# Analyzing and Mitigating Data Stalls in DNN Training

Jayashree Mohan, Amar Phanishayee, Ashish Raniwala, Vijay Chidambaram







# Deep Neural Networks (DNNs)

Widely used for a variety of tasks





**Image Classification** 



Language Translation



Object detection



Text To Speech

### DNN Data Pipeline

- Training happens in epochs
- Each epoch processes the entire dataset in a random order with random data augmentations
- Each epoch is split into iterations (smaller minibatches of data)
- Fetched, pre-processed, and computed upon in a pipelined manner.



### DNN Data Pipeline

- Training happens in epochs
- Each epoch processes the entire dataset in a random order with random data augmentations
- Each epoch is split into iterations (smaller minibatches of data)
- Fetched, pre-processed, and computed upon in a pipelined manner.



#### Analyzing and Mitigating Data Stalls

Analyze the impact of the ingest pipeline (storage, memory and CPU) on DNN training in a variety of training scenarios and propose solutions to mitigate data stalls

#### Outline

- Data Stalls
- Analyzing Data Stalls
- CoorDL : Mitigating Data Stalls
- Evaluation

#### Data Stall



#### Fetch Stalls

**Prefetch** 

#### 2283 MB/s 8 V100 GPUs **CPU PAGE 23** 745 **Collate** Decode **Transform** HDD CACHE MB/s batch MB/s (35%) Required rate: **Pre-processing (24 cores)**

Prep

**Fetch Stalls** 

Training pipeline is stalled on data fetch
Training is I/O bound

**Process** 

### Prep Stalls



**Prep Stalls** 

Training pipeline is stalled on data prep
Training is CPU bound

#### Outline

- Data Stalls
- Analyzing Data Stalls
- CoorDL : Mitigating Data Stalls
- Evaluation

# Analyzing data stalls



 DNNs need anywhere between 3 – 24 CPU cores per GPU for data pre-processing



#### Setup

- V100 GPU
- 100% Cached
- 1GPU Training
- Vary #CPU cores

 DNNs need anywhere between 3 – 24 CPU cores per GPU for data pre-processing



#### Setup

- V100 GPU
- 100% Cached
- 8GPU Training
- Use all CPU cores

- DNNs need anywhere between 3 24 CPU cores per GPU for data pre-processing
- 2. Fetch stalls exist across models with large datasets
  - OS Page Cache is inefficient for DNN training due to thrashing



#### Setup

- V100 GPU
- 35% Cached
- 8GPU Training

- 1. DNNs need anywhere between 3 24 CPU cores **per GPU** for data pre-processing
- 2. Fetch stalls exist across models with large datasets
  - OS Page Cache is inefficient for DNN training due to thrashing
- 3. Redundancy in data fetch and pre-processing

#### Outline

- Data Stalls
- Analyzing Data Stalls
- CoorDL: Mitigating Data Stalls
- Evaluation

# CoorDL: Insights

| Finding                                                        | Insight                                                                                                                                  |  |
|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--|
| OS Page Cache is inefficient for DNN training due to thrashing | Optimize DNN cache to eliminate thrashing across epochs (MinIO Cache)                                                                    |  |
| Redundant data fetch in distributed training                   | Local caches of servers can be coordinated to fetch data from the remote cache to overcome storage I/O bottlenecks (Partitioned Caching) |  |
| Redundant data fetch and prep in HP search                     | HP search jobs must coordinate data fetch & prep (Coordinated Prep)                                                                      |  |

# CoorDL: Insights

| Finding                                                        | Insight                                                               |  |  |
|----------------------------------------------------------------|-----------------------------------------------------------------------|--|--|
| OS Page Cache is inefficient for DNN training due to thrashing | Optimize DNN cache to eliminate thrashing across epochs (MinIO Cache) |  |  |
|                                                                |                                                                       |  |  |
| Redundant data fetch and prep in HP search                     | HP search jobs must coordinate data fetch & prep (Coordinated Prep)   |  |  |

## OS Page Cache is ineffective across epochs!

- Uses OS Page cache to cache the prefetched data items for subsequent epochs
- Unaware of DNN access pattern
- ResNet18 on OpenImages Dataset (Server 8V100 GPUs, 500GB DRAM)

| Dataset size                        | 645GB         |
|-------------------------------------|---------------|
| Cache size                          | 65% ( 420GB ) |
| Expected disk access (stable state) | 225GB (35%)   |

## OS Page Cache is ineffective across epochs!

ResNet18 on OpenImages Dataset (Server – 8V100 GPUs, 500GB DRAM)

| Dataset size                        | 645GB         |
|-------------------------------------|---------------|
| Cache size                          | 65% ( 420GB ) |
| Expected disk access (stable state) | 225GB (35%)   |
| DALI-Seq                            | 422GB (87%)   |
| DALI-Shuffle                        | 340GB (53%)   |

Increased disk access makes training I/O bound => Fetch stalls

# OS Page Cache is ineffective across epochs!

#### Across epochs, the items in OS Page Cache are not used effectively!

- Prefetched items replace existing, unused items in Page cache (LRU)
- These evicted items are prefetched from storage later in the epoch

• Models like ShuffleNet spend 40% of epoch time in blocking I/O

#### MinIO cache

- Given a cache capacity, fill it up with random data items when first accessed
- Once cache is full, unlike traditional caching, there is no cache replacement
- Disk accesses per epoch = capacity misses

#### Outline

- Data Stalls
- Analyzing Data Stalls
- CoorDL : Mitigating Data Stalls
- Evaluation
  - Setup
  - Single-Node Training
  - Multi-Node Training
  - Hyperparameter Search

# Evaluation: Setup

# PyTorch DALI Data Loading Pipeline

| Task                 | Model                                                               | Dataset (Size)                                                             |  |
|----------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------|--|
| Image Classification | AlexNet ShuffleNetv2 ResNet18 SqueezeNet MobileNetv2 ResNet50 VGG11 | ImageNet-1K (146GB)<br>Imagenet-22K (1.3TB)<br>OpenImages-Extended (645GB) |  |
| Object Detection     | SSD + ResNet18                                                      | OpenImages (561GB)                                                         |  |
| Audio Classification | M5                                                                  | Free Music Arxiv (950GB)                                                   |  |

| Servers    | GPU Config | GPU Mem<br>(GB) | Storage<br>Media | Rand Read<br>(MBps) | DRAM (GB) | CPU cores |
|------------|------------|-----------------|------------------|---------------------|-----------|-----------|
| SSD-V100   | 8 x V100   | 32              | SSD              | 530                 | 500       | 24        |
| HDD-1080Ti | 8 x 1080Ti | 11              | HDD              | 15-100              | 500       | 24        |

#### Outline

- Data Stalls
- Analyzing Data Stalls
- CoorDL : Mitigating Data Stalls
- Evaluation
  - Setup
  - Single-Node Training
  - Multi-Node Training
  - Hyperparameter Search

# 1. Single-server training



Upto 1.8x faster training on SSD-V100 over DALI by reducing cache misses (minIO)

# 1. Single-server training



Upto 1.8x faster training on SSD-V100 over DALI by reducing cache misses (minIO)

#### Outline

- Data Stalls
- Analyzing Data Stalls
- CoorDL : Mitigating Data Stalls
- Evaluation
  - Setup
  - Single-Node Training
  - Multi-Node Training
  - Hyperparameter Search

# 2. Multi-server training





# 2. Multi-server training





minIO + Partitioned caching minimizes disk IO and accelerates training by upto 15x

# 2. Multi-server training





minIO + Partitioned caching minimizes disk IO and accelerates training by upto 15x on HDD and upto 3x on SSD

#### Outline

- Data Stalls
- Analyzing Data Stalls
- CoorDL : Mitigating Data Stalls
- Evaluation
  - Setup
  - Single-Node Training
  - Multi-Node Training
  - Hyperparameter Search

#### 3. HP search



#### 3. HP search



Coordinated prep is able to speed up training by upto 5.5x by eliminating redundant pre-processing and disk IO.

#### Summary

- Data stalls exist in DNN training on commodity servers
  - Squander away benefits from fast GPUs
- Analyzed causes for data stalls
- Built CoorDL to mitigate I/O and CPU bottlenecks in some scenarios



# Thank you!

Source code: <a href="https://github.com/msr-fiddle/DS-Analyzer">https://github.com/msr-fiddle/DS-Analyzer</a>

Contact: jaya@cs.utexas.edu