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Persistent Memory (PM)

« Byte-addressable, high-performance

* Non-volatile & high-capacity

« Retain data across power outage

» Cost per GB >>>> HDD or SSD

» Need to keep utilization high for cost efficiency

Intel Optane DC PM



Disaggregated Persistent Memory (DPM)
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Disaggregated Persistent Memory (DPM)

+ Share PM - Increase utilization, Reduce TCO (Total Cost Ownership)
+ Disaggregate PM - Scale resources independently, Separate failure domains
— Access PM over network (1 - 4us) >> local PM latency (300 - 400ns)

Network interconnect (e.g., RDMA over Infiniband)




Key-Value Store (KVS) for DPM

despite high-network costs
with the increase in provisioned resources

In response to dynamics (e.g., node addition/failure)



Challenge: easy to sacrifice one of the
three goals to achieve the others

No DPM KVSs providing all the three
goals simultaneously




DINOMO /Y

First DPM KVS achieving high performance, scalability, and fast
reconfiguration simultaneously

Adapt techniques (e.g., partitioning, caching, replication) from
storage research community for DPM

Full end-to-end implementations including KVS data plane,
control plane, and client

Better performance up-to 10x at scale and elasticity
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https://github.com/utsaslab/dinomo
https://github.com/utsaslab/dinomo
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DINOMO: Distributed KVS for DPM
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Outline

DINOMO: Distributed KVS for DPM
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System architectures for DPM

* What to share or partition?

KVSs Shared Shared
Goals everything nothing
High X Y
performance
Scalability X v
nghMelght Y X
reconfiguration
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Shared everything

CN

CN

Network interconnect

DPM

data, metadata, ownership
Data: key-value pairs
Metadata: index structures
Ownership: access permission
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Shared everything

Own: D1-D6

CN

Own: D1-D6

CN

Network interconnect

DPM

Metadata

| Data1 |

| Data2 |

| Data3| | Data4| | Data5|

D1

D2

D3 D4 D5 D6

data, metadata, ownership
Data: key-value pairs
Metadata: index structures
Ownership: access permission

16



Shared everything

Own: D1-D6 Own: D1-D6 Own: D1-D6
CN + New CN CN Shared data, metadata, ownership

: | | | | Fast reconfiguration without data

Network interconnect

! ! reorganization
DPM

Metadata

| Data1 | | Data2 | | Data3| | Data4| | Data5|
D1 D2 D3 D4 D5 D6

17



Shared everything

Own: D1-D6 Own: D1-D6 Own: D1-D6
CN + New CN CN Shared data, metadata, ownership

: | | | Fast reconfiguration without data

Network interconnect

—

! ! reorganization
DPM

Metadata

| Data1 | | Data2 | | Data3| | Data4| | Data5|
D1 D2 D3 D4 D5 D6
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Shared everything

Own: D1-D6 Own: D1-D6 Own: D1-D6
CN CN — CN
; Data1 Data3 Da
Data3]| Data5 —+——»[Dataf

| Communications for cache consistency |
DPM

Metadata

| Data1 | | Data2 | | Data3| | Data4| | Data5|
D1 D2 D3 D4 D5 D6

Shared data, metadata, ownership

Fast reconfiguration without data
reorganization

Low performance/scalability due to
consistency overheads

19



Shared nothing

CN

CN

Network interconnect

DPM

ownership

data, metadata,
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Shared nothing

Own: D1, D2, D3

Own: D4, D5, D6

CN CN
I I
() Network iffterconnect )
I I
DRAM
Metadata1 Metadata2
| Data1 | | Data2 | | Data3| | Data4| | Data5|
D1 D2 D3 D4 D5 D6

Partitioned data, metadata,
ownership
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Shared nothing

Own: D1, D2, D3

Own: D4, D5, D6

CN CN
[ [
() Network iffterconnect )
[ [
DAM
Metadata1 Metadata2
| Data1 | | Data2 | | Data3| | Data4| | Data5|

D1 D2

D3

D4

D5 D6

Partitioned data, metadata,
ownership

High performance/scalability
without consistency overheads
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Shared nothing

Partitioned data, metadata,
ownership

| High performance/scalability

without consistency overheads

Reshuffle data across partitions

Own: D1, D2 Own: D3, D4 Own: D5, D6
CN + New CN CN
[Datd]
[ | [
() Network interconnect
[ — 1
/_ DPM/_
Metadata1 Metadata3 Metadata2
|Data1 | |Data2| |Data3| |Data4| | Data5|
D1 D2 D3 D4 D5 D6

Slow reconfiguration due to
expensive data reorganization
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System architectures for DPM

* What to share or partition?

KVSs Shared Shared
Goals everything nothing
High X Y
performance
Scalability X v
nghMelght Y, X
reconfiguration




Approach: Partition ownership across compute
nodes while sharing data through DPM

Insight: Data and ownership can be an
iIndependent consideration owing to disaggregation
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CN

Ownership Partitioning

CN

Network interconnect

DPM

data/metadata, but
ownership
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Ownership Partitioning

Own: D1, D2, D3

Own: D4, D5, D6

|
|
CN I CN
|
|
[ | [
() Network interconnect
[ [
DPM
Metadata
| Data1 | | Data2 | | Data3| | Data4| | Data5|
D1 D2 D3 D4 D5 D6

Shared data/metadata, but
partitioned ownership

27



Ownership Partitioning

Own: D1, D2, D3 1 Own: D4, D5, D6
CN : CN Shared data/metadata, but
I partitioned ownership
|
[ |

' | High performance/scalability

() Network interconnect

. o ! without consistency overheads

Metadata

| Data1 | | Data2 | | Data3| | Data4| | Data5|
D1 D2 D3 D4 D5 D6
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Ownership Partitioning

Own: D1, D2, D3

Own: D4, D5, D6

Shared data/metadata, but
partitioned ownership

| High performance/scalability

I I
| |
CN | + New CN | CN
| |
I I
| l | l |
() Network interconnect
[ [
DPM
Metadata
|Data1 | |Data2| |Data3| |Data4| | Data5|

D1 D2

D3 D4

D5 D6

without consistency overheads

Fast reconfiguration without data
reorganization
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Ownership Partitioning

Own:D1,D2 ! oOwn:D3,04 1 Own:D5,D6
| |
CN (| +Newen | CN
I Bata3] | D
I I

Shared data/metadata, but
partitioned ownership

Reshuffle ownership & invalidate stale

cached copies

Metadata

| Data1 |

| Data2 |

| Data3| | Data4|

| Data5|

D1

D2

D3 D4

D5

D6

. High performance/scalability
without consistency overheads

Fast reconfiguration without data
reorganization
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Outline

DINOMO: Distributed KVS for DPM
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Caching for DPM

* Number of network round trips significantly impacts on
overall system performance

« Cache data or metadata into the memory of compute
nodes to reduce round trips to DPM
* Important to minimize cache misses



Static caching strategies

* Value
 Entire copy of data in DPM

* Shortcut

* Remote pointer to data in DPM

CN m];
| Cache |
| |
||
( RDMA Interconnect
N
DPM
Datal| |Data2| |Data3| |Datad




Static caching strategies

* Value
 Entire copy of data in DPM

« Shortcut
* Remote pointer to data in DPM

/-Get (Data 1)‘
CN :[m]:
| Cache |
| Datal| |Data2 I
s - - - - - e . . .
||
RDMA Interconnect .

DPM

Datal| |Data2| |Data3| [Datad




Static caching strategies

/-Get (Data 1)‘
* Value e L
* Entire copy of data in DPM e -
« Zero round trip, but more space 1 0 !
¢ ShOrtCUt ( x R MAInte.rconnect x

« Remote pointer to data in DPM  [oewm

Datal| |Data2| |Data3| [Datad




Is it better to cache a few values without overheads
on hits, or a larger number of shortcuts with fixed
hit overheads?
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Is it better to cache a few values without overheads
on hits, or a larger number of shortcuts with fixed
hit overheads”?

Value cache Shortcut cache
wins wins

—

Skew Uniform
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Is it better to cache a few values without overheads
on hits, or a larger number of shortcuts with fixed
hit overheads”?

Value cache Real-world Shortcut cache
. workloads .
wins wins

T

Skew Uniform
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Is it better to cache a few values without overheads
on hits, or a larger number of shortcuts with fixed
hit overheads?

Answer: Efficient ratio depends on workload
patterns and available memory space

We need an adaptive policy changing ratio
between values and shortcuts!
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Disaggregated Adaptive Caching

» Adaptive policy

« Change the boundary via demotion and promotion
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Disaggregated Adaptive Caching

» Adaptive policy

« Change the boundary via demotion and promotion

I [TTTTETT
Values hortcut
| PPt

|
Promote shortcut to \ ';
Capture skewness

value at hit
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Disaggregated Adaptive Caching

» Adaptive policy
« Change the boundary via demotion and promotion

* Promotion policy considering sizes, hit costs, and miss costs
* Hit benefit from the promoted shortcut > Miss costs from evicted shortcuts

I [TTTTETT
Values hortcut
| PPt

|
Promote shortcut to \ ';
Capture skewness

value at hit
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Outline

DINOMO: Distributed KVS for DPM
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Evaluation

* How does DINOMO fare against the state-of-the-art in
terms of and ?

* How and iIs DINOMO while handling
workload dynamics, load imbalance, and node failures?
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Evaluation

* How does DINOMO fare against the state-of-the-art in
terms of performance and scalability?
* DINOMO scales performance with # of CNs
« DINOMO performs up-to 10x better than the state of the art

* How elastic and responsive is DINOMO while handling
workload dynamics, load imbalance, and node failures?

* DINOMO is much
counterparts, but



DINOMO

* First KVS for DPM achieving high performance,
scalability, and elasticity simultaneously

« Use a novel combination of techniques, ownership
partitioning and disaggregated adaptive cache

« Experimentally show DINOMO can scale performance
and efficiently react to reconfigurations

* Try our KVSO: https://github.com/utsaslab/dinomo



https://github.com/utsaslab/dinomo

Backup



Evaluation setup

« System configuration
 DPM: 4 threads, 110GB of DRAM to emulate PM
* 16 CNs: 8 threads, 1GB of DRAM for caching (=1% of the DPM)
» Connected via 56Gbps ConnectX-3 RNICs

» Baseline
» Performance/scalability: Clover (shared everything, shortcut-only cache)

« Elasticity: DINOMO-N (Disaggregated adaptive caching, but partition
data/metadata)

» Workload
» YCSB workloads with 8B keys and 1KB values



Evaluation

* How does DINOMO fare against the state-of-the-art in
terms of performance and scalability?
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Performance and Scalability
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Performance and Scalability

« DINOMO scales to 16 CNs, but Clover does not beyond 4 CNs

50% reads/50% updates 95% reads/5% updates 100% reads
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Performance and Scalability

« DINOMO scales to 16 CNs, but Clover does not beyond 4 CNs
* With 16 CNs, DINOMO outperforms Clover upto 10x

50% reads/50% updates 95% reads/5% updates
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Evaluation

* How elastic and responsive is DINOMO while handling
changes in workloads?
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Elasticity
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Elasticity

* DINOMO: Brief throughput dips when adding/removing CNs

Load increase CN Join CN Join Load drop CN removal
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Elasticity

* DINOMO: Brief throughput dips when adding/removing CNs

* DINOMO-N: Throughput dips for 20-40 seconds due to expensive
data reorganization
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