Chipmunk: Investigating Crash-Consistency in Persistent-Memory File Systems

Hayley LeBlanc, Shankara Pailoor, Om Saran K R E, Isil Dillig, James Bornholt, Vijay Chidambaram

File systems

File systems

Traditional FSes (HDD, SSD)

Persistent memory (PM) FSes

File systems

New designs are necessary to maximize the performance of PM file systems

New journaling and logging protocols

- New journaling and logging protocols
- In-place updates

- New journaling and logging protocols
- In-place updates
- File systems in user space

- New journaling and logging protocols
- In-place updates
- File systems in user space
- Volatile indexes and allocators

New designs are necessary to maximize the performance of PM file systems

- New journaling and logging protocols
- In-place updates
- File systems in user space
- Volatile indexes and allocators

How do we test these new designs for crash consistency?

Record-and-replay crash-consistency testing framework for PM file systems

Record-and-replay crash-consistency testing framework for PM file systems

Found 23 new crash-consistency bugs across 5 file systems

Record-and-replay crash-consistency testing framework for PM file systems

Found 23 new crash-consistency bugs across 5 file systems

Compatible with POSIX-compliant file systems in user and kernel space

Record-and-replay crash-consistency testing framework for PM file systems

Found 23 new crash-consistency bugs across 5 file systems

Compatible with POSIX-compliant file systems in user and kernel space

Function-based instrumentation for recording updates to PM

Record-and-replay crash-consistency testing framework for PM file systems

Found 23 new crash-consistency bugs across 5 file systems

Compatible with POSIX-compliant file systems in user and kernel space

Function-based instrumentation for recording updates to PM

Supports fuzzing and bounded test generation

Outline

- 1. Introduction
- 2. Chipmunk overview
- 3. Experiments and bugs
- 4. Observations and insights

Chipmunk

Traditional file systems

Traditional file systems

PM file systems

Traditional file systems

PM file systems

Traditional file systems

PM file systems

NOVA PMFS SplitFS

Persistent memory

Traditional file systems PM file systems **NOVA PMFS** SplitFS ext3 ext4 xfs Centralized persistence Block layer **functions** SSD Persistent memory HDD

Outline

- 1. Introduction
- 2. Chipmunk overview
- 3. Experiments and bugs
- 4. Observations and insights

Tested NOVA (FAST '16), NOVA-Fortis (SOSP '17), PMFS (EuroSys '14),
 SplitFS (SOSP '19), WineFS (SOSP '21), ext4-DAX, xfs-DAX

Tested NOVA (FAST '16), NOVA-Fortis (SOSP '17), PMFS (EuroSys '14),
 SplitFS (SOSP '19), WineFS (SOSP '21), ext4-DAX, xfs-DAX

Tested NOVA (FAST '16), NOVA-Fortis (SOSP '17), PMFS (EuroSys '14),
 SplitFS (SOSP '19), WineFS (SOSP '21), ext4-DAX, xfs-DAX

Two workload generation techniques

Tested NOVA (FAST '16), NOVA-Fortis (SOSP '17), PMFS (EuroSys '14),
 SplitFS (SOSP '19), WineFS (SOSP '21), ext4-DAX, xfs-DAX

- Two workload generation techniques
- **1. ACE**: systematic bounded test generator for file systems

Tested NOVA (FAST '16), NOVA-Fortis (SOSP '17), PMFS (EuroSys '14),
 SplitFS (SOSP '19), WineFS (SOSP '21), ext4-DAX, xfs-DAX

- Two workload generation techniques
- **1. ACE**: systematic bounded test generator for file systems
- 2. Syzkaller: coverage-guided kernel fuzzer

Bugs found by Chipmunk

23 unique bugs found across 5 file systems

- Make file system unmountable (3 bugs)
- Violate atomicity guarantees (5 bugs)
- Lose file data (6 bugs)
- Violate synchrony guarantees (3 bugs)
- ...

Bugs found by Chipmunk

23 unique bugs found across 5 file systems

- Make file system unmountable (3 bugs)
- Violate atomicity guarantees (5 bugs)
- Lose file data (6 bugs)
- Violate synchrony guarantees (3 bugs)
- ...

What can we learn from these bugs?

Outline

- 1. Introduction
- 2. Chipmunk overview
- 3. Experiments and bugs
- 4. Observations and insights

Prior work on PM testing focuses on low-level cache management errors

- Prior work on PM testing focuses on low-level cache management errors
- 19/23 bugs found by Chipmunk are caused by higher-level logic bugs

- Prior work on PM testing focuses on low-level cache management errors
- 19/23 bugs found by Chipmunk are caused by higher-level logic bugs
- 15/23 are related to in-place updates or rebuilding lost volatile state

- Prior work on PM testing focuses on low-level cache management errors
- 19/23 bugs found by Chipmunk are caused by higher-level logic bugs
- 15/23 are related to in-place updates or rebuilding lost volatile state

Implication: PM file system crash-consistency testing tools must check high-level consistency properties that cannot be validated at the level of individual writes

• 11/23 bugs require a crash while a system call is executing

- 11/23 bugs require a crash while a system call is executing
- Prior work only checks crash states after fsync...

- 11/23 bugs require a crash while a system call is executing
- Prior work only checks crash states after fsync...
- But fsync is a no-op in most PM file systems

- 11/23 bugs require a crash while a system call is executing
- Prior work only checks crash states after fsync...
- But fsync is a no-op in most PM file systems

- 11/23 bugs require a crash while a system call is executing
- Prior work only checks crash states after fsync...
- But fsync is a no-op in most PM file systems

Implication: In order to find all bugs, testing must cover a large number of intermediate crash states that are not checked by existing file system testing tools.

Simple semantics for users and application developers...

Simple semantics for users and application developers...

But difficult to build and test!

Simple semantics for users and application developers...

But difficult to build and test!

Maximizing performance requires exploring the complicated new design space

Simple semantics for users and application developers...

But difficult to build and test!

Maximizing performance requires exploring the complicated new design space

Testing must check more states and stronger properties

Simple semantics for users and application developers...

But difficult to build and test!

Maximizing performance requires exploring the complicated new design space

Testing must check more states and stronger properties

PM presents a deceptively simple interface for file system development and requires new tools to help build correct and performant systems

Conclusion

Chipmunk found **23 new bugs** across 5 PM file systems, many of which have severe consequences

Compatible with POSIX-compliant PM file systems in both user- and kernel-space

New insights into how to test PM file systems

Try Chipmunk: https://github.com/utsaslab/chipmunk

Extra slides

Related work: traditional file system testing

CrashMonkey (OSDI '18): black-box record-and-replay crash consistency testing framework

Hydra (SOSP '19): file system fuzzer focusing on crash consistency and POSIX violations

eXplode (OSDI '06): file system model checker focusing on crash consistency

Related work: PM file system testing

Yat (ATC '14): hypervisor-based tester designed for PMFS

PMTest (ASPLOS '19): checks durability and ordering using developer-provided annotations

Vinter (ATC '22): hypervisor-based tester used to test NOVA and NOVA-Fortis

Related work: PM application testing

Pmemcheck: Valgrind-based tool developed by Intel for use with their PMDK library

XFDetector (ASPLOS '20): focuses on finding "cross-failure bugs" involving regular and recovery code

Agamotto (OSDI '20): symbolic execution tool focusing on crash consistency

PMFuzz (ASPLOS '21): PM program fuzzer used with Pmemcheck and XFDetector

Related work: PM application testing

Witcher (SOSP '21): PM key-value store tester for PM programming errors and "persistence atomicity violations"

PmDebugger (ASPLOS '21): tool for collecting and analyzing PM access traces

Durinn (OSDI '22): durable linearizability checker

Crash states

Crash states

Crash states

Oracle states

Crash states Record and replay flush 0x100 flush 0x300 flush 0x100 flush 0x100 flush 0x300 flush 0x300 flush 0x200 start creat flush 0x100 flush 0x300 Logger module **Oracle states** sfence flush 0x200 Pre-creat Post-creat sfence state state finish creat

Logger module

Logger module

flush 0x100

flush 0x300

sfence

flush 0x200

sfence

finish creat

Crash states

VS

Oracle states

Pre-creat state

Post-creat state

NOVA inode	Log head
	Log tail
	• • •


```
mkdir("A");
creat("bar");
rename("bar", "A/bar");
link("A/bar", "bar");
```

```
mkdir("A");
creat("bar");
rename("bar", "A/bar");
link("A/bar", "bar");
                           CRASH!!
Result:
$ ls -l . A | awk '{print $2,$9}';
   A/bar
```

```
mkdir("A");
creat("bar");
rename("bar", "A/bar");
link("A/bar", "bar");
                               CRASH!!
Result:
$ ls -l . A | awk '{print $2,$9}';
   A/bar <
            Link count is 2, but link
            path bar does not exist!
```

```
mkdir("A");
creat("bar");
rename("bar", "A/bar");
link("A/bar", "bar");
                              CRASH!!
Result:
$ ls -l . A | awk '{print $2,$9}';
           Link count is 2, but link
            path bar does not exist!
```

Root cause: in-place update optimization to avoid journaling

