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Deep Neural Networks ( DNNs )

• Widely used for a variety of tasks
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DNN Data Pipeline
• Training happens in epochs
• Each epoch processes the entire dataset in a random order with random data 

augmentations

• Each epoch is split into iterations (smaller minibatches of data)

• Fetched, pre-processed, and computed upon in a pipelined manner.
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DNN Data Pipeline
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• Training happens in epochs
• Each epoch processes the entire dataset in a random order with random data 

augmentations

• Each epoch is split into iterations (smaller minibatches of data)

• Fetched, pre-processed, and computed upon in a pipelined manner.
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Analyzing and Mitigating Data Stalls

Analyze the impact of the ingest pipeline (storage, memory and CPU) on DNN 
training in a variety of training scenarios  and propose solutions to mitigate 

data stalls  
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Outline

• Data Stalls 

• Analyzing Data Stalls

• CoorDL : Mitigating Data Stalls

• Evaluation
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Fetch Stalls

HDD

2283 MB/s

Pre-processing (24 cores)

CPU 8 V100 GPUs

Required rate :

PAGE
CACHE
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Training pipeline is stalled on data fetch
Training is I/O bound
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Fetch Stalls



Prep Stalls

SSD

2283 MB/s
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CPU 8 V100 GPUs

Required rate :
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Prep Stalls

Training pipeline is stalled on data prep
Training is CPU bound
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Outline

• Data Stalls

• Analyzing Data Stalls

• CoorDL : Mitigating Data Stalls

• Evaluation
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Analyzing data stalls

Configurations

Scalability

1node, 
single-GPU

1node, 
multi-GPU

Multi-node, 
multi-GPU

Workloads

Image 
classification

Object 
detection

Audio 
classification

Language

GPU gen

Volta – 
V100

Pascal- 
1080Ti

Dataset Size 

Fits in 
memory

Does not fit 
in memory

Frameworks

Pytorch

Tensorflow

Datastore

Local:SSD

Local:HDD

Remote: 
Blobfuse

Remote: 
GFS

1 per GPU

24 per GPU

#CPUs
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Data Stall Analysis
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1. DNNs need anywhere between 3 – 24 CPU cores per GPU for data 
pre-processing

• V100 GPU
• 100% Cached
• 1GPU Training
• Vary #CPU cores

Setup



Data Stall Analysis
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1. DNNs need anywhere between 3 – 24 CPU cores per GPU for data 
pre-processing

• V100 GPU
• 100% Cached
• 8GPU Training
• Use all CPU cores

Setup



Data Stall Analysis
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1. DNNs need anywhere between 3 – 24 CPU cores per GPU for data 
pre-processing

2. Fetch stalls exist across models with large datasets

• V100 GPU
• 35% Cached
• 8GPU Training

Setup

• OS Page Cache is inefficient for DNN training due to thrashing



Data Stall Analysis
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1. DNNs need anywhere between 3 – 24 CPU cores per GPU for data 
pre-processing

2. Fetch stalls exist across models with large datasets

3. Redundancy in data fetch and pre-processing

• OS Page Cache is inefficient for DNN training due to thrashing



Outline

• Data Stalls

• Analyzing Data Stalls

• CoorDL : Mitigating Data Stalls

• Evaluation
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CoorDL: Insights
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Finding Insight

OS Page Cache is inefficient for DNN training due to 
thrashing

Optimize DNN cache to eliminate thrashing across 
epochs (MinIO Cache)

Redundant data fetch in distributed training
Local caches of servers can be coordinated to fetch 

data from the remote cache to overcome storage I/O 
bottlenecks (Partitioned Caching)

Redundant data fetch and prep in HP search
HP search jobs must coordinate data fetch & prep 

(Coordinated Prep) 



CoorDL: Insights
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Finding Insight

OS Page Cache is inefficient for DNN training due to 
thrashing

Optimize DNN cache to eliminate thrashing across 
epochs (MinIO Cache)

Redundant data fetch in distributed training
Local caches of servers can be coordinated to fetch 

data from the remote cache to overcome storage I/O 
bottlenecks (Partitioned Caching)

Redundant data fetch and prep in HP search
HP search jobs must coordinate data fetch & prep 

(Coordinated Prep) 



OS Page Cache is ineffective across epochs!

Dataset size 645GB

Cache size 65% ( 420GB )

Expected disk access
(stable state)

225GB (35%)

• ResNet18 on OpenImages Dataset (Server – 8V100 GPUs, 500GB DRAM) 
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• Uses OS Page cache to cache the prefetched data items for subsequent epochs

• Unaware of DNN access pattern



OS Page Cache is ineffective across epochs!

Increased disk access makes training I/O bound => Fetch stalls

Dataset size 645GB

Cache size 65% ( 420GB )

Expected disk access
(stable state)

225GB (35%)

DALI-Seq 422GB (87%)

DALI-Shuffle 340GB (53%)

• ResNet18 on OpenImages Dataset (Server – 8V100 GPUs, 500GB DRAM) 

20



OS Page Cache is ineffective across epochs!

Across epochs, the items in OS Page Cache are not used effectively!

• Prefetched items replace existing, unused items in Page cache (LRU)

• These evicted items are prefetched from storage later in the epoch

• Models like ShuffleNet spend 40% of epoch time in blocking I/O 
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MinIO cache

• Given a cache capacity, fill it up with random data items when first 
accessed

• Once cache is full, unlike traditional caching, there is no cache 
replacement

• Disk accesses per epoch = capacity misses
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Outline

• Data Stalls

• Analyzing Data Stalls

• CoorDL : Mitigating Data Stalls

• Evaluation
• Setup

• Single-Node Training

• Multi-Node Training

• Hyperparameter Search
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Evaluation : Setup
Task Model Dataset (Size)

Image Classification

AlexNet
ShuffleNetv2

ResNet18
SqueezeNet
MobileNetv2

ResNet50
VGG11

ImageNet-1K (146GB)
Imagenet-22K (1.3TB)

OpenImages-Extended (645GB)

Object Detection SSD + ResNet18 OpenImages (561GB)

Audio Classification M5 Free Music Arxiv (950GB)

Servers GPU Config
GPU Mem 

(GB)
Storage 
Media

Rand Read     
(MBps)

DRAM (GB) CPU cores

SSD-V100 8 x V100 32 SSD 530 500 24

HDD-1080Ti 8 x 1080Ti 11 HDD 15-100 500 24

PyTorch 
DALI Data Loading Pipeline
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Outline

• Data Stalls

• Analyzing Data Stalls

• CoorDL : Mitigating Data Stalls

• Evaluation
• Setup

• Single-Node Training

• Multi-Node Training

• Hyperparameter Search
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1. Single-server training

Upto 1.8x faster training on SSD-V100 over DALI by reducing cache misses (minIO)
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Dataset size 645GB

Cache size 65% ( 420GB )

Expected disk access 225GB (35%)

DALI-Seq 422GB (87%)

DALI-Shuffle 340GB (53%)

CoorDL 225GB (35%)



1. Single-server training
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Upto 1.8x faster training on SSD-V100 over DALI by reducing cache misses (minIO)



Outline

• Data Stalls

• Analyzing Data Stalls

• CoorDL : Mitigating Data Stalls

• Evaluation
• Setup

• Single-Node Training

• Multi-Node Training

• Hyperparameter Search
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SSD-V100

2. Multi-server training

Alexnet – HDD-1080Ti
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2. Multi-server training

Alexnet – HDD-1080Ti SSD-V100 – 2 nodes
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minIO  + Partitioned caching minimizes disk IO and accelerates training by upto 15x 



2. Multi-server training

Alexnet – HDD-1080Ti SSD-V100 – 2 nodesminIO  + Partitioned caching minimizes disk IO and accelerates training by upto 15x on HDD 
and upto 3x on SSD
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Outline

• Data Stalls

• Analyzing Data Stalls

• CoorDL : Mitigating Data Stalls

• Evaluation
• Setup

• Single-Node Training

• Multi-Node Training

• Hyperparameter Search
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3. HP search
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3. HP search

Coordinated prep is able to speed up training by upto 5.5x by eliminating redundant pre-processing 
and disk IO.
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Summary

• Data stalls exist in DNN training on commodity servers
• Squander away benefits from fast GPUs

• Analyzed causes for data stalls 

• Built CoorDL to mitigate I/O and CPU bottlenecks in some scenarios
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DS-Analyzer

• Precisely measure data stalls
• Predictive what-if analysis

Data Stalls Mitigation using CoorDLAnalysis

Challenges

• Decoded data cache
• Cost-performance tradeoff 



Thank you!

Contact : jaya@cs.utexas.edu

Source code :  https://github.com/msr-fiddle/DS-Analyzer
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