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Benchmarking SQLite is Non-trivial !

● Benchmarking complex systems in a repeatable fashion is 

error prone

● The main issues with benchmarking :

○ Inconsistency in the industrial benchmarking tools

○ Incorrect reporting of benchmarking results
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● Benchmarking SQLite is hard

● Depends on several configuration parameters

● Current tools provide conflicting results(3X) for the 

same set of parameters

● Easy to show conflicting results by tuning 

parameters

● Right configuration can provide massive 

performance gains(28X)
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● Parameters affecting performance of SQLite

● Conclusion
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SQLite

● Lightweight, embedded, relational database popular in mobile 

systems

● Commonly used benchmark in many mobile applications to store their 

data

○ E.g.  Twitter and Facebook

● Used as a benchmark for evaluating several systems

○ E.g. I/O scheduling frameworks (Yang et.al., SOSP ‘15), the Linux read-

ahead mechanism (Olivier et.al., SIGBED ‘15)

Benchmarking SQLite is an important part of evaluating these systems.
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Motivation : A Case Study of SQLite

Benchmarking SQLite is tricky - It’s performance varies greatly 

based on configuration parameters. 

➢ Default: Delete journal mode , FULL 

synchronization mode on Ext4 in 

Android.

➢ Workload: 1 trial  = 30K transactions 

(10 K inserts, followed by updates and 
deletes of 10K )
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Are we reporting it right?
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Incomplete specification of benchmarking results

● 16 papers from the past couple of years, used SQLite to evaluate 

performance.

No parameters

No sync Mode

No WAL Size10

1

5

NONE of them reported all the parameters required to meaningfully compare results.

20



Outline

● Overview of SQLite

● Motivation

● Existing tools to benchmark SQLite

● Parameters affecting performance of SQLite

● Conclusion

21



Inconsistency in existing benchmarking tools

● Results between the tools differ by 50% in their default setting

Tool Default TPS Custom TPS Papers that use

MobiBench

RL Bench

AndroBench

20

30

29

57

-

150

7

4

3

● Differ by 3X when a single parameter is changed.

Misleading and meaningless to compare, if parameters are not reported!
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Parameters affecting SQLite Performance

1. Filesystem

2. Journaling Mode 

3. Pre-population of database

4. Synchronization Mode

5. Journal Size
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Hardware Setup for experimentation

● Experiments performed 

on Samsung Galaxy 

Nexus S on 32GB 

internal storage.

● Controlled experimental 

setup : Vary one 

parameter, while 

keeping all others 

constant.
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Workload

● 1 trial  = 3000 transactions (1000 inserts, followed by 1000 updates 

and 1000 deletes)

● Database prepopulated with 100K rows.

● Results reported as throughput (transactions/sec)

● Default Configuration : 

○ DELETE journal mode

○ FULL synchronization mode

○ Ext4 filesystem in ordered mode.
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1. Filesystem

● Application writes are transformed into block level operations by filesystem.
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1. Filesystem

DELETE - Normal
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1. Filesystem

DELETE - Normal WAL - Normal
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1. Filesystem
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1. Filesystem

DELETE - Normal DELETE - FULLWAL - Normal
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1. Filesystem

● Depending on the parameters chosen, we can show either one performing 

better.

● F2fs paper evaluates only WAL mode : claims better performance than ext4.

DELETE - Normal DELETE - FULLWAL - Normal
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2. Journaling mode

● Defines the type of SQLite journal used.

○ DELETE : Default mode

■ Uses traditional rollback journaling mechanism: 

contents of the database is written on to the journal and 

the changes are written to the database file directly.
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DELETE Journal mode revisited
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2. Journaling mode

● Defines the type of SQLite journal used.

○ DELETE : Default mode

■ Uses traditional rollback journaling mechanism: 

contents of the database is written on to the journal and 

the changes are written to the database file directly.

○ WAL :

■ Write-ahead log, in which the changes to the database 

are written to the journal and is committed to the 

database when user explicitly triggers it.
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WAL journal mode 
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WAL journal mode 
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WAL journal mode - checkpointing 
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2. Journaling mode

○ OFF:

■ No Rollback journal

■ Likely corruption on crash
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2. Journaling mode

● X-axis : Journaling mode

● Y-axis : Results reported in 

transactions/sec
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2. Journaling mode

● DELETE : 

Max TPS of 30 achieved 
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2. Journaling mode

● WAL : 

Max TPS of 270 

achieved
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2. Journaling mode

● WAL 10X better than 

DELETE

● Journal deleted after each 

commit in DELETE mode.

● For 1000 SQLite inserts,

○ WAL : 1000 fsync()

○ DELETE : 5000 fsync()
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3. Pre-population of database

● Necessary to ensure realistic performance estimates.
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3. Pre-population of database

● Necessary to ensure realistic performance estimates.

● Almost 2X performance 

difference

● Benchmarking tools don’t 

prepopulate. Unrealistic 

numbers.
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4. Synchronization Mode

● Controls the frequency of fsync() issued by SQLite library.

○ FULL :

■ Writes to database(calls fsync()) on each commit.
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FULL Synchronization in WAL
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4. Synchronization Mode

● Controls the frequency of fsync() issued by SQLite library.

○ FULL :

■ Writes to database(calls fsync()) on each commit.

○ NORMAL:

■ Writes to log on each commit.
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NORMAL Synchronization in WAL 
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4. Synchronization Mode

● Controls the frequency of fsync() issued by SQLite library.

○ FULL :

■ Writes to database(calls fsync()) on each commit.

○ NORMAL:

■ Writes to log on each commit.

○ OFF:

■ Consistency mechanism left to the OS.
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4.  Synchronization Mode

● X-axis : Synchronization 

mode

● Y-axis : Results reported in 

transactions/sec
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4. Synchronization Mode

● FULL :

Max TPS : 30
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4. Synchronization Mode

● NORMAL :

Max TPS : 45
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4. Synchronization Mode

● NORMAL : 1.5X better than 

FULL .

● To strike balance between 

durability and performance, 

use WAL+NORMAL
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5. Journal Size

● In WAL mode, journal can grow unbounded

● Potentially affects read performance.
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5. Journal Size

● In WAL mode, journal can grow unbounded

● Potentially affects read performance.

● Performance improves with 

increase in journal size

● When WAL is full - triggers 

checkpoint.

● Smaller WAL => more 

checkpointing
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5. Journal Size

● In WAL mode, journal can grow unbounded

● Potentially affects read performance.

● Performance improves with 

increase in journal size 

● When WAL is full - triggers 

checkpoint.

● Smaller WAL => more 

checkpointing

● Saturates beyond a point
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Conclusion

● The Systems community has discussed in the past, how tricky 

benchmarking can be.

● But in practice, we have shown that industrial benchmarking tools are 

inconsistent, and academic reporting of results is incomplete.

● Draw attention to:

○ Developers and researchers must understand the impact of 

various parameters on SQLite performance.

○ To ensure repeatable and comparable results, reporting 

configuration parameters is vital.
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THANK YOU..        

Questions ?

Jayashree Mohan

jaya@cs.utexas.edu 
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BACKUP SLIDES
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Hardware Setup for experimentation

● Experiments performed 

on Samsung Galaxy 

Nexus S

● Controlled experimental 

setup : Vary one 

parameter, while 

keeping all others 

constant.

CPU Dual Core 1.2GHz Cortex A9

Memory 32GB internal, 1GB RAM

Android 6.0.1(cyanogenmod 13)

Kernel 3.0.101 (F2FS enabled)

Battery 3.7V, 1850mAh
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