
Analyzing and Mitigating
Data Stalls

in DNN Training

Jayashree Mohan, Amar Phanishayee, Ashish Raniwala, Vijay Chidambaram

Deep Neural Networks (DNNs)

• Widely used for a variety of tasks

Image Classification

Cat Dog

Language Translation 2

Duck

Dog

Dog

Text To Speech

Object detection

DNN Data Pipeline
• Training happens in epochs
• Each epoch processes the entire dataset in a random order with random data

augmentations

• Each epoch is split into iterations (smaller minibatches of data)

• Fetched, pre-processed, and computed upon in a pipelined manner.

3

Epoch 1 Epoch 2 Epoch n

Iterations 3

Pre-processing

CPU

Decode Transform
Collate
batch

Prep

Compute

8 GPUs

Process

HDD

SSD

PAGE
CACHE

Prefetch

DNN Data Pipeline

HDD

ComputePre-processing

CPU 8 GPUs

SSD

PAGE
CACHE

Decode Transform
Collate
batch

Prefetch Batch ‘K+2’ Prep Batch ‘K+1’ Process Batch ‘K’

Data Load Per Iteration
GPU Time Per

Iteration

• Training happens in epochs
• Each epoch processes the entire dataset in a random order with random data

augmentations

• Each epoch is split into iterations (smaller minibatches of data)

• Fetched, pre-processed, and computed upon in a pipelined manner.

4

Analyzing and Mitigating Data Stalls

Analyze the impact of the ingest pipeline (storage, memory and CPU) on DNN
training in a variety of training scenarios and propose solutions to mitigate

data stalls

5

Outline

• Data Stalls

• Analyzing Data Stalls

• CoorDL : Mitigating Data Stalls

• Evaluation

6

GPU Compute batch n

Iteration n

Compute batch n-1

Data Stall

Iteration time = compute time

GPU

Data
Loader

Compute batch n-1

Data Load batch n

Compute batch n

Iteration n

Data Stall

Iteration time = compute time + data stall

Data
Loader

Data Load
batch n

7

Fetch Stalls

HDD

2283 MB/s

Pre-processing (24 cores)

CPU 8 V100 GPUs

Required rate :

PAGE
CACHE
(35%)

Decode Transform
Collate
batch

Prefetch Prep Process

23

MB/s

745

MB/s

Training pipeline is stalled on data fetch
Training is I/O bound

8

Fetch Stalls

Prep Stalls

SSD

2283 MB/s

Pre-processing (24 cores)

CPU 8 V100 GPUs

Required rate :

PAGE
CACHE
(35%)

Decode Transform
Collate
batch

Prefetch Prep Process

802

MB/s

745

MB/s

Prep Stalls

Training pipeline is stalled on data prep
Training is CPU bound

9

Outline

• Data Stalls

• Analyzing Data Stalls

• CoorDL : Mitigating Data Stalls

• Evaluation

10

Analyzing data stalls

Configurations

Scalability

1node,
single-GPU

1node,
multi-GPU

Multi-node,
multi-GPU

Workloads

Image
classification

Object
detection

Audio
classification

Language

GPU gen

Volta –
V100

Pascal-
1080Ti

Dataset Size

Fits in
memory

Does not fit
in memory

Frameworks

Pytorch

Tensorflow

Datastore

Local:SSD

Local:HDD

Remote:
Blobfuse

Remote:
GFS

1 per GPU

24 per GPU

#CPUs

11

Data Stall Analysis

12

1. DNNs need anywhere between 3 – 24 CPU cores per GPU for data
pre-processing

• V100 GPU
• 100% Cached
• 1GPU Training
• Vary #CPU cores

Setup

Data Stall Analysis

13

1. DNNs need anywhere between 3 – 24 CPU cores per GPU for data
pre-processing

• V100 GPU
• 100% Cached
• 8GPU Training
• Use all CPU cores

Setup

Data Stall Analysis

14

1. DNNs need anywhere between 3 – 24 CPU cores per GPU for data
pre-processing

2. Fetch stalls exist across models with large datasets

• V100 GPU
• 35% Cached
• 8GPU Training

Setup

• OS Page Cache is inefficient for DNN training due to thrashing

Data Stall Analysis

15

1. DNNs need anywhere between 3 – 24 CPU cores per GPU for data
pre-processing

2. Fetch stalls exist across models with large datasets

3. Redundancy in data fetch and pre-processing

• OS Page Cache is inefficient for DNN training due to thrashing

Outline

• Data Stalls

• Analyzing Data Stalls

• CoorDL : Mitigating Data Stalls

• Evaluation

16

CoorDL: Insights

17

Finding Insight

OS Page Cache is inefficient for DNN training due to
thrashing

Optimize DNN cache to eliminate thrashing across
epochs (MinIO Cache)

Redundant data fetch in distributed training
Local caches of servers can be coordinated to fetch

data from the remote cache to overcome storage I/O
bottlenecks (Partitioned Caching)

Redundant data fetch and prep in HP search
HP search jobs must coordinate data fetch & prep

(Coordinated Prep)

CoorDL: Insights

18

Finding Insight

OS Page Cache is inefficient for DNN training due to
thrashing

Optimize DNN cache to eliminate thrashing across
epochs (MinIO Cache)

Redundant data fetch in distributed training
Local caches of servers can be coordinated to fetch

data from the remote cache to overcome storage I/O
bottlenecks (Partitioned Caching)

Redundant data fetch and prep in HP search
HP search jobs must coordinate data fetch & prep

(Coordinated Prep)

OS Page Cache is ineffective across epochs!

Dataset size 645GB

Cache size 65% (420GB)

Expected disk access
(stable state)

225GB (35%)

• ResNet18 on OpenImages Dataset (Server – 8V100 GPUs, 500GB DRAM)

19

• Uses OS Page cache to cache the prefetched data items for subsequent epochs

• Unaware of DNN access pattern

OS Page Cache is ineffective across epochs!

Increased disk access makes training I/O bound => Fetch stalls

Dataset size 645GB

Cache size 65% (420GB)

Expected disk access
(stable state)

225GB (35%)

DALI-Seq 422GB (87%)

DALI-Shuffle 340GB (53%)

• ResNet18 on OpenImages Dataset (Server – 8V100 GPUs, 500GB DRAM)

20

OS Page Cache is ineffective across epochs!

Across epochs, the items in OS Page Cache are not used effectively!

• Prefetched items replace existing, unused items in Page cache (LRU)

• These evicted items are prefetched from storage later in the epoch

• Models like ShuffleNet spend 40% of epoch time in blocking I/O

21

MinIO cache

• Given a cache capacity, fill it up with random data items when first
accessed

• Once cache is full, unlike traditional caching, there is no cache
replacement

• Disk accesses per epoch = capacity misses

22

Outline

• Data Stalls

• Analyzing Data Stalls

• CoorDL : Mitigating Data Stalls

• Evaluation
• Setup

• Single-Node Training

• Multi-Node Training

• Hyperparameter Search

23

Evaluation : Setup
Task Model Dataset (Size)

Image Classification

AlexNet
ShuffleNetv2

ResNet18
SqueezeNet
MobileNetv2

ResNet50
VGG11

ImageNet-1K (146GB)
Imagenet-22K (1.3TB)

OpenImages-Extended (645GB)

Object Detection SSD + ResNet18 OpenImages (561GB)

Audio Classification M5 Free Music Arxiv (950GB)

Servers GPU Config
GPU Mem

(GB)
Storage
Media

Rand Read
(MBps)

DRAM (GB) CPU cores

SSD-V100 8 x V100 32 SSD 530 500 24

HDD-1080Ti 8 x 1080Ti 11 HDD 15-100 500 24

PyTorch
DALI Data Loading Pipeline

24

Outline

• Data Stalls

• Analyzing Data Stalls

• CoorDL : Mitigating Data Stalls

• Evaluation
• Setup

• Single-Node Training

• Multi-Node Training

• Hyperparameter Search

25

1. Single-server training

Upto 1.8x faster training on SSD-V100 over DALI by reducing cache misses (minIO)

26

Dataset size 645GB

Cache size 65% (420GB)

Expected disk access 225GB (35%)

DALI-Seq 422GB (87%)

DALI-Shuffle 340GB (53%)

CoorDL 225GB (35%)

1. Single-server training

27

Upto 1.8x faster training on SSD-V100 over DALI by reducing cache misses (minIO)

Outline

• Data Stalls

• Analyzing Data Stalls

• CoorDL : Mitigating Data Stalls

• Evaluation
• Setup

• Single-Node Training

• Multi-Node Training

• Hyperparameter Search

28

SSD-V100

2. Multi-server training

Alexnet – HDD-1080Ti

29

2. Multi-server training

Alexnet – HDD-1080Ti SSD-V100 – 2 nodes

30

minIO + Partitioned caching minimizes disk IO and accelerates training by upto 15x

2. Multi-server training

Alexnet – HDD-1080Ti SSD-V100 – 2 nodesminIO + Partitioned caching minimizes disk IO and accelerates training by upto 15x on HDD
and upto 3x on SSD

31

Outline

• Data Stalls

• Analyzing Data Stalls

• CoorDL : Mitigating Data Stalls

• Evaluation
• Setup

• Single-Node Training

• Multi-Node Training

• Hyperparameter Search

32

3. HP search

33

3. HP search

Coordinated prep is able to speed up training by upto 5.5x by eliminating redundant pre-processing
and disk IO.

34

Summary

• Data stalls exist in DNN training on commodity servers
• Squander away benefits from fast GPUs

• Analyzed causes for data stalls

• Built CoorDL to mitigate I/O and CPU bottlenecks in some scenarios

35

DS-Analyzer

• Precisely measure data stalls
• Predictive what-if analysis

Data Stalls Mitigation using CoorDLAnalysis

Challenges

• Decoded data cache
• Cost-performance tradeoff

Thank you!

Contact : jaya@cs.utexas.edu

Source code : https://github.com/msr-fiddle/DS-Analyzer

36

	Slide 1: Analyzing and Mitigating Data Stalls in DNN Training
	Slide 2: Deep Neural Networks (DNNs)
	Slide 3: DNN Data Pipeline
	Slide 4: DNN Data Pipeline
	Slide 5: Analyzing and Mitigating Data Stalls
	Slide 6: Outline
	Slide 7: Data Stall
	Slide 8: Fetch Stalls
	Slide 9: Prep Stalls
	Slide 10: Outline
	Slide 11: Analyzing data stalls
	Slide 12: Data Stall Analysis
	Slide 13: Data Stall Analysis
	Slide 14: Data Stall Analysis
	Slide 15: Data Stall Analysis
	Slide 16: Outline
	Slide 17: CoorDL: Insights
	Slide 18: CoorDL: Insights
	Slide 19: OS Page Cache is ineffective across epochs!
	Slide 20: OS Page Cache is ineffective across epochs!
	Slide 21: OS Page Cache is ineffective across epochs!
	Slide 22: MinIO cache
	Slide 23: Outline
	Slide 24: Evaluation : Setup
	Slide 25: Outline
	Slide 26: 1. Single-server training
	Slide 27: 1. Single-server training
	Slide 28: Outline
	Slide 29: 2. Multi-server training
	Slide 30: 2. Multi-server training
	Slide 31: 2. Multi-server training
	Slide 32: Outline
	Slide 33: 3. HP search
	Slide 34: 3. HP search
	Slide 35: Summary
	Slide 36: Thank you!

