
Chipmunk: Investigating Crash-
Consistency in Persistent-Memory

File Systems
Hayley LeBlanc, Shankara Pailoor, Om Saran K R E, Isil Dillig,

James Bornholt, Vijay Chidambaram

File systems

2Traditional FSes (HDD, SSD) Persistent memory (PM) FSes

POSIX
compliant

Durable
data

storage

File
abstraction

File systems

3Traditional FSes (HDD, SSD) Persistent memory (PM) FSes

Asynchronous
system calls

Slow, block-based
storage media POSIX

compliant

Durable
data

storage

File
abstraction

Weak crash
consistency
guarantees

Require fsync for
persistence

File systems

4Traditional FSes (HDD, SSD) Persistent memory (PM) FSes

Asynchronous
system calls

Slow, block-based
storage media POSIX

compliant

Durable
data

storage

File
abstraction

Synchronous
system calls

Weak crash
consistency
guarantees

Fast, byte-addressable
storage media

Strong crash
consistency
guarantees

Require fsync for
persistence

fsync is a no-op

PM file system design space

5

PM file system design space

New designs are necessary to maximize the performance of PM file systems

6

PM file system design space

New designs are necessary to maximize the performance of PM file systems

● New journaling and logging protocols

7

PM file system design space

New designs are necessary to maximize the performance of PM file systems

● New journaling and logging protocols

● In-place updates

8

PM file system design space

New designs are necessary to maximize the performance of PM file systems

● New journaling and logging protocols

● In-place updates

● File systems in user space

9

PM file system design space

New designs are necessary to maximize the performance of PM file systems

● New journaling and logging protocols

● In-place updates

● File systems in user space

● Volatile indexes and allocators

10

PM file system design space

New designs are necessary to maximize the performance of PM file systems

● New journaling and logging protocols

● In-place updates

● File systems in user space

● Volatile indexes and allocators

11

How do we test these new designs for crash
consistency?

Chipmunk

12

https://github.com/utsaslab/chipmunk

Chipmunk

Record-and-replay crash-consistency testing framework for PM file systems

13

https://github.com/utsaslab/chipmunk

Chipmunk

Record-and-replay crash-consistency testing framework for PM file systems

Found 23 new crash-consistency bugs across 5 file systems

14

https://github.com/utsaslab/chipmunk

Chipmunk

Record-and-replay crash-consistency testing framework for PM file systems

Found 23 new crash-consistency bugs across 5 file systems

Compatible with POSIX-compliant file systems in user and kernel space

15

https://github.com/utsaslab/chipmunk

Chipmunk

Record-and-replay crash-consistency testing framework for PM file systems

Found 23 new crash-consistency bugs across 5 file systems

Compatible with POSIX-compliant file systems in user and kernel space

Function-based instrumentation for recording updates to PM

16

https://github.com/utsaslab/chipmunk

Chipmunk

Record-and-replay crash-consistency testing framework for PM file systems

Found 23 new crash-consistency bugs across 5 file systems

Compatible with POSIX-compliant file systems in user and kernel space

Function-based instrumentation for recording updates to PM

Supports fuzzing and bounded test generation

17

https://github.com/utsaslab/chipmunk

Outline

1. Introduction
2. Chipmunk overview
3. Experiments and bugs
4. Observations and insights

18

Chipmunk overview

19

Chipmunk

Chipmunk overview

20

Chipmunk

Target file
system

Chipmunk overview

21

Chipmunk

Target file
system

Logger module

Chipmunk overview

22

Chipmunk

Target file
system

Logger module

Workload

Chipmunk overview

23

Chipmunk

Target file
system

Logger module

Workload

Crash
states

Chipmunk overview

24

Chipmunk

Target file
system

Logger module

Workload

Bug report

Crash
states

Recording updates

25

ext3 ext4 xfs

HDD SSD

Block layer

Traditional file systems

Recording updates

26

ext3 ext4 xfs

HDD SSD

Block layer

Traditional file systems

NOVA PMFS SplitFS

Persistent memory

PM file systems

Recording updates

27

ext3 ext4 xfs

HDD SSD

Block layer

Traditional file systems

NOVA PMFS SplitFS

Persistent memory

PM file systems

Recording updates

28

ext3 ext4 xfs

HDD SSD

Block layer

Traditional file systems

NOVA PMFS SplitFS

Persistent memory

PM file systems

Recording updates

29

ext3 ext4 xfs

HDD SSD

Block layer

Traditional file systems

NOVA PMFS SplitFS

Persistent memory

PM file systems

Centralized
persistence

functions

Outline

1. Introduction
2. Chipmunk overview
3. Experiments and bugs
4. Observations and insights

30

Experiments

31

Experiments

● Tested NOVA (FAST ‘16), NOVA-Fortis (SOSP ‘17), PMFS (EuroSys ‘14),

SplitFS (SOSP ‘19), WineFS (SOSP ‘21), ext4-DAX, xfs-DAX

32

Experiments

● Tested NOVA (FAST ‘16), NOVA-Fortis (SOSP ‘17), PMFS (EuroSys ‘14),

SplitFS (SOSP ‘19), WineFS (SOSP ‘21), ext4-DAX, xfs-DAX

33

Experiments

● Tested NOVA (FAST ‘16), NOVA-Fortis (SOSP ‘17), PMFS (EuroSys ‘14),

SplitFS (SOSP ‘19), WineFS (SOSP ‘21), ext4-DAX, xfs-DAX

● Two workload generation techniques

34

Experiments

● Tested NOVA (FAST ‘16), NOVA-Fortis (SOSP ‘17), PMFS (EuroSys ‘14),

SplitFS (SOSP ‘19), WineFS (SOSP ‘21), ext4-DAX, xfs-DAX

● Two workload generation techniques

1. ACE: systematic bounded test generator for file systems

35

Experiments

● Tested NOVA (FAST ‘16), NOVA-Fortis (SOSP ‘17), PMFS (EuroSys ‘14),

SplitFS (SOSP ‘19), WineFS (SOSP ‘21), ext4-DAX, xfs-DAX

● Two workload generation techniques

1. ACE: systematic bounded test generator for file systems

2. Syzkaller: coverage-guided kernel fuzzer

36

Bugs found by Chipmunk

23 unique bugs found across 5 file systems

● Make file system unmountable (3 bugs)

● Violate atomicity guarantees (5 bugs)

● Lose file data (6 bugs)

● Violate synchrony guarantees (3 bugs)

● …

37

Bugs found by Chipmunk

23 unique bugs found across 5 file systems

● Make file system unmountable (3 bugs)

● Violate atomicity guarantees (5 bugs)

● Lose file data (6 bugs)

● Violate synchrony guarantees (3 bugs)

● …

38

What can we learn from these bugs?

Outline

1. Introduction
2. Chipmunk overview
3. Experiments and bugs
4. Observations and insights

39

Most bugs are logic bugs

40

Most bugs are logic bugs

● Prior work on PM testing focuses on low-level cache management errors

41

Most bugs are logic bugs

● Prior work on PM testing focuses on low-level cache management errors

● 19/23 bugs found by Chipmunk are caused by higher-level logic bugs

42

Most bugs are logic bugs

● Prior work on PM testing focuses on low-level cache management errors

● 19/23 bugs found by Chipmunk are caused by higher-level logic bugs

● 15/23 are related to in-place updates or rebuilding lost volatile state

43

Most bugs are logic bugs

● Prior work on PM testing focuses on low-level cache management errors

● 19/23 bugs found by Chipmunk are caused by higher-level logic bugs

● 15/23 are related to in-place updates or rebuilding lost volatile state

Implication: PM file system crash-consistency testing tools must check high-level
consistency properties that cannot be validated at the level of individual writes

44

Link atomicity bug in NOVA

45

Link atomicity bug in NOVA

46

A

Link atomicity bug in NOVA

47

A

bar

Link atomicity bug in NOVA

48

A

bar

Link atomicity bug in NOVA

49

A

bar

Link atomicity bug in NOVA

50

A

bar
link count: 1

Link atomicity bug in NOVA

51

A

bar

bar

link count: 2

Link atomicity bug in NOVA

52

A

bar

bar

link count: 2

Link atomicity bug in NOVA

53

A

bar
link count: 2

Link atomicity bug in NOVA

54

A

bar
link count: 2 atomicity violation!

Link atomicity bug in NOVA

55

A

bar
link count: 2 atomicity violation!

Root cause: in-place
update optimization to

avoid journaling

Exposing bugs requires checking more states

56

Exposing bugs requires checking more states

● 11/23 bugs require a crash while a system call is executing

57

Exposing bugs requires checking more states

● 11/23 bugs require a crash while a system call is executing

● Prior work only checks crash states after fsync…

58

Exposing bugs requires checking more states

● 11/23 bugs require a crash while a system call is executing

● Prior work only checks crash states after fsync…

● But fsync is a no-op in most PM file systems

59

Exposing bugs requires checking more states

● 11/23 bugs require a crash while a system call is executing

● Prior work only checks crash states after fsync…

● But fsync is a no-op in most PM file systems

60

Exposing bugs requires checking more states

● 11/23 bugs require a crash while a system call is executing

● Prior work only checks crash states after fsync…

● But fsync is a no-op in most PM file systems

Implication: In order to find all bugs, testing must cover a large number of intermediate
crash states that are not checked by existing file system testing tools.

61

Synchronous behavior is a double-edged sword

62

Synchronous behavior is a double-edged sword

Simple semantics for users and application developers…

63

Synchronous behavior is a double-edged sword

Simple semantics for users and application developers…

But difficult to build and test!

64

Synchronous behavior is a double-edged sword

Simple semantics for users and application developers…

But difficult to build and test!

Maximizing performance requires exploring the complicated new design space

65

Synchronous behavior is a double-edged sword

Simple semantics for users and application developers…

But difficult to build and test!

Maximizing performance requires exploring the complicated new design space

Testing must check more states and stronger properties

66

Synchronous behavior is a double-edged sword

Simple semantics for users and application developers…

But difficult to build and test!

Maximizing performance requires exploring the complicated new design space

Testing must check more states and stronger properties

67

PM presents a deceptively simple interface for file system development and
requires new tools to help build correct and performant systems

Conclusion

Chipmunk found 23 new bugs across 5 PM file systems, many of which
have severe consequences

Compatible with POSIX-compliant PM file systems in both user- and
kernel-space

New insights into how to test PM file systems

Try Chipmunk: https://github.com/utsaslab/chipmunk

68

Extra slides

69

Related work: traditional file system testing

CrashMonkey (OSDI ‘18): black-box record-and-replay crash consistency testing
framework

Hydra (SOSP ‘19): file system fuzzer focusing on crash consistency and POSIX
violations

eXplode (OSDI ‘06): file system model checker focusing on crash consistency

70

Related work: PM file system testing

Yat (ATC ‘14): hypervisor-based tester designed for PMFS

PMTest (ASPLOS ‘19): checks durability and ordering using developer-provided
annotations

Vinter (ATC ‘22): hypervisor-based tester used to test NOVA and NOVA-Fortis

71

Related work: PM application testing

Pmemcheck: Valgrind-based tool developed by Intel for use with their PMDK
library

XFDetector (ASPLOS ‘20): focuses on finding “cross-failure bugs” involving
regular and recovery code

Agamotto (OSDI ‘20): symbolic execution tool focusing on crash consistency

PMFuzz (ASPLOS ‘21): PM program fuzzer used with Pmemcheck and
XFDetector

72

Related work: PM application testing

Witcher (SOSP ‘21): PM key-value store tester for PM programming errors and
“persistence atomicity violations”

PmDebugger (ASPLOS ‘21): tool for collecting and analyzing PM access traces

Durinn (OSDI ‘22): durable linearizability checker

73

Record and replay

Logger module

74

flush 0x100

flush 0x300

sfence

flush 0x200

start creat

finish creat

sfence

recorded via IOCTL issued
by Chipmunk

recorded via Kprobes/Uprobes
trigger on FS function

Record and replay

Logger module

75

flush 0x100

flush 0x300

sfence

flush 0x200

start creat

finish creat

sfence

recorded via IOCTL issued
by Chipmunk

recorded via Kprobes/Uprobes
trigger on FS function

Record and replay

Logger module

76

flush 0x100

flush 0x300

sfence

flush 0x200

Crash states
start creat

finish creat

sfence

recorded via IOCTL issued
by Chipmunk

recorded via Kprobes/Uprobes
trigger on FS function

Record and replay

Logger module

77

flush 0x100

flush 0x300

sfence

flush 0x200

flush 0x100 flush 0x300 flush 0x100
flush 0x300

Crash states
start creat

finish creat

sfence

recorded via IOCTL issued
by Chipmunk

recorded via Kprobes/Uprobes
trigger on FS function

Record and replay

Logger module

78

flush 0x100

flush 0x300

sfence

flush 0x200

flush 0x100 flush 0x300 flush 0x100
flush 0x300

flush 0x200

flush 0x100
flush 0x300

Crash states
start creat

finish creat

sfence

recorded via IOCTL issued
by Chipmunk

recorded via Kprobes/Uprobes
trigger on FS function

Record and replay

Logger module

79

flush 0x100

flush 0x300

sfence

flush 0x200

flush 0x100 flush 0x300

flush 0x100
flush 0x300

flush 0x200

flush 0x100
flush 0x300

Crash states

start creat

finish creat

sfence

recorded via IOCTL issued
by Chipmunk

recorded via Kprobes/Uprobes
trigger on FS function

Record and replay

Logger module

80

flush 0x100

flush 0x300

sfence

flush 0x200

flush 0x100 flush 0x300

flush 0x100
flush 0x300

flush 0x200

flush 0x100
flush 0x300

Crash states

start creat

finish creat

sfence

recorded via IOCTL issued
by Chipmunk

recorded via Kprobes/Uprobes
trigger on FS function

Oracle states

Record and replay

Logger module

81

flush 0x100

flush 0x300

sfence

flush 0x200

flush 0x100 flush 0x300

flush 0x100
flush 0x300

flush 0x200

flush 0x100
flush 0x300

Crash states

start creat

finish creat

sfence

recorded via IOCTL issued
by Chipmunk

recorded via Kprobes/Uprobes
trigger on FS function

Oracle states

Pre-creat
state

Record and replay

Logger module

82

flush 0x100

flush 0x300

sfence

flush 0x200

flush 0x100 flush 0x300

flush 0x100
flush 0x300

flush 0x200

flush 0x100
flush 0x300

Crash states

start creat

finish creat

sfence

recorded via IOCTL issued
by Chipmunk

recorded via Kprobes/Uprobes
trigger on FS function

Oracle states

Pre-creat
state

Post-creat
state

Record and replay

Logger module

83

flush 0x100

flush 0x300

sfence

flush 0x200

flush 0x100 flush 0x300

flush 0x100
flush 0x300

flush 0x200

flush 0x100
flush 0x300

Crash states

start creat

finish creat

sfence

recorded via IOCTL issued
by Chipmunk

recorded via Kprobes/Uprobes
trigger on FS function

Oracle states

Pre-creat
state

Post-creat
state

vs

Link atomicity bug in NOVA

84

NOVA inode
Log head
Log tail

…

Link atomicity bug in NOVA

85

NOVA inode
Log head
Log tail

… . . .

Committed log entries

Link atomicity bug in NOVA

86

NOVA inode
Log head
Log tail

… . . .

Committed log entries

Uncommitted log entry

Link atomicity bug in NOVA

87

NOVA inode
Log head
Log tail

… . . .

Committed log entries

Uncommitted log entry

Log entries are
committed by

updating log tail

Link atomicity bug in NOVA

mkdir(“A”);

creat(“bar”);

rename(“bar”, “A/bar”);

link(“A/bar”, “bar”);

88

Link atomicity bug in NOVA

mkdir(“A”);

creat(“bar”);

rename(“bar”, “A/bar”);

link(“A/bar”, “bar”);

89

CRASH!!

Result:

$ ls -l . A | awk ‘{print $2,$9}’;

2 A/bar

Link atomicity bug in NOVA

mkdir(“A”);

creat(“bar”);

rename(“bar”, “A/bar”);

link(“A/bar”, “bar”);

90

CRASH!!

Result:

$ ls -l . A | awk ‘{print $2,$9}’;

2 A/bar

Link atomicity bug in NOVA

mkdir(“A”);

creat(“bar”);

rename(“bar”, “A/bar”);

link(“A/bar”, “bar”);

91

CRASH!!

Link count is 2, but link
path bar does not exist!

Result:

$ ls -l . A | awk ‘{print $2,$9}’;

2 A/bar

Link atomicity bug in NOVA

mkdir(“A”);

creat(“bar”);

rename(“bar”, “A/bar”);

link(“A/bar”, “bar”);

92

CRASH!!

Link count is 2, but link
path bar does not exist!

Root cause: in-place
update optimization to

avoid journaling

Link atomicity bug in NOVA

93

NOVA inode
Log head
Log tail

…

DIR_ENTRY: A
/mnt/pmem/

NOVA inode
Log head
Log tail

…

/mnt/pmem/A

NOVA inode
Log head
Log tail

…

/mnt/pmem/A/bar

DIR_ENTRY: bar

LINK_CHANGE: link count 1

Link atomicity bug in NOVA

94

NOVA inode
Log head
Log tail

…

DIR_ENTRY: A
/mnt/pmem/

NOVA inode
Log head
Log tail

…

/mnt/pmem/A

NOVA inode
Log head
Log tail

…

/mnt/pmem/A/bar

DIR_ENTRY: bar

LINK_CHANGE: link count 1

NOVA uses the
same log entry
type for rename
and link

Link atomicity bug in NOVA

95

NOVA inode
Log head
Log tail

…

DIR_ENTRY: A
/mnt/pmem/

NOVA inode
Log head
Log tail

…

/mnt/pmem/A

NOVA inode
Log head
Log tail

…

/mnt/pmem/A/bar

DIR_ENTRY: bar

LINK_CHANGE: link count 1

DIR_ENTRY: bar

Link atomicity bug in NOVA

96

NOVA inode
Log head
Log tail

…

DIR_ENTRY: A
/mnt/pmem/

NOVA inode
Log head
Log tail

…

/mnt/pmem/A

NOVA inode
Log head
Log tail

…

/mnt/pmem/A/bar

DIR_ENTRY: bar

LINK_CHANGE: link count 1

DIR_ENTRY: bar

LINK_CHANGE: link count 2

Link atomicity bug in NOVA

97

NOVA inode
Log head
Log tail

…

DIR_ENTRY: A
/mnt/pmem/

NOVA inode
Log head
Log tail

…

/mnt/pmem/A

NOVA inode
Log head
Log tail

…

/mnt/pmem/A/bar

DIR_ENTRY: bar

LINK_CHANGE: link count 1

DIR_ENTRY: bar

LINK_CHANGE: link count 2

CRASH

Link atomicity bug in NOVA

98

NOVA inode
Log head
Log tail

…

DIR_ENTRY: A
/mnt/pmem/

NOVA inode
Log head
Log tail

…

/mnt/pmem/A

NOVA inode
Log head
Log tail

…

/mnt/pmem/A/bar

DIR_ENTRY: bar

LINK_CHANGE: link count 1

DIR_ENTRY: bar

LINK_CHANGE: link count 2

Link atomicity bug in NOVA

99

NOVA inode
Log head
Log tail

…

DIR_ENTRY: A
/mnt/pmem/

NOVA inode
Log head
Log tail

…

/mnt/pmem/A

NOVA inode
Log head
Log tail

…

/mnt/pmem/A/bar

DIR_ENTRY: bar

LINK_CHANGE: link count 1

DIR_ENTRY: bar

LINK_CHANGE: link count 2

Solution: add DIR_ENTRY
and LINK_CHANGE log
entries in a transaction

	Slide: 1
	File systems (1)
	File systems (2)
	File systems (3)
	PM file system design space (1)
	PM file system design space (2)
	PM file system design space (3)
	PM file system design space (4)
	PM file system design space (5)
	PM file system design space (6)
	PM file system design space (7)
	Chipmunk (1)
	Chipmunk (2)
	Chipmunk (3)
	Chipmunk (4)
	Chipmunk (5)
	Chipmunk (6)
	Outline
	Chipmunk overview (1)
	Chipmunk overview (2)
	Chipmunk overview (3)
	Chipmunk overview (4)
	Chipmunk overview (5)
	Chipmunk overview (6)
	Recording updates (1)
	Recording updates (2)
	Recording updates (3)
	Recording updates (1)
	Recording updates (2)
	Outline
	Experiments (1)
	Experiments (2)
	Experiments (3)
	Experiments (4)
	Experiments (5)
	Experiments (6)
	Bugs found by Chipmunk (1)
	Bugs found by Chipmunk (2)
	Outline
	Most bugs are logic bugs (1)
	Most bugs are logic bugs (2)
	Most bugs are logic bugs (3)
	Most bugs are logic bugs (4)
	Most bugs are logic bugs (5)
	Link atomicity bug in NOVA (1)
	Link atomicity bug in NOVA (2)
	Link atomicity bug in NOVA (3)
	Link atomicity bug in NOVA (4)
	Link atomicity bug in NOVA (1)
	Link atomicity bug in NOVA (2)
	Link atomicity bug in NOVA (3)
	Link atomicity bug in NOVA (4)
	Link atomicity bug in NOVA (5)
	Link atomicity bug in NOVA (6)
	Link atomicity bug in NOVA (7)
	Exposing bugs requires checking more states (1)
	Exposing bugs requires checking more states (2)
	Exposing bugs requires checking more states (3)
	Exposing bugs requires checking more states (4)
	Exposing bugs requires checking more states (5)
	Exposing bugs requires checking more states (6)
	Synchronous behavior is a double-edged sword (1)
	Synchronous behavior is a double-edged sword (2)
	Synchronous behavior is a double-edged sword (3)
	Synchronous behavior is a double-edged sword (4)
	Synchronous behavior is a double-edged sword (5)
	Synchronous behavior is a double-edged sword (6)
	Conclusion
	Extra slides
	Related work: traditional file system testing
	Related work: PM file system testing
	Related work: PM application testing
	Related work: PM application testing
	Record and replay (1)
	Record and replay (2)
	Record and replay (3)
	Record and replay (4)
	Record and replay (5)
	Record and replay (1)
	Record and replay (2)
	Record and replay (3)
	Record and replay (4)
	Record and replay (5)
	Link atomicity bug in NOVA (1)
	Link atomicity bug in NOVA (2)
	Link atomicity bug in NOVA (3)
	Link atomicity bug in NOVA (4)
	Link atomicity bug in NOVA (1)
	Link atomicity bug in NOVA (2)
	Link atomicity bug in NOVA (3)
	Link atomicity bug in NOVA (4)
	Link atomicity bug in NOVA (5)
	Link atomicity bug in NOVA (1)
	Link atomicity bug in NOVA (2)
	Link atomicity bug in NOVA (1)
	Link atomicity bug in NOVA (2)
	Link atomicity bug in NOVA (3)
	Link atomicity bug in NOVA (1)
	Link atomicity bug in NOVA (2)

