
PoWER Never Corrupts: Tool-Agnostic
Verification of Crash Consistency and

Corruption Detection
Hayley LeBlanc, Jacob R. Lorch, Chris Hawblitzel, Cheng

Huang, Yiheng Tao, Nickolai Zeldovich, Vijay Chidambaram

1

 Distinguished Artifact Award

Motivation: interest from Azure
Storage in a verified persistent

memory key-value store

2

Motivation: interest from Azure
Storage in a verified persistent

memory key-value store

2

Motivation: interest from Azure
Storage in a verified persistent

memory key-value store

2

Reasoning about persistent memory

3

Reasoning about persistent memory

Low-latency, byte-addressable storage

3

Reasoning about persistent memory

Low-latency, byte-addressable storage
Intel Optane DC PMM or battery-backed DRAM

3

Reasoning about persistent memory

Low-latency, byte-addressable storage
Intel Optane DC PMM or battery-backed DRAM
No earlier verified PM systems

3

Reasoning about persistent memory

Low-latency, byte-addressable storage
Intel Optane DC PMM or battery-backed DRAM
No earlier verified PM systems
Crash consistency and corruption detection on PM are hard!

• Small (8-byte) atomic writes
• Interaction between crashes and corruption

3

Reasoning about persistent memory

Low-latency, byte-addressable storage
Intel Optane DC PMM or battery-backed DRAM
No earlier verified PM systems
Crash consistency and corruption detection on PM are hard!

• Small (8-byte) atomic writes
• Interaction between crashes and corruption

3

Goal 1: new techniques to verify PM
systems and beyond

Building a practical verified system

4

Building a practical verified system

4

Needs to be integrated with an unverified Rust codebase

Building a practical verified system

4

Needs to be integrated with an unverified Rust codebase
Target verification tool: Verus (Lattuada OOPSLA ‘23, SOSP ‘24)

Building a practical verified system

4

Needs to be integrated with an unverified Rust codebase
Target verification tool: Verus (Lattuada OOPSLA ‘23, SOSP ‘24)

Verification tool Easy integration
with Rust?

Targets low-level
systems?

Fast verification
times?

Verus

Building a practical verified system

5

Needs to be integrated with an unverified Rust codebase
Target verification tool: Verus (Lattuada OOPSLA ‘23, SOSP ‘24)

Verification tool Easy integration
with Rust?

Targets low-level
systems?

Fast verification
times?

Verus

Rocq/Coq (FSCQ)

Perennial

Building a practical verified system

Verification tool Easy integration
with Rust?

Targets low-level
systems?

Fast verification
times?

Built-in crash
safety reasoning?

Verus

Rocq/Coq (FSCQ)

Perennial

6

Needs to be integrated with an unverified Rust codebase
Target verification tool: Verus (Lattuada OOPSLA ‘23, SOSP ‘24)

Building a practical verified system

7

Needs to be integrated with an unverified Rust codebase
Target verification tool: Verus (Lattuada OOPSLA ‘23, SOSP ‘24)

Verification tool Easy integration
with Rust?

Targets low-level
systems?

Fast verification
times?

Built-in crash
safety reasoning?

Verus

Rocq/Coq (FSCQ)

Perennial

Goal 2: verify crash consistency without
built-in language support

Building a practical verified system

7

Needs to be integrated with an unverified Rust codebase
Target verification tool: Verus (Lattuada OOPSLA ‘23, SOSP ‘24)

Verification tool Easy integration
with Rust?

Targets low-level
systems?

Fast verification
times?

Built-in crash
safety reasoning?

Verus

Rocq/Coq (FSCQ)

Perennial

Goal 2: verify crash consistency without
built-in language support

i.e., tool-
agnostic

Benefits of a tool-agnostic technique

Compatible with nearly all current verification tools

Developers can choose a tool best suited to their system

New storage systems can take advantage of powerful new
verification tools

8

Contributions

9

https://github.com/microsoft/verified-storage
https://github.com/microsoft/verified-storage
https://github.com/microsoft/verified-storage
https://github.com/microsoft/verified-storage
https://github.com/microsoft/verified-storage

Contributions
First verified PM storage systems: CapybaraKV (Verus) and CapybaraNS
(Dafny)

9

https://github.com/microsoft/verified-storage
https://github.com/microsoft/verified-storage
https://github.com/microsoft/verified-storage
https://github.com/microsoft/verified-storage
https://github.com/microsoft/verified-storage

Contributions
First verified PM storage systems: CapybaraKV (Verus) and CapybaraNS
(Dafny)

CapybaraKV (~25KLOC) verifies in <1 minute and achieves performance
competitive with unverified PM KV stores

9

https://github.com/microsoft/verified-storage
https://github.com/microsoft/verified-storage
https://github.com/microsoft/verified-storage
https://github.com/microsoft/verified-storage
https://github.com/microsoft/verified-storage

Contributions
First verified PM storage systems: CapybaraKV (Verus) and CapybaraNS
(Dafny)

CapybaraKV (~25KLOC) verifies in <1 minute and achieves performance
competitive with unverified PM KV stores

PoWER: crash-consistency verification approach compatible with nearly all
verification tools

9

https://github.com/microsoft/verified-storage
https://github.com/microsoft/verified-storage
https://github.com/microsoft/verified-storage
https://github.com/microsoft/verified-storage
https://github.com/microsoft/verified-storage

Contributions
First verified PM storage systems: CapybaraKV (Verus) and CapybaraNS
(Dafny)

CapybaraKV (~25KLOC) verifies in <1 minute and achieves performance
competitive with unverified PM KV stores

PoWER: crash-consistency verification approach compatible with nearly all
verification tools

Corruption-detecting Boolean: primitive for atomic checksum updates

9

https://github.com/microsoft/verified-storage
https://github.com/microsoft/verified-storage
https://github.com/microsoft/verified-storage
https://github.com/microsoft/verified-storage
https://github.com/microsoft/verified-storage

Contributions
First verified PM storage systems: CapybaraKV (Verus) and CapybaraNS
(Dafny)

CapybaraKV (~25KLOC) verifies in <1 minute and achieves performance
competitive with unverified PM KV stores

PoWER: crash-consistency verification approach compatible with nearly all
verification tools

Corruption-detecting Boolean: primitive for atomic checksum updates

github.com/microsoft/verified-storage
9

https://github.com/microsoft/verified-storage
https://github.com/microsoft/verified-storage
https://github.com/microsoft/verified-storage
https://github.com/microsoft/verified-storage
https://github.com/microsoft/verified-storage

Setting up the problem

10

Setting up the problem

Main robustness properties to verify:

10

Setting up the problem

Main robustness properties to verify:
 1. Crash consistency

10

Setting up the problem

Main robustness properties to verify:
 1. Crash consistency
 2. Data corruption detection

10

Setting up the problem

Main robustness properties to verify:
 1. Crash consistency
 2. Data corruption detection

Storage systems use cyclic redundancy checks (CRCs) to detect
corruption

10

Setting up the problem

Main robustness properties to verify:
 1. Crash consistency
 2. Data corruption detection

Storage systems use cyclic redundancy checks (CRCs) to detect
corruption

10

Challenging
interaction

with crashes!

Running example

11

Running example

Old data

Old CRC

11

Running example

Old data

Old CRC

New data

New CRC

11

Running example

Old data

Old CRC

Inode, log
header,
key, value,
…

New data

New CRC

11

Running example

Old data

Old CRC

Inode, log
header,
key, value,
…

New data

New CRC

Possible crash states

11

Running example

Old data

Old CRC

Inode, log
header,
key, value,
…

New data

New CRC Old data

Old CRC

New data

New CRC

Possible crash states

11

Running example

Old data

Old CRC

Inode, log
header,
key, value,
…

New data

New CRC Old data

Old CRC

New data

Old CRC

New data

New CRC

Possible crash states

11

Running example

Old data

Old CRC

Inode, log
header,
key, value,
…

New data

New CRC Old data

Old CRC

Old data

New data

Old CRC

New data

New CRC New CRC

Possible crash states

11

Running example

Old data

Old CRC

Inode, log
header,
key, value,
…

New data

New CRC Old data

Old CRC

Old data

New data

Old CRC

New data

New CRC New CRC

Possible crash states

11

Running example

Old data

Old CRC

Inode, log
header,
key, value,
…

New data

New CRC Old data

Old CRC

Old data

New data

Old CRC

New data

New CRC New CRC

Possible crash states

11

Running example

Old data

Old CRC

Inode, log
header,
key, value,
…

New data

New CRC Old data

Old CRC

Old data

New data

Old CRC

New data

New CRC New CRC

Possible crash states

CRC check
incorrectly

reports
corruption!

11

Ensuring crash consistency

Prior testing work: construct and check possible crash states
• eXplode (OSDI ‘06), CrashMonkey (OSDI ‘16), Hydra (SOSP ‘19), Yat (ATC ‘14), Vinter (ATC

‘22), Chipmunk (EuroSys ‘23), …

12

Ensuring crash consistency

Prior testing work: construct and check possible crash states
• eXplode (OSDI ‘06), CrashMonkey (OSDI ‘16), Hydra (SOSP ‘19), Yat (ATC ‘14), Vinter (ATC

‘22), Chipmunk (EuroSys ‘23), …

Downside of testing: incompleteness

12

Ensuring crash consistency

Prior testing work: construct and check possible crash states
• eXplode (OSDI ‘06), CrashMonkey (OSDI ‘16), Hydra (SOSP ‘19), Yat (ATC ‘14), Vinter (ATC

‘22), Chipmunk (EuroSys ‘23), …

Downside of testing: incompleteness

Cannot check all
workloads

12

Ensuring crash consistency

Prior testing work: construct and check possible crash states
• eXplode (OSDI ‘06), CrashMonkey (OSDI ‘16), Hydra (SOSP ‘19), Yat (ATC ‘14), Vinter (ATC

‘22), Chipmunk (EuroSys ‘23), …

Downside of testing: incompleteness

Cannot check all
workloads

Often intractable to
check all crash states

12

Ensuring crash consistency

Prior testing work: construct and check possible crash states
• eXplode (OSDI ‘06), CrashMonkey (OSDI ‘16), Hydra (SOSP ‘19), Yat (ATC ‘14), Vinter (ATC

‘22), Chipmunk (EuroSys ‘23), …

Downside of testing: incompleteness

Cannot check all
workloads

Often intractable to
check all crash states

12

We can statically prove ALL
crash states consistent via

verification!

Verifying via pre/postconditions

Common technique supported by most verification tools

13

Verifying via pre/postconditions

Common technique supported by most verification tools

fn update(&mut self, new_data: &[u8], new_crc: u64)

 requires crc(new_data) == new_crc, ...

 ensures self.data == new_data && self.crc == new_crc, ...

13

Verifying via pre/postconditions

Common technique supported by most verification tools

fn update(&mut self, new_data: &[u8], new_crc: u64)

 requires crc(new_data) == new_crc, ...

 ensures self.data == new_data && self.crc == new_crc, ...

Precondition must be true when the
function is called

13

Verifying via pre/postconditions

Common technique supported by most verification tools

fn update(&mut self, new_data: &[u8], new_crc: u64)

 requires crc(new_data) == new_crc, ...

 ensures self.data == new_data && self.crc == new_crc, ...

Precondition must be true when the
function is called

Postcondition must be true when the
function returns

13

Verifying via pre/postconditions

Common technique supported by most verification tools

fn update(&mut self, new_data: &[u8], new_crc: u64)

 requires crc(new_data) == new_crc, ...

 ensures self.data == new_data && self.crc == new_crc, ...

{

 // naïve implementation

 write_to_storage(..., new_data);

 write_to_storage(..., new_crc);

}

Precondition must be true when the
function is called

Postcondition must be true when the
function returns

13

Verifying via pre/postconditions

Common technique supported by most verification tools

fn update(&mut self, new_data: &[u8], new_crc: u64)

 requires crc(new_data) == new_crc, ...

 ensures self.data == new_data && self.crc == new_crc, ...

{

 // naïve implementation

 write_to_storage(..., new_data);

 write_to_storage(..., new_crc);

}

Precondition must be true when the
function is called

Postcondition must be true when the
function returns

How to prove
intermediate crash
states consistent?

13

Prior work: crash conditions

fn update(&mut self, new_data: &[u8], new_crc: u64)

 requires crc(new_data) == new_crc, ...

 ensures self.data == new_data && self.crc == new_crc, ...

 crash self.data == new_data && self.crc == new_crc ||

 (self.data == old(self).data && self.crc == old(self).crc)

{

 // naïve implementation

 write_to_storage(..., new_data);

 write_to_storage(..., new_crc);

}

14

Prior work: crash conditions

fn update(&mut self, new_data: &[u8], new_crc: u64)

 requires crc(new_data) == new_crc, ...

 ensures self.data == new_data && self.crc == new_crc, ...

 crash self.data == new_data && self.crc == new_crc ||

 (self.data == old(self).data && self.crc == old(self).crc)

{

 // naïve implementation

 write_to_storage(..., new_data);

 write_to_storage(..., new_crc);

}

14

Prior work: crash conditions

fn update(&mut self, new_data: &[u8], new_crc: u64)

 requires crc(new_data) == new_crc, ...

 ensures self.data == new_data && self.crc == new_crc, ...

 crash self.data == new_data && self.crc == new_crc ||

 (self.data == old(self).data && self.crc == old(self).crc)

{

 // naïve implementation

 write_to_storage(..., new_data);

 write_to_storage(..., new_crc);

}

Crash conditions
abstractly describe legal

crash states (FSCQ,
SOSP ‘15)

14

Prior work: crash conditions

fn update(&mut self, new_data: &[u8], new_crc: u64)

 requires crc(new_data) == new_crc, ...

 ensures self.data == new_data && self.crc == new_crc, ...

 crash self.data == new_data && self.crc == new_crc ||

 (self.data == old(self).data && self.crc == old(self).crc)

{

 // naïve implementation

 write_to_storage(..., new_data);

 write_to_storage(..., new_crc);

}

Crash conditions
abstractly describe legal

crash states (FSCQ,
SOSP ‘15)

Crash conditions are not supported
by most verification tools

14

Proving crash consistency

Goal: verify crash consistency using only pre/postconditions

15

Proving crash consistency

Goal: verify crash consistency using only pre/postconditions

Observations:
1. Each durable write introduces a set of new crash states
2. These crash states can be described before the write is invoked

15

Proving crash consistency

Goal: verify crash consistency using only pre/postconditions

Observations:
1. Each durable write introduces a set of new crash states
2. These crash states can be described before the write is invoked

Key insight: crash-consistency proof requirements can be written as
preconditions!

15

Proving crash consistency

Goal: verify crash consistency using only pre/postconditions

Observations:
1. Each durable write introduces a set of new crash states
2. These crash states can be described before the write is invoked

Key insight: crash-consistency proof requirements can be written as
preconditions! Can be done in nearly

any verification tool!

15

Preconditions on Writes Enforcing
Recoverability (PoWER)

write_to_storage(..., new_data);

16

Preconditions on Writes Enforcing
Recoverability (PoWER)

write_to_storage(..., new_data);

fn write_to_storage(..., bytes: &[u8])

 requires for all new crash states s, recover(s) is consistent

 ensures bytes written to storage device

16

Preconditions on Writes Enforcing
Recoverability (PoWER)

write_to_storage(..., new_data);

fn write_to_storage(..., bytes: &[u8])

 requires for all new crash states s, recover(s) is consistent

 ensures bytes written to storage device

Old data

Old CRC

New data

New CRC

16

Preconditions on Writes Enforcing
Recoverability (PoWER)

lemma_data_update_consistent(...);

write_to_storage(..., new_data);

fn write_to_storage(..., bytes: &[u8])

 requires for all new crash states s, recover(s) is consistent

 ensures bytes written to storage device

Old data

Old CRC

New data

New CRC

16

Preconditions on Writes Enforcing
Recoverability (PoWER)

lemma_data_update_consistent(...);

write_to_storage(..., new_data);

fn write_to_storage(..., bytes: &[u8])

 requires for all new crash states s, recover(s) is consistent

 ensures bytes written to storage device

Old data

Old CRC

New data

New CRC

Satisfy precondition ==> prove crash consistency!

16

See paper for…

• Detailed description of PoWER technique
• Strategies for writing crash-consistency proofs
• Discussion of proofs that PoWER is sound
• PoWER and concurrency

17

Back to our example

Old data

Old CRC

New data

New CRC Old data

Old CRC

Old data

New data

Old CRC

New data

New CRC New CRC

Possible crash states 18

Back to our example

Old data

Old CRC

New data

New CRC Old data

Old CRC

Old data

New data

Old CRC

New data

New CRC New CRC

Possible crash states

How do we implement this operation in a
crash-consistent way?

18

Block-based systems

Atomic block-sized writes → 1 CRC per block

Old data

Old CRC

New data

New CRC Old data

Old CRC

Old data

New data

Old CRC

New data

New CRC New CRC

Possible crash states 19

Block-based systems

Atomic block-sized writes → 1 CRC per block

Old data

Old CRC

New data

New CRC Old data

Old CRC

Old data

New data

Old CRC

New data

New CRC New CRC

Possible crash states

X
X

19

Persistent memory systems

8-byte atomic writes are more challenging!

Old data

Old CRC

New data

New CRC Old data

Old CRC

Old data

New data

Old CRC

New data

New CRC New CRC

Possible crash states 20

Persistent memory systems

8-byte atomic writes are more challenging!

Old data

Old CRC

New data

New CRC Old data

Old CRC

Old data

New data

Old CRC

New data

New CRC New CRC

Possible crash states

Old CRC

New CRC

Old data

Old data

New data …

…

20

Persistent memory systems

8-byte atomic writes are more challenging!

Old data

Old CRC

New data

New CRC Old data

Old CRC

Old data

New data

Old CRC

New data

New CRC New CRC

Possible crash states

Old CRC

New CRC

Old data

Old data

New data …

…

20

Small atomic
writes → many

more crash states!

Prior work: Tick-Tock algorithm

21

Prior work: Tick-Tock algorithm

Introduced by NOVA-Fortis file system (SOSP ‘17)

21

Prior work: Tick-Tock algorithm

Introduced by NOVA-Fortis file system (SOSP ‘17)

Uses CRCs to detect bit flips and crash inconsistencies

21

Prior work: Tick-Tock algorithm

Introduced by NOVA-Fortis file system (SOSP ‘17)

Uses CRCs to detect bit flips and crash inconsistencies

New CRC

Old data

Old CRC

Old dataNew dataNew data

Old CRC

Old data

New CRC

21

Prior work: Tick-Tock algorithm

Introduced by NOVA-Fortis file system (SOSP ‘17)

Uses CRCs to detect bit flips and crash inconsistencies

New CRC

Old data

Old CRC

Old dataNew dataNew data

Old CRC

Old data

New CRC

Inconsistent!

21

Prior work: Tick-Tock algorithm

Introduced by NOVA-Fortis file system (SOSP ‘17)

Uses CRCs to detect bit flips and crash inconsistencies

New CRC

Old data

Old CRC

Old dataNew dataNew data

Old CRC

Old data

New CRC

Inconsistent!

21

Prior work found
CRC atomicity bugs

(LeBlanc EuroSys ‘23)

Challenges

22

Challenges

CRCs are designed to detect a few bit flips
• Basis of our model of corruption (see paper)

22

Challenges

CRCs are designed to detect a few bit flips
• Basis of our model of corruption (see paper)

Crashes can result in many arbitrarily different states

22

Challenges

CRCs are designed to detect a few bit flips
• Basis of our model of corruption (see paper)

Crashes can result in many arbitrarily different states

CRCs cannot detect crashes as reliably as corruption

22

Challenges

CRCs are designed to detect a few bit flips
• Basis of our model of corruption (see paper)

Crashes can result in many arbitrarily different states

CRCs cannot detect crashes as reliably as corruption

Verified code should work even in rare, worst-case scenarios

22

Solution: corruption-detecting Boolean (CDB)

23

Solution: corruption-detecting Boolean (CDB)

23

Two possible 8-byte values: CRC(0), CRC(1)

Solution: corruption-detecting Boolean (CDB)

23

Two possible 8-byte values: CRC(0), CRC(1)

Store Boolean value and checksum in same 8 bytes

Solution: corruption-detecting Boolean (CDB)

23

Two possible 8-byte values: CRC(0), CRC(1)

Store Boolean value and checksum in same 8 bytes

Supports crash-atomic updates!

Solution: corruption-detecting Boolean (CDB)

23

Two possible 8-byte values: CRC(0), CRC(1)

Store Boolean value and checksum in same 8 bytes

Supports crash-atomic updates!

Capybara systems use CDBs:

• As a validity “bit”

• For atomic data+CRC updates via CoW-like technique

Solution: corruption-detecting Boolean (CDB)

23

Two possible 8-byte values: CRC(0), CRC(1)

Store Boolean value and checksum in same 8 bytes

Supports crash-atomic updates!

Capybara systems use CDBs:

• As a validity “bit”

• For atomic data+CRC updates via CoW-like technique

key1

key2

CRC(1)

CRC(0)

CRC(1)

CRC(key1)

CRC(key2)

Solution: corruption-detecting Boolean (CDB)

23

Two possible 8-byte values: CRC(0), CRC(1)

Store Boolean value and checksum in same 8 bytes

Supports crash-atomic updates!

Capybara systems use CDBs:

• As a validity “bit”

• For atomic data+CRC updates via CoW-like technique

key1

key2

CRC(1)

CRC(0)

CRC(1)

CRC(key1)

CRC(key2)

CRC

CRC

CRC(0)

Solution: corruption-detecting Boolean (CDB)

23

Two possible 8-byte values: CRC(0), CRC(1)

Store Boolean value and checksum in same 8 bytes

Supports crash-atomic updates!

Capybara systems use CDBs:

• As a validity “bit”

• For atomic data+CRC updates via CoW-like technique

key1

key2

CRC(1)

CRC(0)

CRC(1)

CRC(key1)

CRC(key2)

CRC

CRC

CRC(0)CRC(1)

Solution: corruption-detecting Boolean (CDB)

23

Two possible 8-byte values: CRC(0), CRC(1)

Store Boolean value and checksum in same 8 bytes

Supports crash-atomic updates!

Capybara systems use CDBs:

• As a validity “bit”

• For atomic data+CRC updates via CoW-like technique

key1

key2

CRC(1)

CRC(0)

CRC(1)

CRC(key1)

CRC(key2)

CRC

CRC

CRC(0)CRC(1)

Broadly useful primitive
developed because of

verification!

CapybaraKV

24

CapybaraKV

Designed for Azure Storage use case

24

CapybaraKV

Designed for Azure Storage use case

Persistent-memory key-value store written in Verus

24

CapybaraKV

Designed for Azure Storage use case

Persistent-memory key-value store written in Verus

Concurrent, crash-atomic operations on fixed-size item and list values

24

CapybaraKV

Designed for Azure Storage use case

Persistent-memory key-value store written in Verus

Concurrent, crash-atomic operations on fixed-size item and list values

~25KLOC (15K proof)

24

CapybaraKV

Designed for Azure Storage use case

Persistent-memory key-value store written in Verus

Concurrent, crash-atomic operations on fixed-size item and list values

~25KLOC (15K proof)

Verifies in <1 min on most machines

24

CapybaraKV

Designed for Azure Storage use case

Persistent-memory key-value store written in Verus

Concurrent, crash-atomic operations on fixed-size item and list values

~25KLOC (15K proof)

Verifies in <1 min on most machines

Similar or better performance to unverified systems pmem-Redis, pmem-
RocksDB, Viper (see paper)

24

Conclusion

25

github.com/microsoft/
verified-storage

 Distinguished
Artifact Award

https://github.com/microsoft/verified-storage
https://github.com/microsoft/verified-storage
https://github.com/microsoft/verified-storage
https://github.com/microsoft/verified-storage
https://github.com/microsoft/verified-storage
https://github.com/microsoft/verified-storage
https://github.com/microsoft/verified-storage

Conclusion

Contributions

25

github.com/microsoft/
verified-storage

 Distinguished
Artifact Award

https://github.com/microsoft/verified-storage
https://github.com/microsoft/verified-storage
https://github.com/microsoft/verified-storage
https://github.com/microsoft/verified-storage
https://github.com/microsoft/verified-storage
https://github.com/microsoft/verified-storage
https://github.com/microsoft/verified-storage

Conclusion

Contributions
• First formally verified PM storage

systems

25

github.com/microsoft/
verified-storage

 Distinguished
Artifact Award

https://github.com/microsoft/verified-storage
https://github.com/microsoft/verified-storage
https://github.com/microsoft/verified-storage
https://github.com/microsoft/verified-storage
https://github.com/microsoft/verified-storage
https://github.com/microsoft/verified-storage
https://github.com/microsoft/verified-storage

Conclusion

Contributions
• First formally verified PM storage

systems
• Useful new techniques for building

robust verified systems

25

github.com/microsoft/
verified-storage

 Distinguished
Artifact Award

https://github.com/microsoft/verified-storage
https://github.com/microsoft/verified-storage
https://github.com/microsoft/verified-storage
https://github.com/microsoft/verified-storage
https://github.com/microsoft/verified-storage
https://github.com/microsoft/verified-storage
https://github.com/microsoft/verified-storage

Conclusion

Contributions
• First formally verified PM storage

systems
• Useful new techniques for building

robust verified systems

Lessons learned

25

github.com/microsoft/
verified-storage

 Distinguished
Artifact Award

https://github.com/microsoft/verified-storage
https://github.com/microsoft/verified-storage
https://github.com/microsoft/verified-storage
https://github.com/microsoft/verified-storage
https://github.com/microsoft/verified-storage
https://github.com/microsoft/verified-storage
https://github.com/microsoft/verified-storage

Conclusion

Contributions
• First formally verified PM storage

systems
• Useful new techniques for building

robust verified systems

Lessons learned
• Crashes and corruption impact data

differently

25

github.com/microsoft/
verified-storage

 Distinguished
Artifact Award

https://github.com/microsoft/verified-storage
https://github.com/microsoft/verified-storage
https://github.com/microsoft/verified-storage
https://github.com/microsoft/verified-storage
https://github.com/microsoft/verified-storage
https://github.com/microsoft/verified-storage
https://github.com/microsoft/verified-storage

Conclusion

Contributions
• First formally verified PM storage

systems
• Useful new techniques for building

robust verified systems

Lessons learned
• Crashes and corruption impact data

differently
• Rigor of verification can help develop

broadly useful techniques
25

github.com/microsoft/
verified-storage

 Distinguished
Artifact Award

https://github.com/microsoft/verified-storage
https://github.com/microsoft/verified-storage
https://github.com/microsoft/verified-storage
https://github.com/microsoft/verified-storage
https://github.com/microsoft/verified-storage
https://github.com/microsoft/verified-storage
https://github.com/microsoft/verified-storage

Additional slides

26

0

5

10

15

20

25

30

35

LoadA RunA RunB RunC RunD LoadE RunF LoadX RunX

Th
ro

ug
hp

ut
 re

la
tiv

e
to

 p
m

em
-R

ed
is

YCSB w/ 16 threads

pmem-Redis pmem-RocksDB Viper CapybaraKV

Evaluation: YCSB

27

Higher
is

better

CapybaraNS

PM notary service written in Dafny

Demonstrates that PoWER works w/ tools besides Verus

Built and verified in ~3 person days

~1.5KLOC (673 proof)

28

PoWER limitations

• Not all verifiers support the required standard features
• PoWER also requires quantifiers and ghost variables
• Push-button verifiers like TPot or Yggdrasil may not support PoWER

• Cannot support arbitrary fine-grained concurrent writes to shared
storage regions

• Correctness depends on specifications and correctness of
verifier/compiler

29

CapybaraKV limitations

• Requires storage space to be statically allocated at initialization
• Other evaluated systems can grow/shrink dynamically
• We configure Viper to allocate sufficient space at init for fair comparison
• Not fundamental

• Keeps all keys in memory -- increases memory footprint and
startup time
• Pmem-Redis and Viper also keep all keys in memory
• Not fundamental

• Sharded concurrency approach does not allow concurrent writes
to different records

30

Crash-consistent CRCs

Block-sized atomic writes: one
CRC per block Old

data
Old

CRC

0KB 4KB

Old
data0

Old
CRC

…

31

Crash-consistent CRCs

Block-sized atomic writes: one
CRC per block Old

data
Old

CRC

0KB 4KB

8-byte atomic writes are more
challenging!

Old
data0

Old
CRC

…

31

Crash-consistent CRCs

Block-sized atomic writes: one
CRC per block Old

data
Old

CRC

0KB 4KB

8-byte atomic writes are more
challenging!

C
R
C

8B0B

Old
data0

Old
CRC

…

31

Crash-consistent CRCs

Block-sized atomic writes: one
CRC per block Old

data
Old

CRC

0KB 4KB

8-byte atomic writes are more
challenging!

C
R
C

8B

C
R
C0B

Old
data0

Old
CRC

…

31

Crash-consistent CRCs

Block-sized atomic writes: one
CRC per block Old

data
Old

CRC

0KB 4KB

8-byte atomic writes are more
challenging!

C
R
C

8B

C
R
C

C
R
C

0B

Old
data0

Old
CRC

…

31

Crash-consistent CRCs

Block-sized atomic writes: one
CRC per block Old

data
Old

CRC

0KB 4KB

8-byte atomic writes are more
challenging!

C
R
C

8B

C
R
C

C
R
C

Data is fine, but CRC
check reports

corruption!

0B

Old
data0

Old
CRC

…

31

Crash-consistent CRCs

Block-sized atomic writes: one
CRC per block Old

data
Old

CRC

0KB 4KB

8-byte atomic writes are more
challenging!

C
R
C

8B

C
R
C

C
R
C

Data is fine, but CRC
check reports

corruption!

0B

Old
data0

Old
CRC

…New
data

Old
CRC

31

Prior work: Tick-Tock algorithm

Introduced in NOVA-Fortis file system (Xu SOSP ’17)

32

data0

CRC0

Primary

data0

CRC0

Replica

Prior work: Tick-Tock algorithm

Introduced in NOVA-Fortis file system (Xu SOSP ’17)

32

data0

CRC0

Primary

data0

CRC0

Replica

data1

CRC1

Prior work: Tick-Tock algorithm

Introduced in NOVA-Fortis file system (Xu SOSP ’17)

32

data0

CRC0

Primary

data0

CRC0

Replica

data1

CRC1

data1

CRC1

Prior work: Tick-Tock algorithm

Introduced in NOVA-Fortis file system (Xu SOSP ’17)

32

data0

CRC0

Primary

data0

CRC0

Replica

data1

CRC1

data1

CRC1

data2

Prior work: Tick-Tock algorithm

Introduced in NOVA-Fortis file system (Xu SOSP ’17)

32

data0

CRC0

Primary

data0

CRC0

Replica

data1

CRC1

data1

CRC1

data2

Inconsistent!

Prior work: Tick-Tock algorithm

Introduced in NOVA-Fortis file system (Xu SOSP ’17)

32

data0

CRC0

Primary

data0

CRC0

Replica

data1

CRC1

data1

CRC1

data2

Inconsistent!
Fall back to

replica

Prior work: Tick-Tock algorithm

Introduced in NOVA-Fortis file system (Xu SOSP ’17)

32

data0

CRC0

Primary

data0

CRC0

Replica

data1

CRC1

data1

CRC1

data2

Inconsistent!
Fall back to

replica

Our prior work found CRC atomicity bugs in NOVA-Fortis (LeBlanc
EuroSys ‘23)

Prior work: Tick-Tock algorithm

Introduced in NOVA-Fortis file system (Xu SOSP ’17)

32

data0

CRC0

Primary

data0

CRC0

Replica

data1

CRC1

data1

CRC1

data2

Inconsistent!
Fall back to

replica

Our prior work found CRC atomicity bugs in NOVA-Fortis (LeBlanc
EuroSys ‘23)

CRCs designed to detect random bit flips, not torn writes

Corruption-detecting Boolean example

CRC0

Version 0 Version 1

data0

CRC(0)

Corruption-detecting Boolean example

CRC0

Version 0 Version 1

data0

CDB

CRC(0)

Corruption-detecting Boolean example

CRC0

Version 0 Version 1

data0

CDB

CRC(0)

Corruption-detecting Boolean example

CRC0

Version 0 Version 1

data0

CDB

???

???

CRC(0)

Corruption-detecting Boolean example

CRC0

Version 0 Version 1

data0

CDB

???

???CRC1

data1

CRC(0)

Corruption-detecting Boolean example

CRC0

Version 0 Version 1

data0

CDB

CRC(1)

???

???CRC1

data1

CRC(0)

Corruption-detecting Boolean example

CRC0

Version 0 Version 1

data0

CDB

CRC(1)

???

???CRC1

data1

CRC2

data2

CRC(0)

Corruption-detecting Boolean example

CRC0

Version 0 Version 1

data0

CDB

CRC(1)

???

???CRC1

data1

CRC2

data2

CRC(0)

CRC(0)

Corruption-detecting Boolean example

CRC0

Version 0 Version 1

data0

CDB

CRC(1)

???

???CRC1

data1

CRC detects
corruption

CRC2

data2

CRC(0)

CRC(0)

Corruption-detecting Boolean example

CRC0

Version 0 Version 1

data0

CDB

CRC(1)

???

???CRC1

data1

CRC detects
corruption

CDB ensures
crash atomicity

CRC2

data2

CRC(0)

Using properties of CRC algorithms

CRC algorithms are engineered to always detect a certain number 𝑐
of flipped bits! (Koopman 2024)

We can definitively prove the absence of up to 𝑐 bits of corruption

Using properties of CRC algorithms

CRC algorithms are engineered to always detect a certain number 𝑐
of flipped bits! (Koopman 2024)

We can definitively prove the absence of up to 𝑐 bits of corruption

Depends on length
of byte sequence;

always ≥ 1

Using properties of CRC algorithms

CRC algorithms are engineered to always detect a certain number 𝑐
of flipped bits! (Koopman 2024)

We can definitively prove the absence of up to 𝑐 bits of corruption

CRC check fails if and only if [𝟏, 𝒄]
bits are corrupted

Depends on length
of byte sequence;

always ≥ 1

New corruption model

35

storage
device

New corruption model

35

data

CRC

storage
device

New corruption model

35

data

CRC

storage
device

Not required to
be adjacent or

contiguous!

New corruption model

35

data

CRC

storage
device

ghost
corruption

bitmap

Not required to
be adjacent or

contiguous!

New corruption model

35

data

CRC

bitmask0

bm1

storage
device

ghost
corruption

bitmap

Not required to
be adjacent or

contiguous!

New corruption model

35

data

CRC

bitmask0

bm1

storage
device

ghost
corruption

bitmap
CRC algorithms are engineered

to detect up to 𝑐 bit errors

Not required to
be adjacent or

contiguous!

New corruption model

35

data CRC
bitmask0 bm1

storage
device

ghost
corruption

bitmap

data’ CRC’

New corruption model

If bitmask contains 1, 𝑐 bit flips, then CRC’ does not match data’

35

data CRC
bitmask0 bm1

storage
device

ghost
corruption

bitmap

data’ CRC’

New corruption model

If bitmask contains 1, 𝑐 bit flips, then CRC’ does not match data’
Assuming up to 𝒄 bit flips, if CRC check passes, data’ is not
corrupted

35

data CRC
bitmask0 bm1

storage
device

ghost
corruption

bitmap

data’ CRC’

New corruption model

If bitmask contains 1, 𝑐 bit flips, then CRC’ does not match data’
Assuming up to 𝒄 bit flips, if CRC check passes, data’ is not
corrupted

35

data CRC
bitmask0 bm1

storage
device

ghost
corruption

bitmap

data’ CRC’

See paper for:
• Reasoning about

corruption on byte-
addressable storage

• New primitive for CRC
management on PM

New corruption model

36

New corruption model

36

data CRC

New corruption model

36

data CRC

New corruption model

36

data CRC

Not required to
be adjacent or

contiguous!

New corruption model

36

data CRC

New corruption model

37

data' CRC'

data CRC

New corruption model

37

data' CRC'

How are data/data' and
CRC/CRC' related? How do we
reason about this relationship?

data CRC

New corruption model

38

data' CRC'

data CRC How are data/data' and
CRC/CRC' related? How do we
reason about this relationship?

New corruption model

38

data' CRC'

data CRC
00000...0000 0000

How are data/data' and
CRC/CRC' related? How do we
reason about this relationship?

New corruption model

38

data' CRC'

data CRC
00000...0000 0000

How are data/data' and
CRC/CRC' related? How do we
reason about this relationship?

Bitmask represents set
of bit flips

New corruption model

38

data' CRC'

data CRC
00000...0000 0000

How are data/data' and
CRC/CRC' related? How do we
reason about this relationship?

Bitmask represents set
of bit flips

Guarantees:
• No bit flips ==> CRC' == crc(data')

New corruption model

38

data' CRC'

data CRC

How are data/data' and
CRC/CRC' related? How do we
reason about this relationship?

Bitmask represents set
of bit flips

Guarantees:
• No bit flips ==> CRC' == crc(data')

00000...0010 0000

New corruption model

38

data' CRC'

data CRC

How are data/data' and
CRC/CRC' related? How do we
reason about this relationship?

Bitmask represents set
of bit flips

Guarantees:
• No bit flips ==> CRC' == crc(data')

00000...0010 0000

CRC algorithms are
engineered to always

detect up to 𝑐 bit flips!

New corruption model

38

data' CRC'

data CRC

How are data/data' and
CRC/CRC' related? How do we
reason about this relationship?

Bitmask represents set
of bit flips

Guarantees:
• No bit flips ==> CRC' == crc(data')

00000...0010 0000

CRC algorithms are
engineered to always

detect up to 𝑐 bit flips!

• 1 ≤ Population count of bitmask ≤ 𝑐 ==> CRC' != crc(data')

New corruption model

38

data' CRC'

data CRC

How are data/data' and
CRC/CRC' related? How do we
reason about this relationship?

Bitmask represents set
of bit flips

Guarantees:
• No bit flips ==> CRC' == crc(data')

00000...0010 0000

CRC algorithms are
engineered to always

detect up to 𝑐 bit flips!

• 1 ≤ Population count of bitmask ≤ 𝑐 ==> CRC' != crc(data')

Assuming ≤ 𝒄 bit flips, CRC check proves whether data has been corrupted!

	Slide 1: PoWER Never Corrupts: Tool-Agnostic Verification of Crash Consistency and Corruption Detection
	Slide 2: Motivation: interest from Azure Storage in a verified persistent memory key-value store
	Slide 3: Motivation: interest from Azure Storage in a verified persistent memory key-value store
	Slide 4: Motivation: interest from Azure Storage in a verified persistent memory key-value store
	Slide 5: Reasoning about persistent memory
	Slide 6: Reasoning about persistent memory
	Slide 7: Reasoning about persistent memory
	Slide 8: Reasoning about persistent memory
	Slide 9: Reasoning about persistent memory
	Slide 10: Reasoning about persistent memory
	Slide 11: Building a practical verified system
	Slide 12: Building a practical verified system
	Slide 13: Building a practical verified system
	Slide 14: Building a practical verified system
	Slide 15: Building a practical verified system
	Slide 16: Building a practical verified system
	Slide 17: Building a practical verified system
	Slide 18: Building a practical verified system
	Slide 19: Benefits of a tool-agnostic technique
	Slide 20: Contributions
	Slide 21: Contributions
	Slide 22: Contributions
	Slide 23: Contributions
	Slide 24: Contributions
	Slide 25: Contributions
	Slide 26: Setting up the problem
	Slide 27: Setting up the problem
	Slide 28: Setting up the problem
	Slide 29: Setting up the problem
	Slide 30: Setting up the problem
	Slide 31: Setting up the problem
	Slide 32: Running example
	Slide 33: Running example
	Slide 34: Running example
	Slide 35: Running example
	Slide 36: Running example
	Slide 37: Running example
	Slide 38: Running example
	Slide 39: Running example
	Slide 40: Running example
	Slide 41: Running example
	Slide 42: Running example
	Slide 43: Ensuring crash consistency
	Slide 44: Ensuring crash consistency
	Slide 45: Ensuring crash consistency
	Slide 46: Ensuring crash consistency
	Slide 47: Ensuring crash consistency
	Slide 48: Verifying via pre/postconditions
	Slide 49: Verifying via pre/postconditions
	Slide 50: Verifying via pre/postconditions
	Slide 51: Verifying via pre/postconditions
	Slide 52: Verifying via pre/postconditions
	Slide 53: Verifying via pre/postconditions
	Slide 54: Prior work: crash conditions
	Slide 55: Prior work: crash conditions
	Slide 56: Prior work: crash conditions
	Slide 57: Prior work: crash conditions
	Slide 58: Proving crash consistency
	Slide 59: Proving crash consistency
	Slide 60: Proving crash consistency
	Slide 61: Proving crash consistency
	Slide 62: Preconditions on Writes Enforcing Recoverability (PoWER)
	Slide 63: Preconditions on Writes Enforcing Recoverability (PoWER)
	Slide 64: Preconditions on Writes Enforcing Recoverability (PoWER)
	Slide 65: Preconditions on Writes Enforcing Recoverability (PoWER)
	Slide 66: Preconditions on Writes Enforcing Recoverability (PoWER)
	Slide 67: See paper for…
	Slide 68: Back to our example
	Slide 69: Back to our example
	Slide 70: Block-based systems
	Slide 71: Block-based systems
	Slide 72: Persistent memory systems
	Slide 73: Persistent memory systems
	Slide 74: Persistent memory systems
	Slide 75: Prior work: Tick-Tock algorithm
	Slide 76: Prior work: Tick-Tock algorithm
	Slide 77: Prior work: Tick-Tock algorithm
	Slide 78: Prior work: Tick-Tock algorithm
	Slide 79: Prior work: Tick-Tock algorithm
	Slide 80: Prior work: Tick-Tock algorithm
	Slide 81: Challenges
	Slide 82: Challenges
	Slide 83: Challenges
	Slide 84: Challenges
	Slide 85: Challenges
	Slide 86: Solution: corruption-detecting Boolean (CDB)
	Slide 87: Solution: corruption-detecting Boolean (CDB)
	Slide 88: Solution: corruption-detecting Boolean (CDB)
	Slide 89: Solution: corruption-detecting Boolean (CDB)
	Slide 90: Solution: corruption-detecting Boolean (CDB)
	Slide 91: Solution: corruption-detecting Boolean (CDB)
	Slide 92: Solution: corruption-detecting Boolean (CDB)
	Slide 93: Solution: corruption-detecting Boolean (CDB)
	Slide 94: Solution: corruption-detecting Boolean (CDB)
	Slide 95: CapybaraKV
	Slide 96: CapybaraKV
	Slide 97: CapybaraKV
	Slide 98: CapybaraKV
	Slide 99: CapybaraKV
	Slide 100: CapybaraKV
	Slide 101: CapybaraKV
	Slide 102: Conclusion
	Slide 103: Conclusion
	Slide 104: Conclusion
	Slide 105: Conclusion
	Slide 106: Conclusion
	Slide 107: Conclusion
	Slide 108: Conclusion
	Slide 109: Additional slides
	Slide 110: Evaluation: YCSB
	Slide 111: CapybaraNS
	Slide 112: PoWER limitations
	Slide 113: CapybaraKV limitations
	Slide 114: Crash-consistent CRCs
	Slide 115: Crash-consistent CRCs
	Slide 116: Crash-consistent CRCs
	Slide 117: Crash-consistent CRCs
	Slide 118: Crash-consistent CRCs
	Slide 119: Crash-consistent CRCs
	Slide 120: Crash-consistent CRCs
	Slide 121: Prior work: Tick-Tock algorithm
	Slide 122: Prior work: Tick-Tock algorithm
	Slide 123: Prior work: Tick-Tock algorithm
	Slide 124: Prior work: Tick-Tock algorithm
	Slide 125: Prior work: Tick-Tock algorithm
	Slide 126: Prior work: Tick-Tock algorithm
	Slide 127: Prior work: Tick-Tock algorithm
	Slide 128: Prior work: Tick-Tock algorithm
	Slide 129: Corruption-detecting Boolean example
	Slide 130: Corruption-detecting Boolean example
	Slide 131: Corruption-detecting Boolean example
	Slide 132: Corruption-detecting Boolean example
	Slide 133: Corruption-detecting Boolean example
	Slide 134: Corruption-detecting Boolean example
	Slide 135: Corruption-detecting Boolean example
	Slide 136: Corruption-detecting Boolean example
	Slide 137: Corruption-detecting Boolean example
	Slide 138: Corruption-detecting Boolean example
	Slide 139: Using properties of CRC algorithms
	Slide 140: Using properties of CRC algorithms
	Slide 141: Using properties of CRC algorithms
	Slide 142: New corruption model
	Slide 143: New corruption model
	Slide 144: New corruption model
	Slide 145: New corruption model
	Slide 146: New corruption model
	Slide 147: New corruption model
	Slide 148: New corruption model
	Slide 149: New corruption model
	Slide 150: New corruption model
	Slide 151: New corruption model
	Slide 152: New corruption model
	Slide 153: New corruption model
	Slide 154: New corruption model
	Slide 155: New corruption model
	Slide 156: New corruption model
	Slide 157: New corruption model
	Slide 158: New corruption model
	Slide 159: New corruption model
	Slide 160: New corruption model
	Slide 161: New corruption model
	Slide 162: New corruption model
	Slide 163: New corruption model
	Slide 164: New corruption model
	Slide 165: New corruption model
	Slide 166: New corruption model

