
The Dangers and Complexities of

SQLite Benchmarking

Dhathri Purohith, Jayashree Mohan and Vijay

Chidambaram

2

Benchmarking SQLite is Non-trivial !

● Benchmarking complex systems in a repeatable fashion is

error prone

● The main issues with benchmarking :

○ Inconsistency in the industrial benchmarking tools

○ Incorrect reporting of benchmarking results

3

● Benchmarking SQLite is hard

● Depends on several configuration parameters

● Current tools provide conflicting results(3X) for the

same set of parameters

● Easy to show conflicting results by tuning

parameters

● Right configuration can provide massive

performance gains(28X)

4

Outline

● Overview of SQLite

● Motivation

● Existing tools to benchmark SQLite

● Parameters affecting performance of SQLite

● Conclusion

5

SQLite

● Lightweight, embedded, relational database popular in mobile

systems

● Commonly used benchmark in many mobile applications to store their

data

○ E.g. Twitter and Facebook

● Used as a benchmark for evaluating several systems

○ E.g. I/O scheduling frameworks (Yang et.al., SOSP ‘15), the Linux read-

ahead mechanism (Olivier et.al., SIGBED ‘15)

Benchmarking SQLite is an important part of evaluating these systems.

6

SQLite architecture

User Space

Application

Cache Disk

DB

7

SQLite architecture

Cache Disk

DB

8

User Space

Application

SQLite architecture

Cache Disk

DB

Journal

9

User Space

Application

SQLite architecture

fsync()

Journal

Disk

DB

Cache

10

Journal fsync()

User Space

Application

SQLite architecture

Journal

Disk

DB

Cache

11

Journal

User Space

Application

SQLite architecture

Journal

Disk

DB

Cache

12

Journal

User Space

Application

SQLite architecture

Cache

Journal

Disk

DB

13

Journal

User Space

Application

SQLite architecture

Cache

Journal

Disk

DB

14

Journal

User Space

Application

Outline

● Overview of SQLite

● Motivation

● Existing tools to benchmark SQLite

● Parameters affecting performance of SQLite

● Conclusion

15

Motivation : A Case Study of SQLite

Benchmarking SQLite is tricky - It’s performance varies greatly

based on configuration parameters.

➢ Default: Delete journal mode , FULL

synchronization mode on Ext4 in

Android.

➢ Workload: 1 trial = 30K transactions

(10 K inserts, followed by updates and
deletes of 10K)

16

Motivation : A Case Study of SQLite

Benchmarking SQLite is tricky - It’s performance varies greatly

based on configuration parameters.

➢ Custom: WAL journal mode with

1MB journal size and NORMAL

synchronization mode on F2FS

➢ Default: Delete journal mode , FULL

synchronization mode on Ext4 in

Android.

➢ Workload: 1 trial = 30K transactions

(10 K inserts, followed by updates and
deletes of 10K)

17

Motivation : A Case Study of SQLite

Benchmarking SQLite is tricky - It’s performance varies greatly

based on configuration parameters.

➢ Default: Delete journal mode , FULL

synchronization mode on Ext4 in

Android.

➢ Workload: 1 trial = 30K transactions

(10 K inserts, followed by updates and
deletes of 10K)

➢ Custom: WAL journal mode with

1MB journal size and NORMAL

synchronization mode on F2FS

28X

18

Are we reporting it right?

19

Incomplete specification of benchmarking results

● 16 papers from the past couple of years, used SQLite to evaluate

performance.

No parameters

No sync Mode

No WAL Size10

1

5

NONE of them reported all the parameters required to meaningfully compare results.

20

Outline

● Overview of SQLite

● Motivation

● Existing tools to benchmark SQLite

● Parameters affecting performance of SQLite

● Conclusion

21

Inconsistency in existing benchmarking tools

● Results between the tools differ by 50% in their default setting

Tool Default TPS Custom TPS Papers that use

MobiBench

RL Bench

AndroBench

20

30

29

57

-

150

7

4

3

● Differ by 3X when a single parameter is changed.

Misleading and meaningless to compare, if parameters are not reported!

22

Outline

● Overview of SQLite

● Motivation

● Existing tools to benchmark SQLite

● Parameters affecting performance of SQLite

● Conclusion

23

Parameters affecting SQLite Performance

1. Filesystem

2. Journaling Mode

3. Pre-population of database

4. Synchronization Mode

5. Journal Size

24

Hardware Setup for experimentation

● Experiments performed

on Samsung Galaxy

Nexus S on 32GB

internal storage.

● Controlled experimental

setup : Vary one

parameter, while

keeping all others

constant.

25

Workload

● 1 trial = 3000 transactions (1000 inserts, followed by 1000 updates

and 1000 deletes)

● Database prepopulated with 100K rows.

● Results reported as throughput (transactions/sec)

● Default Configuration :

○ DELETE journal mode

○ FULL synchronization mode

○ Ext4 filesystem in ordered mode.

26

Outline

● Overview of SQLite

● Motivation

● Existing tools to benchmark SQLite

● Parameters affecting performance of SQLite

○ Filesystem

○ Journal Mode

○ Pre-population of the database

○ Synchronization mode

○ Journal Size

● Conclusion

27

1. Filesystem

● Application writes are transformed into block level operations by filesystem.

28

1. Filesystem

DELETE - Normal

29

1. Filesystem

DELETE - Normal

30

1. Filesystem

DELETE - Normal WAL - Normal

31

1. Filesystem

DELETE - Normal WAL - Normal

32

1. Filesystem

DELETE - Normal DELETE - FULLWAL - Normal

33

1. Filesystem

● Depending on the parameters chosen, we can show either one performing

better.

● F2fs paper evaluates only WAL mode : claims better performance than ext4.

DELETE - Normal DELETE - FULLWAL - Normal

34

Outline

● Overview of SQLite

● Motivation

● Existing tools to benchmark SQLite

● Parameters affecting performance of SQLite

○ Filesystem

○ Journal Mode

○ Pre-population of the database

○ Synchronization mode

○ Journal Size

● Conclusion

35

2. Journaling mode

● Defines the type of SQLite journal used.

○ DELETE : Default mode

■ Uses traditional rollback journaling mechanism:

contents of the database is written on to the journal and

the changes are written to the database file directly.

36

DELETE Journal mode revisited

Cache

Journal

Disk

DB

37

Journal

User Space

Application

2. Journaling mode

● Defines the type of SQLite journal used.

○ DELETE : Default mode

■ Uses traditional rollback journaling mechanism:

contents of the database is written on to the journal and

the changes are written to the database file directly.

○ WAL :

■ Write-ahead log, in which the changes to the database

are written to the journal and is committed to the

database when user explicitly triggers it.

38

WAL journal mode
Cache Disk

39

User Space

Application

WAL journal mode

Tx : 1

Tx : 1

C

O

M

M

I
TWAL

Cache Disk

40

User Space

Application

WAL journal mode
Cache

Tx : 1

C

O

M

M

I
TWAL

Disk

41

User Space

Application

WAL journal mode

User Space

Application

Tx : 2

Tx : 1

C

O

M

M

I
T

Tx : 2

C

O

M

M

I
TWAL

Cache Disk

42

WAL journal mode - checkpointing

User Space

Application

Tx : 2

Tx : 1

C

O

M

M

I
T

Tx : 2

C

O

M

M

I
TWAL

Cache Disk

43

2. Journaling mode

○ OFF:

■ No Rollback journal

■ Likely corruption on crash

44

2. Journaling mode

● X-axis : Journaling mode

● Y-axis : Results reported in

transactions/sec

45

2. Journaling mode

● DELETE :

Max TPS of 30 achieved

46

2. Journaling mode

● WAL :

Max TPS of 270

achieved

47

2. Journaling mode

● WAL 10X better than

DELETE

● Journal deleted after each

commit in DELETE mode.

● For 1000 SQLite inserts,

○ WAL : 1000 fsync()

○ DELETE : 5000 fsync()

48

Outline

● Overview of SQLite

● Motivation

● Existing tools to benchmark SQLite

● Parameters affecting performance of SQLite

○ Filesystem

○ Journal Mode

○ Pre-population of the database

○ Synchronization mode

○ Journal Size

● Conclusion

49

3. Pre-population of database

● Necessary to ensure realistic performance estimates.

50

3. Pre-population of database

● Necessary to ensure realistic performance estimates.

● Almost 2X performance

difference

● Benchmarking tools don’t

prepopulate. Unrealistic

numbers.

51

Outline

● Overview of SQLite

● Motivation

● Existing tools to benchmark SQLite

● Parameters affecting performance of SQLite

○ Filesystem

○ Journal Mode

○ Pre-population of the database

○ Synchronization mode

○ Journal Size

● Conclusion

52

4. Synchronization Mode

● Controls the frequency of fsync() issued by SQLite library.

○ FULL :

■ Writes to database(calls fsync()) on each commit.

53

FULL Synchronization in WAL

Tx : 1

Tx : 1

C

O

M

M

I
T

C

O

M

M

I
T

WAL

Cache Disk

54

User Space

Application

4. Synchronization Mode

● Controls the frequency of fsync() issued by SQLite library.

○ FULL :

■ Writes to database(calls fsync()) on each commit.

○ NORMAL:

■ Writes to log on each commit.

55

NORMAL Synchronization in WAL
Cache Disk

Tx : 1 Tx : 100

Tx : 1

C

O

M

M

I
T

Tx : 100

C

O

M

M

I
T

S

Y

N

C

56

User Space

Application

4. Synchronization Mode

● Controls the frequency of fsync() issued by SQLite library.

○ FULL :

■ Writes to database(calls fsync()) on each commit.

○ NORMAL:

■ Writes to log on each commit.

○ OFF:

■ Consistency mechanism left to the OS.

57

4. Synchronization Mode

● X-axis : Synchronization

mode

● Y-axis : Results reported in

transactions/sec

58

4. Synchronization Mode

● FULL :

Max TPS : 30

59

4. Synchronization Mode

● NORMAL :

Max TPS : 45

60

4. Synchronization Mode

● NORMAL : 1.5X better than

FULL .

● To strike balance between

durability and performance,

use WAL+NORMAL

61

Outline

● Overview of SQLite

● Motivation

● Existing tools to benchmark SQLite

● Parameters affecting performance of SQLite

○ Filesystem

○ Journal Mode

○ Pre-population of the database

○ Synchronization mode

○ Journal Size

● Conclusion

62

5. Journal Size

● In WAL mode, journal can grow unbounded

● Potentially affects read performance.

63

5. Journal Size

● In WAL mode, journal can grow unbounded

● Potentially affects read performance.

64

5. Journal Size

● In WAL mode, journal can grow unbounded

● Potentially affects read performance.

● Performance improves with

increase in journal size

65

5. Journal Size

● In WAL mode, journal can grow unbounded

● Potentially affects read performance.

● Performance improves with

increase in journal size

● When WAL is full - triggers

checkpoint.

● Smaller WAL => more

checkpointing

66

5. Journal Size

● In WAL mode, journal can grow unbounded

● Potentially affects read performance.

● Performance improves with

increase in journal size

● When WAL is full - triggers

checkpoint.

● Smaller WAL => more

checkpointing

● Saturates beyond a point

67

Outline

● Overview of SQLite

● Motivation

● Existing tools to benchmark SQLite

● Parameters affecting performance of SQLite

● Conclusion

68

Conclusion

● The Systems community has discussed in the past, how tricky

benchmarking can be.

● But in practice, we have shown that industrial benchmarking tools are

inconsistent, and academic reporting of results is incomplete.

● Draw attention to:

○ Developers and researchers must understand the impact of

various parameters on SQLite performance.

○ To ensure repeatable and comparable results, reporting

configuration parameters is vital.

69

THANK YOU..

Questions ?

Jayashree Mohan

jaya@cs.utexas.edu

70

BACKUP SLIDES

71

Hardware Setup for experimentation

● Experiments performed

on Samsung Galaxy

Nexus S

● Controlled experimental

setup : Vary one

parameter, while

keeping all others

constant.

CPU Dual Core 1.2GHz Cortex A9

Memory 32GB internal, 1GB RAM

Android 6.0.1(cyanogenmod 13)

Kernel 3.0.101 (F2FS enabled)

Battery 3.7V, 1850mAh

72

	Slide 1
	Slide 2
	Slide 3: Benchmarking SQLite is Non-trivial !
	Slide 4
	Slide 5: Outline
	Slide 6: SQLite
	Slide 7: SQLite architecture
	Slide 8: SQLite architecture
	Slide 9: SQLite architecture
	Slide 10: SQLite architecture
	Slide 11: SQLite architecture
	Slide 12: SQLite architecture
	Slide 13: SQLite architecture
	Slide 14: SQLite architecture
	Slide 15: Outline
	Slide 16: Motivation : A Case Study of SQLite
	Slide 17: Motivation : A Case Study of SQLite
	Slide 18: Motivation : A Case Study of SQLite
	Slide 19
	Slide 20: Incomplete specification of benchmarking results
	Slide 21: Outline
	Slide 22: Inconsistency in existing benchmarking tools
	Slide 23: Outline
	Slide 24: Parameters affecting SQLite Performance
	Slide 25: Hardware Setup for experimentation
	Slide 26: Workload
	Slide 27: Outline
	Slide 28: 1. Filesystem
	Slide 29: 1. Filesystem
	Slide 30: 1. Filesystem
	Slide 31: 1. Filesystem
	Slide 32: 1. Filesystem
	Slide 33: 1. Filesystem
	Slide 34: 1. Filesystem
	Slide 35: Outline
	Slide 36: 2. Journaling mode
	Slide 37: DELETE Journal mode revisited
	Slide 38: 2. Journaling mode
	Slide 39: WAL journal mode
	Slide 40: WAL journal mode
	Slide 41: WAL journal mode
	Slide 42: WAL journal mode
	Slide 43: WAL journal mode - checkpointing
	Slide 44: 2. Journaling mode
	Slide 45: 2. Journaling mode
	Slide 46: 2. Journaling mode
	Slide 47: 2. Journaling mode
	Slide 48: 2. Journaling mode
	Slide 49: Outline
	Slide 50: 3. Pre-population of database
	Slide 51: 3. Pre-population of database
	Slide 52: Outline
	Slide 53: 4. Synchronization Mode
	Slide 54: FULL Synchronization in WAL
	Slide 55: 4. Synchronization Mode
	Slide 56: NORMAL Synchronization in WAL
	Slide 57: 4. Synchronization Mode
	Slide 58: 4. Synchronization Mode
	Slide 59: 4. Synchronization Mode
	Slide 60: 4. Synchronization Mode
	Slide 61: 4. Synchronization Mode
	Slide 62: Outline
	Slide 63: 5. Journal Size
	Slide 64: 5. Journal Size
	Slide 65: 5. Journal Size
	Slide 66: 5. Journal Size
	Slide 67: 5. Journal Size
	Slide 68: Outline
	Slide 69: Conclusion
	Slide 70
	Slide 71
	Slide 72: Hardware Setup for experimentation

