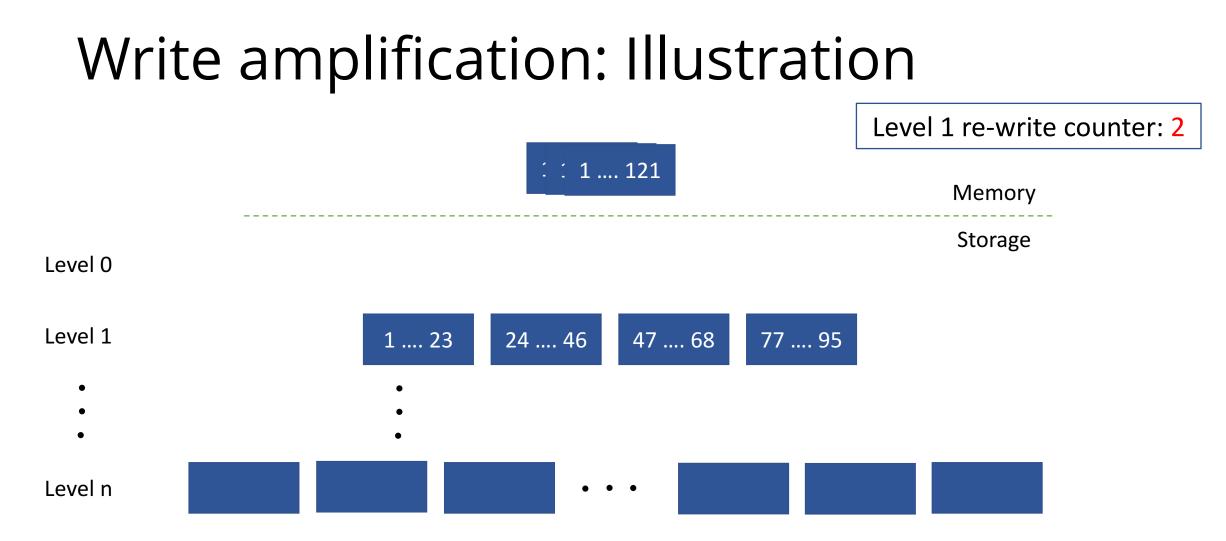
Set of overlapping files between levels 0 and 1



Compacting level 0 with level 1



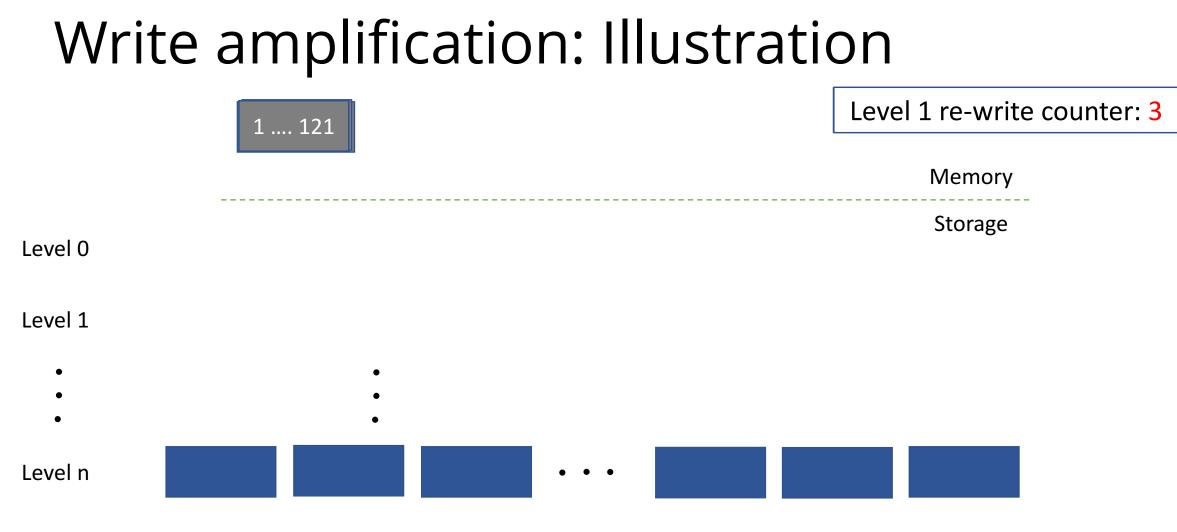
Level 0 is compacted



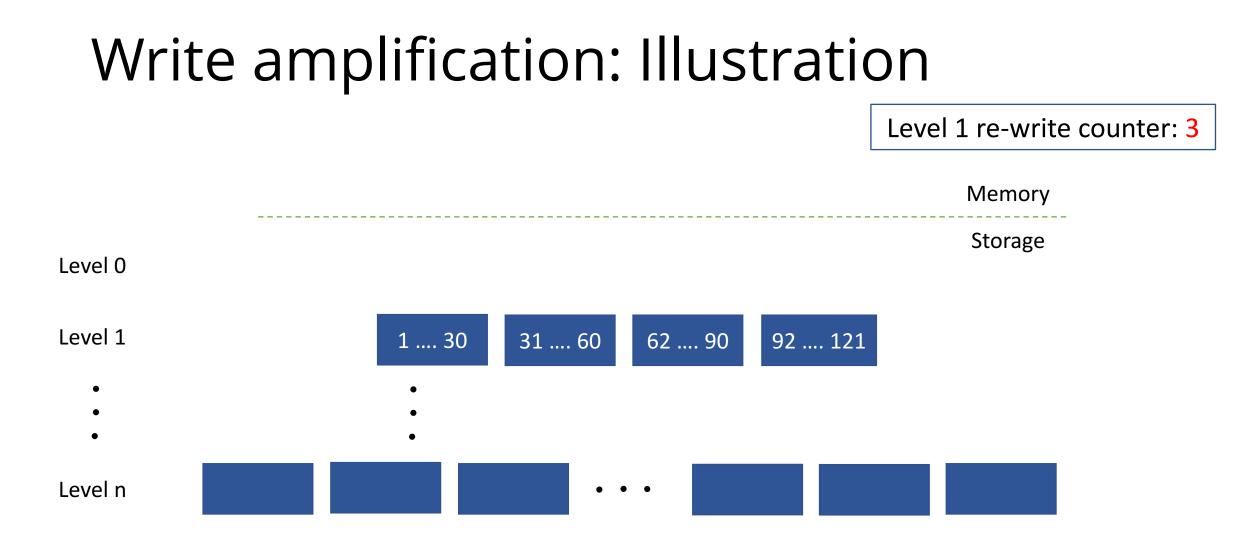
Data is being flushed as level 0 files after some Write operations



Compacting level 0 with level 1



Compacting level 0 with level 1



Existing data is re-written to the same level (1) 3 times

Root cause of write amplification

Rewriting data to the same level multiple times

To maintain sorted non-overlapping files in each level

Outline

- Log-Structured Merge Tree (LSM)
- Fragmented Log-Structured Merge Tree (FLSM)
- Building PebblesDB using FLSM
- Evaluation
- Conclusion

Naïve approach to reduce write amplification

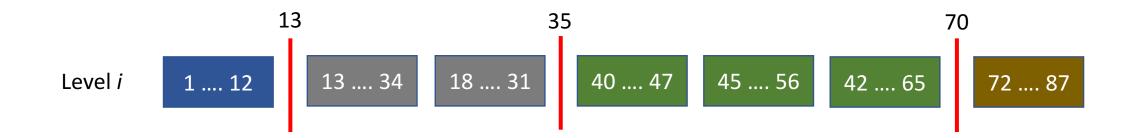
- Just append the file to the end of next level
- Many (possibly all) overlapping files within a level

(all files have overlapping key ranges)

• Affects the read performance

Partially sorted levels

- Hybrid between all non-overlapping files and all overlapping files
- Inspired from Skip-List data structure
- Concrete boundaries (**guards**) to group together overlapping files



(files of same color can have overlapping key ranges)

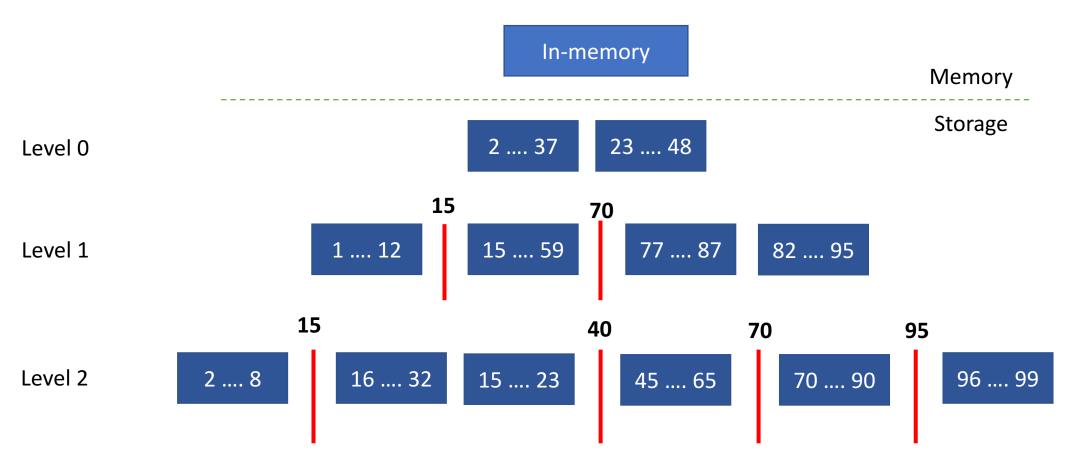
Fragmented Log-Structured Merge Tree

Novel modification of LSM data structure

Uses guards to maintain partially sorted levels

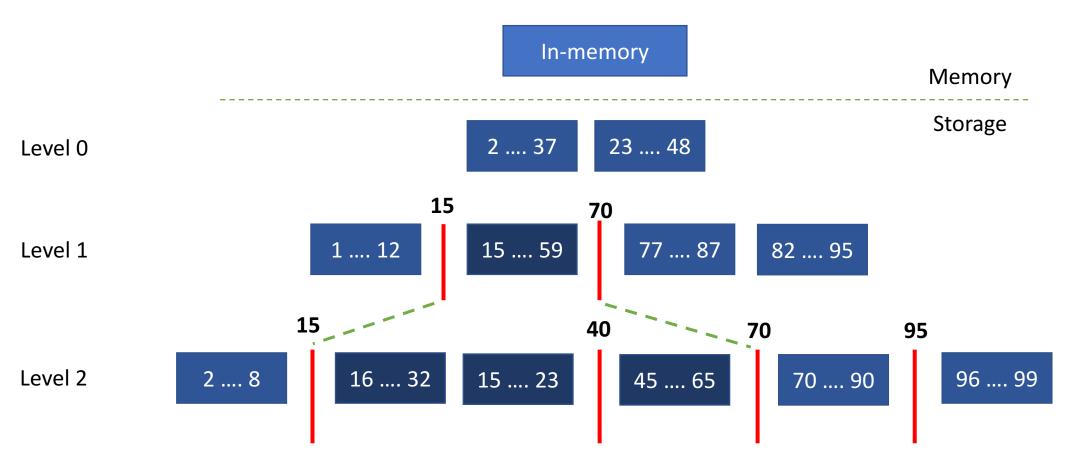
Writes data only once per level in most cases

FLSM structure

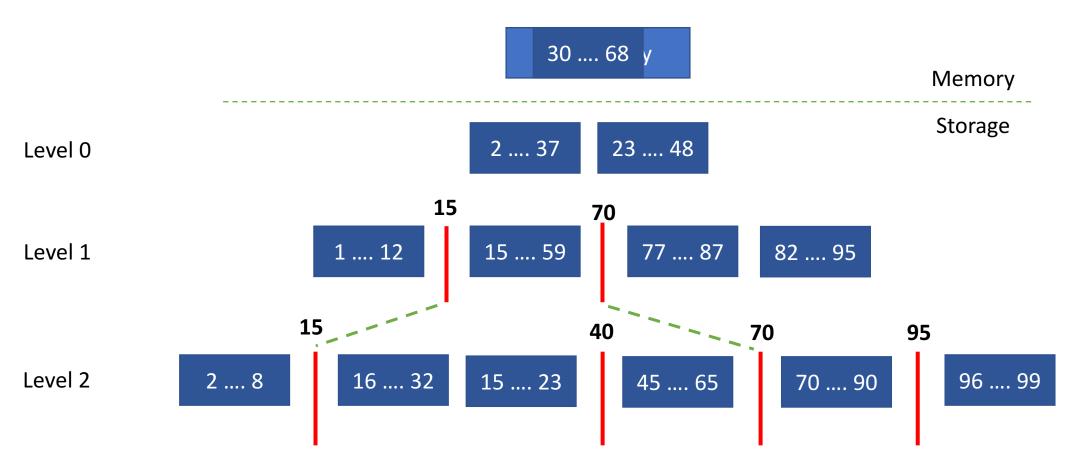


Note how files are logically grouped within guards

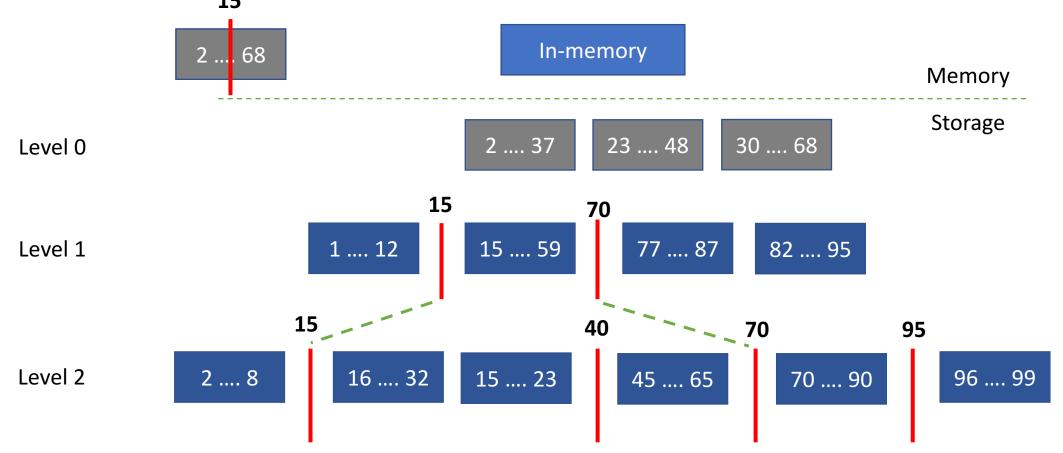
FLSM structure



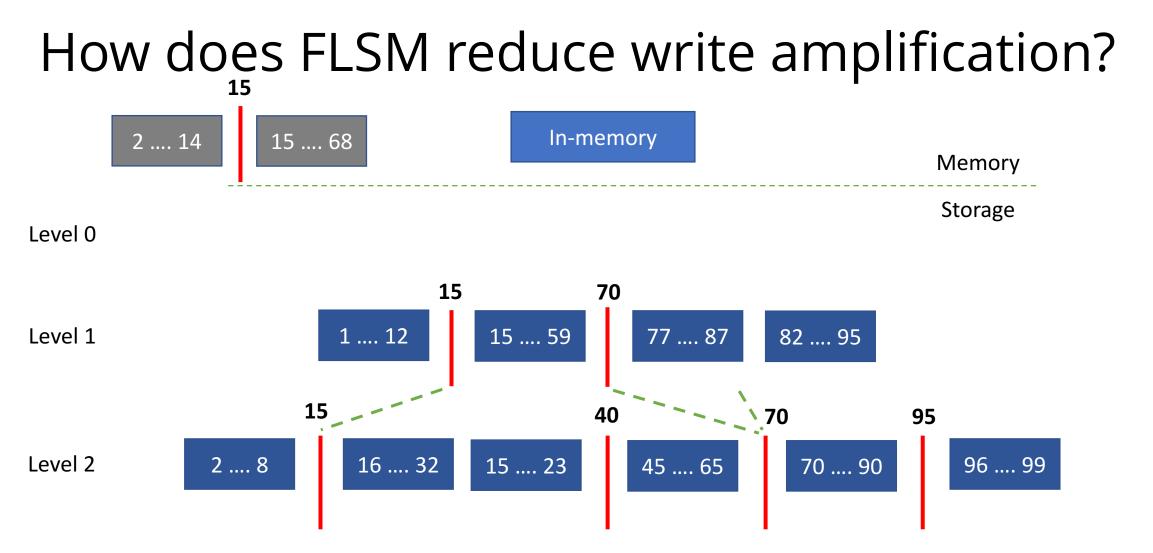
Guards get more fine grained deeper into the tree



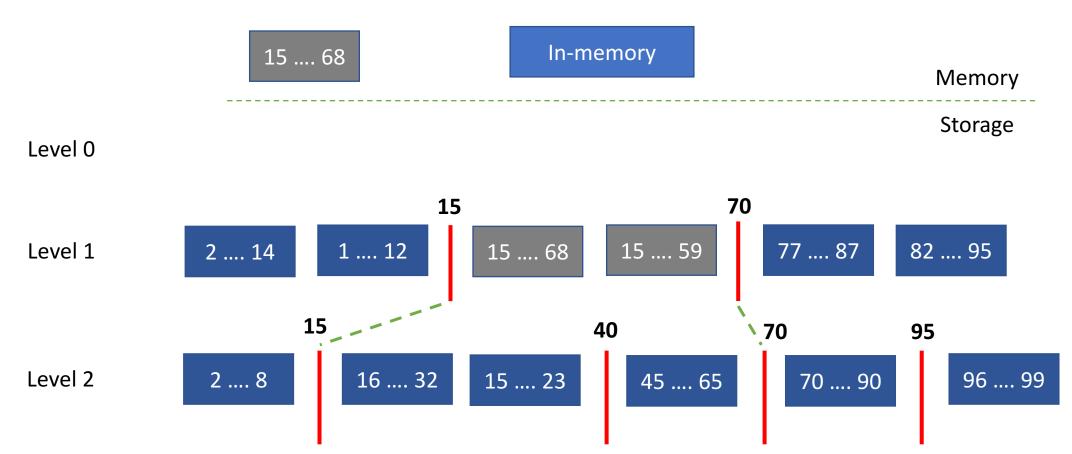
Max files in level 0 is configured to be 2



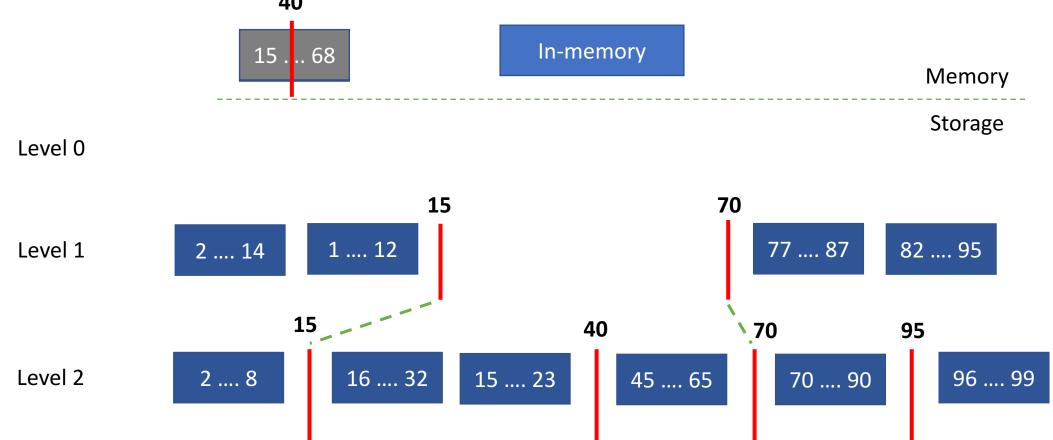
Compacting level 0



Fragmented files are just appended to next level



Guard 15 in Level 1 is to be compacted



Files are combined, sorted and fragmented

How does FLSM reduce write amplification? In-memory 15 39 40 68 Memory Storage Level 0 15 70 1 12 82 95 77 87 Level 1 2 14 ____15____ 40 95 70 15 23 Level 2 16 32 45 65 70 90 2 8 96 99

Fragmented files are just appended to next level

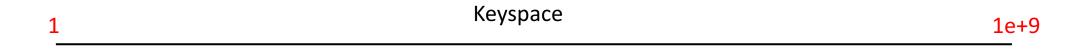
FLSM doesn't re-write data to the same level in most cases

How does FLSM maintain read performance?

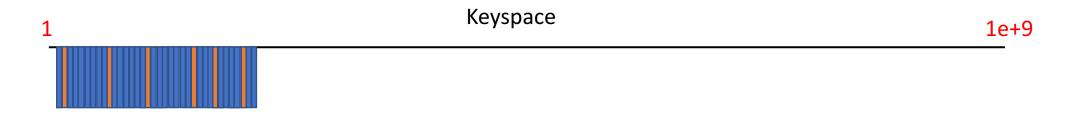
FLSM maintains partially sorted levels to efficiently reduce the search space

- Guards are chosen randomly and dynamically
- Dependent on the distribution of data

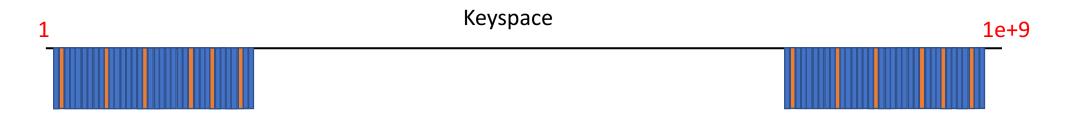
- Guards are chosen randomly and dynamically
- Dependent on the distribution of data



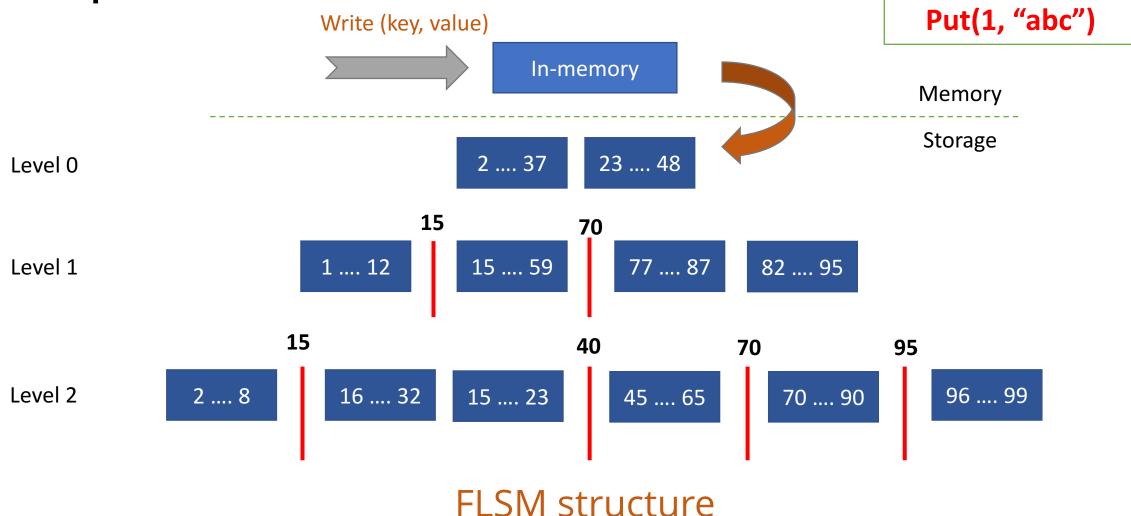
- Guards are chosen randomly and dynamically
- Dependent on the distribution of data

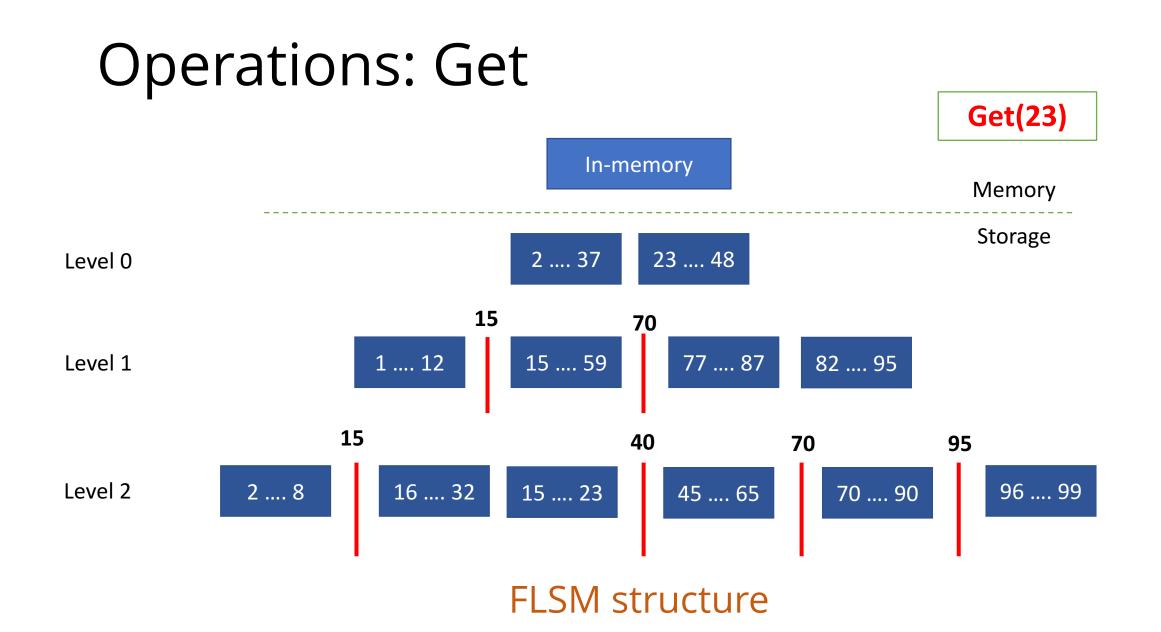


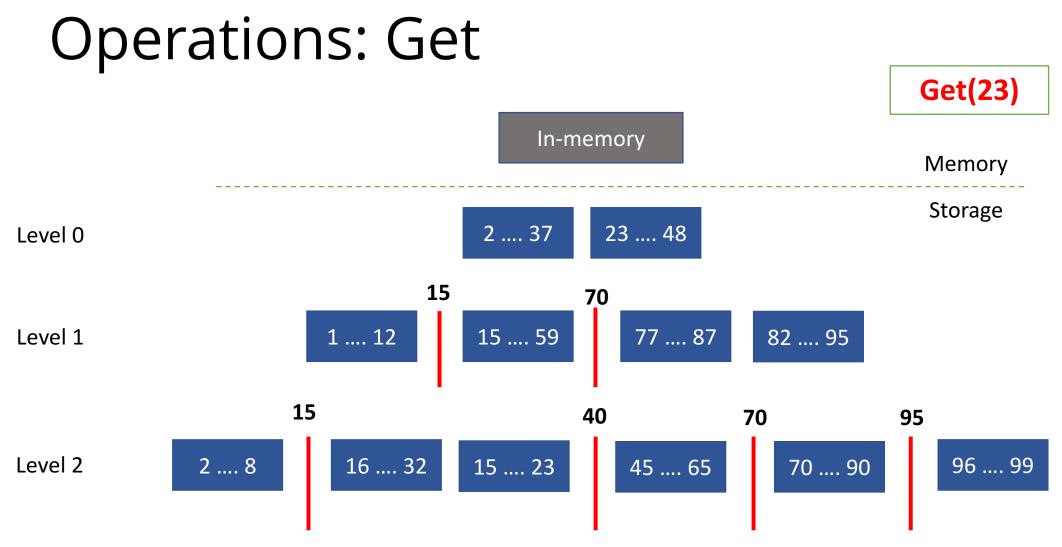
- Guards are chosen randomly and dynamically
- Dependent on the distribution of data



Operations: Write



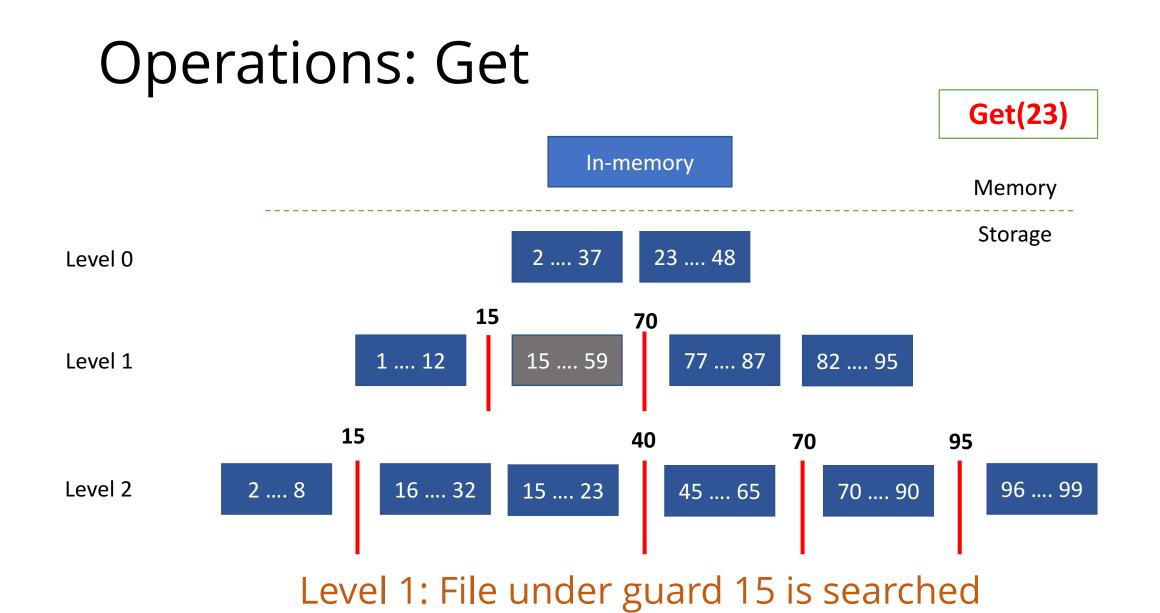


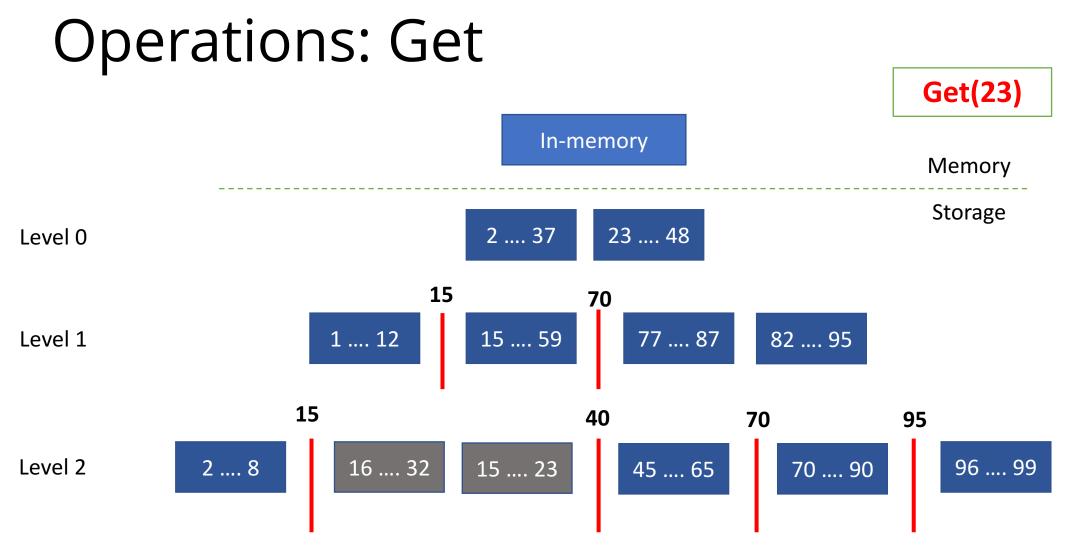


Search level by level starting from memory



All level 0 files need to be searched

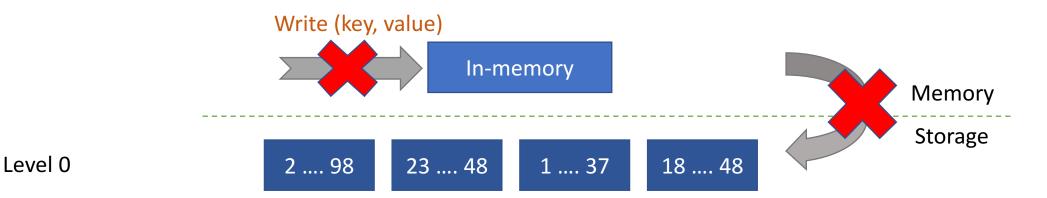




Level 2: Both the files under guard 15 are searched

High write throughput in FLSM

- Compaction from memory to level 0 is stalled
- Writes to memory is also stalled



If rate of insertion is higher than rate of compaction, write throughput depends on the rate of compaction

High write throughput in FLSM

- Compaction from memory to level 0 is stalled
- Writes to memory is also stalled

FLSM has faster compaction because of lesser I/O and hence higher write throughput

If rate of insertion is higher than rate of compaction, write throughput depends on the rate of compaction

Challenges in FLSM

- Every read/range query operation needs to examine multiple files per level
- For example, if every guard has 5 files, read latency is increased by 5x (assuming no cache hits)

Trade-off between write I/O and read performance

Outline

- Log-Structured Merge Tree (LSM)
- Fragmented Log-Structured Merge Tree (FLSM)

• Building PebblesDB using FLSM

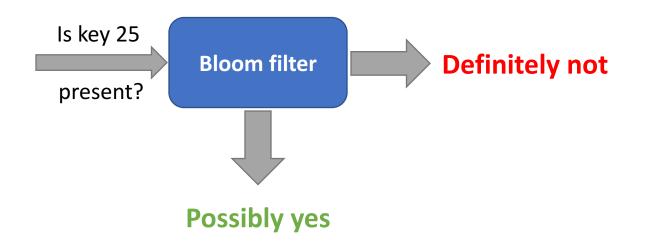
- Evaluation
- Conclusion

PebblesDB

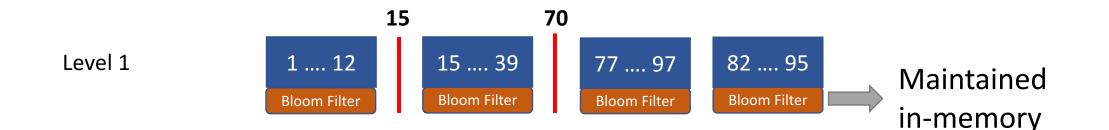
- Built by modifying **HyperLevelDB** (±9100 LOC) to use FLSM
- HyperLevelDB, built over LevelDB, to provide improved parallelism and compaction
- API compatible with LevelDB, but not with RocksDB

- Challenge (get/range query): Multiple files in a guard
- Get() performance is improved using file level bloom filter

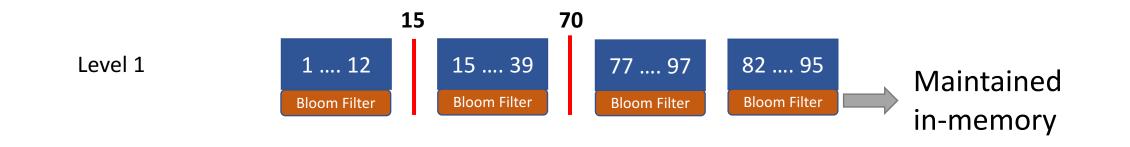
- Challenge (get/range query): Multiple files in a guard
- Get() performance is improved using file level bloom filter



- Challenge (get/range query): Multiple files in a guard
- Get() performance is improved using file level bloom filter



- Challenge (get/range query): Multiple files in a guard
- Get() performance is improved using file level bloom filter

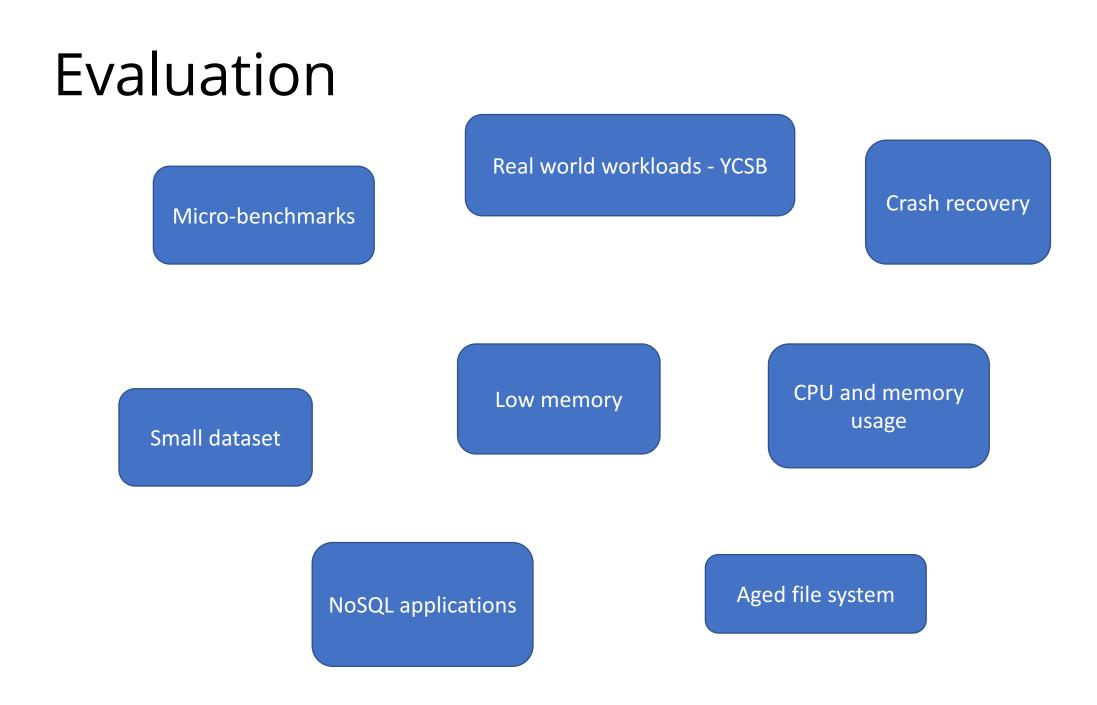


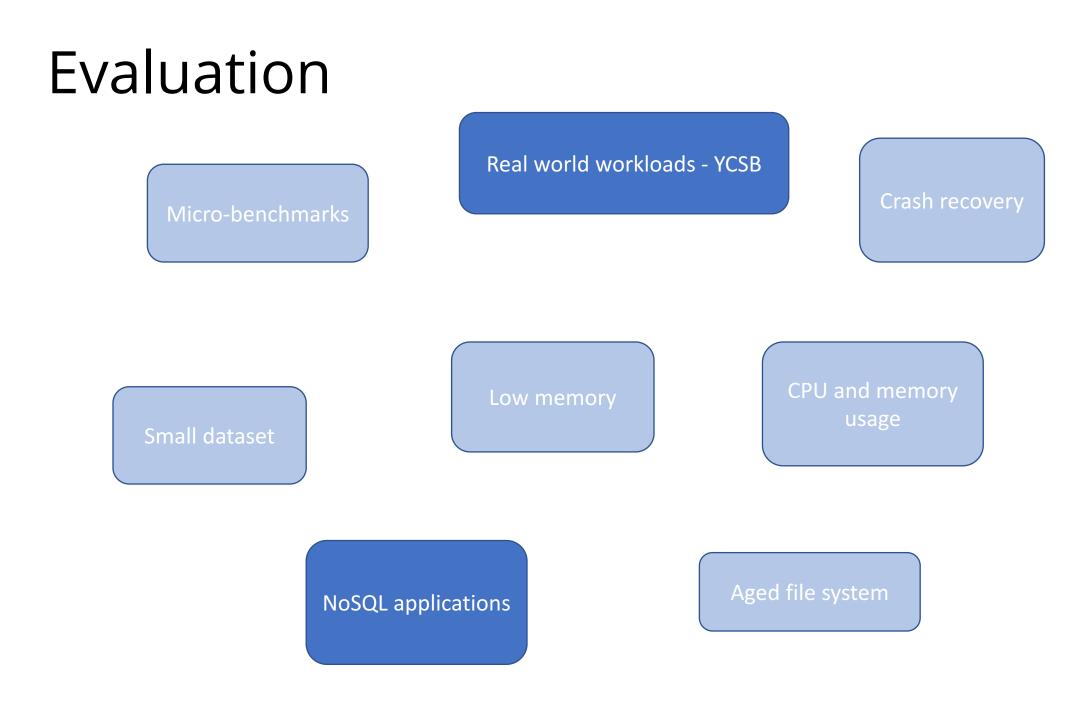
PebblesDB reads same number of files as any LSM based store

- Challenge (get/range query): Multiple files in a guard
- Get() performance is improved using file level bloom filter
- Range query performance is improved using parallel threads and better compaction

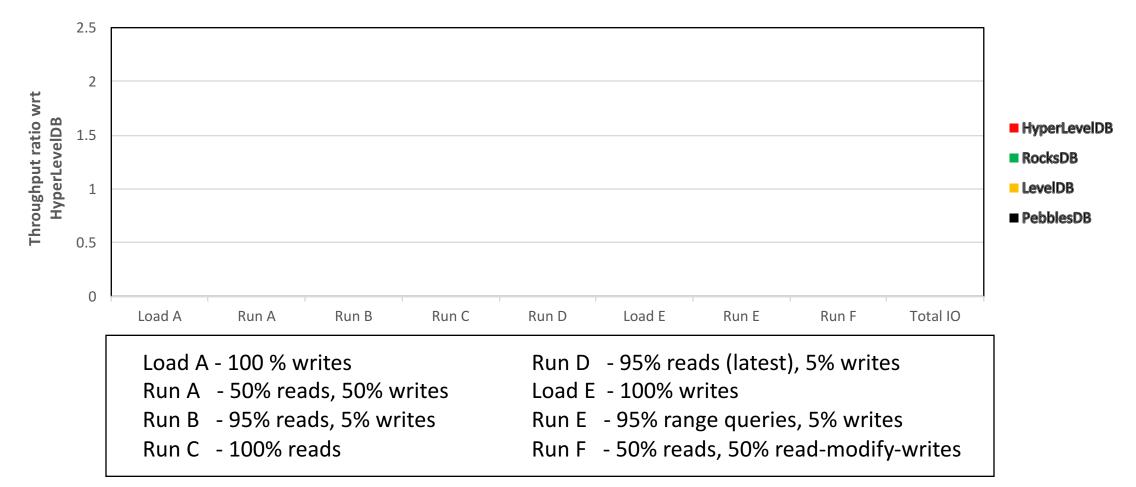
Outline

- Log-Structured Merge Tree (LSM)
- Fragmented Log-Structured Merge Tree (FLSM)
- Building PebblesDB using FLSM
- Evaluation
- Conclusion

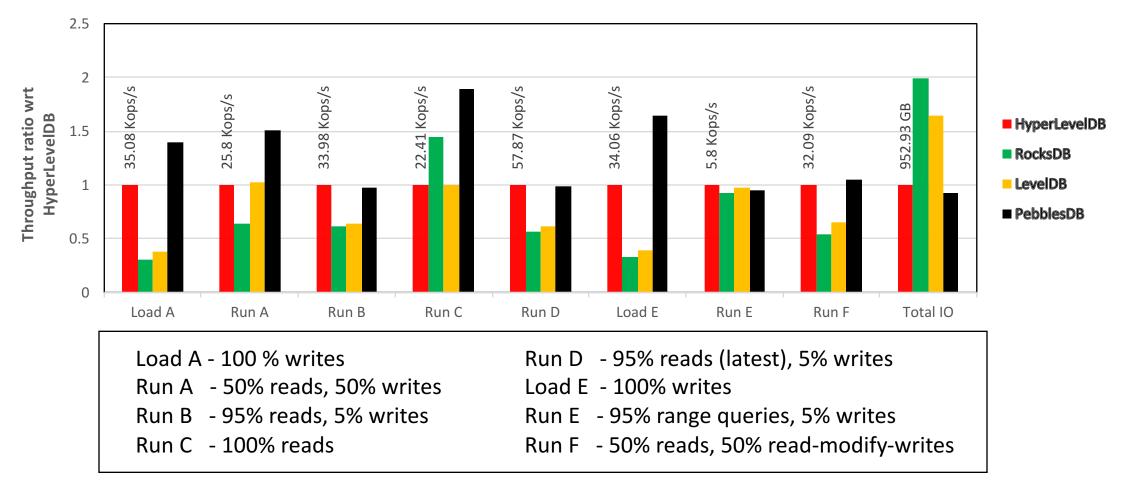




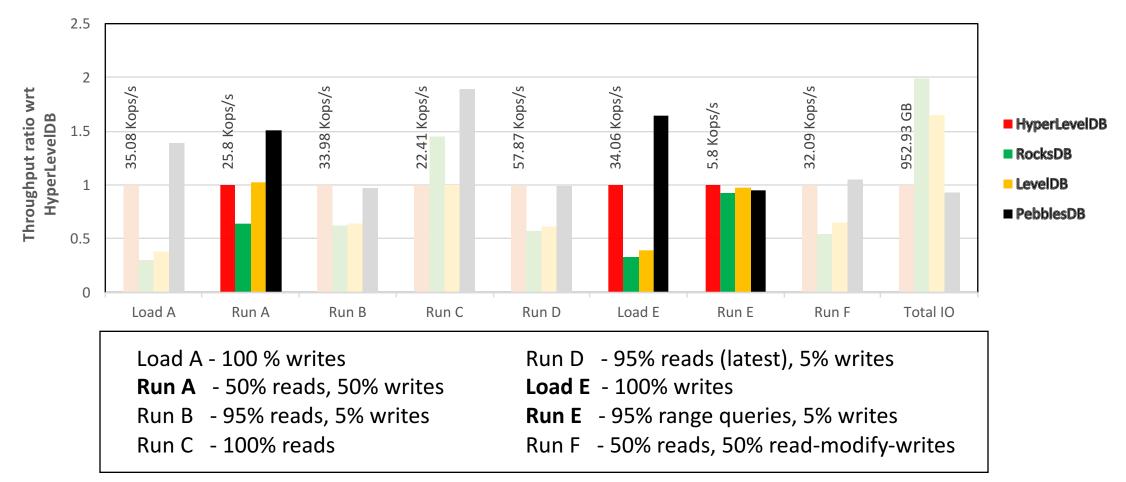
- Yahoo! Cloud Serving Benchmark Industry standard macro-benchmark
- Insertions: 50M, Operations: 10M, key size: 16 bytes and value size: 1 KB



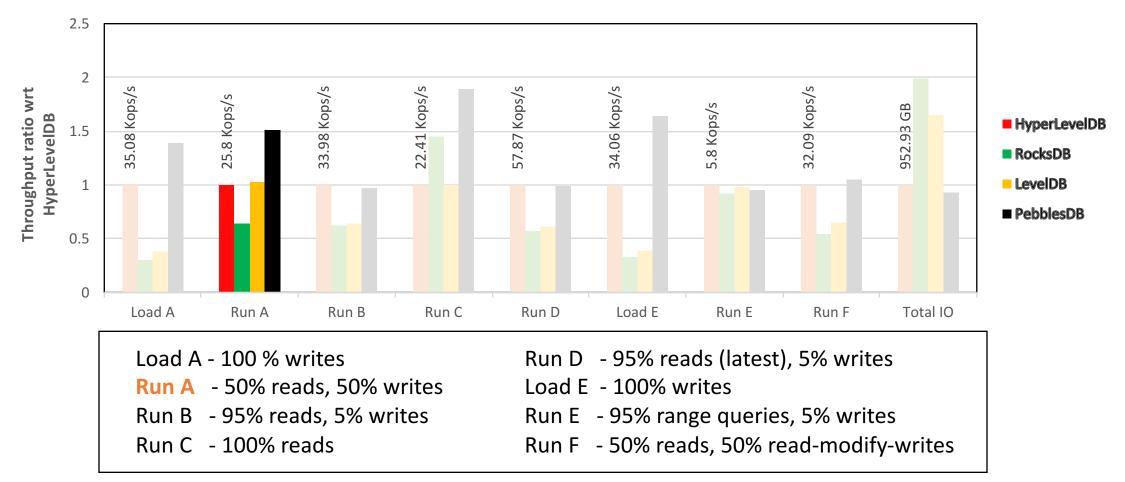
- Yahoo! Cloud Serving Benchmark Industry standard macro-benchmark
- Insertions: 50M, Operations: 10M, key size: 16 bytes and value size: 1 KB



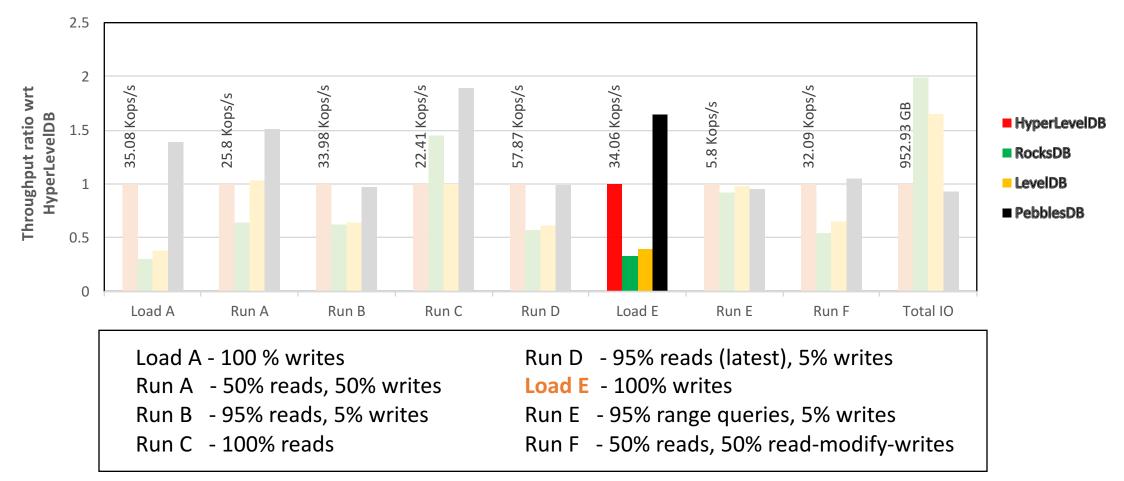
- Yahoo! Cloud Serving Benchmark Industry standard macro-benchmark
- Insertions: 50M, Operations: 10M, key size: 16 bytes and value size: 1 KB



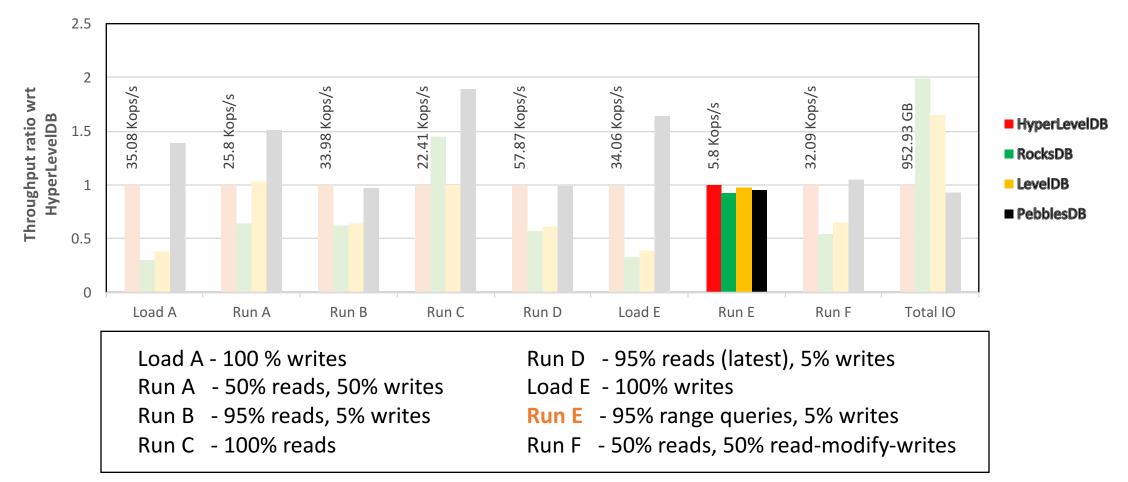
- Yahoo! Cloud Serving Benchmark Industry standard macro-benchmark
- Insertions: 50M, Operations: 10M, key size: 16 bytes and value size: 1 KB



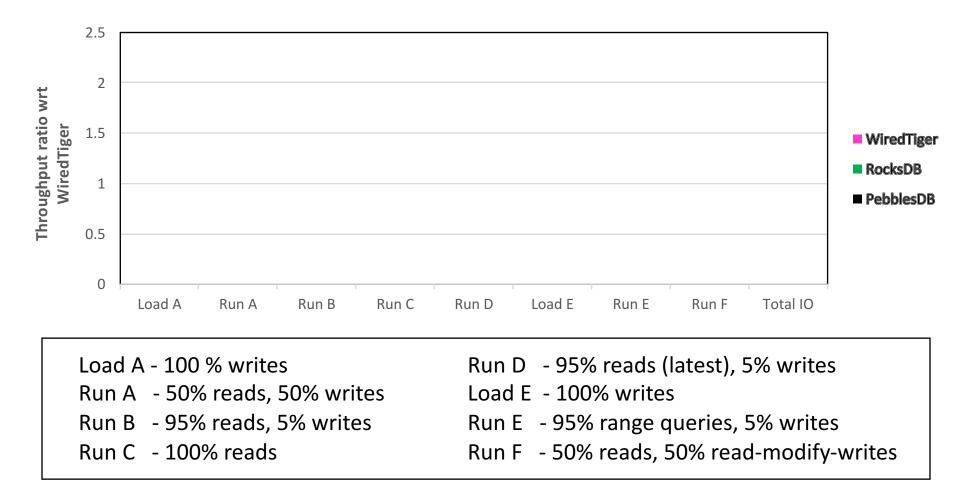
- Yahoo! Cloud Serving Benchmark Industry standard macro-benchmark
- Insertions: 50M, Operations: 10M, key size: 16 bytes and value size: 1 KB



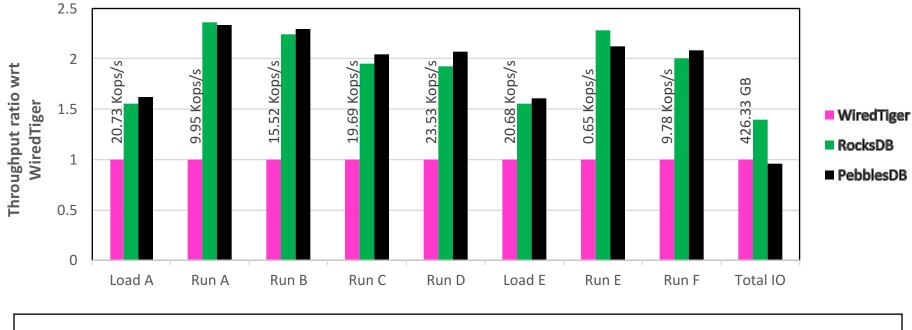
- Yahoo! Cloud Serving Benchmark Industry standard macro-benchmark
- Insertions: 50M, Operations: 10M, key size: 16 bytes and value size: 1 KB



- YCSB on MongoDB, a widely used key-value store
- Inserted 20M key-value pairs with 1 KB value size and 10M operations



- YCSB on MongoDB, a widely used key-value store
- Inserted 20M key-value pairs with 1 KB value size and 10M operations

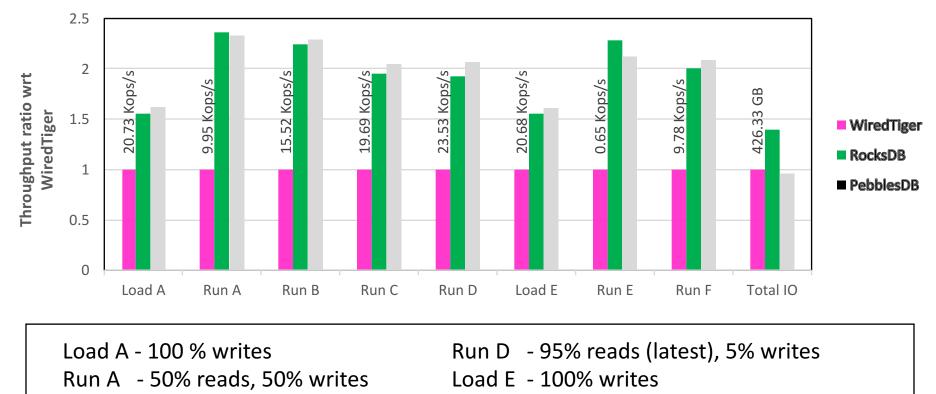


Load A - 100 % writes

- Run A 50% reads, 50% writes
- Run B 95% reads, 5% writes
- Run C 100% reads

- Run D 95% reads (latest), 5% writes
- Load E 100% writes
- Run E 95% range queries, 5% writes
- Run F 50% reads, 50% read-modify-writes

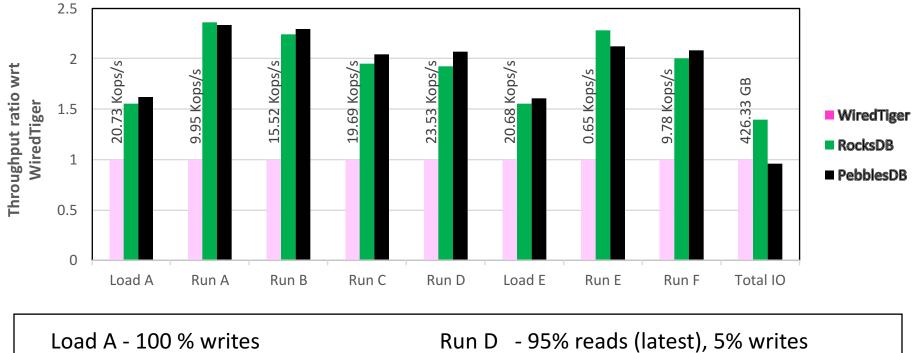
- YCSB on MongoDB, a widely used key-value store
- Inserted 20M key-value pairs with 1 KB value size and 10M operations



- Run B 95% reads, 5% writes Run
- Run C 100% reads

- Run E 95% range queries, 5% writes
- Run F 50% reads, 50% read-modify-writes

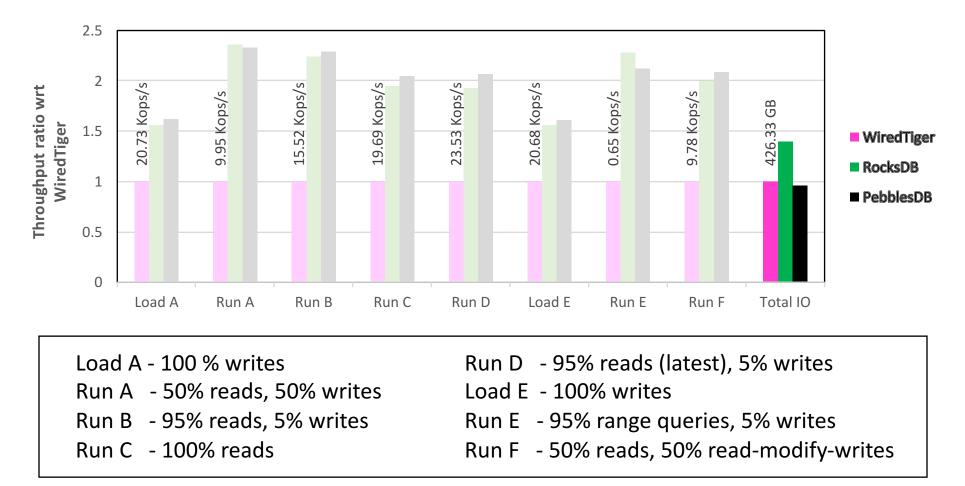
- YCSB on MongoDB, a widely used key-value store
- Inserted 20M key-value pairs with 1 KB value size and 10M operations



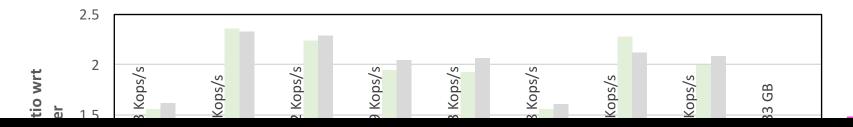
- Run A 50% reads, 50% writes
- Run B 95% reads, 5% writes
- Run C 100% reads

- Load E 100% writes
- Run E 95% range queries, 5% writes
- Run F 50% reads, 50% read-modify-writes

- YCSB on MongoDB, a widely used key-value store
- Inserted 20M key-value pairs with 1 KB value size and 10M operations



- YCSB on MongoDB, a widely used key-value store
- Inserted 20M key-value pairs with 1 KB value size and 10M operations



PebblesDB combines low write IO of WiredTiger with high performance of RocksDB

Load A - 100 % writes

- Run A 50% reads, 50% writes
- Run B 95% reads, 5% writes
- Run C 100% reads

Run D - 95% reads (latest), 5% writesLoad E - 100% writesRun E - 95% range queries, 5% writes

Run F - 50% reads, 50% read-modify-writes

Outline

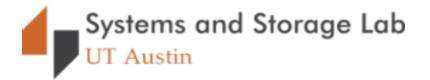
- Log-Structured Merge Tree (LSM)
- Fragmented Log-Structured Merge Tree (FLSM)
- Building PebblesDB using FLSM
- Evaluation
- Conclusion

Conclusion

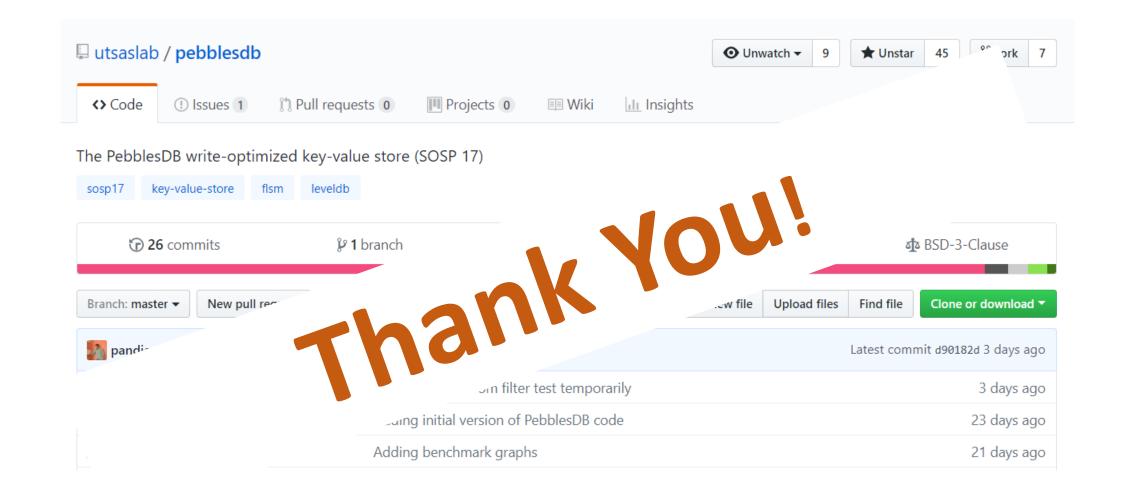
- PebblesDB: key-value store built on Fragmented Log-Structured Merge Trees
 - Increases write throughput and reduces write IO at the same time
 - Obtains 6X the write throughput of RocksDB
- As key-value stores become more widely used, there have been several attempts to optimize them
- PebblesDB combines algorithmic innovation (the FLSM data structure) with careful systems building

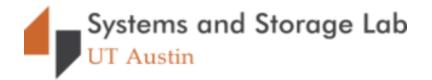
https://github.com/utsaslab/pebblesdb

utsaslab / pebblesdb			O Unwatch	▼ 9	★ Unstar	45	Fork
♦ Code ③ Issues 1	្រា Pull requests 🧿 🛛 🔟 Proj	ects 0 🗉 Wiki 🔟 I	nsights				
he PebblesDB write-optimi: sosp17 key-value-store fls	zed key-value store (SOSP 1 m leveldb	7)					
⑦ 26 commits< № 1 branch ♡ 0 releases			2 3 contributors		화 BSD-3-Clause		
26 commits	រូ ខ 1 branch	♥ 0 releases	🚨 3 contribu	tors	ەۋە	BSD-3-Cl	ause
⑦ 26 commits Branch: master ▼ New pull rec		𝔝 0 releases		tors load files	کڑی Find file	BSD-3-Cl	
	quest	♥ 0 releases		load files		Clone or	download
Branch: master - New pull rec	quest ng bloom filter test temporarily	♥ 0 releases		load files	Find file	Clone or	download
Branch: master - New pull rec	quest ng bloom filter test temporarily Commenting blo			load files	Find file	Clone or o	download 3 days a



https://github.com/utsaslab/pebblesdb





Backup slides

Operations: Seek

- Seek(target): Returns the smallest key in the database which is >= target
- Used for range queries (for example, return all entries between 5 and 18)
 - Level 0 1, 2, 100, 1000
 - Level 1 1, 5, 10, 2000
 - Level 2 5, 300, 500

Get(1)

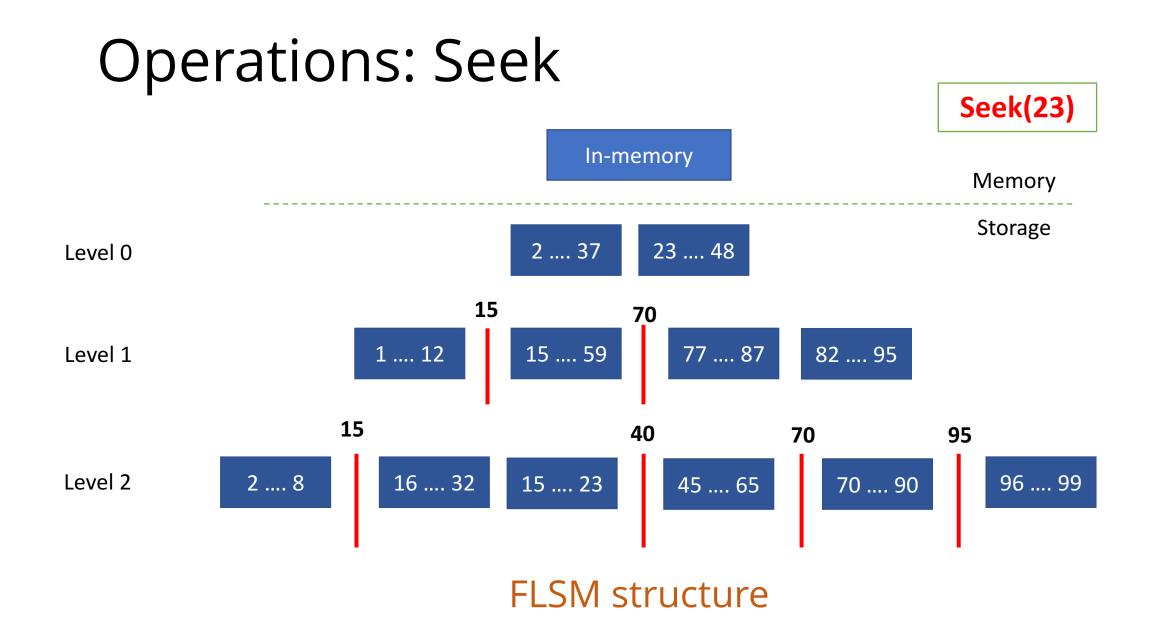
Operations: Seek

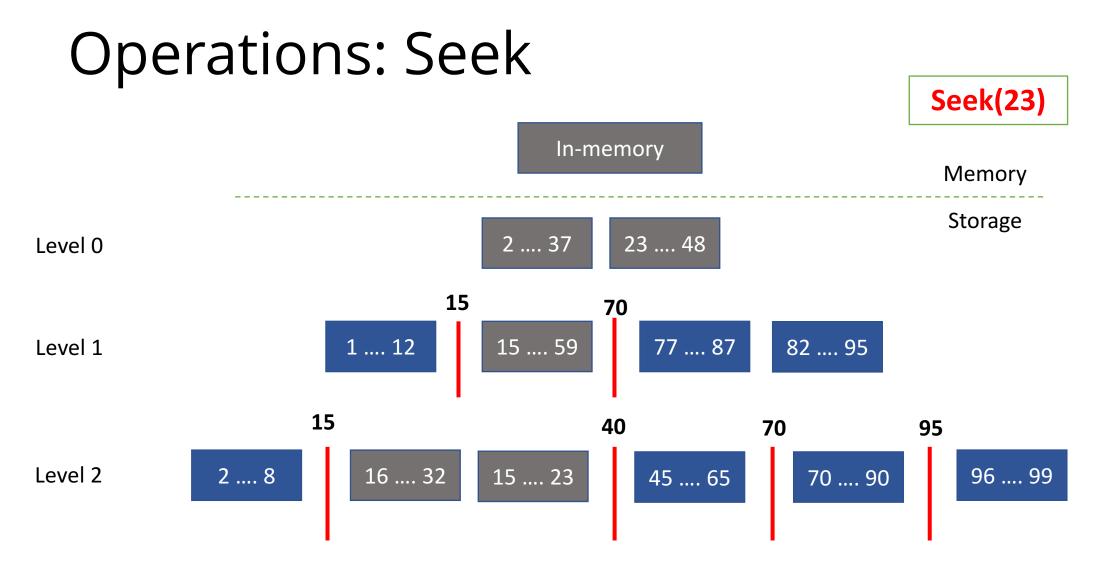
- Seek(target): Returns the smallest key in the database which is >= target
- Used for range queries (for example, return all entries between 5 and 18)
 - Level 0 1, 2, 100, 1000
 - Level 1 1, 5, 10, 2000
 - Level 2 5, 300, 500

Seek(200)

Operations: Seek

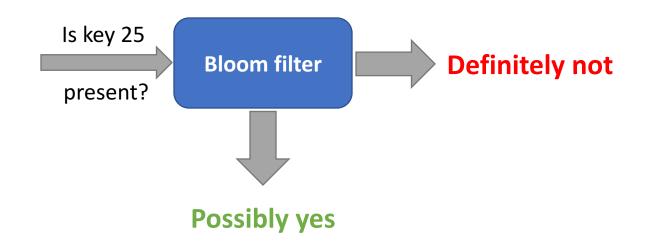
- Seek(target): Returns the smallest key in the database which is >= target
- Used for range queries (for example, return all entries between 5 and 18)



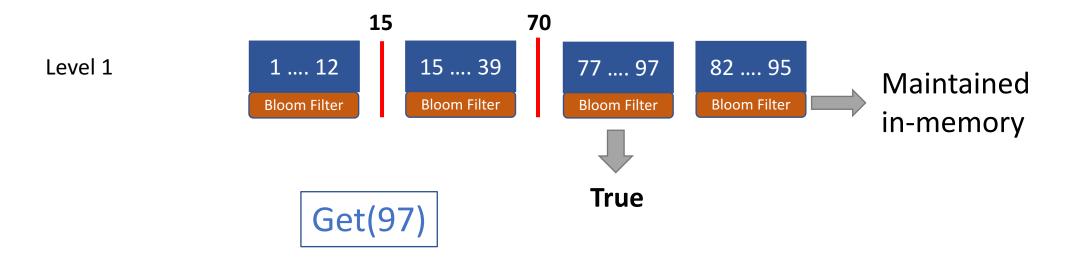


All levels and memtable need to be searched

- Challenge with reads: Multiple sstable reads per level
- Optimized using sstable level bloom filters
- Bloom filter: determine if an element is in a set

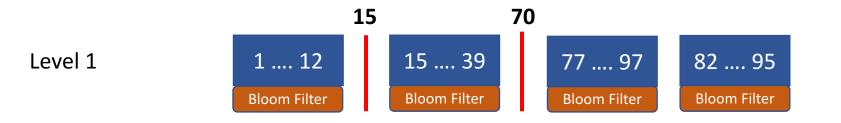


- Challenge with reads: Multiple sstable reads per level
- Optimized using sstable level bloom filters
- Bloom filter: determine if an element is in a set



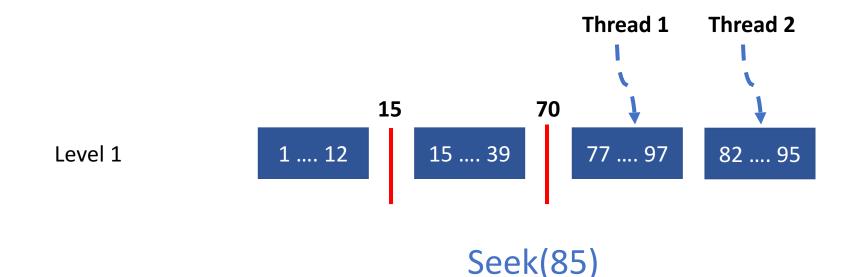
- Challenge with reads: Multiple sstable reads per level
- Optimized using sstable level bloom filters
- Bloom filter: determine if an element is in a set

- Challenge with reads: Multiple sstable reads per level
- Optimized using sstable level bloom filters
- Bloom filter: determine if an element is in a set



PebblesDB reads at most one file per guard with high probability

- Challenge with seeks: Multiple sstable reads per level
- Parallel seeks: Parallel threads to seek() on files in a guard



- Challenge with seeks: Multiple sstable reads per level
- Parallel seeks: Parallel threads to seek() on files in a guard
- Seek based compaction: Triggers compaction for a level during a seek-heavy workload
 - Reduce the average number of sstables per guard
 - Reduce the number of active levels

Seek based compaction increases write I/O but as a trade-off to improve seek performance

Tuning PebblesDB

- PebblesDB characteristics like
 - Increase in write throughput,
 - decrease in write amplification and
 - overhead of read/seek operation

all depend on one parameter, **maxFilesPerGuard** (default 2 in PebblesDB)

- Setting this to a very high value favors write throughput
- Setting this to a very low value favors read throughput

Horizontal compaction

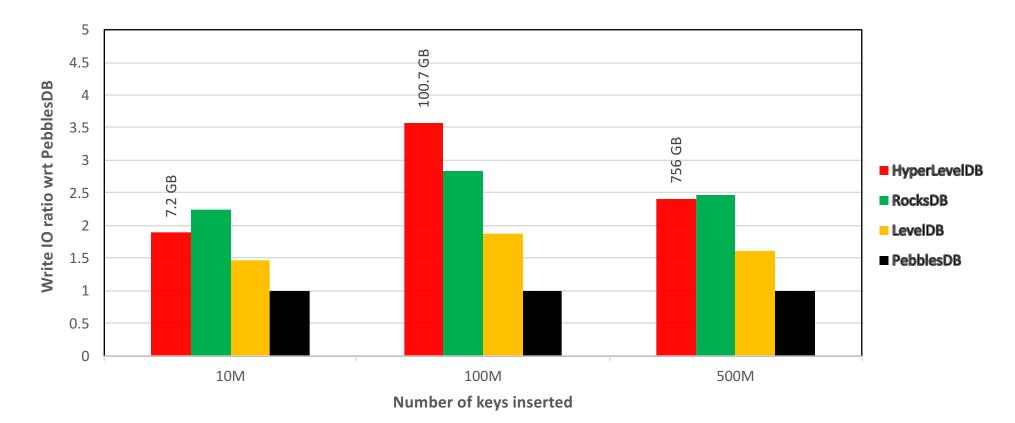
- Files compacted within the same level for the last two levels in PebblesDB
- Some optimizations to prevent huge increase in write IO

Experimental setup

- Intel Xeon 2.8 GHz processor
- 16 GB RAM
- Running Ubuntu 16.04 LTS with the Linux 4.4 kernel
- Software RAID0 over 2 Intel 750 SSDs (1.2 TB each)
- Datasets in experiments 3x bigger than DRAM size

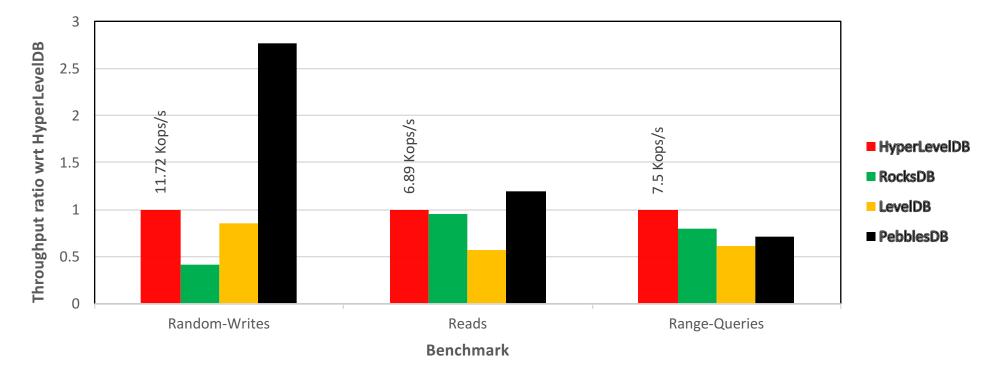
Write amplification

 Inserted different number of keys with key size 16 bytes and value size 128 bytes



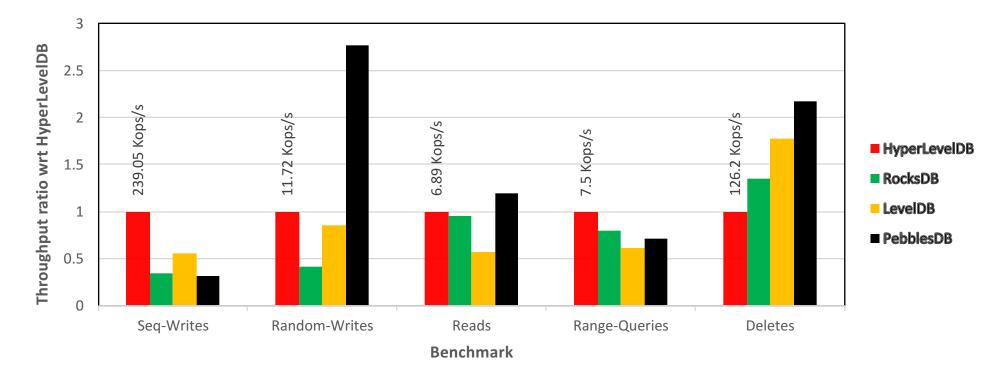
Micro-benchmarks

- Used db_bench tool that ships with LevelDB
- Inserted 50M key-value pairs with key size 16 bytes and value size 1 KB
- Number of read/seek operations: 10M



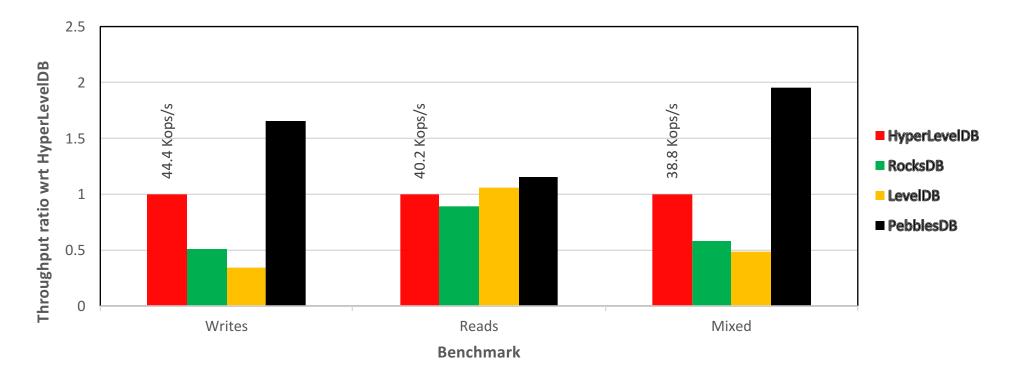
Micro-benchmarks

- Used db_bench tool that ships with LevelDB
- Inserted 50M key-value pairs with key size 16 bytes and value size 1 KB
- Number of read/seek operations: 10M



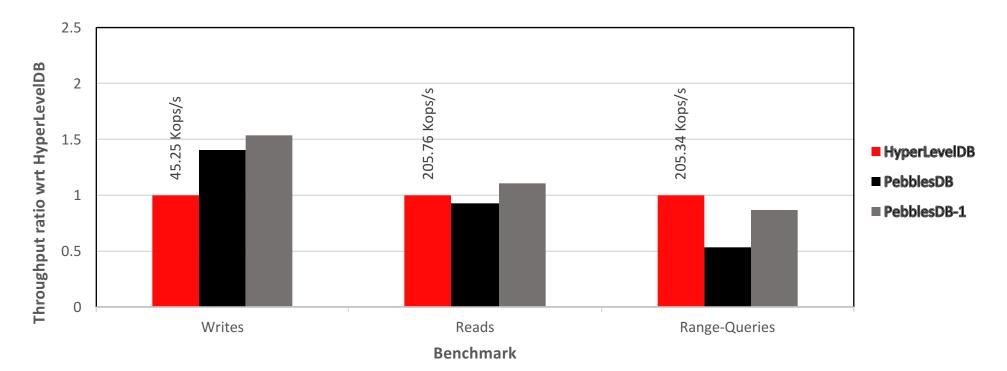
Multi threaded micro-benchmarks

- Writes 4 threads each writing 10M
- Reads 4 threads each reading 10M
- Mixed 2 threads writing and 2 threads reading (each 10M)



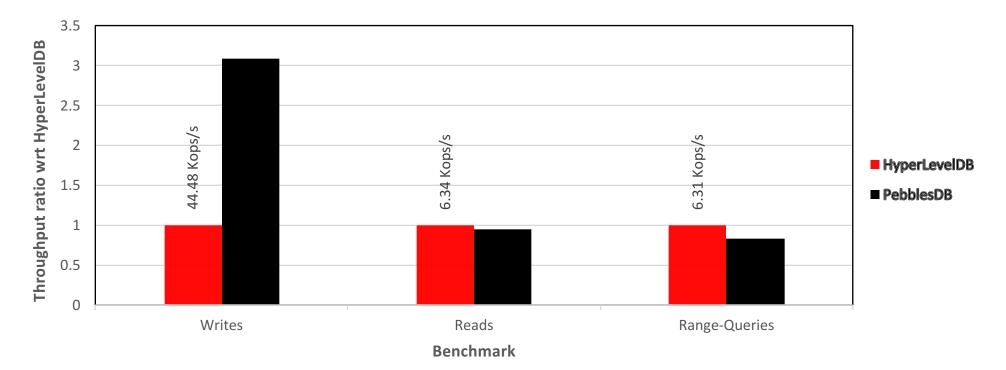
Small cached dataset

- Insert 1M key-value pairs with 16 bytes key and 1 KB value
- Total data set (~1 GB) fits within memory
- PebblesDB-1: with maximum one file per guard



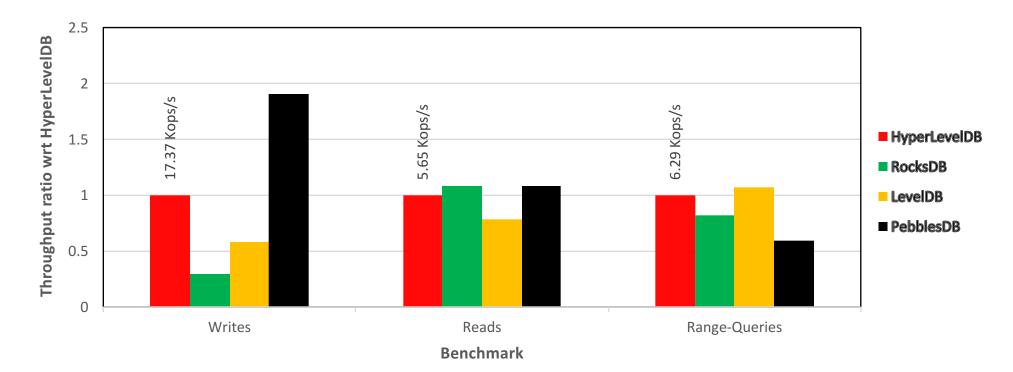
Small key-value pairs

- Inserted 300M key-value pairs
- Key 16 bytes and 128 bytes value



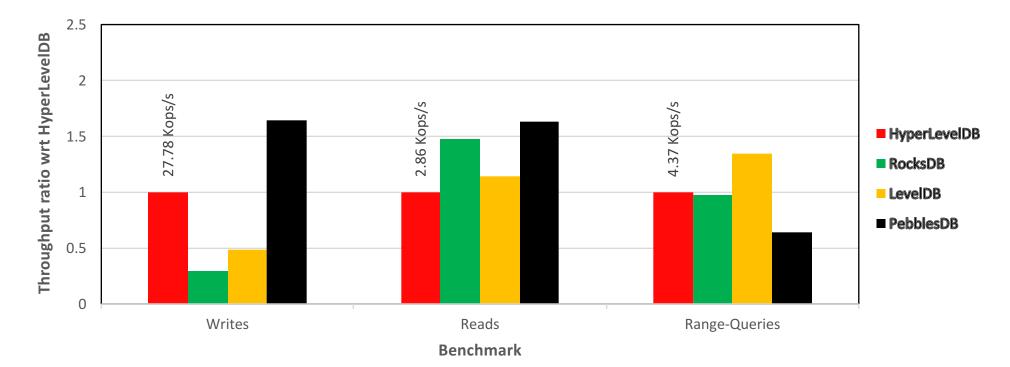
Aged FS and KV store

- File system aging: Fill up 89% of the file system
- KV store aging: Insert 50M, delete 20M and update 20M key-value pairs in random order



Low memory micro-benchmark

- 100M key-value pairs with 1KB (~65 GB data set)
- DRAM was limited to 4 GB

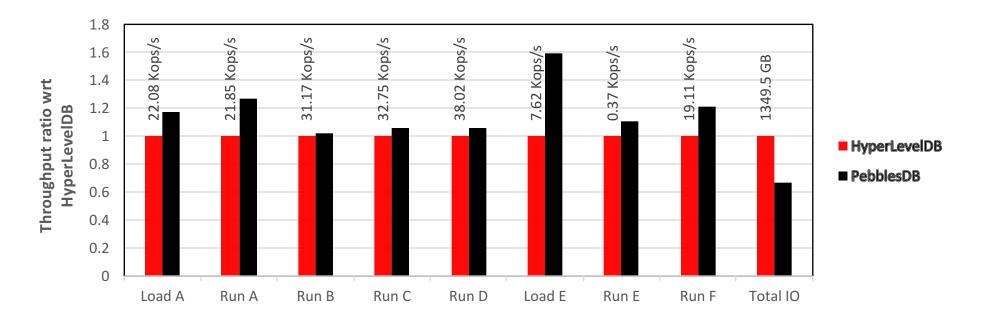


Impact of empty guards

- Inserted 20M key-value pairs (0 to 20M) in random order with value size 512 bytes
- Incrementally inserted new 20M keys after deleting the older keys
- Around 9000 empty guards at the start of the last iteration
- Read latency did not reduce with the increase in empty guards

NoSQL stores - HyperDex

- HyperDex distributed key-value store from Cornell
- Inserted 20M key-value pairs with 1 KB value size and 10M operations



- Load A 100 % writes Run A - 50% reads, 50% writes Run B - 95% reads, 5% writes
- Run C 100% reads

- Run D 95% reads (latest), 5% writes
- Load E 100% writes
- Run E 95% range queries, 5% writes
- Run F 50% reads, 50% read-modify-writes

CPU usage

- Median CPU usage by inserting 30M keys and reading 10M keys
- PebblesDB: ~171%
- Other key-value stores: 98-110%
- Due to aggressive compaction, more CPU operations due to merging multiple files in a guard

Memory usage

- 100M records (16 bytes key, 1 KB value) 106 GB data set
 - 300 MB memory space
 - 0.3% of data set size
- Worst case: 100M records (16 bytes key, 16 bytes value) ~3.2 GB
 - 9% of data set size

Bloom filter calculation cost

- 1.2 sec per GB of sstable
- 3200 files 52 GB 62 seconds

Impact of different optimizations

- Sstable level bloom filter improve read performance by 63%
- PebblesDB without optimizations for seek 66%

Thank you!

Questions?