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Applications need crash consistency
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Crash

● Systems may fail in the middle of operations due to power loss 

or kernel bugs

● Crash consistency ensures that the application can recover to a 

correct state after a crash

● Applications store persistent state across multiple files and 

abstractions

○ Example: email attachment file and its path name stored in a 

SQLite database file become inconsistent on a crash

○ No POSIX mechanism to atomically update multiple files



Efficient crash consistency is hard

● Applications build on file-system primitives to ensure crash 

consistency

● Unfortunately, POSIX only provides the sync-family system 

calls, e.g., fsync()

○ fsync() forces dirty data associated with the file to become 

durable before the call returns

● fsync() is an expensive call

○ As a result, applications don’t use it as much as they should

● This results in complex, error-prone applications [OSDI 14]
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Example: Android mail client

● The Android mail client receives an email with attachment

○ Stores attachment as a regular file

○ File name of attachment stored in SQLite

○ Stores email text in SQLite
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SQLiteRaw files

/dir1/attachment

Rollback log

REC
2

/dir1/attachment

…REC
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/dir2/log

Database file



● The Android mail client receives an email with attachment

○ Stores attachment as a regular file

○ File name of attachment stored in SQLite

○ Stores email text in SQLite

Example: Android mail client
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SQLiteRaw files

/dir1/attachment

Database file

Doing this safely requires 6 fsyncs!

Rollback log

2 fsyncs
(attachment + dir1)

3 fsync
(log + dir2 + log[commit_rec])

File creation/deletion needs fsync on parent directory

1 fsync

/dir1/attachment

REC
2 …REC

1 COMMIT

/dir2/log



System support for transactions

● POSIX lacks an efficient atomic update to multiple files

○ E.g., the attachment file and the two database-related files

● Sync and redundant writes lead to poor performance.

The file system should provide transactional services!
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Didn’t transactional file systems fail?

● Complex implementation
○ Transactional OS: QuickSilver [TOCS 88], TxOS [SOSP 09] (10k LOC)

○ In-kernel transactional file systems: Valor [FAST 09]

● Hardware dependency
○ CFS [ATC 15], MARS [SOSP 13], TxFLash [OSDI 08], Isotope [FAST 16]

● Performance overhead
○ Valor [FAST 09] (35% overhead).

● Hard to use
○ Windows NTFS (TxF), released 2006 (deprecated 2012)
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TxFS: Texas Transactional File System 

● Reuse file-system journal for atomicity, consistency, durability

○ Well-tested code, reduces implementation complexity

● Develop techniques to isolate transactions

○ Customize techniques to kernel-level data structures

● Simple API - one syscall to begin/end/abort a transaction

○ Once TX begins, all file-system operations included in transaction
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Data safe on crash

High performanceEasy to implement

TxFS



Outline

● Using the file-system journal for A, C, and D

● Implementing isolation

○ Avoid false conflicts on global data structures

○ Customize conflict detection for kernel data structures 

● Using transactions to implement file-system optimizations

● Evaluating TxFS
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Atomicity, consistency and durability

● File systems already have a log that TxFS can reuse

○ E.g., ext4 journal is a write-ahead log (JBD2 layer)
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On-disk 
journal

Transaction written to journal for 
atomic and persistent updates

JB
D

2 running TX

In-memory 
file system 
transaction



● Decreased complexity: use the file system’s crash consistency 

mechanism to create transactions

Atomicity, consistency and durability
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TX local 
state

1. fs_tx_end completes
in-memory transaction

Local TX

Local

Local 
transaction
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On-disk 
journal

2. Transaction written to journal 
for atomic and persistent updates

JB
D

2 running TX
2

Global

In-memory 
file system 
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Outline

● Using the file-system journal for A, C and D

● Implementing isolation

○ Avoid false conflicts on global data structures

○ Customize conflict detection for kernel data structures 

● Using transactions to implement file-system optimizations

● Evaluating TxFS

12



Isolation with performance

● Isolation - concurrent transactions act as if serially executed

○ At the level of repeatable reads

● Transaction-private copies

○ In-progress writes are local to a kernel thread

● Detect conflicts

○ Efficiently specialized to kernel data structure

● Maintain high performance

○ Fine-grained page locks

○ Avoid false conflicts
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TX1 TX2



Challenge of isolation: Concurrency and performance

● Concurrent creation of the same file name is a conflict

● Writes to global data structures (e.g. bitmaps) should proceed
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Process 1

TX1 start

TX1 commit

create ‘fileA’

Process 2

TX2 start

TX2 commit

create ‘fileA’

✔ Allowed✗ Conflicttime

Process 3

TX3 start

TX3 commit

create ‘fileB’

✔ Allowed



Avoid false conflicts on global data structures

● Two classes of file system functions

○ Operations that modify locally visible state

- Executed immediately on private data structure copies

○ Operations that modify global state

- Delayed until commit point
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inodes,
dentries,
data pages….

Block bitmap,
Inode bitmap,
Super block inode list,
Parent directory….

Immediate,
on local state

Delayed



Customize isolation to each data structure

● Data pages

○ Unified API within file system code

○ Easy to differentiate read/write access

○ Copy-on-write & eager conflict detection

● inodes and directory entries (dentries)

○ Accessed haphazardly within file system code

○ Hard to differentiate read/write access

○ Copy-on-read & lazy conflict detection (at commit time)
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● Copy-on-write

● Eager conflict detection
○ Enables early abort

● Higher scalability

○ Fine-grained page locks

Page isolation
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directory entry

inode

pagepagepage

radix tree

Process 1 Process 2

✔ Concurrent writes

local copies

✗ Conflict
Process 3



Inode & dentry isolation
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directory entry

inode

Process 1 Process 2

✗ Conflict

Last 
modified
at t = 2

local copies

● Copy-on-read

● Lazy conflict detection

○ Timestamp-based conflict 

resolution

○ Necessary due to kernel’s 

haphazard updates

Inode read 
and copied 
at t = 3

✔ Allowed

Inode read 
and copied 
at t = 1



Local, in-memory
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Example: file creation

① file
create

directory entry

inode

Local dentry table



Local, in-memory
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Example: file creation

① file
create

directory entry

inode

Local dentry table

Local, in-memory

directory entry

inode

Local dentry table

② write

page

radix 
tree

Insert pages



Local, in-memory
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Example: file creation

① file
create

directory entry

inode

Local dentry table

Local, in-memory

directory entry

inode

Local dentry table

② write

page

radix 
tree

③ transaction 
commit

Global directory entry

inode
Global dentry table

page

radix 
tree

Global inode 
bitmap

Global block 
bitmap

Insert pages

Turn local state into 
global



● Modify the Android mail application to use TxFS transactions.
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TxFS API: Cross-abstraction transactions

DB fileAttachment Rollback log

SQLiteRaw files

2 fsyncs 1 fsync

Use TxFS 
transaction

fs_tx_end()

fs_tx_begin()

DB fileAttachment

SQLiteRaw files

3 fsync

1 sync



Outline

● Using the file-system journal for A, C and D

● Implementing isolation

○ Avoid false conflicts on global data structures

○ Customize conflict detection for kernel data structures 

● Using transactions to implement file-system optimizations

● Evaluating TxFS
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Transactions as a foundation for other optimizations

● Transactions present batched work to file system

○ Group commit

○ Eliminate temporary durable files

● Transactions allow fine-grained control of durability

○ Separate ordering from durability (osync [SOSP 13])
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File .swp

TxFS transaction

Equivalent to File
In-memory 
operations 
on .swp file

TxFS transaction

Example: Eliminate temporary durable files in Vim



Implementation

● Linux kernel version 3.18.22

● Lines of code for implementation
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Part Lines of code

TxFS internal bookkeeping 1,300

Virtual file system (VFS) 1,600

Journal (JBD2) 900

Ext4 1,200

Total 5,200

Reusable code



Evaluation: configuration

● Software
○ OS: Ubuntu 16.04 LTS (Linux kernel 3.18.22)

● Hardware
○ 4 core Intel Xeon E3-1220 CPU, 32 GB memory
○ Storage: Samsung 850 (250 GB) SSD
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Experiment TxFS benefit Speedup

Single-threaded SQLite Less IO & sync, batching 1.31x

TPC-C Less IO & sync, batching 1.61x

Android Mail Cross abstraction 2.31x

Git Crash consistency 1.00x



Microbenchmark: Android mail client

● Eliminating logging IO
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/* Write attachment */
open(/dir/attachment)
write(/dir/attachment)
fsync(/dir/attachment)
fsync(/dir/)
/* Update database */
open(/dir/journal)
write(/dir/journal)
fsync(/dir/journal)
fsync(/dir/)
write(/dir/db)
fsync(/dir/db)
unlink(/dir/journal)
fsync(/dir/)

fs_tx_begin()
/* Write attachment */
open(/dir/attachment)
write(/dir/attachment)
fsync(/dir/attachment)
fsync(/dir/)
/* Update database */
open(/dir/journal)
write(/dir/journal)
fsync(/dir/journal)
fsync(/dir/)
write(/dir/db)
fsync(/dir/db)
unlink(/dir/journal)
fsync(/dir/)
fs_tx_end()

fs_tx_begin()

/* Write attachment */
open(/dir/attachment)
write(/dir/attachment)

/* Update database */
write(/dir/db)

fs_tx_end()

Wrap with transaction:
20% throughput increase

Manual rewrite:
55% throughput increase



Git - consistency w/o overhead

● On a crash, git is vulnerable to garbage files and corruption

○ Currently, no fsync() to order operations (for high performance)

○ Possible loss of working tree, not recoverable with git-fsck

● TxFS transactions make Git fast and safe

○ No garbage files nor data corruption on crash

○ No observable performance overhead
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Workload running in a VM: initialize a Git repository; git-add 
20,000 empty files; crash at different vulnerable points



Evaluation: single-threaded SQLite
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1.5M 1KB operations. 10K operations grouped in a transaction. 
Database prepopulated with 15M rows.

Write-ahead log



TxFS Summary

● Persistent data is structured; tough to make crash consistent

● Transactions make applications simpler, more efficient

○ They enable optimizations that reduce IO and system calls

● File-system journal makes implementing transactions easier

● Source code: https://github.com/ut-osa/txfs
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Data safe on crash

Easy to implement

High performance



Thank you!
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Limitations

● Do not support directory operations

● Do not support transactions across file systems

● Memory copy overhead in read-only transactions

● Transaction size limited by memory and on-disk journal size
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Evaluation: correctness

● Stress tests
● Crash consistency

○ Boot a virtual machine and creates many types of transactions in 
multiple threads with random amounts of contained work and 
conflict probabilities

○ Crash the VM at a random time
○ Check if the file system journal is recoverable, and the file system 

passes all fsck checks
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ACD

ACID Use TxFS

File system



Prior works

The table compares prior work providing ACID transactions or failure atomicity in a local file system. Legend: ✔- supported, 
❌- unsupported, L - Low, H - High. Note that only TxFS provides isolation and durability with high performance and low 
implementation complexity without restrictions or hardware modifications.

Category System Isolation Easy-to-use 
APIs

Hardware 
independence

Performance Complexity

In-kernel 
transactional FS

TxFS ✔ ✔ ✔ H L

Valor ✔ ❌ ✔ H L

TxF ✔ ❌ ✔ H H

Transactional OS TxOS ✔ ✔ ✔ H H

FS over
userspace
databases

OdeFS

Relying on 
DBs ❌ ✔ L L

Inversion

DBFS

Amino

Transactional
storage

CFS ❌ ✔ ❌ H L

MARS ✔ ❌ ❌ H H

Isotope ✔ ✔ ✔ H H

Failure atomicity msync ❌ ✔ ✔ H L

AdvFS ❌ ✔ ✔ H L
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