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Goal 1: new techniques to verify PM 
systems and beyond
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Target verification tool: Verus (Lattuada OOPSLA ‘23, SOSP ‘24)

Verification tool Easy integration 
with Rust?

Targets low-level 
systems?

Fast verification 
times?

Built-in crash 
safety reasoning?

Verus

Rocq/Coq (FSCQ)

Perennial

Goal 2: verify crash consistency without 
built-in language support

i.e., tool-
agnostic



Benefits of a tool-agnostic technique

Compatible with nearly all current verification tools

Developers can choose a tool best suited to their system

New storage systems can take advantage of powerful new 
verification tools
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Challenging 
interaction 

with crashes!
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We can statically prove ALL 
crash states consistent via 

verification!
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How to prove 
intermediate crash 
states consistent?
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Preconditions on Writes Enforcing 
Recoverability (PoWER)

lemma_data_update_consistent(...);

write_to_storage(..., new_data);

fn write_to_storage(..., bytes: &[u8])

 requires for all new crash states s, recover(s) is consistent

 ensures bytes written to storage device

Old data

Old CRC

New data

New CRC

Satisfy precondition ==> prove crash consistency!
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See paper for…

• Detailed description of PoWER technique
• Strategies for writing crash-consistency proofs
• Discussion of proofs that PoWER is sound
• PoWER and concurrency

17
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How do we implement this operation in a 
crash-consistent way?
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Small atomic 
writes → many 

more crash states!



Prior work: Tick-Tock algorithm

21



Prior work: Tick-Tock algorithm

Introduced by NOVA-Fortis file system (SOSP ‘17)

21



Prior work: Tick-Tock algorithm

Introduced by NOVA-Fortis file system (SOSP ‘17)

Uses CRCs to detect bit flips and crash inconsistencies

21



Prior work: Tick-Tock algorithm

Introduced by NOVA-Fortis file system (SOSP ‘17)

Uses CRCs to detect bit flips and crash inconsistencies

New CRC

Old data

Old CRC

Old dataNew dataNew data

Old CRC

Old data

New CRC

21



Prior work: Tick-Tock algorithm

Introduced by NOVA-Fortis file system (SOSP ‘17)

Uses CRCs to detect bit flips and crash inconsistencies

New CRC

Old data

Old CRC

Old dataNew dataNew data

Old CRC

Old data

New CRC

Inconsistent!

21



Prior work: Tick-Tock algorithm

Introduced by NOVA-Fortis file system (SOSP ‘17)

Uses CRCs to detect bit flips and crash inconsistencies

New CRC

Old data

Old CRC

Old dataNew dataNew data

Old CRC

Old data

New CRC

Inconsistent!

21

Prior work found 
CRC atomicity bugs 

(LeBlanc EuroSys ‘23)
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CRCs are designed to detect a few bit flips
• Basis of our model of corruption (see paper)

Crashes can result in many arbitrarily different states

CRCs cannot detect crashes as reliably as corruption

Verified code should work even in rare, worst-case scenarios 
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Solution: corruption-detecting Boolean (CDB)

23

Two possible 8-byte values: CRC(0), CRC(1)

Store Boolean value and checksum in same 8 bytes

Supports crash-atomic updates!

Capybara systems use CDBs:

• As a validity “bit”

• For atomic data+CRC updates via CoW-like technique

key1

key2

CRC(1)
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CRC(1)

CRC(key1)
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CRC

CRC

CRC(0)CRC(1)

Broadly useful primitive 
developed because of 

verification!
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CapybaraKV

Designed for Azure Storage use case

Persistent-memory key-value store written in Verus

Concurrent, crash-atomic operations on fixed-size item and list values

~25KLOC (15K proof)

Verifies in <1 min on most machines

Similar or better performance to unverified systems pmem-Redis, pmem-
RocksDB, Viper (see paper)
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Conclusion

Contributions
• First formally verified PM storage 

systems
• Useful new techniques for building 

robust verified systems

Lessons learned
• Crashes and corruption impact data 

differently
• Rigor of verification can help develop 
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CapybaraNS

PM notary service written in Dafny

Demonstrates that PoWER works w/ tools besides Verus

Built and verified in ~3 person days

~1.5KLOC (673 proof)

28



PoWER limitations

• Not all verifiers support the required standard features
• PoWER also requires quantifiers and ghost variables
• Push-button verifiers like TPot or Yggdrasil may not support PoWER

• Cannot support arbitrary fine-grained concurrent writes to shared 
storage regions

• Correctness depends on specifications and correctness of 
verifier/compiler

29



CapybaraKV limitations

• Requires storage space to be statically allocated at initialization
• Other evaluated systems can grow/shrink dynamically
• We configure Viper to allocate sufficient space at init for fair comparison
• Not fundamental

• Keeps all keys in memory -- increases memory footprint and 
startup time
• Pmem-Redis and Viper also keep all keys in memory
• Not fundamental

• Sharded concurrency approach does not allow concurrent writes 
to different records

30
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Prior work: Tick-Tock algorithm

Introduced in NOVA-Fortis file system (Xu SOSP ’17)
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Inconsistent!
Fall back to 

replica

Our prior work found CRC atomicity bugs in NOVA-Fortis (LeBlanc 
EuroSys ‘23)

CRCs designed to detect random bit flips, not torn writes
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Corruption-detecting Boolean example
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Using properties of CRC algorithms

CRC algorithms are engineered to always detect a certain number 𝑐 
of flipped bits! (Koopman 2024)

We can definitively prove the absence of up to 𝑐 bits of corruption

CRC check fails if and only if [𝟏, 𝒄] 
bits are corrupted

Depends on length 
of byte sequence; 

always ≥ 1
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New corruption model

If bitmask contains 1, 𝑐  bit flips, then CRC’ does not match data’
Assuming up to 𝒄 bit flips, if CRC check passes, data’ is not 
corrupted

35
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data’ CRC’

See paper for:
• Reasoning about 

corruption on byte-
addressable storage

• New primitive for CRC 
management on PM
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data' CRC'

data CRC

How are data/data' and 
CRC/CRC' related? How do we 
reason about this relationship?

Bitmask represents set 
of bit flips

Guarantees: 
• No bit flips ==>  CRC' == crc(data')

00000...0010 0000

CRC algorithms are 
engineered to always 

detect up to 𝑐 bit flips!

• 1 ≤ Population count of bitmask ≤ 𝑐 ==>  CRC' != crc(data')

Assuming ≤ 𝒄 bit flips,  CRC check proves whether data has been corrupted! 
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