
TxFS: Leveraging File-System Crash 
Consistency to Provide ACID 

Transactions

1

Yige Hu, Zhiting Zhu, Ian Neal, 
Youngjin Kwon, Tianyu Chen, 
Vijay Chidambaram, 
Emmett Witchel
The University of Texas at Austin



Applications need crash consistency

2

Crash

● Systems may fail in the middle of operations due to power loss 

or kernel bugs

● Crash consistency ensures that the application can recover to a 

correct state after a crash

● Applications store persistent state across multiple files and 

abstractions

○ Example: email attachment file and its path name stored in a 

SQLite database file become inconsistent on a crash

○ No POSIX mechanism to atomically update multiple files



Efficient crash consistency is hard

● Applications build on file-system primitives to ensure crash 

consistency

● Unfortunately, POSIX only provides the sync-family system 

calls, e.g., fsync()

○ fsync() forces dirty data associated with the file to become 

durable before the call returns

● fsync() is an expensive call

○ As a result, applications don’t use it as much as they should

● This results in complex, error-prone applications [OSDI 14]

3



Example: Android mail client

● The Android mail client receives an email with attachment

○ Stores attachment as a regular file

○ File name of attachment stored in SQLite

○ Stores email text in SQLite

4

SQLiteRaw files

/dir1/attachment

Rollback log

REC
2

/dir1/attachment

…REC
1 COMMIT

/dir2/log

Database file



● The Android mail client receives an email with attachment

○ Stores attachment as a regular file

○ File name of attachment stored in SQLite

○ Stores email text in SQLite

Example: Android mail client

5

SQLiteRaw files

/dir1/attachment

Database file

Doing this safely requires 6 fsyncs!

Rollback log

2 fsyncs
(attachment + dir1)

3 fsync
(log + dir2 + log[commit_rec])

File creation/deletion needs fsync on parent directory

1 fsync

/dir1/attachment

REC
2 …REC

1 COMMIT

/dir2/log



System support for transactions

● POSIX lacks an efficient atomic update to multiple files

○ E.g., the attachment file and the two database-related files

● Sync and redundant writes lead to poor performance.

The file system should provide transactional services!

6



Didn’t transactional file systems fail?

● Complex implementation
○ Transactional OS: QuickSilver [TOCS 88], TxOS [SOSP 09] (10k LOC)

○ In-kernel transactional file systems: Valor [FAST 09]

● Hardware dependency
○ CFS [ATC 15], MARS [SOSP 13], TxFLash [OSDI 08], Isotope [FAST 16]

● Performance overhead
○ Valor [FAST 09] (35% overhead).

● Hard to use
○ Windows NTFS (TxF), released 2006 (deprecated 2012)

7



TxFS: Texas Transactional File System 

● Reuse file-system journal for atomicity, consistency, durability

○ Well-tested code, reduces implementation complexity

● Develop techniques to isolate transactions

○ Customize techniques to kernel-level data structures

● Simple API - one syscall to begin/end/abort a transaction

○ Once TX begins, all file-system operations included in transaction

8

Data safe on crash

High performanceEasy to implement

TxFS



Outline

● Using the file-system journal for A, C, and D

● Implementing isolation

○ Avoid false conflicts on global data structures

○ Customize conflict detection for kernel data structures 

● Using transactions to implement file-system optimizations

● Evaluating TxFS

9



Atomicity, consistency and durability

● File systems already have a log that TxFS can reuse

○ E.g., ext4 journal is a write-ahead log (JBD2 layer)

10

On-disk 
journal

Transaction written to journal for 
atomic and persistent updates

JB
D

2 running TX

In-memory 
file system 
transaction



● Decreased complexity: use the file system’s crash consistency 

mechanism to create transactions

Atomicity, consistency and durability

11

TX local 
state

1. fs_tx_end completes
in-memory transaction

Local TX

Local

Local 
transaction

11

On-disk 
journal

2. Transaction written to journal 
for atomic and persistent updates

JB
D

2 running TX
2

Global

In-memory 
file system 
transaction

1



Outline

● Using the file-system journal for A, C and D

● Implementing isolation

○ Avoid false conflicts on global data structures

○ Customize conflict detection for kernel data structures 

● Using transactions to implement file-system optimizations

● Evaluating TxFS

12



Isolation with performance

● Isolation - concurrent transactions act as if serially executed

○ At the level of repeatable reads

● Transaction-private copies

○ In-progress writes are local to a kernel thread

● Detect conflicts

○ Efficiently specialized to kernel data structure

● Maintain high performance

○ Fine-grained page locks

○ Avoid false conflicts

13

TX1 TX2



Challenge of isolation: Concurrency and performance

● Concurrent creation of the same file name is a conflict

● Writes to global data structures (e.g. bitmaps) should proceed

14

Process 1

TX1 start

TX1 commit

create ‘fileA’

Process 2

TX2 start

TX2 commit

create ‘fileA’

✔ Allowed✗ Conflicttime

Process 3

TX3 start

TX3 commit

create ‘fileB’

✔ Allowed



Avoid false conflicts on global data structures

● Two classes of file system functions

○ Operations that modify locally visible state

- Executed immediately on private data structure copies

○ Operations that modify global state

- Delayed until commit point

15

inodes,
dentries,
data pages….

Block bitmap,
Inode bitmap,
Super block inode list,
Parent directory….

Immediate,
on local state

Delayed



Customize isolation to each data structure

● Data pages

○ Unified API within file system code

○ Easy to differentiate read/write access

○ Copy-on-write & eager conflict detection

● inodes and directory entries (dentries)

○ Accessed haphazardly within file system code

○ Hard to differentiate read/write access

○ Copy-on-read & lazy conflict detection (at commit time)

16



● Copy-on-write

● Eager conflict detection
○ Enables early abort

● Higher scalability

○ Fine-grained page locks

Page isolation

17

directory entry

inode

pagepagepage

radix tree

Process 1 Process 2

✔ Concurrent writes

local copies

✗ Conflict
Process 3



Inode & dentry isolation

18

directory entry

inode

Process 1 Process 2

✗ Conflict

Last 
modified
at t = 2

local copies

● Copy-on-read

● Lazy conflict detection

○ Timestamp-based conflict 

resolution

○ Necessary due to kernel’s 

haphazard updates

Inode read 
and copied 
at t = 3

✔ Allowed

Inode read 
and copied 
at t = 1



Local, in-memory

19

Example: file creation

① file
create

directory entry

inode

Local dentry table



Local, in-memory

20

Example: file creation

① file
create

directory entry

inode

Local dentry table

Local, in-memory

directory entry

inode

Local dentry table

② write

page

radix 
tree

Insert pages



Local, in-memory

21

Example: file creation

① file
create

directory entry

inode

Local dentry table

Local, in-memory

directory entry

inode

Local dentry table

② write

page

radix 
tree

③ transaction 
commit

Global directory entry

inode
Global dentry table

page

radix 
tree

Global inode 
bitmap

Global block 
bitmap

Insert pages

Turn local state into 
global



● Modify the Android mail application to use TxFS transactions.

22

TxFS API: Cross-abstraction transactions

DB fileAttachment Rollback log

SQLiteRaw files

2 fsyncs 1 fsync

Use TxFS 
transaction

fs_tx_end()

fs_tx_begin()

DB fileAttachment

SQLiteRaw files

3 fsync

1 sync



Outline

● Using the file-system journal for A, C and D

● Implementing isolation

○ Avoid false conflicts on global data structures

○ Customize conflict detection for kernel data structures 

● Using transactions to implement file-system optimizations

● Evaluating TxFS

23



Transactions as a foundation for other optimizations

● Transactions present batched work to file system

○ Group commit

○ Eliminate temporary durable files

● Transactions allow fine-grained control of durability

○ Separate ordering from durability (osync [SOSP 13])

24

File .swp

TxFS transaction

Equivalent to File
In-memory 
operations 
on .swp file

TxFS transaction

Example: Eliminate temporary durable files in Vim



Implementation

● Linux kernel version 3.18.22

● Lines of code for implementation

25

Part Lines of code

TxFS internal bookkeeping 1,300

Virtual file system (VFS) 1,600

Journal (JBD2) 900

Ext4 1,200

Total 5,200

Reusable code



Evaluation: configuration

● Software
○ OS: Ubuntu 16.04 LTS (Linux kernel 3.18.22)

● Hardware
○ 4 core Intel Xeon E3-1220 CPU, 32 GB memory
○ Storage: Samsung 850 (250 GB) SSD

26

Experiment TxFS benefit Speedup

Single-threaded SQLite Less IO & sync, batching 1.31x

TPC-C Less IO & sync, batching 1.61x

Android Mail Cross abstraction 2.31x

Git Crash consistency 1.00x



Microbenchmark: Android mail client

● Eliminating logging IO

27

/* Write attachment */
open(/dir/attachment)
write(/dir/attachment)
fsync(/dir/attachment)
fsync(/dir/)
/* Update database */
open(/dir/journal)
write(/dir/journal)
fsync(/dir/journal)
fsync(/dir/)
write(/dir/db)
fsync(/dir/db)
unlink(/dir/journal)
fsync(/dir/)

fs_tx_begin()
/* Write attachment */
open(/dir/attachment)
write(/dir/attachment)
fsync(/dir/attachment)
fsync(/dir/)
/* Update database */
open(/dir/journal)
write(/dir/journal)
fsync(/dir/journal)
fsync(/dir/)
write(/dir/db)
fsync(/dir/db)
unlink(/dir/journal)
fsync(/dir/)
fs_tx_end()

fs_tx_begin()

/* Write attachment */
open(/dir/attachment)
write(/dir/attachment)

/* Update database */
write(/dir/db)

fs_tx_end()

Wrap with transaction:
20% throughput increase

Manual rewrite:
55% throughput increase



Git - consistency w/o overhead

● On a crash, git is vulnerable to garbage files and corruption

○ Currently, no fsync() to order operations (for high performance)

○ Possible loss of working tree, not recoverable with git-fsck

● TxFS transactions make Git fast and safe

○ No garbage files nor data corruption on crash

○ No observable performance overhead

28

Workload running in a VM: initialize a Git repository; git-add 
20,000 empty files; crash at different vulnerable points



Evaluation: single-threaded SQLite

29

1.5M 1KB operations. 10K operations grouped in a transaction. 
Database prepopulated with 15M rows.

Write-ahead log



TxFS Summary

● Persistent data is structured; tough to make crash consistent

● Transactions make applications simpler, more efficient

○ They enable optimizations that reduce IO and system calls

● File-system journal makes implementing transactions easier

● Source code: https://github.com/ut-osa/txfs

30

Data safe on crash

Easy to implement

High performance



Thank you!

31



Limitations

● Do not support directory operations

● Do not support transactions across file systems

● Memory copy overhead in read-only transactions

● Transaction size limited by memory and on-disk journal size

32



Evaluation: correctness

● Stress tests
● Crash consistency

○ Boot a virtual machine and creates many types of transactions in 
multiple threads with random amounts of contained work and 
conflict probabilities

○ Crash the VM at a random time
○ Check if the file system journal is recoverable, and the file system 

passes all fsck checks

33

ACD

ACID Use TxFS

File system



Prior works

The table compares prior work providing ACID transactions or failure atomicity in a local file system. Legend: ✔- supported, 
❌- unsupported, L - Low, H - High. Note that only TxFS provides isolation and durability with high performance and low 
implementation complexity without restrictions or hardware modifications.

Category System Isolation Easy-to-use 
APIs

Hardware 
independence

Performance Complexity

In-kernel 
transactional FS

TxFS ✔ ✔ ✔ H L

Valor ✔ ❌ ✔ H L

TxF ✔ ❌ ✔ H H

Transactional OS TxOS ✔ ✔ ✔ H H

FS over
userspace
databases

OdeFS

Relying on 
DBs ❌ ✔ L L

Inversion

DBFS

Amino

Transactional
storage

CFS ❌ ✔ ❌ H L

MARS ✔ ❌ ❌ H H

Isotope ✔ ✔ ✔ H H

Failure atomicity msync ❌ ✔ ✔ H L

AdvFS ❌ ✔ ✔ H L

34


