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How do we test these new designs for crash 
consistency?
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Chipmunk

Record-and-replay crash-consistency testing framework for PM file systems

Found 23 new crash-consistency bugs across 5 file systems

Compatible with POSIX-compliant file systems in user and kernel space

Function-based instrumentation for recording updates to PM

Supports fuzzing and bounded test generation
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Experiments

● Tested NOVA (FAST ‘16), NOVA-Fortis (SOSP ‘17), PMFS (EuroSys ‘14), 

SplitFS (SOSP ‘19), WineFS (SOSP ‘21), ext4-DAX, xfs-DAX

● Two workload generation techniques

1. ACE: systematic bounded test generator for file systems

2. Syzkaller: coverage-guided kernel fuzzer
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23 unique bugs found across 5 file systems

● Make file system unmountable (3 bugs)

● Violate atomicity guarantees (5 bugs)

● Lose file data (6 bugs)

● Violate synchrony guarantees (3 bugs)

● …
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What can we learn from these bugs?
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Most bugs are logic bugs

● Prior work on PM testing focuses on low-level cache management errors

● 19/23 bugs found by Chipmunk are caused by higher-level logic bugs

● 15/23 are related to in-place updates or rebuilding lost volatile state

Implication: PM file system crash-consistency testing tools must check high-level 
consistency properties that cannot be validated at the level of individual writes
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Exposing bugs requires checking more states 

● 11/23 bugs require a crash while a system call is executing 

● Prior work only checks crash states after fsync…

● But fsync is a no-op in most PM file systems

Implication: In order to find all bugs, testing must cover a large number of intermediate 
crash states that are not checked by existing file system testing tools.
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But difficult to build and test!

Maximizing performance requires exploring the complicated new design space

Testing must check more states and stronger properties
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PM presents a deceptively simple interface for file system development and 
requires new tools to help build correct and performant systems



Conclusion

Chipmunk found 23 new bugs across 5 PM file systems, many of which 
have severe consequences

Compatible with POSIX-compliant PM file systems in both user- and 
kernel-space

New insights into how to test PM file systems

Try Chipmunk: https://github.com/utsaslab/chipmunk
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Related work: traditional file system testing

CrashMonkey (OSDI ‘18): black-box record-and-replay crash consistency testing 
framework

Hydra (SOSP ‘19): file system fuzzer focusing on crash consistency and POSIX 
violations

eXplode (OSDI ‘06): file system model checker focusing on crash consistency
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Related work: PM file system testing

Yat (ATC ‘14): hypervisor-based tester designed for PMFS

PMTest (ASPLOS ‘19): checks durability and ordering using developer-provided 
annotations

Vinter (ATC ‘22): hypervisor-based tester used to test NOVA and NOVA-Fortis
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Related work: PM application testing

Pmemcheck: Valgrind-based tool developed by Intel for use with their PMDK 
library

XFDetector (ASPLOS ‘20): focuses on finding “cross-failure bugs” involving 
regular and recovery code

Agamotto (OSDI ‘20): symbolic execution tool focusing on crash consistency

PMFuzz (ASPLOS ‘21): PM program fuzzer used with Pmemcheck and 
XFDetector
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Related work: PM application testing

Witcher (SOSP ‘21): PM key-value store tester for PM programming errors and 
“persistence atomicity violations”

PmDebugger (ASPLOS ‘21): tool for collecting and analyzing PM access traces

Durinn (OSDI ‘22): durable linearizability checker 
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NOVA inode
Log head
Log tail

… . . .

Committed log entries

Uncommitted log entry

Log entries are 
committed by 

updating log tail
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CRASH!!

Link count is 2, but link 
path bar does not exist!

Root cause: in-place 
update optimization to 

avoid journaling 
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Solution: add DIR_ENTRY 
and LINK_CHANGE log 
entries in a transaction
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