DINOMO: An Elastic, Scalable, High-
Performance Key-Value Store for
Disaggregated Persistent Memory

Sekwon Lee, Soujanya Ponnapalli, Sharad Singhal,
Marcos K. Aguilera, Kimberly Keeton, Vijay Chidambaram

' TEXAS - Hewlett Packard vimware
The University of Texas at Austin

Labs

1

Persistent Memory (PM)

« Byte-addressable, high-performance

* Non-volatile & high-capacity

« Retain data across power outage

» Cost per GB >>>> HDD or SSD

» Need to keep utilization high for cost efficiency

Intel Optane DC PM

Disaggregated Persistent Memory (DPM)

Network interconnect (e.g., RDMA over Infiniband)]

Disaggregated Persistent Memory (DPM)

+ Share PM - Increase utilization, Reduce TCO (Total Cost Ownership)

)

e e e — - -

Disaggregated Persistent Memory (DPM)

+ Share PM - Increase utilization, Reduce TCO (Total Cost Ownership)
+ Disaggregate PM - Scale resources independently, Separate failure domains

Network interconnect (e.g., RDMA over Infiniband)]

Disaggregated Persistent Memory (DPM)

+ Share PM - Increase utilization, Reduce TCO (Total Cost Ownership)
+ Disaggregate PM - Scale resources independently, Separate failure domains

Network interconnect (e.g., RDMA over Infiniband)

! | ’
i ‘[IEIEIEI 0000{«(0000

i

Disaggregated Persistent Memory (DPM)

+ Share PM - Increase utilization, Reduce TCO (Total Cost Ownership)
+ Disaggregate PM - Scale resources independently, Separate failure domains

Network interconnect (e.g., RDMA over Infiniband)

Disaggregated Persistent Memory (DPM)

+ Share PM - Increase utilization, Reduce TCO (Total Cost Ownership)
+ Disaggregate PM - Scale resources independently, Separate failure domains
— Access PM over network (1 - 4us) >> local PM latency (300 - 400ns)

Network interconnect (e.g., RDMA over Infiniband)

Key-Value Store (KVS) for DPM

despite high-network costs
with the increase in provisioned resources

In response to dynamics (e.g., node addition/failure)

Challenge: easy to sacrifice one of the
three goals to achieve the others

No DPM KVSs providing all the three
goals simultaneously

DINOMO /Y

First DPM KVS achieving high performance, scalability, and fast
reconfiguration simultaneously

Adapt techniques (e.g., partitioning, caching, replication) from
storage research community for DPM

Full end-to-end implementations including KVS data plane,
control plane, and client

Better performance up-to 10x at scale and elasticity

11

https://github.com/utsaslab/dinomo
https://github.com/utsaslab/dinomo

Outline

DINOMO: Distributed KVS for DPM

Partitioning Caching
Scalability High
Elast|C|ty e performa nce

b o o o e = o]

12

Outline

DINOMO: Distributed KVS for DPM

Ownership | 158 || GE || GF || €F || €F || T

partitioning e) (!) |z) (o) (e
Scalablllty r Network interconnect]
Elasticity ‘
Py P e

b o o o e = o]

13

System architectures for DPM

* What to share or partition?

KVSs Shared Shared
Goals everything nothing
High X Y
performance
Scalability X v
nghMelght Y X
reconfiguration

14

Shared everything

CN

CN

Network interconnect

DPM

data, metadata, ownership
Data: key-value pairs
Metadata: index structures
Ownership: access permission

15

Shared everything

Own: D1-D6

CN

Own: D1-D6

CN

Network interconnect

DPM

Metadata

| Data1 |

| Data2 |

| Data3| | Data4| | Data5|

D1

D2

D3 D4 D5 D6

data, metadata, ownership
Data: key-value pairs
Metadata: index structures
Ownership: access permission

16

Shared everything

Own: D1-D6 Own: D1-D6 Own: D1-D6
CN + New CN CN Shared data, metadata, ownership

: | | | | Fast reconfiguration without data

Network interconnect

! ! reorganization
DPM

Metadata

| Data1 | | Data2 | | Data3| | Data4| | Data5|
D1 D2 D3 D4 D5 D6

17

Shared everything

Own: D1-D6 Own: D1-D6 Own: D1-D6
CN + New CN CN Shared data, metadata, ownership

: | | | Fast reconfiguration without data

Network interconnect

—

! ! reorganization
DPM

Metadata

| Data1 | | Data2 | | Data3| | Data4| | Data5|
D1 D2 D3 D4 D5 D6

18

Shared everything

Own: D1-D6 Own: D1-D6 Own: D1-D6
CN CN — CN
; Data1 Data3 Da
Data3]| Data5 —+——»[Dataf

| Communications for cache consistency |
DPM

Metadata

| Data1 | | Data2 | | Data3| | Data4| | Data5|
D1 D2 D3 D4 D5 D6

Shared data, metadata, ownership

Fast reconfiguration without data
reorganization

Low performance/scalability due to
consistency overheads

19

Shared nothing

CN

CN

Network interconnect

DPM

ownership

data, metadata,

20

Shared nothing

Own: D1, D2, D3

Own: D4, D5, D6

CN CN
I I
() Network iffterconnect)
I I
DRAM
Metadata1 Metadata2
| Data1 | | Data2 | | Data3| | Data4| | Data5|
D1 D2 D3 D4 D5 D6

Partitioned data, metadata,
ownership

21

Shared nothing

Own: D1, D2, D3

Own: D4, D5, D6

CN CN
[[
() Network iffterconnect)
[[
DAM
Metadata1 Metadata2
| Data1 | | Data2 | | Data3| | Data4| | Data5|

D1 D2

D3

D4

D5 D6

Partitioned data, metadata,
ownership

High performance/scalability
without consistency overheads

22

Shared nothing

Partitioned data, metadata,
ownership

| High performance/scalability

without consistency overheads

Reshuffle data across partitions

Own: D1, D2 Own: D3, D4 Own: D5, D6
CN + New CN CN
[Datd]
[| [
() Network interconnect
[— 1
/_ DPM/_
Metadata1 Metadata3 Metadata2
|Data1 | |Data2| |Data3| |Data4| | Data5|
D1 D2 D3 D4 D5 D6

Slow reconfiguration due to
expensive data reorganization

23

System architectures for DPM

* What to share or partition?

KVSs Shared Shared
Goals everything nothing
High X Y
performance
Scalability X v
nghMelght Y, X
reconfiguration

Approach: Partition ownership across compute
nodes while sharing data through DPM

Insight: Data and ownership can be an
iIndependent consideration owing to disaggregation

25

CN

Ownership Partitioning

CN

Network interconnect

DPM

data/metadata, but
ownership

26

Ownership Partitioning

Own: D1, D2, D3

Own: D4, D5, D6

|
|
CN I CN
|
|
[| [
() Network interconnect
[[
DPM
Metadata
| Data1 | | Data2 | | Data3| | Data4| | Data5|
D1 D2 D3 D4 D5 D6

Shared data/metadata, but
partitioned ownership

27

Ownership Partitioning

Own: D1, D2, D3 1 Own: D4, D5, D6
CN : CN Shared data/metadata, but
I partitioned ownership
|
[|

' | High performance/scalability

() Network interconnect

. o ! without consistency overheads

Metadata

| Data1 | | Data2 | | Data3| | Data4| | Data5|
D1 D2 D3 D4 D5 D6

28

Ownership Partitioning

Own: D1, D2, D3

Own: D4, D5, D6

Shared data/metadata, but
partitioned ownership

| High performance/scalability

I I
| |
CN | + New CN | CN
| |
I I
| l | l |
() Network interconnect
[[
DPM
Metadata
|Data1 | |Data2| |Data3| |Data4| | Data5|

D1 D2

D3 D4

D5 D6

without consistency overheads

Fast reconfiguration without data
reorganization

29

Ownership Partitioning

Own:D1,D2 ! oOwn:D3,04 1 Own:D5,D6
| |
CN (| +Newen | CN
I Bata3] | D
I I

Shared data/metadata, but
partitioned ownership

Reshuffle ownership & invalidate stale

cached copies

Metadata

| Data1 |

| Data2 |

| Data3| | Data4|

| Data5|

D1

D2

D3 D4

D5

D6

. High performance/scalability
without consistency overheads

Fast reconfiguration without data
reorganization

30

Outline

DINOMO: Distributed KVS for DPM

Network interconnect] ngh

b o o o e = o]

31

Caching for DPM

* Number of network round trips significantly impacts on
overall system performance

« Cache data or metadata into the memory of compute
nodes to reduce round trips to DPM
* Important to minimize cache misses

Static caching strategies

* Value
 Entire copy of data in DPM

* Shortcut

* Remote pointer to data in DPM

CN m];
| Cache |
| |
||
(RDMA Interconnect
N
DPM
Datal| |Data2| |Data3| |Datad

Static caching strategies

* Value
 Entire copy of data in DPM

« Shortcut
* Remote pointer to data in DPM

/-Get (Data 1)‘
CN :[m]:
| Cache |
| Datal| |Data2 I
s - - - - - e . . .
||
RDMA Interconnect .

DPM

Datal| |Data2| |Data3| [Datad

Static caching strategies

/-Get (Data 1)‘
* Value e L
* Entire copy of data in DPM e -
« Zero round trip, but more space 1 0 !
¢ ShOrtCUt (x R MAInte.rconnect x

« Remote pointer to data in DPM [oewm

Datal| |Data2| |Data3| [Datad

Is it better to cache a few values without overheads
on hits, or a larger number of shortcuts with fixed
hit overheads?

36

Is it better to cache a few values without overheads
on hits, or a larger number of shortcuts with fixed
hit overheads”?

Value cache Shortcut cache
wins wins

—

Skew Uniform

37

Is it better to cache a few values without overheads
on hits, or a larger number of shortcuts with fixed
hit overheads”?

Value cache Real-world Shortcut cache
. workloads .
wins wins

T

Skew Uniform

38

Is it better to cache a few values without overheads
on hits, or a larger number of shortcuts with fixed
hit overheads?

Answer: Efficient ratio depends on workload
patterns and available memory space

We need an adaptive policy changing ratio
between values and shortcuts!

39

Disaggregated Adaptive Caching

» Adaptive policy

« Change the boundary via demotion and promotion

Disaggregated Adaptive Caching

» Adaptive policy

« Change the boundary via and promotion

Disaggregated Adaptive Caching

» Adaptive policy

« Change the boundary via and promotion

Disaggregated Adaptive Caching

» Adaptive policy

« Change the boundary via demotion and promotion

I [TTTTETT
Values hortcut
| PPt

|
Promote shortcut to \ ';
Capture skewness

value at hit

43

Disaggregated Adaptive Caching

» Adaptive policy
« Change the boundary via demotion and promotion

* Promotion policy considering sizes, hit costs, and miss costs
* Hit benefit from the promoted shortcut > Miss costs from evicted shortcuts

I [TTTTETT
Values hortcut
| PPt

|
Promote shortcut to \ ';
Capture skewness

value at hit

44

Outline

DINOMO: Distributed KVS for DPM

Ownership |i= || 32 || 32 || 32 || 3= || 3=5,| Disaggregated
s - 0ooo| | |(oooo| | {|oooo| | {|oooo| | {|oooo| | |{oooo :
partitioning (==)) | e -) (=) adaptive cache
Scalablllty r Network interconnect] ngh
Elasticity ‘ performance
) k] b,

__

45

Evaluation

* How does DINOMO fare against the state-of-the-art in
terms of and ?

* How and iIs DINOMO while handling
workload dynamics, load imbalance, and node failures?

Evaluation

* How does DINOMO fare against the state-of-the-art in
terms of performance and scalability?
« DINOMO
* DINOMO performs than the state of the art

* How elastic and responsive is DINOMO while handling
workload dynamics, load imbalance, and node failures?

Evaluation

* How does DINOMO fare against the state-of-the-art in
terms of performance and scalability?
* DINOMO scales performance with # of CNs
« DINOMO performs up-to 10x better than the state of the art

* How elastic and responsive is DINOMO while handling
workload dynamics, load imbalance, and node failures?

* DINOMO is much
counterparts, but

DINOMO

* First KVS for DPM achieving high performance,
scalability, and elasticity simultaneously

« Use a novel combination of techniques, ownership
partitioning and disaggregated adaptive cache

« Experimentally show DINOMO can scale performance
and efficiently react to reconfigurations

* Try our KVSO: https://github.com/utsaslab/dinomo

https://github.com/utsaslab/dinomo

Backup

Evaluation setup

« System configuration
 DPM: 4 threads, 110GB of DRAM to emulate PM
* 16 CNs: 8 threads, 1GB of DRAM for caching (=1% of the DPM)
» Connected via 56Gbps ConnectX-3 RNICs

» Baseline
» Performance/scalability: Clover (shared everything, shortcut-only cache)

« Elasticity: DINOMO-N (Disaggregated adaptive caching, but partition
data/metadata)

» Workload
» YCSB workloads with 8B keys and 1KB values

Evaluation

* How does DINOMO fare against the state-of-the-art in
terms of performance and scalability?

52

Performance and Scalability

. 50% reads/50% updates 95% reads/5% updates 100% reads
(&)

897 —@- Dinomo
a4 —»— Clover
S
< 3
2
e 2-

S
o1
c

Number of CNs Number of CNs Number of CNs

Performance and Scalability

« DINOMO scales to 16 CNs, but Clover does not beyond 4 CNs

50% reads/50% updates 95% reads/5% updates 100% reads
51 —@- Dinomo
4 - Clover

N

Throughput (MOps/sec)
w

o —_
I !

o - N w EEN (&)
I L L L L L

o - N w S~ [¢)]
1 1 1 1 1

N
N

4 8 16 1 2 4 8 16 1 2 4 8 16
Number of CNs Number of CNs Number of CNs

Performance and Scalability

« DINOMO scales to 16 CNs, but Clover does not beyond 4 CNs
* With 16 CNs, DINOMO outperforms Clover upto 10x

50% reads/50% updates 95% reads/5% updates

. 100% reads
(@)

@ §5 —@- Dinomo
§_4_ -+ Clover
=
— 37 3.8X
S5
22/

S
o 1
z
ok
1 2

4 8 16 1 2 4 8 16 1 2 4 8 1s
Number of CNs Number of CNs Number of CNs

Evaluation

* How elastic and responsive is DINOMO while handling
changes in workloads?

56

Elasticity

Load increase (N Join CN Join Load drop CN removal
gaoo 1 e Dinomo
) X { -3¢~ Dinomo-N
g 600 - » ’ P
2 4001 ; ¥
5 P X ; L
o A N . ’
3 2001 L . X M
< § ‘i X ‘- " ‘u :
|_ O T : T \‘/\(X T : T VX T Y\; T
0 50 100 150 200 250 300

Time (sec)

Elasticity

* DINOMO: Brief throughput dips when adding/removing CNs

Load increase CN Join CN Join Load drop CN removal

~N S | AN
1,7800- P

@ _ : i =@— Dinomo
o T H » E.§. . .)
© 600 1 : : §>(Dinomo-N
2 400 ’
5 ;
@ L]
3 200 }Q
E X ‘i " E MY y

"o S LNy ,

0 50 100 150 200 250 300

Time (sec)

Elasticity

* DINOMO: Brief throughput dips when adding/removing CNs

* DINOMO-N: Throughput dips for 20-40 seconds due to expensive
data reorganization

Load increase CN Join CN Join Load drop CN removal
O g T

{ =@— Dinomo
i« Dinomo-N

o))
o
o

N
o
o

Throughput (KOps
D
o
o

o

0 50

100 150 200 250 300
Time (sec)

	Slide 1: DINOMO: An Elastic, Scalable, High-Performance Key-Value Store for Disaggregated Persistent Memory
	Slide 2: Persistent Memory (PM)
	Slide 3: Disaggregated Persistent Memory (DPM)
	Slide 4: Disaggregated Persistent Memory (DPM)
	Slide 5: Disaggregated Persistent Memory (DPM)
	Slide 6: Disaggregated Persistent Memory (DPM)
	Slide 7: Disaggregated Persistent Memory (DPM)
	Slide 8: Disaggregated Persistent Memory (DPM)
	Slide 9: Key-Value Store (KVS) for DPM High common-case performance despite high-network costs Scalability with the increase in provisioned resources Fast reconfiguration in response to dynamics (e.g., node addition/failure)
	Slide 10: Key-Value Store (KVS) for DPM High common-case performance despite high-network costs Scalability with the increase in provisioned resources Fast reconfiguration in response to dynamics (e.g., node addition/failure)
	Slide 11: DINOMO
	Slide 12: Outline
	Slide 13: Outline
	Slide 14: System architectures for DPM
	Slide 15: Shared everything
	Slide 16: Shared everything
	Slide 17: Shared everything
	Slide 18: Shared everything
	Slide 19: Shared everything
	Slide 20: Shared nothing
	Slide 21: Shared nothing
	Slide 22: Shared nothing
	Slide 23: Shared nothing
	Slide 24: System architectures for DPM
	Slide 25: Approach: Partition ownership across compute nodes while sharing data through DPM Insight: Data and ownership can be an independent consideration owing to disaggregation
	Slide 26: Ownership Partitioning
	Slide 27: Ownership Partitioning
	Slide 28: Ownership Partitioning
	Slide 29: Ownership Partitioning
	Slide 30: Ownership Partitioning
	Slide 31: Outline
	Slide 32: Caching for DPM
	Slide 33: Static caching strategies
	Slide 34: Static caching strategies
	Slide 35: Static caching strategies
	Slide 36: Is it better to cache a few values without overheads on hits, or a larger number of shortcuts with fixed hit overheads? Answer: Efficient ratio is dependent on workload patterns and aggregate memory space We need an adaptive policy changing ra
	Slide 37: Is it better to cache a few values without overheads on hits, or a larger number of shortcuts with fixed hit overheads? Answer: Efficient ratio is dependent on workload patterns and aggregate memory space We need an adaptive policy changing ra
	Slide 38: Is it better to cache a few values without overheads on hits, or a larger number of shortcuts with fixed hit overheads? Answer: Efficient ratio is dependent on workload patterns and aggregate memory space We need an adaptive policy changing ra
	Slide 39: Is it better to cache a few values without overheads on hits, or a larger number of shortcuts with fixed hit overheads? Answer: Efficient ratio depends on workload patterns and available memory space We need an adaptive policy changing ratio b
	Slide 40: Disaggregated Adaptive Caching
	Slide 41: Disaggregated Adaptive Caching
	Slide 42: Disaggregated Adaptive Caching
	Slide 43: Disaggregated Adaptive Caching
	Slide 44: Disaggregated Adaptive Caching
	Slide 45: Outline
	Slide 46: Evaluation
	Slide 47: Evaluation
	Slide 48: Evaluation
	Slide 49: DINOMO
	Slide 50: Backup
	Slide 51: Evaluation setup
	Slide 52: Evaluation
	Slide 53: Performance and Scalability
	Slide 54: Performance and Scalability
	Slide 55: Performance and Scalability
	Slide 56: Evaluation
	Slide 57: Elasticity
	Slide 58: Elasticity
	Slide 59: Elasticity

