
Tigon: A Distributed Database
for a CXL Pod

Yibo Huang, Haowei Chen, Newton Ni, Yan Sun1,

Vijay Chidambaram, Dixin Tang, Emmett Witchel

The University of Texas at Austin
1University of Illinois Urbana-Champaign

Host 2

CPUs

Partition 2

DRAM

Host 1

CPUs

Partition 1

DRAM

Partition-based Shared-nothing DB

Pros:
● Single-partition transactions scale well

Cons:
● Numerous message exchange
● Require two-phase commit (2PC)

RDMA Network

Host 2

CPUs

DRAM

RDMA-based Memory Server

Host 1

CPUs

DRAM

RDMA-based Shared-memory DB

Pros:
● No message exchange
● No two-phase commit (2PC)

Cons:
● RDMA has microsecond latency
● High programming complexity

Scaling Out a Transactional Database is Hard…

Existing DBs either suffer from numerous message exchanges or high
latency memory access, both introduced by the network

Scaling Out a Transactional Database is Hard…

Host 2

CPUs

Partition 2

DRAM

Host 1

CPUs

Partition 1

DRAM
RDMA Network

Host 2

CPUs

DRAM

RDMA-based Memory Server

Host 1

CPUs

DRAM

Synchronize cross-host data accesses via
message passing over a network

Synchronize cross-host data accesses via
RDMA operations

Root cause: use of a network for synchronizing cross-host data accesses

Can we avoid using a network for
cross-host data synchronization?

Scaling Out a Transactional Database is Hard…

Compute Express Link (CXL)

A fast interconnect between CPUs and devices based on PCIe 5.0 and 6.0

CXL memory is a memory module connected to one or multiple hosts via CXL

Memory tiering and pooling (1.0 & 2.0):

TPP (ASPLOS 23), Pond (ASPLOS 23),
Nomad (OSDI 24), Memstrata (OSDI 24),
Colloid (SOSP 24), Soar & Alto (OSDI 25)

Memory sharing (3.0):

CXL-SHM (SOSP 23), HydraRPC (ATC 24),
TrEnv (SOSP 24), CXLfork (ASPLOS 25),
CtXnL (ASPLOS 25),
PolarDB DMP (SIGMOD 25)

Our focus!

CXL Pod: A New Opportunity to Scale Databases

● CXL pod: 8-16 hosts connected to a shared CXL memory module
○ Inter-host hardware cache coherence (HWcc) based on CXL 3.0-3.2 spec
○ Hardware prototype exists - e.g., Niagara 2.0 from SK Hynix (no HWcc)

● Advantages over RDMA:
○ Lower latency – hundreds of nanoseconds
○ Supports load/store instructions
○ HWcc

Host 2

CPUs

DRAM

Host 1

CPUs

DRAM

Shared CXL Memory

Host N

CPUs

DRAM
…

PCIe PCIe PCIe

Shared Memory: Instead of synchronizing cross-host
data accesses over a network, let’s do it over memory!

Distributed System: Run a database on multiple nodes

CXL Pod: A Distributed System w/ Shared Memory

Host 2

CPUs

DRAM

Host 1

CPUs

DRAM

Shared CXL Memory

Host N

CPUs

DRAM
…

PCIe PCIe PCIe

How to Scale Out a Database on a CXL Pod?
Host 2 Host 1 Host 2

CPUs

DRAM

Host 1

CPUs

DRAM

Shared Data in CXL Memory

Sharing everything in CXL memory

PCIe PCIe

● No message exchange
● No two-phase commit (2PC)

Host 2

CPUs

Partition 2

DRAM

Host 1

CPUs

Partition 1

DRAM

Message

● At most 2.0× faster
● Numerous message exchange
● Require two-phase commit (2PC)

Partitioning Data + CXL Transport

PCIe

Does this work?2.0× faster but still bad

CXL Pod: Challenges

● Higher latency than DRAM (250-400 ns1)
● Lower bandwidth than DRAM (9-11 GB/s single channel1)

Takeaway 1: Performance suffers if all data is in CXL memory

● Limited-size hardware cache coherence2

Hardware
Cache-coherent

NOT Hardware
Cache-coherent

Terabytes (TBs)Megabytes (MBs)

[1] Demystifying CXL Memory with Genuine CXL-Ready Systems and Devices, MICRO 2023
[2] Memory Sharing with CXL: Hardware and Software Design Approaches, HCDS 2024

Takeaway 2: Must minimize hardware cache coherence usage

Tigon1: The First Transactional DB for a CXL Pod
Pasha Architecture2: Partitioned and Shared

Idea 1: Partition the data and
store them in local DRAM to
leverage its high performance

Idea 2: Share only the data that will
be accessed by multiple hosts in
CXL to avoid message exchange

CPUs

Partition

DRAM
Database

Tuple

Index

8-16 Hosts

Database
Tuple

Database
Tuple

Shared CXL Memory

PCIe

[1] A tigon is a hybrid of a male tiger and a female lion
[2] Pasha: An Efficient, Scalable Database Architecture for CXL Pods, CIDR 2025

Tigon: The First Transactional DB for a CXL Pod

● Initially partition the data and store them in local DRAM
● Move data to CXL memory upon the request of non-owner hosts

○ Messages only exchanged for data movement
○ No two phase commit

● Move data back to its original partition when CXL memory is full

Shared CXL Memory

Host 1 Host 1

CPUs

Partition 1

DRAM

Host 1 Host 2

CPUs

Partition 2

DRAM

TupleTuple Tuple

Index

Data move in/out Data move in/out

Data movement requests

Reducing Data Movement Frequency

Problem: Oversubscribed HWcc memory incurs frequent data movement

Solution: Store data in the non-HWcc region and enable cacheable access using a
Software Cache Coherence (SWcc) protocol

Key idea 1: Compact
sync-heavy and SWcc
metadata into 8 bytes
and store them in HWcc

Key idea 2: Use
metadata in HWcc to
enable SWcc

5× higher YCSB throughput compared with using HWcc only
only

CPUs

Partition

DRAM
Metadata

Index

8-16 Hosts

Metadata Metadata

Shared CXL Memory

PCIe

Data Data
Data

HWcc (MBs)

SWcc (TBs)

Avoiding Two-Phase Commit (2PC)

Problem: How to let each host EXECUTE and LOG all transaction
operations on its own?

● Tuple modifications
● Index operations
● Data movements

Solution:

● Let the remote host move data – each host can execute all tuple
modifications

● Adapt value logging that logs only tuple modifications
● Reconstruct index and data movement metadata upon recovery

Insight: DB internal state modifications
can be reconstructed or discarded upon
recovery - logging not needed

Example Transaction Workflow

➀ Txn1 locks A and reads it (A = 6)
➁ Txn1 messages to Host 2 about C
➂ Host 2 moves C to CXL memory
➃ Txn1 locks C and writes it (C = 9)
➄ Txn2 read of C is denied

Host 1

Host 1

A, 6
DRAM

Shared CXL Memory

 v=read(A)

 write(C,v+3)

B, 2

Host 1

Host 2

C, 0
DRAM

 v=read(C)

 write(D,v+3)

D, 5

➀

Example Transaction Workflow

➀ Txn1 locks A and reads it (A = 6)
➁ Txn1 messages to Host 2 about C
➂ Host 2 moves C to CXL memory
➃ Txn1 locks C and writes it (C = 9)
➄ Txn2 read of C is denied

Host 1

Host 1

A, 6
DRAM

Shared CXL Memory

 v=read(A)

 write(C,v+3)

B, 2

Host 1

Host 2

C, 0
DRAM

 v=read(C)

 write(D,v+3)

D, 5

➀

➁ Request move of C to CXL memory

Example Transaction Workflow

➀ Txn1 locks A and reads it (A = 6)
➁ Txn1 messages to Host 2 about C
➂ Host 2 moves C to CXL memory
➃ Txn1 locks C and writes it (C = 9)
➄ Txn2 read of C is denied

Host 1

Host 1

A, 6
DRAM

Shared CXL Memory

 v=read(A)

 write(C,v+3)

B, 2

Host 1

Host 2

C, 0
DRAM

 v=read(C)

 write(D,v+3)

D, 5C, 0

➀

➁ Request move of C to CXL memory

➂

Example Transaction Workflow

➀ Txn1 locks A and reads it (A = 6)
➁ Txn1 messages to Host 2 about C
➂ Host 2 moves C to CXL memory
➃ Txn1 locks C and writes it (C = 9)
➄ Txn2 read of C is denied

Host 1

Host 1

A, 6
DRAM

Shared CXL Memory

 v=read(A)

 write(C,v+3)

B, 2

Host 1

Host 2

C, 0
DRAM

 v=read(C)

 write(D,v+3)

D, 5C, 9

➀

➁ Request move of C to CXL memory

➂

➃

Example Transaction Workflow

➀ Txn1 locks A and reads it (A = 6)
➁ Txn1 messages to Host 2 about C
➂ Host 2 moves C to CXL memory
➃ Txn1 locks C and writes it (C = 9)
➄ Txn2 read of C is denied

Host 1

Host 1

A, 6
DRAM

Shared CXL Memory

 v=read(A)

 write(C,v+3)

B, 2

Host 1

Host 2

C, 0
DRAM

 v=read(C)

 write(D,v+3)

D, 5C, 9

➀

➁ Request move of C to CXL memory

➂

➃
➄

Example Transaction Workflow

Host 1

Host 1

A, 6
DRAM

Shared CXL Memory

 v=read(A)

 write(C,v+3)

B, 2

Host 1

Host 2

C, 0
DRAM

 v=read(C)

 write(D,v+3)

D, 5C, 9

➀

➁ Request move of C to CXL memory

➂

➃
➄

Takeaway 1: Each host can execute all tuple modifications
for a single transaction, avoiding two-phase commit

Takeaway 2: Tigon maintains only data that is accessed by
multiple hosts in shared CXL memory, minimizing HWcc

Evaluation: CXL Pod Emulation

CXL Memory

PCIe

CXL Memory

PCIe

Host

VM 1 VM 2 VM 8

Emulated by

Host 1 Host 2 Host 8… …

PCIe PCIe

● 40-core physical machine
● CXL 1.1 memory module
● Run 8 VMs each with 5 cores

Real CXL Pod Emulated CXL Pod

● Not commercially available

Evaluation: Baselines
Existing partition-based distributed in-memory DB

● Sundial1 - optimistic concurrency control (OCC)
● DS2PL - pessimistic concurrency control (2PL)

Improved baselines

● Improvements
1. Replace network transport with CXL message queues
2. Repurpose a network thread for transaction execution

● Improved baselines
○ Sundial+ - Sundial with improvements 1 & 2
○ DS2PL+ - DS2PL with improvements 1 & 2

RDMA-based shared-memory DB - Motor2

[1] Sundial: Harmonizing Concurrency Control and Caching in a Distributed OLTP Database Management System, VLDB 2018
[2] Motor: Enabling Multi-Versioning for Distributed Transactions on Disaggregated Memory, OSDI 2024

Evaluation: TPC-C

TPC-C Throughput (10/15: 10% NewOrder
and 15% Payment transactions are remote)

● Sundial+ and DS2PL+ (our improved
baselines) suffer from the overhead of
message exchanges

Evaluation: TPC-C

TPC-C Throughput (10/15: 10% NewOrder
and 15% Payment transactions are remote)

● Sundial+ and DS2PL+ (our improved
baselines) suffer from the overhead of
message exchanges

● Motor suffers from the overhead of
high-latency RDMA operations

Evaluation: TPC-C

TPC-C Throughput (60/90: 60% NewOrder
and 90% Payment transactions are remote)

● Sundial+ and DS2PL+ (our improved
baselines) suffer from the overhead of
message exchanges

● Motor suffers from the overhead of
high-latency RDMA operations

● Tigon
○ At most 75% faster than Sundial+
○ At most 2.4× faster than DS2PL+
○ 11.9×-14.4× faster than Motor

Evaluation: Varying HWcc Budgets

● TPCC 60/90: Drop within 8% for 50-150MB, 24% for 10MB
● YCSB 100%: Drop by 60% for 50MB, 80% for 10MB

TPC-C with
60/90 remote transaction ratio

YCSB (95%R/5%W) with
100% remote transaction ratio

8%↓

24%↓

60%↓

80%↓

This Talk

A new direction for building distributed databases:

● Instead of doing distributed synchronization over a network, let’s
do it over CXL memory, utilizing the emerging CXL technology

github.com/ut-datasys/tigon
ybhuang@cs.utexas.edu

Tigon is the first distributed transactional database for a CXL pod

● Adopts the Pasha (partitioned and shared) architecture
● Utilizes the non-HWcc region using software cache coherence
● Avoids 2PC by adopting value logging and reconstructing

internal state upon recovery

