
Pasha:
An Efficient, Scalable Database

Architecture for CXL Pods
Yibo Huang, Newton Ni

Vijay Chidambaram, Emmett Witchel, Dixin Tang
The University of Texas at Austin

Memory problems in the datacenter

● Applications want more memory
● Azure VMs sell all processors and

strand memory [Pond, ASPLOS 23]
○ Up to 25% stranded memory, memory is

40-50% of cost
● Store cold data in slow/cheap memory

to save $$ [Thermostat ASPLOS 17]

CXL memory is shared via PCIe

● 8-16 Hosts physically connected to a CXL memory module
○ Module has normal DRAM
○ Local DRAM parallel bus, PCIe is serial bus (↑ latency ↓ bandwidth)

CPU 1 CPU 2 CPU N…

DRAM

…
Host 1

CXL Shared
Memory

8-16 Hosts

External
Memory

Controller

PCIe 6,
64 GB/s/direction
for x8 link.
150–250ns latency

Managing CXL as a tier of memory

Image credit: TPP, ASPLOS 23

● Use system software
○ Transparent to

applications
○ Measure hot/cold data
○ Move data to proper tier

● Active area now
○ Pond [ASPLOS 23], TPP

[ASPLOS 23], TMTS
[ASPLOS 23], Nomad
[OSDI 24], Colloid
[SOSP24], Linux

CXL Pod

● Explicit management from
○ Applications, like databases
○ Memory allocator

● Cross-host shared CXL
○ Cache line sharing
○ Requires next HW standard

● 16 hosts X 288 cores
○ 4,608 cores Intel Sierra Forest
○ 7,200 hyperthreads from MapReduce [OSDI 04]

OS-1

Process-1

Local DRAM Host-1

CXL Memory

OS-2

Process-2

1 Application
2 Hosts, 2 OSes, 2 Processes, 4 Threads

Local DRAM Host-2

Find the right climate for your software

● Shared mutable
state

● Centralized state
● Many efficient

algorithms
● Limited

concurrency
● Database

6

● Replicated state
machines

● Scalable
● Fast failover
● Difficult to construct and

maintain (performance)
● Key-value store

One Host Distributed (many hosts)CXL Pod

● Easy port target
● Low tail latency
● The “SQLite” of

distributed systems

Challenges for CXL Pod

● CXL memory has higher latency than local memory
○ Bad for index structures, pointer chasing
○ ~250ns access time

● CXL memory has lower bandwidth than local memory
○ Bad for large, sequential reads/writes
○ 5-25 GB/s depending on access pattern

● CXL memory has limited (and expensive) support for
hardware cache coherence
○ HWcc hundreds of MB, for TB capacity
○ HWcc only for write-shared sync-heavy data

HWcc SWcc

RDMA-based
Shared memory

Database organizations

● Real workloads have cross-partition transactions

Partition-based
Shared nothing

CXL-based
Partitioned & shared

Pasha in (on) a nutshell

● Synchronize via atomics in CXL memory
○ CXL memory allows processor atomics, unlike RDMA
○ Do not use message passing and two-phase commit

● Keep data in local memory partitions (local DRAM is fast)
● Move shared, cross-partition, active tuples to CXL memory

○ Active data is small (need CXL-aware policies to limit bandwidth)
● Sync-heavy metadata in HWcc, everything else in SWcc
● More challenges/opportunities in paper

○ Partial failures, MVCC, parallel logging, data partitioning, high
concurrency

Pasha basics

● ➀ Txn1 locks A and reads it (A=6)
● ➁ Txn1 message to H2 about P
● ➂ H2 moves P to CXL
● ➃ Txn1 locks P and writes it (P=9)
● ➄ Txn2 read of P is denied

CXL Memory

Host 1

DRAM
A,6 E,2

v = read(A)

Txn1

Host 2

DRAM
P,0 O,5

Txn2

1

Pasha basics

● ➀ Txn1 locks A and reads it (A=6)
● ➁ Txn1 message to H2 about P
● ➂ H2 moves P to CXL
● ➃ Txn1 locks P and writes it (P=9)
● ➄ Txn2 read of P is denied

CXL Memory

Host 1

DRAM
A,6 E,2

v = read(A)

Txn1
Request move of (P,0)

to CXL memory

Host 2

DRAM
P,0 O,5

Txn2

1

2

Pasha basics

● ➀ Txn1 locks A and reads it (A=6)
● ➁ Txn1 message to H2 about P
● ➂ H2 moves P to CXL
● ➃ Txn1 locks P and writes it (P=9)
● ➄ Txn2 read of P is denied

CXL Memory

Host 1

DRAM
A,6 E,2

v = read(A)

Txn1
Request move of (P,0)

to CXL memory

Host 2

DRAM
P,0 O,5

Txn2

1

2

3P,0

Pasha basics

● ➀ Txn1 locks A and reads it (A=6)
● ➁ Txn1 message to H2 about P
● ➂ H2 moves P to CXL
● ➃ Txn1 locks P and writes it (P=9)
● ➄ Txn2 read of P is denied

CXL Memory

Host 1

DRAM
A,6 E,2

v = read(A)

write(P, v+3)

Txn1
Request move of (P,0)

to CXL memory

Host 2

DRAM
P,0 O,5

Txn2

1

2

4

3P,9

Pasha basics

● ➀ Txn1 locks A and reads it (A=6)
● ➁ Txn1 message to H2 about P
● ➂ H2 moves P to CXL
● ➃ Txn1 locks P and writes it (P=9)
● ➄ Txn2 read of P is denied

CXL Memory

Host 1

DRAM
A,6 E,2

v = read(A)

write(P, v+3)

Txn1
Request move of (P,0)

to CXL memory

Host 2

DRAM
P,0 O,5

v = read(P)

Txn2

1

2

4
5

3P,9

Pasha converts a
multi-host transaction
into a more efficient
single-host transaction

CXL hardware assumptions

● Inter-host memory coherence will be expensive
○ 4-6x local coherence cost
○ Difficult to model with multiple VMs with single CXL device

● Global persistent flush (GPF)
○ On a power failure, processor has energy to write back dirty cache

lines to CXL memory
○ After store fence, data is “committed”
○ Crucial for performance

● Build the software to guide the hardware

Challenges of the CXL pod - partial failure
Host 0 Host 15

CXL
● Let’s say one process dies

○ Do I have to restart all processes?
○ Full restart is bad for availability

■ TPC-C does 590 allocations/ms/core
■ 1-15ms for restart (and ~10ms for recovery)
■ 32-core machine would delay 18,290-274,350 allocations

● Tolerating partial failure means
○ Process recovers and rejoins
○ Application remains available during partial recovery
○ Requires non-blocking data structures or lock ownership + logs

[Lupin DIMES 24]

…

https://www.cs.utexas.edu/~witchel/pubs/zhu24dimes-lupin.pdf

Evaluation

● 8 VMs with 4 vCPUs and 8 GB local DRAM
○ CPU (Intel SPR): 2× Intel® Xeon 8460H CPUs @2.2 GHz
○ RAM: 8× DDR5-4800 channels on each socket (16 in total)
○ 1× DDR5-4800 CXL memory with PCIe 5.0 ×8, CXL 1.1
○ NVMe SSD

● No cross-host CXL as it does not yet exist
○ Single machine coherence stand in inter-machine

● Sundial [VLDB 18]
○ Partition-based distributed database
○ Optimistic reads
○ Pessimistic (two-phase locking) writes

NewOrder+Payment from TPC-C; ↑ % cross-warehouse

● NET - network message
● CXL - CXL message

queue
● SHM - all tables in CXL
● Speedup at 60/90

○ 5.9× Sundial-NET
○ 1.6× Sundial-CXL
○ 1.1× Sundial-SHM
○ (1.4x at 0/0)

Many thanks

Newton NiYibo Huang Dixin Tang Vijay
Chidambaram

