
Copyright

by

Yuliya Lierler

2010

The Dissertation Committee for Yuliya Lierler

certifies that this is the approved version of the following dissertation:

SAT-based Answer Set Programming

Committee:

Vladimir Lifschitz, Supervisor

Robert Boyer

Anna Gal

Peter Stone

Miros law Truszczyński

SAT-based Answer Set Programming

by

Yuliya Lierler, B.S.; M.S.

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

May 2010

To my grandparents Nina and Nikolay for their love

Acknowledgments

I have had the privilege to be advised by Vladimir Lifschitz. I would like to thank

him for his continuous advice, support, insight, and encouragement throughout my

work on this dissertation. During the many years that I have known and worked

with Vladimir he has been an advisor, a teacher, a colleague, and a friend to me.

I am thankful to him for serving these many roles. For years Vladimir helped me

to discover the world of science and guided me in this world. I am grateful for

the thousands of discussions in person and via email that we have had. Vladimir’s

ability to think deeply, notice details, and express himself clearly, both in speaking

and writing, fascinates me till this moment. I am also thankful to his wife Elena

Lifschitz for her care. My decision to apply for a PhD program came by chance from

a conversation that I once had with Vladimir and Elena Lifschitz. I am grateful to

both of them for opening the door to science for me.

I am thankful to the other members of my dissertation committee: Robert

Boyer, Anna Gal, Peter Stone, and Miros law Truszczyński for serving on my com-

mittee and for their useful comments on my dissertation.

It was a privilege to be in a research group with many wonderful graduate

students and I extend my thanks to Esra Erdem, Selim Erdoğan, Paolo Ferraris,

Joohyung Lee, Wanwan Ren and Fangkai Yang. I want to especially thank Selim

Erdoğan for all the encouragements and support he has been giving me through the

years of our friendship.

v

The University of Texas at Austin has almost become my home. It has been

a great place to study and work and I will miss it a lot. I am thankful to all my

teachers, colleagues, and friends who have made these years fruitful, challenging,

interesting, and fun.

My academic journey started at the Belarusian State University of Informat-

ics and Radioelectronics where I had the chance to study with a group (635701)

of great students many of whom are still my friends. I wish to thank the head of

the AI department Golenkov V.V. and the AI Professor Sharaya N.A. for setting

exemplary educational program and their dedication to science.

I am thankful to Günther Görz for advising me and introducing me to the

exciting world of natural language understanding and computational semantics.

For years I have benefited from many delightful scientific and personal dis-

cussions with my colleagues by science Marcello Balduccini, Chitta Baral, Johan

Bos, Martin Brain, Gerhard Brewka, Pedro Cabalar, Stefania Costantini, Thomas

Eiter, Wolfgang Faber, Martin Gebser, Gregory Gelfond, Michael Gelfond, Enrico

Giunchiglia, Tomi Janhunen, Nicola Leone, Bernd Ludwig, Marco Maratea, Bern-

hard Nebel, Ilkka Niemelä, Gerald Pfeifer, Peter Reiss, Torsten Schaub, Bernhard

Schiemann, Iman Thabet, Son Tran, Mirek Truszczyński, Marina De Vos, Stefan

Woltran. I am grateful to all of them.

I am in debt to my friends Gurucharan Huchachar, Aram Karakhanyan, Elina

Drayevskaya, John Beavers, Mikhail Bilenko, Ali Amjad Khoja, Yuliya Volkovin-

skaya, Boris Olesiuk, Olga Nobst, and Inna Imayeva for being important part of my

life. Guru, in spite of thousands miles between us, has been part of my daily life

through thousands of emails.

The greatest support for everything I have done in my life come from my

parents, Natalya Bogataya and Konstantin Bobovich. I thank them for all their

continuous love, care, and encouragement. They have been by my side every single

vi

step that I have made and yet they allowed me complete freedom to define my path.

I also wish to thank my grandparents, Nina and Nikolay Bogaty. They still see me

and treat me as a child. My brother and sister-in-law, Sergey and Lena Babovich,

amaze me by their ability to enjoy life, be positive, happy, and engage themselves

into numerous new activities. Hildegard and Heinz Lierler took me to their heart.

My aunt Nadya has been my dearest friend who kept my spirits high, even with the

many miles between us. My cousin Sasha has been my little companion whenever

I had a chance to be in Belarus. My uncle Kolia helped me to settle in two houses

that I have lived in on the way to this dissertation.

I thank my husband Frank who has moved thousands of miles from his home

country to allow me to proceed on my path towards this dissertation. He also spent

hours proofreading its text. I am grateful for all his love, care, and support. My

deepest love goes to our first baby Nina who brought new light of discovery and joy

in my life.

Yuliya Lierler

The University of Texas at Austin

May 2010

vii

SAT-based Answer Set Programming

Publication No.

Yuliya Lierler, Ph.D.

The University of Texas at Austin, 2010

Supervisor: Vladimir Lifschitz

Answer set programming (ASP) is a declarative programming paradigm oriented

towards difficult combinatorial search problems. Syntactically, ASP programs look

like Prolog programs, but solutions are represented in ASP by sets of atoms, and not

by substitutions, as in Prolog. Answer set systems, such as smodels, smodelscc,

and dlv, compute answer sets of a given program in the sense of the answer set

(stable model) semantics. This is different from the functionality of Prolog systems,

which determine when a given query is true relative to a given logic program. ASP

has been applied to many areas of science and technology, from the design of a

decision support system for the Space Shuttle to graph-theoretic problems arising

in zoology and linguistics.

The “native” answer set systems mentioned above are based on specialized

viii

search procedures. Usually these procedures are described fairly informally with the

use of pseudocode. We propose an alternative approach to describing algorithms of

answer set solvers. In this approach we specify what “states of computation” are,

and which transitions between states are allowed. In this way, we define a directed

graph such that every execution of a procedure corresponds to a path in this graph.

This allows us to model algorithms of answer set solvers by a mathematically simple

and elegant object, graph, rather than a collection of pseudocode statements. We

use this abstract framework to describe and prove the correctness of the answer set

solver smodels, and also of smodelscc, which enhances the former with learning

and backjumping techniques.

Answer sets of a tight program can be found by running a SAT solver on the

program’s completion, because for such a program answer sets are in a one-to-one

correspondence with models of completion. SAT is one of the most widely studied

problems in computational logic, and many efficient SAT procedures were developed

over the last decade. Using SAT solvers for computing answer sets allows us to take

advantage of the advances in the SAT area. For a nontight program it is still the

case that each answer set corresponds to a model of the program’s completion but

not vice versa. We show how to modify the search method typically used in SAT

solvers to allow testing models of completion and employ learning to utilize testing

information to guide the search. We develop a new SAT-based answer set solver,

called cmodels, based on this idea.

We develop an abstract graph based framework for describing SAT-based

answer set solvers and use it to represent the cmodels algorithm and to demonstrate

its correctness. Such representations allow us to better understand similarities and

differences between native and SAT-based answer set solvers. We formally compare

the smodels algorithm with a variant of the cmodels algorithm without learning.

Abstract frameworks for describing native and SAT-based answer set solvers

ix

facilitate the development of new systems. We propose and implement the answer

set solver called sup that can be seen as a combination of computational ideas behind

cmodels and smodels. Like cmodels, the solver sup operates by computing a

sequence of models of completion for the given program, but it does not form the

completion. Instead, sup runs the Atleast algorithm, one of the main building

blocks of the smodels procedure. Both systems cmodels and sup, developed in

this dissertation, proved to be a competitive answer set programming systems.

x

Contents

Acknowledgments v

Abstract viii

Chapter 1 Introduction 1

Chapter 2 Answer Set Programming 6

2.1 A Sample Program . 7

2.2 Answer Set Programming Applications 8

Chapter 3 Propositional Satisfiability Solvers 10

3.1 DPLL . 11

3.2 Abstract DPLL . 13

3.3 Strategies and Techniques . 19

3.4 Abstract DPLL with Backjumping and Learning 19

Chapter 4 Background: Traditional ASP Programs 23

4.1 Logic Program . 24

4.2 Answer Sets . 25

4.3 Unfounded Sets . 26

4.4 Completion and Supported Models 27

4.5 Tightness . 28

4.6 Answer Set Solver Smodels, and Grounders Lparse and Gringo . . . 29

Chapter 5 Abstract Description of Answer Set Solvers 32

5.1 Generating Supported Models . 32

xi

5.1.1 Graph atleastΠ . 32

5.1.2 Relation between dpF and atleastΠ 36

5.2 Abstract Smodels . 40

5.3 Smodels Algorithm . 42

5.4 Tight Programs: Smodels and DPLL 43

Chapter 6 Cmodels Algorithm for Tight Programs 46

6.1 Simplifying Traditional Programs . 47

6.2 Verifying Tightness . 51

6.3 Completion and Clausification . 51

6.4 Experimental Analysis . 53

6.5 Systems Specifications . 54

6.5.1 Benchmarks Description . 55

6.5.2 Benchmarks Results . 57

Chapter 7 Background: Choice and Weight Rules 61

7.1 Programs with Nested Expressions 62

7.2 Choice Rules . 64

7.3 Weight and Cardinality Constraint Rules 65

7.4 The Input Language of Lparse . 66

7.5 Semi-Traditional Programs . 67

7.6 Tightness and Completion for Semi-Traditional Programs 68

Chapter 8 Extending Cmodels Algorithm to Choice and Weight Rules 71

8.1 Translating Weight Rules . 71

8.2 Simplifying Programs with Nested Expressions 73

8.3 Cmodels Algorithm for Programs with Choice and Weight Rules . . 76

8.4 Proofs of Proposition 1 (general form), Proposition 2 (general form),

and Proposition 3 . 78

8.5 Experimental Analysis . 80

Chapter 9 Background: Loop Formulas 85

9.1 Loop Formula . 85

9.2 SAT-based System Assat . 89

xii

Chapter 10 Abstract Description of “Generate and Test” DPLL 91

10.1 Abstract Generate and Test . 91

10.2 Abstract Generate and Test with Backjumping and Learning 94

10.3 Backjumping and Extended Graph 96

10.4 Proofs of Theorem 13↑, Lemma 8, and Theorem 14↑ 100

10.4.1 Proof of Theorem 13↑ . 100

10.4.2 Proof of Lemma 8 . 102

10.4.3 Proof of Theorem 14↑ . 103

10.5 Generate and Test: FirstUIP Conflict-Driven Backjumping and Learn-

ing . 109

Chapter 11 Extending Cmodels Algorithm to Nontight Programs by

Means of “Generate and Test” DPLL 111

11.1 ASP-SAT Algorithm . 112

11.2 ASP-SAT with Learning: Cmodels Algorithm for Nontight Programs 113

11.3 Terminating Loops . 114

11.4 Cmodels Algorithm: Test Application 115

11.5 Incremental SAT-solving for SAT-based ASP 117

11.6 Experimental Analysis . 118

11.7 First and Second Answer Set Programming System Competitions . . 121

Chapter 12 Description of Abstract Answer Set Solvers with Learning122

12.1 Graph smlΠ . 123

12.2 Extended Graph sml
↑
Π . 125

12.3 Proofs of Theorem 16↑, Lemma 13, Theorem 17↑ 127

12.3.1 Proof of Theorem 16↑ . 127

12.3.2 Proof of Lemma 13 . 129

12.3.3 Proof of Theorem 17↑ . 133

12.4 Decision and FirstUIP Backjumping and Learning for Answer Set

Solvers . 133

12.5 Sup Algorithms . 135

12.6 Implementation and Experimental Analysis 137

Chapter 13 Extending Cmodels Algorithm to Disjunctive Programs 144

13.1 Background: Disjunctive Programs 145

xiii

13.2 Completion Clausification for Disjunctive Programs 149

13.3 Cmodels Algorithm for Disjunctive Programs 151

13.4 Verifying Models of Completion . 152

13.5 Terminating Loops for Disjunctive Programs 153

13.6 Proof of Theorem 15∨ . 155

13.7 Experimental Analysis . 157

Chapter 14 Related Work 160

14.1 Sag and Clasp . 160

14.2 Pbmodels – Weight Rules via Pseudoboolean Solvers 162

Chapter 15 Conclusions 164

Bibliography 167

Vita 179

xiv

Chapter 1

Introduction

Answer set programming (ASP) is a declarative programming paradigm oriented

towards difficult combinatorial search problems [Marek and Truszczyński, 1999;

Niemelä, 1999]. Syntactically, ASP programs look like Prolog programs, but so-

lutions are represented in ASP by sets of atoms, and not by substitutions, as in

Prolog. Answer set systems, such as smodels1, smodelscc
2 [Ward and Schlipf,

2004] and dlv3, compute answer sets of a given program in the sense of the answer

set (stable model) semantics [Gelfond and Lifschitz, 1988; 1991]. ASP has been

applied to many areas of science and technology.

The “native” answer set systems mentioned above are based on specialized

search procedures. Usually computation procedures are described in terms of pseu-

docode. In [Nieuwenhuis et al., 2006], the authors proposed an alternative approach

to describing dpll-like procedures commonly used in SAT solvers [Gomes et al.,

2008]. They introduced an abstract framework that captures what ”states of compu-

tation” are, and what transitions between states are allowed. In this way, [Nieuwen-

huis et al., 2006] defines a directed graph such that every execution of the dpll

procedure corresponds to a path in this graph. Some edges may correspond to unit

propagation steps, some to branching, some to backtracking. This allows the au-

thors to model a dpll-like algorithm by a mathematically simple and elegant object,

graph, rather than a collection of pseudocode statements. Such an abstract way of

presenting algorithms simplifies the analysis of their correctness and facilitates for-

1http://www.tcs.hut.fi/Software/smodels/ .
2http://www.nku.edu/%7Ewardj1/Research/smodels cc.html .
3http://www.dbai.tuwien.ac.at/proj/dlv/ .

1

mal reasoning about their properties. In this dissertation, we extend this framework

for describing algorithms of answer set solvers. We use this abstract framework to

represent and prove the correctness of the answer set solver smodels, and also of

smodelscc, which enhances the former with learning and backjumping techniques.

The answer set systems mentioned above are based on specialized search

procedures. For the large class of tight programs [Fages, 1994] we can use SAT

solvers for finding their answer sets, because the answer sets of a tight program

coincide with models of its completion in the sense of [Clark, 1978]. SAT is one of

the most widely studied problems in computational logic, and many efficient SAT

procedures were developed over the last decade employing such sophisticated tech-

niques as backjumping and learning. Using SAT solvers for computing answer sets

allows us to take advantage of the advances in the SAT area. The main topic of

this dissertation is developing a SAT-based approach for finding answer sets of a

program. We designed a new answer set solver cmodels4 that is based on the fol-

lowing ideas: First, it converts the given logic program into a propositional formula

using completion. Second, cmodels clausifies the completion. Third, a satisfiability

solver is applied to the resulting formula.

For a nontight program it is still the case that each answer set corresponds

to a model of the program’s completion but not necessarily the other way around.

Lin and Zhao [2002] introduced loop formulas so that any model of completion that

satisfies all loop formulas of a program is also an answer set. The straightforward

approach of using SAT solvers on the program’s completion extended by its loop for-

mulas for finding answer sets of a program is unfortunately not feasible, because the

number of loop formulas may be exponential. Nevertheless, the system assat5 pro-

posed an algorithm that enumerates loop formulas “on demand” for finding answer

sets by means of SAT solvers. We propose another algorithm that also exploits loop

formulas but in a more sophisticated way by utilizing learning techniques available

in most modern SAT solvers and use it to extend the answer set solver cmodels to

nontight programs. cmodels operates by computing a model of completion of the

given logic program, and then continuing this process, if necessary, in the presence

of additional constraints expressed by loop formulas.

The answer set semantics was extended to programs with more general syn-

4http://www.cs.utexas.edu/users/tag/cmodels .
5http://assat.cs.ust.hk/ .

2

tax than allowed by Prolog. For instance, choice and weight constraint rules were

introduced in [Niemelä and Simons, 2000]. These rules often allow more concise

encoding but the problem of deciding whether a program with such rules has an

answer set is still NP-complete. In [Gelfond and Lifschitz, 1991] programs with

disjunctive rules were introduced. The problem of deciding whether a disjunctive

program has an answer set is ΣP
2 -complete [Eiter and Gottlob, 1993].

In this dissertation we demonstrate the possibility of using SAT solvers for

finding answer sets of programs with extended syntax. Until recently there were

only two answer set systems that allowed programs with disjunctive rules dlv and

gnt6 [Janhunen et al., 2006]. We extend the SAT-based approach to disjunctive

programs that also allow weight and choice constraints and implement this extension

in cmodels. To the best of our knowledge cmodels is the only answer set solver

that allows combination of these rules, although dlv accepts programs with similar

constructs. cmodels is a relatively new system, but it has been already used in

various application domains such as wire-routing [Erdem and Wong, 2004], recon-

struction of phylogenies [Brooks et al., 2007], formal verification of abstract state

machines [Tang and Ternovska, 2005] and planning [Son et al., 2005]. In the area

of phylogenies reconstruction cmodels outperformed specialized tools and helped

to discover previously unknown results.

We develop an abstract graph based framework for describing SAT-based

answer set solvers. We use this framework to represent the cmodels algorithm and

to demonstrate its correctness. Such representation allows us to better understand

the similarities and differences between native and SAT-based answer set solvers. We

formally compare the smodels algorithm with a variant of the cmodels algorithm

without learning.

Design of abstract frameworks for describing native and SAT-based answer

set solvers allows a clear high-level view on algorithms. This facilitates the devel-

opment of new systems. We propose and implement the answer set solver called

sup7 that can be seen as a combination of computational ideas behind cmodels

and smodels. The solver sup operates in a similar way to cmodels, by comput-

ing a sequence of models of completion of the given program, but it does not form

the completion. Instead, sup runs the Atleast algorithm, one of the main building

6http://www.tcs.hut.fi/Software/gnt/ .
7http://www.cs.utexas.edu/users/tag/sup .

3

blocks of the smodels procedure. Both systems cmodels and sup developed in

the course of this dissertation proved to be competitive answer set solvers.

The dissertation is organized as follows. Chapter 2 introduces the answer set

programming paradigm, and spans through the area’s history, its systems, and appli-

cations. Chapter 3 provides a review of propositional satisfiability. It also presents

an abstract framework introduced in [Nieuwenhuis et al., 2006] for describing the

basic satisfiability algorithm dpll and its extensions.

Chapter 4 defines traditional logic programs and introduces the notions of

completion and tightness that form the foundation of this work. Chapter 5 defines

an abstract framework for describing answer set solvers similar to the one intro-

duced in Chapter 3 for the DPLL procedure. We also represent the algorithm of

the answer set solver smodels by means of this framework and demonstrate its

correctness. Chapter 6 introduces the SAT-based method for finding answer sets for

tight traditional programs.

In Chapters 7 and 8 we discuss the extension of our method to more general

programs. Chapter 7 introduces choice and weight rules. Chapter 8 explains the

methodology of applying SAT solvers for finding answer sets of the programs that

use these syntactic features.

Chapter 9 introduces the concept of a loop formula [Lin and Zhao, 2002].

In Chapter 10 we define an abstract framework for a “generate and test” DPLL

algorithm similar to the one introduced in Chapter 3 for the DPLL procedure. Using

this abstract framework and the loop formula concept, in Chapter 11 we develop an

algorithm that applies SAT solvers for finding answer sets for nontight programs.

We prove the correctness of the new SAT-based answer set solver algorithm.

Chapter 12 defines an abstract framework for describing native answer set

solver algorithms with learning. In particular, it provides the description of the

algorithms behind systems smodelscc and sup. The development of this abstract

framework promoted the design of the system sup. At the end of the chapter we

demonstrate experimental results for this system.

Chapter 13 starts by defining disjunctive logic programs and the notions of

completion, tightness, and loop formulas for these programs. Then, it extends the

SAT-based method for finding answer sets introduced in Chapter 9 to disjunctive

programs.

In Chapter 14 we discuss the work by other researchers related to the ap-

4

proach presented in the dissertation. We conclude with Chapter 15 that summarizes

the contents of this dissertation.

5

Chapter 2

Answer Set Programming

As discussed in the introduction, answer set programming (ASP) is a new pro-

gramming paradigm introduced in [Marek and Truszczyński, 1999; Niemelä, 1999].

It is a form of declarative programming related to logic programming languages,

such as Prolog. The input of Prolog consists of a logic program and a query. In

ASP, solutions to a problem are represented by answer sets, and not by answer

substitutions produced in response to a query as in Prolog. Instead of Prolog sys-

tems, this programming method first uses grounders, such as lparse1 [Syrjanen,

2003] and gringo2 [Gebser et al., 2007a], to instantiate the variables in a given

program, and then applies answer set solvers, such as smodels [Simons and Syr-

jaenen, 2007] and dlv [Eiter et al., 1998], to generate answer sets. The systems

interpret logic programs via the answer set semantics [Gelfond and Lifschitz, 1988;

1991; Niemelä and Simons, 2000]. This approach is similar to propositional satisfi-

ability checking, where a propositional formula encodes the given problem and the

models of the formula correspond to solutions. The model generation approach in

place of query evaluation is the most characteristic feature of answer set program-

ming. ASP is oriented towards search problems occurring in the area of knowledge

representation and reasoning.

1http://www.tcs.hut.fi/Software/smodels/ .
2http://sourceforge.net/projects/gringo/ .

6

2.1 A Sample Program

Here we illustrate the answer set programming paradigm at work. We take the

problem of coloring a graph for this purpose: Consider a graph given as a set of

nodes and edges; Find a way to color the nodes with n colors such that no two

adjacent nodes are colored with the same color.

The system lparse [Syrjanen, 2003] is a front-end for a number of answer

set solvers including smodels and cmodels. It takes a logic program containing

variables in its rules, and outputs the grounded version of the program, i.e., the

program with variables instantiated by constants. Here is the program color.lp that

encodes the graph coloring problem:

% color.lp by Ilkka Niemelae

%

% Facts nodeColor(V,C) in an answer set provide

% a coloring of the graph.

nodeColor(N,C):- node(N), clr(C), not diffColor(N,C).

diffColor(N,C) :- node(N), clr(C), clr(C1), C != C1, nodeColor(N,C1).

:- edge(N1,N2), clr(C), nodeColor(N1,C), nodeColor(N2,C).

% colors

clr(1). clr(2). clr(3).

% graph description

node(a). node(b).

node(c). node(d).

edge(a,b). edge(b,c).

edge(c,d). edge(d,a).

Just as a set of clauses can have many models, a logic program can have

many answer sets. The main idea of answer set programming is that these answer

sets encode solutions to the problem. For instance, for the program color.lp every

answer set corresponds to a solution. Consider the predicate nodeColor(N,C). It

7

expresses that node N has color C. Given an answer set of color.lp program, the

atoms from this set that contain the predicate nodeColor(N,C) provide information

on how each node of the graph is colored.

Let us now discuss the intuition behind the rules in program color.lp. Con-

sider the rule

nodeColor(N,C):- node(N), clr(C), not diffColor(N,C).

It states that a node N is assigned a color C unless C differs from the color assigned

to N . The rule

diffColor(N,C) :- node(N), clr(C), clr(C1), C != C1, nodeColor(N,C1).

says that color C differs from a color assigned to a node N . These rules guarantee

that only one color is assigned to every node. We may describe these rules as the

rules that generate “candidate models”. On the other hand, the rule

:- edge(N1,N2), clr(C), nodeColor(N1,C), nodeColor(N2,C).

tests candidate models on the condition that no adjacent nodes share the same color.

The syntax and semantics of programs like this will be discussed in Chapter 4.

The system smodels computes an answer set for this program as follows:

% lparse color.lp | smodels

smodels version 2.34. Reading...done

Answer: 1

Stable Model:

nodeColor(d,3) nodeColor(b,3) nodeColor(c,2) nodeColor(a,1)

edge(d,a) edge(c,d) edge(b,c) edge(a,b)

node(d) node(c) node(b) node(a) clr(3) clr(2) clr(1)

diffColor(c,3) diffColor(a,3) diffColor(d,2) diffColor(b,2)

diffColor(a,2) diffColor(d,1) diffColor(c,1) diffColor(b,1)

Duration: 0.004

2.2 Answer Set Programming Applications

In general, answer set programming can be seen as a generic combinatorial reason-

ing and search paradigm. It is based on an implementation-independent declarative

8

semantics. This makes it easier to develop various applications, as the internal im-

plementation aspects are hidden within an answer set solver. Although answer set

programming is a new programming approach, efficient answer set solvers such as

smodels [Niemelä and Simons, 1996; Simons et al., 2002; Simons and Syrjaenen,

2007], dlv [Eiter et al., 1997; Leone and et al., 2005], and cmodels (this disser-

tation) allowed the answer set programming paradigm to be successfully applied in

various domains including

• planning [Dimopoulos et al., 1997; Lifschitz, 1999; Son et al., 2005],

• space shuttle control [Nogueira et al., 2001],

• reachability analysis [Heljanko, 1999],

• bounded model checking [Liu et al., 1998; Heljanko and Niemelä, 2003],

• logical cryptanalysis [Hietalahti et al., 2000],

• network inhibition [Aura et al., 2000],

• reasoning about policies [Son and Lobo, 2001],

• combinatorial auctions [Baral and Uyan, 2001],

• diagnosis [Eiter et al., 1999; Gelfond and Galloway, 2001; Balduccini and Gel-

fond, 2003],

• wire-routing [Erdem and Wong, 2004],

• protocol (in)security [Armando et al., 2004],

• query answering [Baral et al., 2005; Tari and Baral, 2005; Nouioua and Nicolas,

2006],

• reconstruction of phylogenies [Brooks et al., 2007],

• formal verification of abstract state machines [Tang and Ternovska, 2005],

• machine code optimization [Brain et al., 2006].

9

Chapter 3

Propositional Satisfiability

Solvers

This chapter is an introduction to the field of propositional satisfiability that plays

an important role in this work where we propose to use a satisfiability solver as

a search engine for an answer set programming system. For instance, the answer

set system cmodels that implements our approach can use various state-of-the-art

SAT solvers for search.

Propositional satisfiability (SAT) is one of the most intensely studied fields

in computational logic. Satisfiability is the problem of determining if the variables

of a given propositional formula can be assigned truth values in such a way that the

formula is evaluated to True.

During the last decade, efficient SAT solvers, such as satz [Li and Anbulagan,

1997], chaff [Moskewicz et al., 2001]), and minisat [Een and Biere, 2005] were

created. Although all known algorithms have exponential run time in the worst

case, SAT solvers have many important applications. Modern SAT solvers often

solve hard structured problem instances that involve several million of constraints

and over a million of variables [Gomes et al., 2008].

In Section 3.1 we review a pseudo code of the Davis-Putnam-Logemann-

Loveland (dpll) procedure. Section 3.2 presents dpll by means of an abstract

framework introduced in [Nieuwenhuis et al., 2006]. Later in this dissertation we

will first modify this abstract dpll framework to describe smodels [Simons, 2000],

one of the best known algorithms for finding answer sets of a program; and sec-

10

ond generalize abstract dpll framework to underline SAT-based answer set solving

method argued for in this work. Section 3.3 provides a brief introduction of such

advanced techniques commonly used in SAT solvers as restarts and conflict driven

backjumping and learning. In Section 3.4 we will extend the abstract framework

presented in Section 3.2 to capture the ideas behind backjumping and learning.

3.1 DPLL

Most modern SAT solvers are based on variations of the Davis-Putnam-Logemann-

Loveland (dpll) procedure [Davis et al., 1962]. dpll employs a systematic back-

tracking search procedure to explore the variable assignments looking for a satisfying

assignment. Let us recall that a literal is a propositional atom possibly preceded by

the classical negation symbol ¬, a clause is a disjunction of literals, a unit clause

is a clause that consists of a single literal. By l we denote a literal complementary

to literal l. Our notation below follows [Gomes et al., 2008]. We identify a formula

in conjunctive normal form with the set of clauses corresponding to its conjunctive

members. A partial assignment is a consistent set of propositional literals. We iden-

tify a partial assignment ρ with the conjunction of its elements, and also with the

function that maps to True the atoms that occur in ρ positively, and to False the

atoms that occur in ρ negatively. A literal l is unassigned by a partial assignment if

neither l nor its complement l belongs to it. A formula F is in conjunctive normal

form (CNF) if it is a conjunction of clauses.

For a partial assignment ρ and a CNF formula F , F |ρ denotes the formula

obtained from F by replacing the atoms occurring in ρ with their specified values,

and then simplifying the result by removing each clause containing at least one true

literal, and deleting all false literals from the remaining clauses. It is clear that for

any atom A and any formula F (A), F (A)|A is equivalent to F (True), and F (A)|¬A

is equivalent to F (False).

The algorithms dpll (Algorithm 1) and unit-propagate (Algorithm 2)

are reproduced almost verbatim from [Gomes et al., 2008, Section 2.2.1]. The main

difference is that we state the specification at the beginning of each algorithm more

precisely.

The algorithm unit-propagate is nondeterministic, because the unit clause x

can be chosen, generally, in many different ways. The algorithm dpll is non-

11

dpll(F, ρ)
Arguments : set F0 of clauses and a partial assignment ρ0 such that no atom

occurs both in F0 and ρ0

Value : SAT, if F0 ∧ ρ0 is satisfiable; UNSAT, otherwise
Output : a partial assignment ρ such that ρ |= ρ0 ∧ F0, if F0 ∧ ρ0 is

satisfiable;
no output, otherwise
begin

(F, ρ)← unit-propagate(F, ρ)
if F contains the empty clause then return UNSAT
if F has no clauses left then

Output ρ
return SAT

l ← a literal such that its atom occurs in F
if dpll(F |l, ρ ∪ {l}) = SAT then return SAT
return dpll(F |

l
, ρ ∪ {l})

end
Algorithm 1: dpll

unit-propagate(F ,ρ)
Arguments : set F0 of clauses and a partial assignment ρ0 such that no atom

occurs both in F0 and ρ0

begin
while F contains no empty clause but has a unit clause x do

F ← F |x
ρ← ρ ∪ {x}

return (F, ρ)
end

Algorithm 2: unit-propagate

deterministic as well, because unit-propagate is nondeterministic, and because

the literal l can be chosen, generally, in many different ways. The procedure

unit-propagate performs simplifications on a set of clauses. Consider, for in-

stance, the invocation of unit-propagate on the set of clauses {a, b ∨ ¬a} and

the empty partial assignment. It will return an empty set of clauses and a partial

assignment consisting of {a, b}.

In order to find a satisfying partial assignment for a CNF formula F , dpll is

initially invoked with the formula F and the empty partial assignment ρ. The idea

behind dpll is to select repeatedly an unassigned literal l in the input formula F

and to recursively search for a satisfying partial assignment for F |l and F |l. The

step where such an l is chosen is commonly referred to as a branching step. Setting l

12

to True or False when making a recursive call is called a decision. The end of each

recursive call that takes F back to fewer assigned variables, is called the backtracking

step.

For instance, let F be the set consisting of the clauses

a ∨ b

¬a ∨ c.

In order to find a satisfying partial assignment for F , dpll is initially invoked

with F and the empty partial assignment. It is then possible that a recursive call

to dpll(c, {a}) is made. unit-propagate(c, {a}) returns ({}, {a, c}). Since the set

of clauses is empty after the invocation of unit-propagate, dpll(c, {a}) outputs

{a, c} as a satisfying partial assignment and returns SAT. Consequently, dpll(F, ∅)

also returns SAT.

3.2 Abstract DPLL

As mentioned in the previous section, most modern SAT solvers implement enhance-

ments of the dpll procedure. Usually these enhancements of dpll are described

fairly informally with the use of pseudocode. It is often difficult to understand the

precise meaning of these modifications and to prove their properties on the basis of

such informal descriptions. In [Nieuwenhuis et al., 2006], the authors proposed an

alternative approach to describing dpll and its enhancements (for instance, back-

jumping and learning discussed in Sections 3.3 and 3.4). They describe variants of

dpll by means of transition systems that can be viewed as an abstract framework

underlying the dpll computation.

This section of the dissertation presents dpll by means of an abstract frame-

work. In Section 5.2 we adopt an abstract framework for describing the smodels

algorithm [Simons, 2000] for finding answer sets of a program. We then will gen-

eralize an abstract dpll framework to underline the SAT-based answer set solving

method argued for in this dissertation.

The abstract framework introduced in [Nieuwenhuis et al., 2006] describes

what ”states of computation” are, and which transitions between states are allowed.

In this way, it defines a directed graph such that every execution of the dpll proce-

dure corresponds to a path in this graph. Some edges may correspond to unit prop-

13

agation steps, some to branching, some to backtracking. This allows us to model a

dpll algorithm by a mathematically simple and elegant object, graph, rather than

a collection of pseudocode statements. Such an abstract way of presenting dpll

simplifies the analysis of its correctness and facilitates formal reasoning about its

properties. Instead of reasoning about pseudocode constructs, we can reason about

properties of a graph. For instance, by proving that the graph corresponding to a

version of dpll is acyclic we demonstrate that the algorithm always terminates. On

the other hand, by checking that every terminal state corresponds to a solution we

establish the correctness of the algorithm.

The graph introduced in [Nieuwenhuis et al., 2006] is actually an imperfect

representation of dpll in the sense that some paths in the graph do not correspond

to any execution of dpll (for example, paths in which branching is used even

though unit propagation is applicable). But this level of detail is irrelevant when

we talk about correctness. Furthermore, it makes the correctness theorems more

general. These theorems cover not only executions of the pseudo-code, but also

some computations that are prohibited by its details.

We start by reviewing the abstract framework for dpll developed in [Nieuwen-

huis et al., 2006] in a form convenient for our purposes, as in [Lierler, 2008].

For a set σ of atoms, a record M relative to σ is a list of literals over σ where

(i) some literals in M are annotated by ∆ that marks them as decision literals,

(ii) M contains no repetitions.

The concatenation of two such lists is denoted by juxtaposition. Frequently, we

consider a record as a set of literals, ignoring both the annotations and the order

between its elements. A literal l is unassigned by a record if neither l nor its

complement l belongs to it.

A state relative to σ is either a distinguished state FailState or a record

relative to σ. For instance, the states relative to a singleton set {a} of atoms are

FailState, ∅, a, ¬a, a∆, ¬a∆, a ¬a, a∆ ¬a,

a ¬a∆, a∆ ¬a∆,¬a a, ¬a∆ a, ¬a a∆, ¬a∆ a∆,

where by ∅ we denote the empty list.

If C is a disjunction (conjunction) of literals then by C we understand the

14

Unit Propagate:

M =⇒ M l if

{

C ∨ l ∈ F and

C ⊆M

Decide:

M =⇒ M l∆ if

{

M is consistent and
l is unassigned by M

Fail :

M =⇒ FailState if

{

M is inconsistent and
M contains no decision literals

Backtrack :

P l∆ Q =⇒ P l if

{

P l∆ Q is inconsistent, and
Q contains no decision literals

Figure 3.1: The transition rules of the graph dpF .

conjunction (disjunction) of the complements of the literals occurring in C. We will

sometimes identify a conjunction (disjunction) with the multiset of its elements.

Given multisets X and Y , by X ⊆ Y we denote that every element of X is also an

element of Y . (This is different from standard definition of ⊆ for multisets1 which

takes into account the multiplicity of elements.)

For any CNF formula F (a finite set of clauses), we will define the DPLL

graph dpF . The nodes of dpF are the states relative to the set of atoms occurring

in F . We use the terms “state” and “node” interchangeably. Recall that a node is

called terminal in a graph if there is no edge leaving this node in the graph. If a

state is consistent and complete then it represents a truth assignment for F .

The set of edges of dpF is described by a set of “transition rules.” Each

transition rule is an expression M =⇒ M ′ followed by a condition, where M and M ′

are nodes of dpF . Whenever the condition is satisfied, the graph contains an edge

from node M to M ′. Figure 3.1 presents four transition rules that characterize the

edges of dpF .

This graph can be used for deciding the satisfiability of a formula F simply

by constructing an arbitrary path leading from node ∅ until a terminal node M is

1http://en.wikipedia.org/wiki/Multiset

15

reached. The following theorem shows that this process always terminates, that F

is unsatisfiable if M is FailState, and that M is a model of F otherwise.

Theorem 1. For any CNF formula F ,

(a) graph dpF is finite and acyclic,

(b) any terminal state of dpF other than FailState is a model of F ,

(c) FailState is reachable from ∅ in dpF if and only if F is unsatisfiable.

For instance, let F be the set consisting of the clauses

a ∨ b

¬a ∨ c.

Here is a path in dpF with every edge annotated by the name of a transition rule

that justifies the presence of this edge in the graph:

∅ =⇒ (Decide)

a∆ =⇒ (Unit Propagate)

a∆ c =⇒ (Decide)

a∆ c b∆

(3.1)

Since the state a∆ c b∆ is terminal, Theorem 1(b) asserts that {a, c, b} is a model

of F . Here is another path in dpF from ∅ to the same terminal node:

∅ =⇒ (Decide)

a∆ =⇒ (Decide)

a∆ ¬c∆ =⇒ (Unit Propagate)

a∆ ¬c∆ c =⇒ (Backtrack)

a∆ c =⇒ (Decide)

a∆ c b∆

(3.2)

Path (3.1) corresponds to an execution of dpll in the sense of [Davis et al., 1962];

path (3.2) does not, because it applies Decide to a∆ even though Unit Propagate

could be applied in this state.

Note that the graph dpF is a modification of the classical DPLL graph defined

in [Nieuwenhuis et al., 2006, Section 2.3]. It is different in three ways. First, its

16

states are pairs M ||F for all CNF formulas F . For the purposes of this section,

it is not necessary to include F . Second, the description of the classical DPLL

graph involves a “PureLiteral” transition rule. Third, in the definition of the graph

in [Nieuwenhuis et al., 2006, Section 2.3], each M is required to be consistent. In

case of DPLL, due to the simple structure of a clause, it is possible to characterize

the applicability of Backtrack in a simple manner: when some of the clauses become

inconsistent with the current partial assignment, Backtrack is applicable. In ASP,

it is not easy to describe the applicability of Backtrack if only consistent states are

taken into account. We introduce inconsistent states in the graph dpF , because

in the Section 5.2 we will modify dpF in order to characterize the computation of

answer sets of a logic program by means of the smodels algorithm.

Theorem 1 is similar to Theorems 2.10 and 2.13 in [Nieuwenhuis et al., 2006,

Section 2.5] but they are not equivalent because the graphs considered in the theo-

rems differ. We will present a proof of Theorem 1 in the rest of this section and we

will refer to this proof later in the dissertation.

Lemma 1. For any CNF formula F and any state l1 . . . ln reachable from ∅ in

dpF , every model X of F satisfies li if it satisfies all decision literals l∆j with j ≤ i.

Proof. By induction on the path from ∅ to l1 . . . ln. The property of X that we need

to prove trivially holds in the initial state ∅, and we will prove that all transition

rules of dpF preserve it.

Take a model X of F , and consider an edge M =⇒ M ′ where M is a list

l1 . . . lk such that X satisfies li if it satisfies all decision literals l∆j with j ≤ i.

It is clear that the rule justifying the transition from M to M ′ is different

from Fail . For each of the other three rules, M ′ is obtained from a prefix of M

by appending a list of literals containing at most one decision literal. Due to the

inductive hypothesis, it is sufficient to show that if X satisfies all decision literals in

M ′ then X satisfies all M ′.

Unit Propagate: M ′ is M l. By the inductive hypothesis, for every literal

in M the property in question holds. We need to show that X |= l. From the

definition of Unit Propagate, for some clause C ∨ l ∈ F , C ⊆ M . Consequently,

M |= ¬C. From the inductive hypothesis and the assumption that X satisfies all

decision literals in M ′ and hence in M , it follows that X |= M . Since X is a model

of F , we conclude that X |= l.

17

Decide: M ′ is M l∆. Obvious.

Backtrack : M has the form P l∆ Q where Q contains no decision literals. M ′

is P l. By the inductive hypothesis, it trivially follows that for every literal in P

the property in question holds. We need to show that X |= l. Assume that X |= l.

Since Q does not contain decision literals, and the assumption that X satisfies all

decision literals in M ′ and hence in P , X satisfies all decision literals in P l∆ Q, that

is M . By the inductive hypothesis, it follows that X satisfies M . This is impossible

because M is inconsistent.

Proof of Theorem 1

(a) The finiteness of dpF is obvious. For any list N of literals by |N | we denote the

length of N . Any state M other than FailState has the form M0 l∆1 M1 . . . l∆p Mp,

where l∆1 . . . l∆p are all decision literals of M ; we define α(M) as the sequence of

nonnegative integers |M0|, |M1|, . . . , |Mp|, and α(FailState) = ∞. By the definition

of the transition rules defining the edges of dpF , if there is an edge from a state M

to M ′ in dpF then α(M) < α(M ′), where < is understood as the lexicographical

order. It follows that if a state M ′ is reachable from M then α(M) < α(M ′).

Consequently the graph is acyclic.

(b) Consider any terminal state M other than FailState. From the fact that Decide

is not applicable, we conclude that M has no unassigned literals. Since neither

Backtrack nor Fail is applicable, M is consistent. Consequently M is an assignment.

It follows that for any clause C ∨ l ∈ F if C 6⊆ M then C ∩M 6= ∅. Furthermore,

since Unit Propagate is not applicable, we conclude that if C ⊆ M then l ∈ M .

Consequently, M |= C ∨ l. Hence M is a model of F .

(c) Left-to-right: Since FailState is reachable from ∅, there is an inconsistent state M

without decision literals that is reachable from ∅. By Lemma 1, any model of F

satisfies M . Since M is inconsistent we conclude that F has no models.

Right-to-left: From (a) it follows that there is a path from ∅ to some ter-

minal state. By (b), this state cannot be different from FailState, because F is

unsatisfiable.

18

3.3 Strategies and Techniques

State-of-the-art SAT solvers augment the basic dpll algorithm with a number of

advanced features that make these systems applicable and successful in solving large

SAT instances. In this section we provide a brief description of some of these

sophisticated strategies.

Stallman and Sussman [1977] introduced conflict-driven backjumping that

allows a solver to backtrack directly to a decision level where branching step took

place on a variable that caused a conflict. This technique preserves the completeness

of search but allows the solver to enhance its computation by skipping parts of the

search tree that are not essential.

Clause learning [Marques-Silva and Sakallah, 1996b; Bayardo and Schrag,

1997; Zhang et al., 2001; Dixon et al., 2004] brought the field of propositional satisfi-

ability to new computational heights. The main idea behind it is to learn, or in other

words save, the so-called conflict clauses to the original database of clauses. Conflict

clauses are gained from the preceding computation (once backtrack or backjump is

performed), and help the solver to disregard the irrelevant search tree branches in

the future. It has been shown that clause learning can exponentially improve the

basic dpll procedure [Beame et al., 2004]. Forgetting is a technique that allows

a solver to disregard previously learned clauses once they are not helpful. This

technique permits controlling the growth of a solver’s clause database.

Gomes et al. [1998] introduced the idea of randomized restarts, that allows

a solver to interrupt its branching at one point of the tree and start the search over

at another point. Baptista and Marques-Silva [2000] extended the approach further

by combining it with the clause learning technique and permitting the solver to

keep learned clauses as part of original clause database after a restart. Most of the

modern SAT solvers employ restart strategies, sometimes restarting after as few as

20 to 50 backtracks. Once a solver restarts, it usually starts the search from scratch.

3.4 Abstract DPLL with Backjumping and Learning

Nieuwenhuis et al. [2006, Section 2.4] defined the DPLL System with Learning

graph that can be used to describe most of the modern SAT solvers which typically

implement such sophisticated techniques as backjumping, learning, forgetting, and

19

Unit Propagate λ:

M ||Γ =⇒ M l||Γ if

{

C ∨ l ∈ F ∪ Γ and

C ⊆M
Backjump:

P l∆ Q||Γ =⇒ P l′||Γ if

{

P l∆ Q is inconsistent and

F |= l′ ∨ P
Learn:

M ||Γ =⇒ M || C, Γ if

{

every atom in C occurs in F and
F |= C

Figure 3.2: The additional transition rules of the graph dplF .

restarts discussed in Section 3.3.

In this section we will extend the graph dpF to capture the ideas behind

backjumping and learning. The new graph will be closely related to the DPLL

System with Learning graph introduced in [Nieuwenhuis et al., 2006, Section 2.4].

We first note that the graph dpF is not adequate to capture such technique

as learning since it is incapable to reflect a change in a state of computation related

to newly learned clauses. We start by redefining a state so that it incorporates

information about changes performed on a clause database.

For a CNF formula F , an augmented state relative to F is either a distin-

guished state FailState or a pair M ||Γ where M is a record relative to the set of

atoms occurring in F , and Γ is a (multi)set of clauses over atoms of F that are

entailed by F .

We now define a graph dplF for any CNF formula F . Its nodes are the

augmented states relative to F . The transition rules Decide and Fail of dpF are

extended to dplF as follows: M ||Γ =⇒ M ′||Γ (M ||Γ =⇒ FailState) is an edge in

dplF justified by Decide (Fail) if and only if M =⇒ M ′ (M =⇒ FailState) is an

edge in dpF justified by Decide (Fail). Figure 3.2 presents the other transition rules

of dplF . We refer to the transition rules Unit Propagate λ, Backjump, Decide, and

Fail of the graph dplF as Basic. We say that a node in the graph is semi-terminal

if no rule other than Learn is applicable to it.

We will omit the word “augmented” before “state” when this is clear from a

context.

The graph dplF can be used for deciding the satisfiability of a formula F

20

simply by constructing an arbitrary path from node ∅||∅ to a semi-terminal node:

Theorem 2. For any CNF formula F ,

(a) every path in dplF contains only finitely many edges justified by Basic tran-

sition rules,

(b) for any semi-terminal state M ||Γ of dplF reachable from ∅||∅, M is a model

of F ,

(c) FailState is reachable from ∅||∅ in dplF if and only if F is unsatisfiable.

On the one hand, Theorem 2 (a) asserts that if we construct a path from

∅||∅ so that Basic transition rules periodically appear in it then some semi-terminal

state will be eventually reached. On the other hand, Theorem 2 (b) and (c) assert

that as soon as a semi-terminal state is reached the problem of deciding whether

formula F is satisfiable is solved. The proof of this theorem is similar to the proof

of Theorem 2.12 from [Nieuwenhuis et al., 2006].

For instance, let F be the formula

a ∨ b

¬a ∨ c.

Here is a path in dplF :

∅||∅ =⇒ (Learn)

∅||b ∨ c =⇒ (Decide)

¬b∆||b ∨ c =⇒ (Unit Propagate λ)

¬b∆ c||b ∨ c =⇒ (Unit Propagate λ)

¬b∆ c a||b ∨ c

(3.3)

Since the state ¬b∆ c a is semi-terminal, Theorem 2 (b) asserts that {¬b, c, a} is a

model of F .

Recall that the transition rule Backtrack of the graph dpF – a prototype of

Backjump – is applicable in any inconsistent state with a decision literal in dpF .

The transition rule Backjump, on the other hand, is applicable in any inconsistent

state with a decision literal that is reachable from ∅||∅ (the proof of this statement is

similar to the proof of Lemma 2.8 from [Nieuwenhuis et al., 2006]). The application

21

of Backjump where l∆ is the last decision literal and l′ is l can be seen as an applica-

tion of Backtrack . This fact shows that Backjump is essentially a generalization of

Backtrack . The subgraph of dpF induced by the nodes reachable from ∅ is basically

a subgraph of dplF .

In order to model such techniques as forgetting and restarts Nieuwenhuis et

al. [2006] extend the graph dplF with the following transition rules that capture

the ideas behind these techniques:

Restart :

M ||Γ =⇒ ∅||Γ

Forget :

M ||C, Γ =⇒ M ||Γ.

It is easy to prove a result similar to Theorem 2 for the graph dplF with Restart

and Forget (for such graph a state is semi-terminal if no rule other than Learn,

Restart , Forget is applicable to it.)

22

Chapter 4

Background: Traditional ASP

Programs

This chapter starts by introducing logic programs with conventional Prolog syntax

that we call traditional. Section 4.2 defines the answer set semantics, also called the

stable model semantics, for such programs.

Our approach to computing answer sets heavily relies on the relation between

the answer set semantics of logic programs and the completion semantics: beginning

with Fages’ findings that for ”tight” logic programs these semantics coincide with

each other. This fact led us to the idea of using SAT solvers as answer set solvers

for tight programs, discussed in Chapter 6. Section 4.3 describes the concept of an

unfounded set that is strongly related to an answer set. Section 4.4 introduces the

concept of completion. Section 4.5 defines tightness and states the Fages theorem.

Section 4.6 presents details on one of the best known answer set systems Smodels.

The system Smodels consists of two major components: the grounder lparse and

the solver smodels. Section 4.6 also describes the grounder gringo.

Although the syntax of logic programs allows variables, as for instance in

color.lp program in Section 2.1, the theory and definitions that we provide here deal

with propositional programs only. This is due to the fact that a rule with variables

can be interpreted as an abbreviation for a set of propositional rules. In fact, most

modern answer set solvers use off-the-shelf grounders, such as lparse, to perform a

transformation of a program with variables into a propositional program. Therefore

it is sufficient to review the definitions and theory for the propositional case.

23

4.1 Logic Program

A traditional logic program consists of rules of the form

a← b1, . . . , bl, not bl+1, . . . , not bm (4.1)

where a is a (propositional) atom or symbol ⊥, and each bi (1 ≤ i ≤ m) is a

(propositional) atom. We call such rules traditional. We call a the head of the rule,

and

b1, . . . , bl, not bl+1, . . . , not bm

its body.

We will identify the body of (4.1) with the conjunction

b1 ∧ · · · ∧ bl ∧ ¬bl+1 ∧ . . .¬bm (4.2)

and also with the set of its conjunctive terms. If the head a of a rule (4.1) is an

atom then we will identify (4.1) with the clause

a ∨ ¬b1 ∨ · · · ∨ ¬bl ∨ bl+1 ∨ . . . bm. (4.3)

If a is ⊥ then we call rule (4.1) a constraint and identify (4.1) with the clause

¬b1 ∨ · · · ∨ ¬bl ∨ bl+1 ∨ . . . bm. (4.4)

We will often use two abbreviated forms for a rule (4.1): The first is

a← B (4.5)

where B stands for b1, . . . , bl, not bl+1, . . . , not bm. The second abbreviation is

a← D,F (4.6)

where D stands for the positive part of the body b1, . . . , bl, and F stands for the

negative part of the body not bl+1, . . . , not bm.

By Bodies(Π, a) we denote the set of the bodies of all rules of Π with head a.

24

4.2 Answer Sets

In order to state the definition of an answer set (also called stable model) for a

program we first need to define the notions of satisfaction and a reduct.

We identify a set of atoms with the truth assignment that maps the elements

of the set to True, and all other atoms to False. The definition of when a set of

atoms satisfies a rule, a head, or a body is the usual definition of satisfaction in

propositional logic. We say that a set X of atoms satisfies a program Π (sym-

bolically, X |= Π) if X satisfies every rule of Π. We call such a set X a model of

program Π.

The reduct ΠX of a program Π with respect to a set X of atoms is the

program obtained from Π by

• removing each rule (4.6) such that F ∩X 6= ∅, and

• replacing each remaining rule (4.6) by a← D.

A set X of atoms is an answer set for a program Π if X is minimal (with

respect to set inclusion) among the sets of atoms that satisfy the reduct ΠX [Gelfond

and Lifschitz, 1988].

It is easy to show that an answer set M of a program Π is also always a

model of Π.

For instance, let Π be the program

a← not b

b← not a.

Consider set {a}. Reduct Π{a} is

a← ⊤

b← ⊥

or, equivalently,

a← (4.7)

Set {a} satisfies the reduct and is minimal, hence {a} is an answer set of Π.

Consider set {a, b}. The reduct Π{a,b} contains no rules. Hence ∅ is its

minimal model. Set {a, b} is not an answer set of Π.

25

Note that if some program Π consists only of the rules with the empty neg-

ative part F of the body, then Π is identical to the reduct of Π with respect to any

set of atoms. Furthermore, if such a program Π does not contain constraints then Π

can be seen as a set of Horn clauses (Horn formula). There is an algorithm linear

in the size of the Horn formula for finding minimal model of the formula [Dowling

and Gallier, 1984]. Trivially, this minimal model coincides with the unique answer

set for such Π.

4.3 Unfounded Sets

For any set M of literals, by M+ we denote the set of positive literals from M . For

instance, {a, ¬b}+ is {a}.

A set U of atoms occurring in a program Π is said to be unfounded [Van Gelder

et al., 1991] on a consistent set M of literals with respect to Π if for every a ∈ U

and every B ∈ Bodies(Π, a), M |= ¬B or U ∩ B+ 6= ∅. There is a tight relation

between unfounded sets and answer sets: For any model M of a program Π, M+

is an answer set for Π if and only if M contains no non-empty subsets unfounded

on M with respect to Π (Corollary 2 from [Saccá and Zaniolo, 1990])1.

For instance, let Π be the program

a← not b

b← not a

c← a

d← d.

(4.8)

Let M be the consistent set {a,¬b, c, d} of literals. Set M+ = {a, c, d} is not an

answer set of Π. Accordingly, its subset {d} is unfounded on {a,¬b, c, d} with respect

to Π, because the only rule in Π with d in the head

d← d

is such that U ∩B+ = {d} ∩ {d} 6= ∅.

1Corollary 2 from [Saccá and Zaniolo, 1990] refers to ”assumption sets” rather than unfounded
sets. But, as the authors noted, in the context of this corollary the two concepts are equivalent.

26

4.4 Completion and Supported Models

Keith Clark [1978] proposed the reduction from logic programs to propositional

formulas called completion. Originally, Clark introduced this notion for Prolog

rules with variables. Within this dissertation, it is sufficient to state his definition

for the case of propositional programs only.

The completion of program Π, Comp(Π), can be defined as the set of propo-

sitional formulas that consists of the implications

B → a (4.9)

for all rules (4.5) in Π and the implications

a→
∨

B∈Bodies(Π,a)

B (4.10)

for all atoms a occurring in Π.

The intuition behind formula (4.9) is that the bodies of the rules of Π with the

head a can be viewed as sufficient conditions for a; (4.10) states that the disjunction

of these sufficient conditions for a is also necessary.

For instance, let Π be the program

a← not b

b← not a

c← a

c← b.

(4.11)

Its completion is

¬b→ a

¬a→ b

a→ c

b→ c

a→ ¬b

b→ ¬a

c→ a ∨ b.

Sets {a, c} and {b, c} are the only models of the completion.

27

For any program Π, models of its completion are also known as supported

models of Π: a set M of atoms is a supported model of Π, if for every atom a ∈M ,

M |= B for some B ∈ Bodies(Π, a). Indeed, for a program (4.11) its models of

completion {a, c} and {b, c} are the only supported models of the program. Consider

set {a, c}, it is “supported” by the first and the third rules of program (4.11).

4.5 Tightness

There is a close relation between the answer set semantics of logic programs and

completion. For instance, Marek and Subrahmanian [1989] showed that any answer

set of a program is also a model of its completion. Moreover, it is well know that

the models of the program’s completion coincide with the supported models of the

program.

Theorem 3 (Theorem on Completion). [Marek and Subrahmanian, 1989] For

any traditional program Π, any answer set for Π satisfies the program’s completion

Comp(Π).

Nevertheless, the converse does not always hold. Consider program (4.8). Its

completion has four models:

{a, c} {b} {a, c, d} {b, d}.

Only the first two models are answer sets of the program.

Fages [1994] defined a syntactic condition on a program called ”tightness”

such that if a logic program is “tight” then its answer sets are identical to the models

of its completion.

The dependency graph of a program Π is the directed graph G such that

- the vertices of G are the atoms occurring in Π,

- for every rule (4.6) in Π that is not a constraint, G has an edge from atom a

to each atom in D .

A program is called tight if its dependency graph is acyclic.

For instance, consider program (4.11). Its dependency graph, shown in Fig-

ure 4.1, is acyclic. Hence the program is tight.

28

a c b

Figure 4.1: Dependency graph of program (4.11)

On the other hand, the dependency graph for program (4.8) contains a cycle

from vertex d to itself. Program (4.8) is not tight.

Fages [1994] proved that for any tight program, its answer sets and models

of its completion coincide.

Theorem 4 (Theorem on Tight Programs). For any tight traditional program Π and

any set X of atoms, X is an answer set for Π if and only if X satisfies Comp(Π).

For instance, consider the tight program (4.11). The sets {a, c}, {b, c} are

the only answer sets of the program, and they are identical to the models of the

program’s completion.

Fages’ observation led us to the idea that for tight programs SAT solvers can

be used for computing answer sets of logic programs [Babovich et al., 2000].

4.6 Answer Set Solver Smodels, and Grounders Lparse

and Gringo

The answer set programming system Smodels consists of two components: the

grounder lparse and the solver smodels. The answer set solver cmodels, which

is our implementation of the SAT-based method introduced in this dissertation,

utilizes the grounder lparse of Smodels as its front-end.

Smodels, with its front-end lparse, is one of the best known answer set

systems. Its programs are composed of atoms and logic rules. In this chapter we

only cover the case of traditional rules, but the syntax of Smodels is more general.

Chapter 7 will talk about programs containing rules with more general syntax. The

front-end lparse performs the ”grounding” on the program by instantiating its

variables.

The description of the grounding procedure that lparse performs is beyond

the scope of this work (see [Syrjanen, 2003]). But here we provide an example to

demonstrate the ideas behind lparse. Consider the following logic program test.lp:

29

a(1).

a(2).

b(X):-a(X), not c(X).

c(X):-a(X), not b(X).

The grounder lparse determines two possible values, i.e., 1 and 2, for the vari-

able X, because in each rule where X occurs, X also appears in the predicate a

in the positive part of the body, which holds for 1 and 2. lparse produces the

following traditional program:

a(1).

a(2).

b(1) :- not c(1).

b(2) :- not c(2).

c(1) :- not b(1).

c(2) :- not b(2).

Note that lparse also simplifies a program while grounding. For instance, predicate

a disappeared from bodies of the rules in the program.

The command line

% lparse test.lp | smodels

invokes the grounder lparse and the answer set solver smodels on this sample

program. The output of the system is

smodels version 2.34. Reading...done

Answer: 1

Stable Model: c(2) b(1) a(2) a(1)

This is only one of four answer sets of the program. The command line

% lparse test.lp | smodels 0

would instruct smodels to find all answer sets.

In [Gebser et al., 2007a], the authors introduced a grounder, called gringo,

which input language features a wider class of programs than accepted by lparse.

Its output language coincides with the one of lparse. gringo supports a number of

30

sophisticated techniques that often allow it to produce more concise ground instances

of problems than lparse. Similarly to the use of lparse in combination with

smodels, the command line

% gringo test.lp | smodels

invokes the grounder gringo and the answer set solver smodels on the sample

program test.lp.

The answer set solver smodels has been used for solving search problems

in many domains. It could successfully compete with a special purpose commercial

integer programming tool CPLEX in a verification application2 [Heljanko, 1999].

Similarly, Heljanko and Niemelä [2003] demonstrated that smodels could be effi-

ciently applied to bounded LTL model checking. Also smodels was used as part of a

multi-platform toolchain toast [Brain et al., 2006] that applies super optimization

techniques to machine instruction programs. toast uses answer set programming

as a scalable computational engine for conducting search over complex, non-regular

domains.

The computational ideas behind the answer set solver smodels are closely

related to the classical SAT procedure dpll. In the next chapter we will introduce

the smodels algorithm by means of an abstract framework similar to the one in

Section 3.2.

2Mcsmodels tool http://www.tcs.hut.fi/∼kepa/tools/

31

Chapter 5

Abstract Description of Answer

Set Solvers

In this chapter we provide details on the answer set solver smodels by describing its

algorithm using an abstract framework similar to the one introduced in Section 3.2.

In Section 5.2 we define a graph representing the application of the smodels algo-

rithm to a program, and in Section 5.3 we describe this algorithm by means of the

graph. As a step in this direction, in Section 5.1 we describe a simpler graph repre-

senting an algorithm for generating supported models of a program. Section 5.1.2

talks about the relation between dpll and an algorithm for generating supported

models of a program. Section 5.4 establishes the tight relation between the smodels

procedure applied to a tight program and dpll applied to the program’s completion.

5.1 Generating Supported Models

In Section 5.2 we will define, for an arbitrary program Π, a graph smΠ representing

the application of the smodels algorithm to Π; the terminal nodes of smΠ are

answer sets of Π. We start by describing a simpler graph atleastΠ.

5.1.1 Graph atleastΠ

The terminal nodes of atleastΠ are supported models of Π1.

1The transition rules defining atleastΠ are closely related to procedure Atleast [Simons, 2000,
Sections 4.1], which is one of the core procedures of the smodels algorithm.

32

Unit Propagate LP :

M =⇒ M a if

{

a← B ∈ Π and
B ⊆M

All Rules Cancelled :

M =⇒ M ¬a if B ∩M 6= ∅ for all B ∈ Bodies(Π, a)

Backchain True:

M =⇒ M l if















a← B ∈ Π,
a ∈M,

B′ ∩M 6= ∅ for all B′ ∈ Bodies(Π, a) \B ,
l ∈ B

Backchain False:

M =⇒ M l if







a← l, B ∈ Π,
¬a ∈M or a = ⊥,
B ⊆M

Figure 5.1: The additional transition rules of the graph atleastΠ.

The nodes of atleastΠ are the states relative to the set of atoms occurring

in Π. The edges of the graph atleastΠ are described by the transition rules Decide,

Fail , Backtrack introduced in Section 3.2 and the additional transition rules2 pre-

sented in Figure 5.1. Note that each of the rules Unit Propagate LP and Backchain

False is similar to Unit Propagate: the former corresponds to Unit Propagate on

C ∨ l where l is the head of the rule, and the latter corresponds to Unit Propagate

on C ∨ l where l is an element of the body of the rule.

This graph can be used for deciding whether program Π has a supported

model by constructing a path from ∅ to a terminal node:

Theorem 5. For any program Π,

(a) graph atleastΠ is finite and acyclic,

(b) any terminal state of atleastΠ other than FailState is a supported model of Π,

(c) FailState is reachable from ∅ in atleastΠ if and only if Π has no supported

models.

2The names of some of these rules follow [Ward, 2004].

33

For instance, let Π be program (4.8). Here is a path in atleastΠ:

∅ =⇒ (Decide)

a∆ =⇒ (Unit Propagate LP)

a∆ c =⇒ (All Rules Cancelled)

a∆ c ¬b =⇒ (Decide)

a∆ c ¬b d∆

(5.1)

Since the state a∆ c ¬b d∆ is terminal, Theorem 5(b) asserts that {a, c,¬b, d} is a

supported model of Π.

The assertion of Theorem 5 will remain true if we drop the transition rules

Backchain True and Backchain False from the definition of atleastΠ.

In the rest of this section we give a proof of Theorem 5.

Lemma 2. For any program Π and any state l1 . . . ln reachable from ∅ in atleastΠ,

every supported model X for Π satisfies li if it satisfies all decision literals l∆j with

j ≤ i.

Proof. By induction on the path from ∅ to l1 . . . ln. Similar to the proof of Lemma 1.

We will show that the property in question is preserved when the transition from M

to M ′ is justified by any of the four new rules.

Take a supported model X for Π, and consider an edge M =⇒M ′ where M

is a list l1 . . . lk such that X satisfies li if it satisfies all decision literals l∆j with

j ≤ i.

Assume that X satisfies all decision literals in M ′.

Unit Propagate LP : M ′ is M a. By the inductive hypothesis, for every literal

in M the property in question holds. We need to show that X |= a. By the definition

of Unit Propagate LP , B ⊆M for some rule a← B. Consequently, M |= B. From

the inductive hypothesis and the assumption that X satisfies all decision literals

in M ′ and hence in M , it follows that X |= M . Since X is a model of Π we conclude

that X |= a.

All Rules Cancelled : M ′ is M ¬a and B∩M 6= ∅ for every B ∈ Bodies(Π, a).

Consequently, M |= ¬B for every B ∈ Bodies(Π, a). By the inductive hypothesis,

for every literal in M the property in question holds. We need to show that X |= ¬a.

By contradiction. Assume that X |= a. From the inductive hypothesis and the

34

assumption that X satisfies all decision literals in M ′ and hence in M , it follows

that X |= M . Since M |= ¬B for every B ∈ Bodies(Π, a), it follows that X |= ¬B.

We conclude that X is not a supported model of Π.

Backchain True: M ′ is M l. By the inductive hypothesis, for every literal in

M the property in question holds. We need to show that X |= l. By contradiction.

Assume X |= l. Consider the rule a ← B corresponding to this application of

Backchain True. Since l ∈ B, X |= ¬B. By the definition of Backchain True,

B′ ∩M 6= ∅ for every B′ in Bodies(Π, a) \B. Consequently, M |= ¬B′ for every B′

in Bodies(Π, a) \ B. From the inductive hypothesis and the assumption that X

satisfies all decision literals in M ′ and hence in M , it follows that X |= M . We

conclude that X |= ¬B′ for every B′ in Bodies(Π, a)\B. Hence X is not supported

by Π.

Backchain False: M ′ is M l. By the inductive hypothesis, for every literal

in M the property in question holds. We need to show that X |= l. By contradiction.

Assume that X |= l. By the definition of Backchain False there exists a rule a← l, B

in Π such that ¬a ∈M and B ⊆M . Consequently, M |= ¬a and M |= B. From the

inductive hypothesis and the assumption that X satisfies all decision literals in M ′

and hence in M , it follows that X |= M . We conclude that X |= ¬a and X |= B.

From the fact that X |= l, it follows that X does not satisfy the rule a ← l, B, so

that it is not a model of Π.

Proof of Theorem 5

Parts (a) and (c) are proved as in the proof of Theorem 1, using Lemma 2.

(b) Let M be a terminal state so that none of the rules are applicable. From the

fact that Decide is not applicable, we conclude that M assigns all literals. Since

neither Backtrack nor Fail is applicable, M is consistent. Consequently, M is an

assignment. Since Unit Propagate LP is not applicable, it follows that for every

rule a ← B ∈ Π, if B ⊆ M then a ∈ M . Consequently, if M |= B then M |= a.

We conclude that M is a model of Π. We will now show that M is a supported

model of Π. By contradiction. Suppose that M is not a supported model. Then,

there is an atom a ∈ M such that M 6|= B for every B ∈ Bodies(Π, a). Since M

is consistent, B ∩ M 6= ∅ for every B ∈ Bodies(Π, a). Consequently, All Rules

Cancelled is applicable. This contradicts the assumption that M is terminal.

The fact that the assertion of Theorem 5 remains true if we drop the tran-

35

sition rules Backchain True and Backchain False from the definition of atleastΠ

follows from the proof of Theorem 5 (b) that does not refer to those rules.

5.1.2 Relation between dpF and atleastΠ

Recall that the supported models of a program can be characterized as models of

the program’s completion. It turns out that the graph atleastΠ is identical to the

graph dpF , where F is the (clausified) completion of Π. To make this claim precise,

we first review the notion of completion.

For any program Π, its completion consists of Π and the formulas that can

be written as

¬a ∨
∨

B∈Bodies(Π,a)

B (5.2)

for every atom a in Π. CNF-Comp(Π) is the completion converted to CNF using

straightforward equivalent transformations. In other words, CNF-Comp(Π) consists

of clauses of two kinds:

1. the rules a← B of the program written as clauses

a ∨B, (5.3)

2. formulas (5.2) converted to CNF using the distributivity of disjunction over

conjunction3.

Theorem 6. For any program Π, the graphs atleastΠ and dpCNF-Comp(Π) are

equal.

For instance, let Π be the program

a← b, not c

b.
(5.4)

Its completion is

(a↔ b ∧ ¬c) ∧ b ∧ ¬c, (5.5)

3It is essential that repetitions are not removed in the process of clausification. For instance,
CNF-Comp(a← not a) is the formula (a ∨ a) ∧ (¬a ∨ ¬a).

36

and CNF-Comp(Π) is

(a ∨ ¬b ∨ c) ∧ (¬a ∨ b) ∧ (¬a ∨ ¬c) ∧ b ∧ ¬c. (5.6)

Theorem 6 asserts that atleastΠ coincides with dpCNF-Comp(Π).

From Theorem 6 it follows that applying the Atleast algorithm to a program

essentially amounts to applying dpll to its completion.

In the rest of this section we give a proof of Theorem 6.

It is easy to see that the states of the graphs atleastΠ and dpCNF-Comp(Π)

coincide. We will now show that the edges of atleastΠ and dpCNF-Comp(Π) coincide

also.

It is clear that there is an edge M =⇒ M ′ in atleastΠ justified by the

rule Decide if and only if there is an edge M =⇒ M ′ in dpCNF-Comp(Π) justified

by Decide. The same holds for the transition rules Fail and Backtrack .

We will now show that if there is an edge from a state M to a state M ′ in

the graph dpCNF-Comp(Π) justified by the transition rule Unit Propagate then there

is an edge from M to M ′ in atleastΠ. Consider a clause C ∨ l ∈ CNF-Comp(Π)

such that C ⊆ M . We will consider two cases, depending on whether C ∨ l comes

from (5.3) or from the CNF of (5.2).

Case 1. C ∨ l is a ∨B corresponding to a rule a← B.

Case 1.1. l is a. Then there is an edge from M to M ′ in atleastΠ justified

by the transition rule Unit Propagate LP .

Case 1.2. l is an element of B. Then B has the form l,D and C is a ∨D.

From C ⊆ M we conclude that D ⊆ M and ¬a ∈ M . There is an edge from M to

M ′ in the graph atleastΠ justified by the following instance of Backchain False:

M =⇒ M l if











a← l,D ∈ Π,

¬a ∈M,

D ⊆M .

Case 2. C ∨ l has the form ¬a∨D, where D is one of the clauses of the CNF

of
∨

B∈Bodies(Π,a)

B.

37

Then D has the form
∨

B∈Bodies(Π,a)

f(B)

where f is a function that maps every B ∈ Bodies(Π, a) to an element of B.

Case 2.1. l is ¬a. Then C is D, so that D ⊆ M . Consequently f(B) ∈

B ∩D ⊆ B ∩M , so that B ∩M 6= ∅ for every B ∈ Bodies(Π, a). There is an edge

from M to M ′ in atleastΠ justified by All Rules Cancelled .

Case 2.2. l is an element of D. From the construction of D, it follows that

l = f(B) ∈ B for some rule a← B. Then C is

¬a ∨
∨

B′∈Bodies(Π,a)\B

f(B′).

From C ⊆ M we conclude that a ∈ M and that f(B′) ∈ M for every B′ ∈

Bodies(Π, a)\B. Since f(B′) is a conjunctive term of B′, it follows that B′∩M 6= ∅.

Then there is an edge from M to M ′ in atleastΠ justified by Backchain True.

We will now show that if there is an edge from a state M to a state M ′

in the graph atleastΠ justified by one of the transition rules Unit Propagate LP ,

All Rules Cancelled , Backchain True, and Backchain False then there is an edge

from M to M ′ in dpCNF-Comp(Π).

Case 1. The edge is justified by Unit Propagate LP . Then there is a rule

a← B ∈ Π where B ⊆M , and M ′ is M a. By the construction of CNF-Comp(Π),

a∨B ∈ CNF-Comp(Π). There is an edge from M to M ′ in dpCNF-Comp(Π) justified

by the following instance of Unit Propagate:

M =⇒ M a if

{

B ∨ a ∈ CNF-Comp(Π) and

B ⊆M .

Case 2. The edge is justified by All Rules Cancelled . By the definition

of All Rules Cancelled , there is an atom a such that for all B ∈ Bodies(Π, a),

B ∩M 6= ∅; and M ′ is M ¬a. Consequently, M contains the complement of some

literal in B. Denote that literal by f(B), so that f(B) ∈M . From the construction

of CNF-Comp(Π),

¬a ∨
∨

B∈Bodies(Π,a)

f(B)

38

belongs to CNF-Comp(Π). By the choice of f ,

∨

B∈Bodies(Π,a)

f(B) ⊆M .

There is an edge from M to M ′ in dpCNF-Comp(Π) justified by the following instance

of Unit Propagate:

M =⇒ M ¬a if



























∨

B∈Bodies(Π,a)

f(B) ∨ ¬a ∈ CNF-Comp(Π),

∨

B∈Bodies(Π,a)

f(B) ⊆M .

Case 3. The edge is justified by Backchain True. By the definition of

Backchain True, there is a rule a ← B ∈ Π and a literal l such that a ∈ M ;

for all B′ ∈ Bodies(Π, a) \B, B′ ∩M 6= ∅; l ∈ B; and M ′ is M l. Let f(B′) be an

element of B′ such that f(B′) ∈M . From the construction of CNF-Comp(Π),

¬a ∨ l ∨
∨

B′∈Bodies(Π,a)\B

f(B′)

belongs to CNF-Comp(Π). By the choice of f ,

∨

B′∈Bodies(Π,a)\B

f(B′) ⊆M .

There is an edge from M to M ′ in dpCNF-Comp(Π) justified by the following instance

of Unit Propagate:

M =⇒ M l if



























¬a ∨ l ∨
∨

B′∈Bodies(Π,a)\B

f(B′) ∈ CNF-Comp(Π),

(¬a ∨
∨

B′∈Bodies(Π,a)\B

f(B′)) ⊆M .

Case 4. The edge is justified by Backchain False. By the definition of

Backchain False, there is a rule a ← l, B ∈ Π such that ¬a ∈ M , B ⊆ M , and M ′

39

is M l. By the construction of CNF-Comp(Π), a ∨ B ∨ l ∈ CNF-Comp(Π). There

is an edge from M to M ′ in dpCNF-Comp(Π) justified by the following instance of

Unit Propagate:

M =⇒ M l if

{

a ∨B ∨ l ∈ CNF-Comp(Π) and

a ∨B ⊆M .

5.2 Abstract Smodels

We now describe the graph smΠ that represents the application of the smodels

algorithm to program Π. The nodes of smΠ are the same as the nodes of the graph

atleastΠ. The edges of smΠ are described by the transition rules of atleastΠ and

the additional transition rule:

Unfounded :

M =⇒ M ¬a if

{

M is consistent, and

a ∈ U for a set U unfounded on M with respect to Π.

This transition rule of smΠ is closely related to procedure Atmost [Simons, 2000, Sec-

tions 4.2], which together with the procedure Atleast forms the core of the smodels

algorithm.

The graph smΠ can be used for deciding whether program Π has an answer

set by constructing a path from ∅ to a terminal node:

Theorem 7. For any program Π,

(a) graph smΠ is finite and acyclic,

(b) for any terminal state M of smΠ other than FailState, M+ is an answer set

of Π,

(c) FailState is reachable from ∅ in smΠ if and only if Π has no answer sets.

To illustrate the difference between smΠ and atleastΠ, assume again that Π

is program (4.8). Path (5.1) in the graph atleastΠ is also a path in smΠ. But

state a∆ c ¬b d∆, which is terminal in atleastΠ, is not terminal in smΠ. This is

not surprising, since {a, c,¬b, d}+ = {a, c, d} is not an answer set of Π. To get to a

40

state that is terminal in smΠ, we need two more steps:

...

a∆ c ¬b d∆ =⇒ (Unfounded, U = {d})

a∆ c ¬b d∆ ¬d =⇒ (Backtrack)

a∆ c ¬b ¬d

(5.7)

Theorem 7(b) asserts that {a, c} is an answer set of Π.

The assertion of Theorem 7 will remain true if we drop the transition rules

All Rules Cancelled , Backchain True, and Backchain False from the definition of

smΠ.

In the rest of this section we give a proof of Theorem 7.

We say that a model M of a program Π is unfounded-free if no non-empty

subset of M is an unfounded set on M with respect to Π.

Lemma 3 (Corollary 2 from [Saccá and Zaniolo, 1990]). For any model M of a

program Π, M+ is an answer set for Π if and only if M is unfounded-free.

Lemma 4. For any unfounded set U on a consistent set M of literals with respect

to a program Π, and any assignment X, if X |= M and X ∩U 6= ∅, then X+ is not

an answer set for Π.

Proof. Assume that X+ is an answer set for Π. Then X is a model of Π. By

Lemma 3, it follows that X is unfounded-free. Hence any non-empty subset of X

including X ∩U is not unfounded on X. This means that for some rule a← B in Π

such that a ∈ X ∩U , B ∩X = ∅ and X ∩U ∩B+ = ∅. From X |= M (M ⊆ X) and

B ∩X = ∅ we conclude that B ∩M = ∅. Since B ∩X = ∅ and X is an assignment,

B ⊆ X. It follows that B+ ⊆ X. Consequently U ∩ B+ = X ∩ U ∩ B+ = ∅. This

contradicts the assumption that U is an unfounded set on M .

Lemma 5. For any program Π, any state l1 . . . ln reachable from ∅ in smΠ, and

any assignment X, if X+ is an answer set for Π then X satisfies li if it satisfies all

decision literals l∆j with j ≤ i.

Proof. By induction on the path from ∅ to l1 . . . ln. Recall that for any assignment

X, if X+ is an answer set for Π, then X is a supported model of Π, and that the

transition system smΠ extends atleastΠ only by the transition rule Unfounded .

41

Given our proof of Lemma 2, we only need to demonstrate that application of

Unfounded preserves the property.

Consider a transition M =⇒ M ′ justified by Unfounded , where M is a se-

quence l1 . . . lk. M ′ is M ¬a, such that a ∈ U , where U is an unfounded set on M

with respect to Π. Take any assignment X such that X+ is an answer set for Π

and X satisfies all decision literals l∆j with j ≤ k. By the inductive hypothesis,

X |= M . Then X |= ¬a. Indeed, otherwise a would be a common element of X

and U , and X ∩ U would be non-empty, which contradicts Lemma 4.

Proof of Theorem 7

Parts (a) and (c) are proved as in the proof of Theorem 1, using Lemma 5.

(b) As in the proof of Theorem 5(b) we conclude that M is a model of Π. Assume

that M+ is not an answer set. Then, by Lemma 3, there is a non-empty unfounded

set U on M with respect to Π such that U ⊆ M . It follows that Unfounded is

applicable (with an arbitrary a ∈ U). This contradicts the assumption that M is

terminal.

The fact that the assertion of Theorem 7 remains true if we drop the tran-

sition rules All Rules Cancelled , Backchain True, and Backchain False from the

definition of smΠ follows from the proof of Theorem 7 (b) that does not refer to

those rules.

5.3 Smodels Algorithm

We can view a path in the graph smΠ as a description of a process of search for

an answer set for a program Π by applying inference rules. Therefore, we can

characterize the algorithm of an answer set solver that utilizes the inference rules of

smΠ by describing a strategy for choosing a path in smΠ. A strategy can be based,

in particular, on assigning priorities to some or all inference rules of smΠ, so that

a solver will never apply a transition rule in a state if a rule with higher priority is

applicable to the same state.

We use this method to describe the smodels algorithm. The system smod-

42

els assigns priorities to the inference rules of smΠ as follows:

Backtrack,Fail >>

Unit Propagate LP,All Rules Cancelled,Backchain True,Backchain False >>

Unfounded >>

Decide.

For example, let Π be program (4.8). The smodels algorithm may follow a

path

∅ =⇒ (Decide)

a∆ =⇒ (Unit Propagate LP)

a∆ c =⇒ (All Rules Cancelled)

a∆ c ¬b =⇒ (Unfounded)

a∆ c ¬b ¬d

in the graph smΠ, whereas it may never follow path (5.1), because Unfounded has

a higher priority than Decide.

5.4 Tight Programs: Smodels and DPLL

Recall that for any program Π and any assignment M , if M+ is an answer set of Π

then M is a supported model of Π. For the case of tight programs, the converse holds

also: M+ is an answer set for Π if and only if M is a supported model of Π [Fages,

1994] or, in other words, is a model of the completion of Π.

It turns out that for tight programs the graph smΠ is “almost identical”

to the graph dpF , where F is the clausified completion of Π. To make this claim

precise, we need the following terminology.

We say that an edge M =⇒ M ′ in the graph smΠ is singular if

• the only transition rule justifying this edge is Unfounded , and

• some edge M =⇒ M ′′ can be justified by a transition rule other than Un-

founded or Decide.

For instance, let Π be the program

a← b

b← c.

43

The edge

a∆ b∆ ¬c∆ =⇒ (Unfounded, U = {a, b})

a∆ b∆ ¬c∆ ¬a

in the graph smΠ is singular, because the edge

a∆ b∆ ¬c∆ =⇒ (All Rules Cancelled)

a∆ b∆ ¬c∆ ¬b

belongs to smΠ also.

With respect to the actual smodels algorithm [Simons, 2000], singular edges

of the graph smΠ are inessential: in view of priorities for choosing a path in smΠ de-

scribed in Section 5.3, smodels never follows a singular edge. Indeed, the transition

rule Unfounded has the lower priority than any other transition rule but Decide.

By sm
−
Π we denote the graph obtained from smΠ by removing all singular edges.

Theorem 8. For any tight program Π, the graph sm
−
Π is equal to each of the graphs

atleastΠ and dpCNF-Comp(Π).

For instance, let Π be the program (5.4). This program is tight, its com-

pletion is (5.5), and CNF-Comp(Π) is formula (5.6). Theorem 8 asserts that sm
−
Π

coincides with dpCNF-Comp(Π) and with atleastΠ.

From Theorem 8, it follows that applying the smodels algorithm to a tight

program essentially amounts to applying dpll to its completion. A similar relation-

ship, in terms of pseudocode representations of smodels and dpll, is established

in [Giunchiglia and Maratea, 2005].

In the rest of this section we give a proof of Theorem 8.

Lemma 6. For any tight program Π and any non-empty unfounded set U on a

consistent set M of literals with respect to Π there is an atom a ∈ U such that for

every B ∈ Bodies(Π, a), B ∩M 6= ∅.

Proof. By contradiction. Assume that, for every a ∈ U there exists B ∈ Bodies(Π, a)

such that B∩M = ∅. By the definition of an unfounded set it follows that for every

atom a ∈ U there is B ∈ Bodies(Π, a) such that U ∩B+ 6= ∅. Consequently the sub-

graph of the positive dependency graph of Π induced by U has no terminal nodes.

Then, the program Π is not tight.

44

Proof of Theorem 8

In view of Theorem 6, it is sufficient to prove that sm
−
Π equals atleastΠ; or, in

other words, that every edge of smΠ justified by the rule Unfounded only is singular.

Consider such an edge M =⇒ M ′. We need to show that some transition rule other

than Unfounded or Decide is applicable to M . By the definition of Unfounded , M

is consistent and there exists a non-empty set U unfounded on M with respect

to Π. By Lemma 6, it follows that there is an atom a ∈ U such that for every

B ∈ Bodies(Π, a), B ∩M 6= ∅. Therefore, the transition rule All Rules Cancelled is

applicable to M .

45

Chapter 6

Cmodels Algorithm for Tight

Programs

Programs used in answer set programming, including those related to planning

and commonsense reasoning, are often tight. As discussed in previous sections,

Fages’ result that the answer sets of a tight program coincide with the models of its

completion suggests the possibility of using satisfiability solvers for finding answer

sets of tight programs.

In this chapter we identify procedures necessary for creating a SAT-based

answer set system. As mentioned in introductory Chapter 1, the answer set solver

cmodels is an implementation of the ideas described in this dissertation. Like

smodels, it utilizes the grounder lparse (or gringo) as its front-end to obtain

propositional logic program. Here we outline the cmodels algorithm for finding

answer sets of tight programs. The system performs the following steps during its

execution:

• simplifies the program,

• verifies its tightness,

• produces its completion,

• clausifies the completion,

• invokes a SAT solver, and

46

• interprets its output.

The system cmodels provides an interface to four SAT solvers minisat1, relsat2,

simo3, and zchaff4. All of these SAT solvers implement such sophisticated features

as backjumping, learning, and forgetting. It follows that the underlying search

algorithm used by cmodels on tight programs can be characterized by the graph

dplF (see Section 3.4) where F is the clausified completion of a program.

This chapter covers details of the cmodels algorithm. Section 6.1 covers

the theory behind reduction techniques that allow us to reduce the size of the pro-

gram and hence the search space. Section 6.2 talks about a possible way to verify

the tightness of a program. Section 6.3 introduces a procedure for producing the

clausified completion of a program. Section 6.4 compares the cmodels approach to

smodels and describes the experimental results that demonstrate the viability of

our approach to computing answer sets in the case of tight programs.

6.1 Simplifying Traditional Programs

This section presents two theorems that provide the grounds for possible program

simplification procedures. Although these results were previously known and used in

the smodels implementation [Simons, 2000], they have not been explicitly stated.

It is important for us to do this, because in Section 8.2 we will introduce the gener-

alizations of these theorems to programs with more general syntax.

Often after grounding performed by lparse or gringo a program may in-

clude spurious rules or parts of rules that can be eliminated by the simplification

procedures based on the theory presented here. Such simplifications will reduce the

size of a given program and consequently the size of clausified completion and the

search space.

For instance, consider a program

d(1).

d(2).

d(3).

1http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/ .
2http://www.satlib.org/solvers.html .
3http://www.star.dist.unige.it/∼sim/simo/ .
4http://www.princeton.edu/∼chaff/ .

47

b:-not a(1).

a(1):-not b.

c(X):-a(X),d(X).

lparse will produce the following grounded program

d(1).

d(2).

d(3).

b :- not a(1).

a(1) :- not b.

c(1) :- a(1).

c(2) :- a(2).

c(3) :- a(3).

After simplification step that is based on the theory described here, cmodels will

eliminate rules

c(2) :- a(2).

c(3) :- a(3).

in favor of constraints

:- a(2).

:- a(3).

If Π is a traditional program, by Atin(Π) we denote the intersection of all

answer sets of Π, and Atout(Π) stands for the set of atoms that do not belong to any

of the answer sets of Π. This section presents the theory that allows us to simplify

the program when some information on sets Atin(Π) and Atout(Π) is available.

The following proposition shows that if some atom b occurring in the positive

part of the body of some rule does not belong to any answer set then it is safe to

replace this rule by the constraint ← b.

Proposition 1. Any traditional program Π of the form

a← b, B

Π′

48

where b ∈ Atout(Π) has the same answer sets as

← b

Π′.

On the other hand, Proposition 2 shows that if some atom b occurring in the

negative part of the body of some rule belongs to every answer set then it is safe to

replace this rule by the constraint ← not b. Furthermore, if some atom b occurring

in the negative part of the body of some rule does not belong to any answer set then

it is safe to remove the occurrence of this atom from the body of this rule and add

the constraint ← b to the program.

Proposition 2. Let Π be a traditional program of the form

a← not b, B

Π′.

(a) If b ∈ Atin(Π) then Π has the same answer sets as

← not b

Π′.

(b) If b ∈ Atout(Π) then Π has the same answer sets as

← b

a← B

Π′.

For instance, let Π be the program

a← b,not c

d← not a

c← not d.

The only answer set for this program is {d}. Consequently, Atin(Π) = {d} and

Atout(Π) = {a, b, c}. According to Proposition 1, Π has the same answer sets as the

49

following program:

← b

d← not a

c← not d.

By Proposition 2 (a), Π′ has the same answer sets as

← b

d← not a

← not d.

This program can be further simplified using Proposition 2 (b):

← b

← a

d←

← not d.

In Section 8.2 we state the generalizations of Propositions 1 and 2. In Sec-

tion 8.4 we present the proof of those propositions.

In Chapter 5 we described the algorithm behind the answer set solver smod-

els. The system smodels implements the procedures Atleast [Simons et al., 2002,

Section 7], [Simons, 2000, Section 4.1–4.3] (that can be characterized by transition

rules Unit Propagate LP, All Rules Cancelled, Backchain True, Backchain False)

and Atmost (that can be characterized by transition rule Unfounded). For a tradi-

tional program Π, the procedures Atmost and Atleast, applied to Π and the empty

set, find subsets of Atin(Π) and Atout(Π). Incorporating the Atmost and Atleast

procedures in the code of cmodels for finding these subsets of Atin(Π) and Atout(Π)

allows us to simplify the program in accordance with Propositions 1 and 2.

The system smodels simplifies the program repeatedly once new informa-

tion is gained about an answer set after the application of the Atleast and Atmost

procedures. Within a SAT-based approach we consider the application of simplifica-

tion techniques only once before the program is translated into propositional theory.

Once the propositional formula is given to a SAT solver, unit-propagate performs

simplifications on the propositional formula repeatedly.

Simplifying a program may reduce the number of program’s variables and

50

rules, and accordingly the number of clauses created during the program’s comple-

tion. From the experimental analysis that we conducted we observed that by using

simplification step cmodels usually generates at least 10% fewer atoms and around

50% fewer clauses.

6.2 Verifying Tightness

Let us note that if a program contains ”trivial” rules of the form

a← . . . , a, . . .

then dropping these rules from the program does not change its answer sets. We

take this fact into account by eliminating such rules from a program before verifying

its tightness. Obviously any program that contains a trivial rule is not tight, but

dropping such rules can make a nontight program tight.

To verify whether a program is tight, cmodels

(1) builds a subgraph of the program’s dependency graph (see Section 4.5) that

does not contain some “inessential” vertices:

– atoms that do not occur in the heads of program’s rules, and

– atoms that do not occur in the positive parts of the bodies of the rules;

(2) uses a standard depth first search algorithm [Cormen et al., 1994, Section 23.3]

to detect a cycle in the subgraph.

6.3 Completion and Clausification

Recall that the completion of a program Π is defined as follows. For every rule (4.5)

in Π we form the implication

B → a (6.1)

and for each atom a occurring in Π, we form the implication

a→
∨

B∈Bodies(Π,a)

B. (6.2)

51

The completion Comp(Π) of Π consists of all formulas (6.1) and (6.2).

It is clear that CNF-Comp(Π) — the completion Comp(Π) converted to CNF

using straightforward equivalent transformations (see Section 5.4) — can be expo-

nentially larger than Comp(Π). We now define an ED-transformation procedure

that converts an implication (6.2) into a CNF formula by means of explicit definitions

and avoids exponential growth. It is a special case of the Tseitin procedure [Tseitin,

1968] that efficiently transforms any given propositional formula to CNF form by

adding new atoms corresponding to its subformulas. It does not produce a CNF

equivalent to the input formula, but it gives us its conservative extension. The ED-

transformation procedure adds explicit definitions for the disjunctive terms in (6.2)

whenever they contain more than one atom. In other words, it introduces auxil-

iary atoms as abbreviations for these disjunctive terms. It then applies equivalent

transformation to resulting formula and replaces these disjunctive terms by their

corresponding auxiliary atoms. At last, the ED-transformation procedure converts

this formula to CNF using straightforward equivalent transformations.

For instance, consider the program

a← b1, c1

a← b2, c2

a← d.

For atom a, the implication (6.2) is

a→ (b1 ∧ c1) ∨ (b2 ∧ c2) ∨ d. (6.3)

First, ED-transformation introduces following explicit definitions

aux1 ≡ b1 ∧ c1

aux2 ≡ b2 ∧ c2

(6.4)

Second, ED-transformation turns implication (6.3) into the formula

a→ aux1 ∨ aux2 ∨ d (6.5)

that contains two auxiliary atoms aux1, aux2. Third, ED-transformation clausifies

52

these formulas (6.4) and (6.5) as follows:

¬a ∨ aux1 ∨ aux2 ∨ d

¬aux1 ∨ b1

¬aux1 ∨ c1

¬b1 ∨ ¬c1 ∨ aux1

¬aux2 ∨ b2

¬aux2 ∨ c2

¬b2 ∨ ¬c2 ∨ aux2.

We now define for a program Π, a CNF formula ED-Comp(Π) that is the

completion Comp(Π) converted to CNF using the ED-transformation: It consists

of clauses of two kinds

1. the rules a← B of the program written as clauses

a ∨B,

2. formulas (6.2) converted to CNF using the ED-transformation.

The system cmodels builds ED-Comp(Π) during its computation. When a

satisfying assignment for ED-Comp(Π) is found the cmodels algorithm eliminates

all auxiliary atoms from this assignment to produce the corresponding model of the

completion Comp(Π).

6.4 Experimental Analysis

For tight traditional programs, we implement the method discussed in this chapter

in the system cmodels. Like smodels, it uses the grounder lparse or gringo

as its front-end. cmodels provides an interface to four SAT solvers minisat, rel-

sat, simo, and zchaff. Incorporating a new SAT solver into the system does not

require much programming. The fact that cmodels may leverage on the latest

developments in the SAT area is the main advantage of our SAT-based approach to

computing answer sets.

In Chapter 5 we provided details on the smodels algorithm that is charac-

terized by the graph smΠ (see Section 5.2). Furthermore, in Section 5.4 we demon-

53

strated that smΠ is almost identical to the graph dpCNF-Comp(Π) that character-

izes an application of the basic dpll algorithm to the program’s completion that

is converted to CNF by straightforward equivalent transformations (Section 5.4).

The system cmodels, on the other hand, can be best described by the graph

dplED-Comp(Π) (see Section 3.4). This graph differs from dpCNF-Comp(Π) in sev-

eral ways. First, it describes an algorithm that permits conflict-driven backjumping

and learning. Note that clause learning can exponentially improve the basic dpll

algorithm [Beame et al., 2004]. Second, the graph considers an application of the

algorithm to ED-Comp(Π) rather than CNF-Comp(Π). Gebser and Schaub [2007]

demonstrated that permitting an ASP solver to make a choice on values of bodies

of program rules in addition to program atoms may sometime provide an exponen-

tial overhead for the system. The introduction of auxiliary atoms that “abbreviate”

bodies of program rules by means of ED-transformation allows cmodels to perform

both type of choices implicitly.

Section 6.5 provides

• the technical specifications of the system on which we conduct all experiments

presented in this dissretation, and

• the details on which versions of answer set solvers were used in our experi-

ments.

Section 6.5.1 includes a short description of the benchmarks used in the experi-

ments. Section 6.5.2 presents the experimental results comparing the performance

of the SAT-based system cmodels with “native” answer set search algorithms im-

plemented in smodels, smodelscc, and dlv.

6.5 Systems Specifications

In this dissertation we conduct experimental analysis using a system with the fol-

lowing technical specifications:

• i686 GNU/Linux Ubuntu

• Two 2.99 GHz Intel Pentium D processors

• 2 GB RAM

54

• Limitations for the computation: 600 sec, 256 MB RAM

In each table that reports the results

• the running time is presented in sec,

• t-o, m-o stand for a solver exceeding 600 sec, 256 MB respectively.

We will report running times of

• grounder gringo version 2.0.3,

• answer set solver cmodels version 3.79 using minisat version 2.0 beta,

• answer set solver cmodels version 3.79 using zchaff version 2007.3.12,

• answer set solver smodels version 2.34,

• answer set solver smodelscc version 1.08,

• grounder and answer set solver dlv version [build BEN/Oct 11 2007].

In the experiments presented in this chapter we used the grounder gringo to in-

stantiate programs for the systems cmodels, smodels, and smodelscc. We report

running time for gringo separately. Recall that the system dlv starts its compu-

ation by grounding a problem. Therefore, when running time of dlv is compared

with that of another solver, the running time of gringo should be added to the

time of the solver. We also note that smodelscc can be seen as an enhanced version

of smodels that implements learning and backjumping techniques.

In all experiments that we present in this dissertation, we consider the task

of finding a single solution. Note that finding an answer set for a program that

has no solutions is similar to the task of finding all solutions since a solver should

traverse complete search space.

6.5.1 Benchmarks Description

asparagus5 [Borchert et al., 2004] is a benchmark platform that was created to

facilitate system development in answer set programming. It aims to make a broad

collection of benchmarks accessible for ASP systems. Most of the encodings and

5http://asparagus.cs.uni-potsdam.de/

55

instances used for experimental analysis in this dissertation were obtained from

asparagus.

We consider several benchmarks in this chapter: Pigeon Hole, Graph Col-

oring, Schur Numbers, 15-puzzle, n-queens, Blocked n-queens, Putting Numbers.

Here are short descriptions of these problems:

• In the Pigeon Hole problem, given p pigeons and n holes, the task is to find a

unique hole for each pigeon.

• In the Graph Coloring problem, given a graph as a set of nodes and edges, the

task is to find a way to color the nodes with n colors such that two adjacent

nodes are not colored with the same color.

• A set X of integers is called sum-free if for any elements x and y from X,

x + y is not in X. The largest integer n such that the set {1, 2, ..., n} can be

partitioned into p sum-free sets is called the Schur number S(p). The Schur

Numbers problem is to decide whether an integer n satisfies n ≤ S(p).

• In the 15-puzzle problem, a 4 x 4 grid is filled in some way with 15 movable

tiles labeled 1, . . . , 15. One square is left blank. Tiles can be rearranged by

moving a tile into a blank square, assuming the two locations share an edge.

The goal is to rearrange the tiles so that they are arranged from 1 to 15 in the

row-major order, with the blank square occupying the top left corner.

• In the n-queens problem, we have an n x n board and n queens. Each square

on the board can hold at most one queen. A conflict arises when any two

queens are assigned to the same row, column, or diagonal. In the n-queens

the task is to assign the n queens to the squares of the board in a conflict-free

manner.

• The Blocked n-queens problem is a variant of the n-queens problem. where

some squares on the board are blocked and cannot hold any queen. A solution

to the Blocked n-queens problem is an assignment of the n queens to the

non-blocked squares of the board in a conflict-free manner.

• In the Putting Numbers problem, the input is a set of m-digit numbers and

the task is to construct a n x n square where all of the numbers occur. The

numbers may occur horizontally or vertically and in both directions.

56

6.5.2 Benchmarks Results

All benchmark instances that we consider for experimental analysis in this chapter

are encoded as tight traditional programs.

Figure 6.1 reports the running times for gringo, cmodels using minisat,

cmodels using zchaff, smodels, smodelscc, and dlv on Pigeon Hole, Graph

Coloring, Schur Numbers, and 15-Puzzle problems. In all presented experiments,

we run all systems on identical encodings of the problems. Figure 6.2 reports the

running times for gringo, cmodels using minisat, cmodels using zchaff, smod-

els, smodelscc on n-queens, Blocked n-queens, and Putting Numbers. We do not

present running times for dlv in the latter figure because the encodings of n-queens,

Blocked n-queens, and Putting Numbers for the grounder gringo used in experi-

ments contain constructs not allowed by the input language of dlv. Instance names

may be decoded as follows:

• pigeon.p9h8 suggests that the considered instance is an encoding of Pigeon

Hole problem with 9 pigeons and 8 holes,

• color.n100.3 suggests that the considered instance is an encoding of Graph

Coloring problem with 100 nodes and 3 colors,

• schur.p4n43 suggests that the considered instance is an encoding of Schur

Number problem where p is 4 and n is 43,

• 15-puzzle.1 suggests that the considered instance is an encoding of 15-puzzle

problem,

• queens.18 suggests that the considered instance is an encoding of n-queens

problem where n is 18,

• bqueens.50.1642408561 suggests that the considered instance is an encoding

of Blocked n-queens problem where n is 50 and 1642408561 corresponds to an

id assigned by asparagus to this instance,

• pn.gsquare-3-10-2-8 suggests that the considered instance is an encoding of

Putting Numbers problem and gsquare-3-10-2-8 corresponds to an id assigned

by asparagus to this instance.

57

Instance gringo cmodels smodels smodelscc dlv

minisat zchaff

pigeon.p9h8 0.0 0.56 0.45 4.8 310.21 15.48
pigeon.p10h9 0.01 6.28 3.68 47.19 t-o 161.53
pigeon.p11h10 0.01 85.02 12.29 509.27 t-o t-o
pigeon.p12h11 0.02 t-o 42.06 t-o t-o t-o

color.n100.3 0.03 0.03 0.02 0.02 0.03 0.02
color.n300.3 0.14 0.1 0.08 0.07 0.12 0.08
color.n600.3 0.41 0.24 0.19 0.16 0.27 0.19
color.n1000.3 0.99 0.43 0.34 0.3 0.48 0.31
color.n3000.3 7.56 1.48 1.16 0.97 1.55 1.18
color.n6000.3 33.63 3.15 2.42 2.0 3.12 2.44
color.n100.4 0.04 0.05 0.03 0.12 0.42 236.59
color.n300.4 0.19 0.16 0.13 1.47 4.53 t-o
color.n600.4 0.53 0.39 0.35 6.72 19.88 5.86
color.n1000.4 1.27 0.74 0.66 21.47 60.47 17.7
color.n3000.4 9.91 8.94 198.01 211.58 577.43 154.53
color.n6000.4 44.81 t-o t-o t-o t-o t-o

schur.p4n43 0.06 0.15 0.09 0.58 0.79 t-o
schur.p4n44 0.06 0.31 0.64 32.58 47.07 t-o
schur.p4n45 0.06 0.27 0.67 44.3 48.99 t-o
schur.p5n100 0.34 4.51 3.57 t-o t-o t-o
schur.p5n110 0.41 16.91 11.35 t-o t-o t-o
schur.p5n120 0.48 362.79 595.56 t-o t-o t-o
schur.p5n130 0.57 t-o t-o t-o t-o t-o

15-puzzle.1 0.38 9.76 13.94 t-o t-o t-o
15-puzzle.2 0.38 45.55 t-o t-o t-o t-o
15-puzzle.3 0.38 5.04 412.65 t-o t-o t-o
15-puzzle.4 0.37 93.93 t-o t-o t-o t-o
15-puzzle.5 0.38 112.25 t-o t-o t-o t-o
15-puzzle.6 0.39 127.45 565.07 t-o t-o t-o
15-puzzle.7 0.38 59.73 t-o t-o t-o t-o
15-puzzle.8 0.39 3.46 t-o 374.39 t-o t-o
15-puzzle.9 0.41 7.85 t-o t-o t-o t-o
15-puzzle.10 0.43 118.16 t-o t-o t-o t-o
15-puzzle.11 0.43 206.34 t-o t-o t-o t-o
15-puzzle.12 0.43 1.91 115.12 t-o t-o t-o

Figure 6.1: Pigeon Hole, Graph Coloring, Schur Numbers, 15 Puzzle; runtimes of
gringo, cmodels using minisat, cmodels using zchaff, smodels, smodelscc,
and dlv.

58

Instance gringo cmodels smodels smodelscc

minisat zchaff

queens.18 0.16 0.22 0.15 6.8 126.98
queens.22 0.3 0.49 0.3 t-o t-o
queens.24 0.4 0.71 0.39 t-o t-o
queens.28 0.68 1.26 0.67 t-o t-o
queens.32 1.08 2.19 0.95 t-o t-o
queens.36 1.64 3.41 1.41 t-o t-o

bqueens.50.1642398261 5.45 157.11 t-o t-o t-o
bqueens.50.1642402587 5.56 87.1 t-o t-o t-o
bqueens.50.1642406388 5.44 104.12 t-o t-o t-o
bqueens.50.1642406727 5.2 266.84 t-o t-o t-o
bqueens.50.1642407126 5.37 485.78 t-o t-o t-o
bqueens.50.1642407857 5.47 119.3 t-o t-o t-o
bqueens.50.1642408561 5.4 201.16 t-o t-o t-o

pn.gsquare-3-10-2-8 0.02 0.02 0.02 0.06 0.28
pn.gsquare-4-11-3-8 0.04 0.07 0.71 112.92 260.81
pn.gsquare-4-12-3-8 0.04 0.07 6.78 6.18 296.18
pn.gsquare-4-14-3-8 0.05 0.07 0.07 10.61 127.4
pn.gsquare-4-19-3-8 0.07 0.98 2.09 223.02 t-o
pn.gsquare-4-22-3-8 0.09 2.48 4.6 105.38 t-o
pn.gsquare-4-24-3-8 0.1 0.3 3.81 402.48 t-o
pn.gsquare-4-9-3-8 0.03 0.04 0.03 0.54 0.92
pn.gsquare-5-12-4-8 0.07 82.4 213.96 t-o t-o
pn.gsquare-7-25-6-8 0.31 t-o 206.71 t-o t-o

Figure 6.2: n-queens, Blocked n-queens, Putting Numbers; runtimes of gringo,
cmodels using minisat, cmodels using zchaff, smodels, smodelscc.

From the tables in Figures 6.1 and 6.2 we can make two conclusions. First,

cmodels often outperforms “native” answer set search algorithms implemented in

smodels, smodelscc, and dlv. Second, there is often a considerable difference

between the performance of cmodels with minisat and with zchaff. Which one

of the two SAT solvers is more efficient depends on the particular problem instance

to be solved. For example, cmodels using zchaff finds solutions to all instances

of Putting Numbers problem while cmodels using minisat is not able to find the

solution for one of the instances within the time limit. On the other hand, on all

considered instances of the Blocked n-queens problems cmodels using zchaff is

59

not able to find a solution within the time limit while cmodels using minisat

computes solutions to all instances within permitted time. This demonstrates the

main plus of the SAT-based answer set solving approach: an answer set system like

cmodels may take advantage by using a SAT solver that is best suited for a specific

problem.

60

Chapter 7

Background: Choice and

Weight Rules

Good answer set programming systems, such as smodels or dlv, support not only

traditional rules but also some useful “additional” constructs. For instance, Niemelä

and Simons [2000] introduced choice rules and weight constraints for the system

smodels. The answer set solver dlv features weak constraints [Buccafurri et al.,

1997] and aggregate predicates [Dell’Armi et al., 2003]. The applicability of answer

set programming has been widened once the basic language of traditional programs

was extended to more expressive constructs. For instance, choice rules of smodels

allow us to represent choices and restrictions on solutions in a concise manner.

As mentioned before, the grounder lparse and the ASP solver smodels

interpret such constructs as choice and weight constraint rules. In this chapter we

define their semantics in terms of rules with nested expressions, introduced in [Lif-

schitz et al., 1999]. This definition is different from the one given originally by

Niemelä and Simons but is equivalent to it, as demonstrated in [Ferraris and Lif-

schitz, 2005].

Section 7.1 introduces programs with nested expressions and extends the

answer set semantics to such programs. Sections 7.2 and 7.3 describe the semantics

of choice, weight and cardinality constraint rules in terms of programs with nested

expressions. Section 7.4 introduces the syntax of choice and weight rules that are

allowed in the input language of lparse. Section 7.5 introduces semi-traditional

rules – a special class of rules with nested expressions. Choice and weight rules can

61

be both understood as abbreviations for semi-traditional rules. At last, Section 7.6

extends the notions of completion and tightness to programs with semi-traditional

rules.

Although we use rules with nested expressions to define the semantics of

programs with choice and weight constraint rules, arbitrary programs with nested

expressions are more general. For instance, a rule with nested expressions can

contain a disjunction in its head. In order to define the semantics of a program with

choice or weight rules, a disjunction in the head of a rule is not needed. Further

in the dissertation we will investigate the applicability of the SAT-based method to

programs with nested expressions that also allow a disjunction in their head.

The next chapter demonstrates how SAT solvers can be used to process

programs with choice and weight constraint rules.

7.1 Programs with Nested Expressions

Elementary expressions are atoms and the symbols ⊥ (False) and ⊤ (True). Nested

expressions are built from elementary expressions using the unary connective not

(negation as failure) and the binary connectives conjunction (recall that we identify

comma with conjunction) and disjunction.

A program with nested expressions, also called nested, consists of rules of

the form

Head← Body (7.1)

where both Body and Head are nested expressions. We call such rules nested or

rules with nested expressions.

The definition of satisfaction for a rule, a head, or a body of a rule is the usual

definition of satisfaction in propositional logic, with ”not” understood as negation,

and Head← Body as the material implication Body → Head. We say that a set X

of atoms satisfies a program Π (symbolically, X |= Π) if X satisfies every rule (7.1)

in Π. We say also that such set X is a model of Π.

Consider a set X of atoms and a formula F . The reduct FX of F with

respect to X is defined as follows:

• for elementary F , FX = F

• (F ∧G)X=FX ∧GX

62

• (F ∨G)X=FX ∨GX

• (not F)X =

{

⊤, if X |= F,

⊥, otherwise

The reduct ΠX of a program Π with respect to a set X of atoms is the set

of rules

HeadX ← BodyX

for all rules (7.1) in Π.

Note that if Π is a traditional program then this definition of the reduct is

equivalent to the definition given in Section 4.2 because the occurrence of ⊥ in the

body of a rule is equivalent to removing the rule and the occurrence of ⊤ in the

body of a rule is equivalent to removing ⊤ from the body.

A set X of atoms is an answer set, also called stable model of Π, if X is a

minimal set of atoms satisfying the reduct ΠX .

As in case of traditional programs, an answer set of a program with nested

expressions is also always a model of this program.

For instance, let Π be the program

a← not not a

b← not a.
(7.2)

Consider the set {a}. The reduct Π{a} is

a← ⊤

b← ⊥.
(7.3)

Set {a} satisfies the reduct and is minimal among the sets satisfying the reduct.

Hence, {a} is an answer set of Π. Consider now the set {a, b}. The reduct Π{a,b}

is identical to (7.3). Nevertheless, {a, b} does not satisfy the reduct and hence is

not an answer set of Π. In fact, this program has only one answer set besides {a} –

set {b}.

Note that unlike in classical logic where double negation is inessential and

can be removed from an expression, not not plays an important role in programs

with nested expressions. Consider the traditional program obtained from (7.2) by

63

dropping the double negation

a← a

b← not a.
(7.4)

The reduct of this program on {a} is

a← a

b← ⊥

so that set {a} is not an answer set of program (7.4).

7.2 Choice Rules

Choice rules [Syrjanen, 2003, Sections 5.4] have the form

{a0, . . . , ak} ← b1, . . . , bl, not bl+1, . . . , not bm (7.5)

where each ai and bi is an atom. Intuitively, this rule expresses that if its body is

satisfied then any subset of {a0, . . . , ak} may belong to an answer set. Originally

the semantics of choice rules was defined in [Niemelä and Simons, 2000]. We follow

the alternative definition of the semantics of choice rules, proposed by Ferraris and

Lifschitz [2005]. They treat the choice rule (7.5) as an abbreviation for the following

rule with nested expressions:

(a0 ∨ not a0), . . . , (ak ∨ not ak) ← b1, . . . , bl, not bl+1, . . . , not bm (7.6)

They showed that this definition is equivalent to the semantics in [Niemelä and

Simons, 2000].

For instance, the choice rule

{a, b}

is shorthand for

(a ∨ not a), (b ∨ not b)← .

One-rule program has four answer sets: ∅, {a}, {b}, and {a, b}.

64

7.3 Weight and Cardinality Constraint Rules

Weight (constraint) rules have the form

a← L {F1 = w1, . . . , Fn = wn} (7.7)

where a is an atom or the symbol ⊥, each Fi is an atom bi or the formula not bi,

and L (lower bound) and w1, . . . , wn (weights) are integers. This is a special case

of weight rules in the sense of [Syrjanen, 2003, Section 5.4]. Intuitively rule (7.7)

states that a must hold whenever the sum of the ”eligible” weights is greater than

or equal to lower bound L, where by eligible weights we understand these wi for

which Fi is satisfied. Weight rules with all weights w1, . . . , wn equal to 1 are called

cardinality constraints [Syrjanen, 2003, Section 5.4]. The semantics of weight rules

was originally introduced by Niemelä and Simons [2000]. In this dissertation we

adopt the view of Ferraris and Lifschitz [2005] that a weight rule is understood as

an abbreviation for a rule with nested expressions, as follows.

Consider the expression

< F1, . . . , Fn >: X (7.8)

where X is set of subsets of {1, . . . , n}, each Fi is an atom or the formula not bi

(where bi is an atom). Expression (7.8) is an abbreviation for the formula

∨

I∈X

(
∧

i∈I

Fi) (7.9)

Ferraris and Lifschitz [2005] treat weight rule (7.7) as an abbreviation for the

rule with nested expressions

a←< F1, . . . , Fn >: {I : L ≤
∑

i∈I wi} (7.10)

where I ranges over subsets of {1, . . . , n}.

For instance, we understand the weight rule

a← 3 {b = 3, c = 2, d = 2} (7.11)

65

as an abbreviation for the rule with nested expressions

a←< b, c, d >: {{1}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.

In other words, the weight rule (7.11) stands for the following rule with nested

expressions:

a← b ∨ (b, c) ∨ (b, d) ∨ (c, d) ∨ (b, c, d).

7.4 The Input Language of Lparse

The grounder lparse accepts rules of even more general form than the choice and

weight rules discussed above. For instance, following rules are also allowed:

a← L {F1 = w1, . . . , Fn = wn}U (7.12)

L {a1, . . . , an}U ← Body. (7.13)

Rule (7.12) is similar to weight rule (7.7) except that upper bound U (an

integer) is specified on the right hand side of the weight expression. Intuitively

rule (7.12) states that a (an atom or symbol ⊥) must hold whenever the sum of the

eligible weights is between the lower bound L and upper bound U .

Rule (7.13), on the other hand, is similar to (7.5), except that additional

restrictions are specified by the lower bound L and upper bound U (L and U are

integers). The rule expresses that any subset of atoms {a0, . . . , ak} with at least L

and at most U elements may belong to an answer set when the Body of a rule is

satisfied.

Rules (7.12) and (7.13) are eliminated by lparse in favor of choice and

weight constraint rules of type (7.5) and (7.7) (see [Syrjanen, 2003]). Therefore

within this dissertation we only consider the case of choice rules (7.5) and weight

constraint rules (7.7).

For instance, consider a weight rule

a← 3{b = 3, c = 2, d = 2}4.

Given a choice rule {b, c, d}, lparse produces the following set of choice and weight

rules:

66

a :- __int0, not __int1.

__int0 :- 3 [b=3, c=2, d=2].

__int1 :- 5 [b=3, c=2, d=2].

{ d, c, b }.

7.5 Semi-Traditional Programs

We say that a rule with nested expressions is semi-traditional if it has the following

form

a← b1, . . . , bl, not bl+1, . . . , not bm, not not bm+1, . . . , not not bn, (7.14)

where a is an atom or symbol ⊥ and each bi is an atom. Note that if n = m then a

semi-traditional rule is identical to a traditional rule. A program is semi-traditional

if it consists of semi-traditional rules.

The reason why this class of programs is important can be described using

the concept of strong equivalence for logic programs, introduced by Lifschitz et

al [2001]. Two logic programs Π1 and Π2 are strongly equivalent if for every logic

program Π, programs Π ∪ Π1 and Π ∪ Π2 have the same answer sets. We use this

terminology to state the results in this section.

It turns out that both choice and weight rules can be rewritten as strongly

equivalent semi-traditional programs. In fact, any weight rule can be rewritten as

a set of traditional rules; semi-traditional rules (7.14) with n > m are needed for

choice rules only.

For instance, recall that the weight rule

a← 3 {b = 3, c = 2, d = 2}

stands for the following rule with nested expressions

a← b ∨ (b, c) ∨ (b, d) ∨ (c, d) ∨ (b, c, d).

67

This rule is strongly equivalent to the set of traditional rules

a← b

a← b, c

a← b, d

a← c, d

a← b, c, d.

On the other hand, consider choice rule (7.5)

{a0, . . . , ak} ← b1, . . . , bl, not bl+1, . . . , not bm.

It abbreviates the rule with nested expressions

(a0 ∨ not a0) , . . . , (ak ∨ not ak) ← b1, . . . , bl, not bl+1, . . . , not bm.

This rule is strongly equivalent to the semi-traditional program:

a0 ← b1, . . . , bl, not bl+1, . . . , not bm, not not a0

· · ·

ak ← b1, . . . , bl, not bl+1, . . . , not bm, not not ak.

7.6 Tightness and Completion for Semi-Traditional Pro-

grams

In this section we review the definitions of completion and tightness for semi-

traditional programs. This is sufficient for our purposes, because the cmodels

algorithm eliminates choice and weight rules in favor of semi-traditional rules as

described in the previous section.

Recall that a semi-traditional rule (7.14) has the form

a← b1, . . . , bl, not bl+1, . . . , not bm, not not bm+1, . . . , not not bn.

We will write this rule in two other forms

a← B, (7.15)

68

a← D,F, (7.16)

where, as in case of traditional programs, the positive part D of the body is

b1, . . . , bl

and the negative part F is the list of the remaining terms of B

not bl+1, . . . , not bm, not not bm+1, . . . , not not bn.

We identify the body of a rule (7.14) with the conjunction

b1 ∧ · · · ∧ bl ∧ ¬bl+1 ∧ . . .¬bm ∧ ¬¬bm+1 ∧ · · · ∧ ¬¬bn.

Note that this conjunction is equivalent in classical logic to

b1 ∧ · · · ∧ bl ∧ ¬bl+1 ∧ . . .¬bm ∧ bm+1 ∧ · · · ∧ bn.

The definitions of completion and supported model for a semi-traditional

program is the same as in Section 4.4. This definition of completion is a special case

of a definition given by Lloyd and Topor [1984].

As we have seen before removing not not changes the answer sets of a pro-

gram (see example in the end of Section 7.1), but it does not change the models of

completion and hence the supported models of a program. For instance, consider

program (7.2) from Section 7.1. Its completion is

¬¬a→ a

¬a→ b

a→ ¬¬a

b→ ¬a.

(7.17)

Two of these implications are, of course, tautologies. The completion has two mod-

els: {a}, {b}. The completion of program (7.4) obtained from (7.2) by dropping the

double negation is equivalent to (7.17).

The definitions of the dependency graph and tightness given in Section 4.5

for traditional programs can be extended to semi-traditional programs, if we refer

69

to a program Π as a semi-traditional program and to a rule in the program as a

semi-traditional rule of the form (7.16).

For instance, consider program (7.2). Its dependency graph contains no

edges. The graph is trivially acyclic and hence the program is tight. On the other

hand, program (7.4) contains one cycle from node a to itself. Hence the program

is not tight. This example illustrates that removing not not may also change the

tightness property of a program similarly as it may change the answer sets of a

program.

Theorem 9 (Theorem on Tight Semi-Traditional Programs). For any tight semi-

traditional program Π and any set X of atoms, X is an answer set for Π if and only

if X satisfies Comp(Π).

Theorem 9 is a generalization of Theorem 4 in Section 4.5 and a special case

of a theorem due to Erdem and Lifschitz [2001].

For instance, program (7.2) is tight. From Theorem 9, it follows that the

two models of the program’s completion {a}, {b} are also its answer sets. On the

other hand, program (7.4) is not tight. It has only one answer set, {b}.

70

Chapter 8

Extending Cmodels Algorithm

to Choice and Weight Rules

This chapter generalizes the findings of Chapter 6 on using SAT for traditional tight

programs to the case of programs with extended syntax. First, Section 8.1 provides

the details on how the cmodels algorithm eliminates weight rules in favor of tra-

ditional rules using auxiliary atoms. Section 8.2 extends the findings on program

simplification from Section 6.1 to the case of programs with choice and weight rules

and Section 8.4 presents the proofs for these results. Section 8.3 shows how SAT can

be applied to tight programs of a more general kind. Finally Section 8.5 compares

the performance of cmodels and smodels on such programs.

8.1 Translating Weight Rules

In Section 7.5 we showed how a weight rule can be rewritten as a set of traditional

rules. That translation is, however, not efficient because its result can be expo-

nentially large. For instance, according to the method illustrated in Section 7.5 a

cardinality constraint rule

a← 0{b1, b2, . . . , bn}n

can be replaced by 2n traditional rules. Therefore, in the cmodels algorithm we

used another translation, proposed by Ferraris and Lifschitz [2005]. Their transla-

tion [Π] of a program Π uses auxiliary atoms to eliminate the weight rules from Π

71

in favor of traditional rules. This is similar to the idea behind the Tseitin proce-

dure [Tseitin, 1968] discussed in Section 6.3. Strictly speaking, [Π] is not equivalent

to Π, but it has a conservative extension property: dropping the newly introduced

atoms from the answer sets of [Π] provides the answer sets of Π. The complete

description of the transformation is not reproduced here (see [Ferraris and Lifschitz,

2005]), but in this section we give an example and discuss some implementation

details.

For instance, the rule

a← 3 {b = 3, c = 2, d = 2}

is first replaced by four simpler rules:

a← aux1

aux1← 3 {c = 2, d = 2}

a← b, aux2

aux2← 0 {c = 2, d = 2}.

Intuitively, the first pair of rules corresponds to the answer sets that don’t contain b,

and the second pair to the answer sets that do. The auxiliary variable aux1 is an

“abbreviation” for 3 {c = 2, d = 2}, and aux2 stands for 0 {c = 2, d = 2}. Since the

last expression is identically True, aux2 can be dropped from the program:

a← aux1

aux1← 3 {c = 2, d = 2}

a← b.

The next step is similar:

a← aux1

aux1← aux3

aux3← 3 {d = 2}

aux1← c, aux4

aux4← 1 {d = 2}

a← b.

72

Here aux3 stands for 3 {d = 2}, and aux4 stands for 1 {d = 2}. Since 3 {d = 2} is

identically False, the program can be simplified as follows:

a← aux1

aux1← c, aux4

aux4← 1 {d = 2}

a← b.

Finally, we use the fact that 1{d = 2} can be equivalently replaced by d, and arrive

at a set of basic rules:
a← aux1

aux1← c, aux4

aux4← d

a← b.

Every auxiliary atom introduced in the process of translating weight con-

straint rule (7.7) into a set of traditional rules “abbreviates” an expression that

differs from the body

L {F1 = w1, . . . , Fm = wm}

of that rule in two ways: the lower bound L is replaced by an integer between 1

and L, and the list of equalities in the brackets is replaced by its proper non-empty

suffix. It follows that the number of auxiliary atoms in the translation of rule (7.7)

does not exceed L(n−1). If (7.7) is a cardinality constraint rule (w1 = · · · = wn = 1)

then we can also say that the lower bound is replaced by an integer between L−n+1

and L, so that the number of auxiliary atoms in the translation of a cardinality

constraint rule has the upper bound n(n− 1).

8.2 Simplifying Programs with Nested Expressions

As in Section 6.1, given a nested program Π, by Atin(Π) we denote the intersection

of all answer sets of Π, and Atout(Π) stands for the set of atoms that do not belong to

any of the answer sets of Π. Recall that we view weight rules as abbreviations for the

programs with nested expressions. The propositions below generalize Propositions 1

and 2 to programs with nested expressions.

73

Proposition 1 (general form). Let Π be a nested program of the form

H ← L {b0 = w0, F1 = w1, . . . , Fn = wn}

Π′

where H is an atom, symbol ⊥, or an expression of the form

(a0 ∨ not a0) , . . . , (ak ∨ not ak) ,

each Fi is an atom bi or formula not bi. If b0 ∈ Atout(Π) then Π has the same

answer sets as the program

← b0

H ← L {F1 = w1, . . . , Fn = wn}

Π′.

In the special case when H is an atom or ⊥, all the weights wi = 1, and

L = n + 1, the rule

H ← L {b0 = w0, F1 = w1, . . . , Fn = wn}

can be rewritten as the traditional rule

H ← b0, F1, . . . , Fn.

Therefore, Proposition 1 (general form) can be seen as a generalization of Proposi-

tion 1 (Section 6.1). Similarly, Proposition 2 (general form) below is a generalization

of Proposition 2 (Section 6.1).

Also note that in the case when H has the form

(a0 ∨ not a0) , . . . , (ak ∨ not ak) ,

all the weights wi = 1, and L = n + 1, the rule

H ← L {b0 = w0, F1 = w1, . . . , Fn = wn}

74

can be rewritten as the choice rule

H ← b0, F1, . . . , Fn.

Proposition 2 (general form). Let Π be a nested program of the form

H ← L {not b0 = w0, F1 = w1, . . . , Fn = wn}

Π′

where H is an atom, symbol ⊥, or an expression of the form

(a0 ∨ not a0) , . . . , (ak ∨ not ak) ,

each Fi is an atom or formula not bi (bi is an atom).

(a) If b0 ∈ Atin(Π) then Π has the same answer sets as

← not b0

H ← L { F1 = w1, . . . , Fn = wn}

Π′.

(b) If b0 ∈ Atout(Π) then Π has the same answer sets as

← b0

H ← L− w0 { F1 = w1, . . . , Fn = wn}

Π′.

For instance, let Π be the program

{a}

c← 4{a = 1, b = 1,not d = 2}.

The only two answer sets for this program are {a} and ∅. Consequently, Atin(Π) = ∅

and Atout(Π) = {b, c, d}. According to Proposition 1 (general form), Π has the same

75

answer sets as a program

{a}

← b

c← 4{a = 1,not d = 2}.

By Proposition 2 (general form) (b), Π′ has the same answer sets as

{a}

← b

← d

c← 2{a = 1}.

If we know subsets of Atin(Π) and Atout(Π) then Proposition 1 (general form)

and Proposition 2 (general form) allow us to simplify Π.

8.3 Cmodels Algorithm for Programs with Choice and

Weight Rules

Consider a program Π that consists of the weight constraints and choice rules. After

eliminating weight constraints in favor of traditional rules by means of auxiliary

atoms as described in Section 8.1, and transforming the choice rules into sets of

semi-traditional rules as in Section 7.5, Π becomes semi-traditional. If the result of

this transformation is tight then, in view of Theorem 9, the answer sets of Π can be

found by a SAT solver.

We have enhanced cmodels so that it can handle programs with choice

and weight rules. The cmodels algorithm performs the following steps during its

execution:

1. simplifies the program,

2. eliminates the choice rules in favor of semi-traditional rules,

3. eliminates the weight rules in favor of traditional rules using auxiliary atoms,

4. verifies the tightness of the program,

76

5. produces its completion,

6. clausifies the completion,

7. invokes a SAT solver, and

8. interprets its output.

This algorithm extends the cmodels algorithm for traditional programs, presented

in Section 6, by steps 2 and 3.

The simplification step of the cmodels algorithm uses the smodels pro-

cedures Atmost and Atleast [Simons et al., 2002, Section 7], [Simons, 2000, Sec-

tion 4.1–4.3], Proposition 1 (general form) and Proposition 2 (general form). The

tightness verification, completion, and clausification steps are performed as de-

scribed in Sections 6.2 and 6.3. Tightness verification is performed after an ad-

ditional strongly equivivalent transformation on a program. This additional step

may possibly transfrom a nontight program into a tight one. We describe this pro-

cedure below.

The output of lparse often contains choice rules of the form

{a}

where a is an atom. Recall that this rule is strongly equivalent (Section 7.5) to the

semi-traditional rule

a← not not a. (8.1)

If a program contains rule (8.1) then replacing all occurrences of a in the positive

parts of the bodies of program’s rules by not not a does not change program’s answer

sets:

Proposition 3. Any nested program of the form

H ← a, B

a← not not a

is strongly equivalent to the program

H ← not not a, B

a← not not a.

77

Proposition 3 allows us, in some cases, to transform a nontight program into

tight. For instance, in application to the nontight program

a← not not a

a← b

b← a

this transformation inserts not not in front of a in its last rule, and the program

becomes tight.

8.4 Proofs of Proposition 1 (general form), Proposi-

tion 2 (general form), and Proposition 3

As discussed in Section 7.5 two logic programs Π1 and Π2 are strongly equivalent if

for every logic program Π, programs Π∪Π1 and Π∪Π2 have the same answer sets.

In [Lifschitz et al., 2001], the authors demonstrated that the verification of strong

equivalence can be accomplished by checking the equivalence of formulas represent-

ing logic programs in a monotonic logic, called the logic of here-and-there. This

logic is intermediate between classical logic and intuitionistic logic. Review of the

logic of here-and-there and intuitionistic logic is out of the scope of this presenta-

tion. The interested reader will find the introduction to the logic of here-and-there

in [Lifschitz et al., 2001] and the introduction to intuitionistic logic in [Moschovakis,

2008]. We can think of nested rules (7.1) discussed in Section 7.1 as propositional

formuals: replace every not with ¬, every comma with ∧, and trun every rule

Head← Body

into the implication

Body → Head.

In this view any nested program can be identified with the set of propositional

formulas.

Theorem 10 (Theorem 1 in [Lifschitz et al., 2001]). For any nested programs Π1

and Π2, Π1 is strongly equivalent to Π2 if and only if Π1 is equivalent to Π2 in the

logic of here-and-there.

78

The assertion of the Proposition 3 immediately follows from Theorem 10 due

to the fact that the two programs are intuitionistically equivalent.

The following theorem in [Lifschitz et al., 1999] tells us how adding a con-

straint to a program affects the collection of its answer sets.

Theorem on Constraints. For any nested program Π and nested expression F , a

set X of atoms is an answer set for Π ∪ {← F} if and only if X is an answer set

for Π and does not satisfy F .

Proposition 1 (general form). Let Π be a nested program of the form

H ← L {b0 = w0, F1 = w1, . . . , Fn = wn}

Π′

where H is an atom, symbol ⊥, or an expression of the form

(a0 ∨ not a0) , . . . , (ak ∨ not ak) ,

each Fi is an atom bi or formula not bi. If b0 ∈ Atout(Π) then Π has the same

answer sets as the program

← b0

H ← L {F1 = w1, . . . , Fn = wn}

Π′.

(8.2)

Proof. From Theorem on Constraints and the fact that b0 ∈ Atout(Π) it follows

that Π has the same answer sets as Π ∪ {← b0}. On the other hand, Π ∪ {← b0}

is equivivalent to program (8.2) in the logic of here-and-there. By Theorem 10,

Π∪{← b0} is strongly equivivalent to program (8.2). Consequently, Π has the same

answer sets as program (8.2).

The proof of Proposition 2 (general form) follows the lines of the proof above.

79

8.5 Experimental Analysis

As in the case of traditional programs we conduct experimental analysis using the

system whose technical specifications are presented in Section 6.5. We compare

the performance of cmodels using minisat and cmodels using zchaff with that

of smodels. Details on the versions of these answer set solvers are provided in

Section 6.5.

Figures 8.1 and 8.2 present the running times for cmodels versus smodels

on Schur Numbers, Putting Numbers, and Blocked n-queens benchmarks respec-

tively. In all tables we include the results already reported in Section 6.5.2 for

traditional programs and report new results for new encodings of the problems that

contain choice or cardinality constraint rules. We also report grounding times for

both encodings. We used the grounder gringo in these experiments. Figures 8.1

and 8.2 demonstrate how behavior of answer set solvers may depend on difference

in encoding. In Blocked n-queens the difference is especially noticable.

The asparagus platform also contains benchmarks for the problems Latin

Squares, Weighted Latin Squares, and Weight-Bounded Dominating Set. Here are

short descriptions of these problems:

• In the Latin Square problem we have an n x n board. The task is to assign

integers 1, . . . , n to each cell of the board in a way that each integer occurs

exactly once in each row and exactly once in each column.

• The Weighted Latin Square problem is a variant of Latin Square problem

where we are also given n x n weights wti,j and a bound w. The task is to

assign integers 1, . . . , n to the cells of the board in a way that not only each

integer occurs exactly once in each row and column, but also that for every

row i of the board the following inequality holds

ai,1 ∗ wti,1 + · · ·+ ai,n ∗ wti,n ≤ w

where ai,j is a number assigned to cell (i, j).

• In the Weight-Bounded Dominating Set problem we are given a directed graph

G = (V,E) where V is the set of vertices, E is the set of edges, and each edge

(i, j) ∈ E is associated with a weight wt(i,j). We are also given a cardinality

80

k and a weight w. The task is to find a subset D of V such that |D| ≤ k and

for each vertex v ∈ V at least one of the following conditions holds:

1. v ∈ D,

2.
∑

(i,v)∈E,i∈D wt(i,v) ≥ w, or

3.
∑

(v,j)∈E,j∈D wt(v,j) ≥ w.

Figure 8.3 presents the running times for cmodels versus smodels on Latin Square,

Weighted Latin Square, Weight Bounded Dominating Set benchmarks. The en-

coding of the first problem contains choice rules and cardinality constrains. The

encodings of the other two problems contain choice and weight rules. We use the

grounder lparse version 1.1.1 to ground all instances in Figure 8.3. We note that

both cmodels using minisat and cmodels using zchaff often outperform smod-

els. In general, using such features as weight and cardinality constraint rules is a

big advantage of such systems as smodels and cmodels. First, these constructs

often allow us to encode problems in a more elegant and economical way. Second,

using such rules usually improves the performance of the systems. Nevertheless, due

to the fact that the elimination of weight and cardinality constraint rules may lead

to substantial growth of the size of the program, cmodels may not always benefit

from the use of these features in terms of performance.

81

Encoding gringo cmodels + minisat smodels

tr-l ext-d tr-l ext-d tr-l ext-d

color.n100.3 0.03 0.04 0.03 0.02 0.02 0.01
color.n300.3 0.14 0.16 0.1 0.1 0.07 0.08
color.n600.3 0.41 0.44 0.24 0.24 0.16 0.16
color.n1000.3 0.99 1.01 0.43 0.42 0.3 0.28
color.n3000.3 7.56 6.41 1.48 1.4 0.97 0.92
color.n6000.3 33.63 22.74 3.15 2.93 2.0 1.85
color.n100.4 0.04 0.04 0.05 0.04 0.12 0.08
color.n300.4 0.19 0.2 0.16 0.14 1.47 0.71
color.n600.4 0.53 0.53 0.39 0.32 6.72 3.16
color.n1000.4 1.27 1.24 0.74 0.62 21.47 11.43
color.n3000.4 9.91 8.13 8.94 14.1 211.58 109.88
color.n6000.4 44.81 29.87 t-o t-o t-o 465.12

schur.p4n43 0.06 0.05 0.15 0.28 0.58 0.18
schur.p4n44 0.06 0.05 0.31 0.9 32.58 0.2
schur.p4n45 0.06 0.05 0.27 4.53 44.3 536.86
schur.p5n100 0.34 0.34 4.51 1.1 t-o t-o
schur.p5n110 0.41 0.39 16.91 521.08 t-o t-o
schur.p5n120 0.48 0.46 362.79 t-o t-o t-o
schur.p5n130 0.57 0.54 t-o t-o t-o t-o

pn.gsquare-3-10-2-8 0.02 0.02 0.02 0.02 0.06 0.08
pn.gsquare-4-11-3-8 0.04 0.04 0.07 0.15 112.92 57.62
pn.gsquare-4-12-3-8 0.04 0.04 0.07 0.64 6.18 19.05
pn.gsquare-4-14-3-8 0.05 0.05 0.07 0.09 10.61 0.34
pn.gsquare-4-19-3-8 0.07 0.07 0.98 0.14 223.02 223.91
pn.gsquare-4-22-3-8 0.09 0.09 2.48 0.77 105.38 32.08
pn.gsquare-4-24-3-8 0.1 0.1 0.3 0.42 402.48 470.57
pn.gsquare-4-9-3-8 0.03 0.03 0.04 0.03 0.54 1.66
pn.gsquare-5-12-4-8 0.07 0.07 82.4 24.42 t-o t-o
pn.gsquare-7-25-6-8 0.31 0.28 t-o t-o t-o t-o

Figure 8.1: Graph Coloring, Schur Number, and Putting Numbers; runtimes of
gringo, cmodels using minisat, and smodels on traditional programs and (ex-
tended) programs with choice and cardinality constraint rules.

82

Encoding gringo cmodels + minisat smodels

tr-l extended tr-l ext-d tr-l ext-d

queens.18 0.16 0.07 0.22 0.13 6.8 2.09
queens.22 0.3 0.14 0.49 0.29 t-o 171.46
queens.24 0.4 0.19 0.71 0.4 t-o 225.61
queens.28 0.68 0.33 1.26 0.81 t-o t-o
queens.32 1.08 0.54 2.19 1.5 t-o t-o
queens.36 1.64 0.83 3.41 2.5 t-o t-o

bqueens.50.1642398261 5.45 2.82 157.11 19.14 t-o 321.73
bqueens.50.1642399343 5.62 2.8 t-o 7.76 t-o 66.53
bqueens.50.1642399526 5.35 2.8 t-o 24.56 t-o 11.85
bqueens.50.1642400086 5.47 2.82 t-o 20.48 t-o 377.66
bqueens.50.1642401471 5.29 2.82 t-o 5.23 t-o 34.03
bqueens.50.1642402365 5.41 2.8 t-o 49.96 t-o 250.9
bqueens.50.1642402587 5.56 2.76 87.1 3.67 t-o 24.43
bqueens.50.1642403758 5.49 2.81 t-o 21.9 t-o 457.62
bqueens.50.1642404800 5.39 2.81 t-o 4.47 t-o 71.45
bqueens.50.1642405183 5.48 2.77 t-o 35.6 t-o 138.5
bqueens.50.1642405538 5.38 2.81 t-o 0.92 t-o 5.82
bqueens.50.1642405851 5.39 2.81 t-o 1.2 t-o 5.64
bqueens.50.1642406103 5.42 2.8 t-o 30.59 t-o 205.31
bqueens.50.1642406388 5.44 2.8 104.12 8.3 t-o 10.06
bqueens.50.1642406727 5.2 2.8 266.84 1.65 t-o 13.67
bqueens.50.1642407126 5.37 2.8 485.78 5.47 t-o 38.37
bqueens.50.1642407701 5.34 2.8 t-o 12.32 t-o 164.49
bqueens.50.1642407857 5.47 2.8 119.3 2.36 t-o 25.87
bqueens.50.1642408305 5.44 2.8 t-o 26.07 t-o 184.88
bqueens.50.1642408561 5.4 2.8 201.16 50.75 t-o 11.52

Figure 8.2: n-queens and Blocked n-queens problem; runtimes of gringo, cmodels

using minisat, and smodels on traditional programs and (extended) programs with
choice rules.

83

Encoding lparse cmodels smodels

minisat zchaff

latinsquare.1706819821 3.14 7.94 10.76 t-o
latinsquare.1706819916 3.15 7.89 10.02 t-o
latinsquare.1706821187 3.12 7.9 6.94 t-o
latinsquare.1706821345 3.21 7.8 26.11 17.21
latinsquare.1706821885 3.16 7.86 9.37 11.43
latinsquare.1706823705 3.21 7.77 6.88 211.59
latinsquare.1706823818 3.14 7.82 6.74 228.04
latinsquare.1706823943 3.12 7.81 6.58 8.14
latinsquare.1706823984 3.14 7.87 7.95 9.45
latinsquare.1706824107 3.13 7.86 11.0 83.08

weightedls.1162362547 0.04 0.57 0.4 0.02
weightedls.1162368434 0.04 0.56 0.29 513.44
weightedls.1162378470 0.04 0.55 0.25 133.41
weightedls.1162549540 0.05 0.61 0.52 58.87
weightedls.1162571546 0.04 0.55 0.25 68.02
weightedls.1162579118 0.04 0.51 0.38 7.06
weightedls.1162583044 0.04 0.58 0.32 0.02
weightedls.1162586028 0.04 0.58 0.26 145.08
weightedls.1162588733 0.04 0.64 0.9 101.07
weightedls.1162592956 0.04 0.56 0.26 0.01

rand-100-400-1159666138-13 0.09 82.57 12.15 t-o
rand-100-400-1159666138-19 0.09 0.21 12.96 t-o
rand-100-400-1159666138-1 0.09 0.46 25.98 209.38
rand-100-400-1159666138-2 0.09 t-o 57.04 17.57
rand-100-400-1159666138-3 0.08 43.32 6.47 t-o
rand-150-600-1159731678-11 0.16 572.6 33.92 t-o
rand-150-600-1159731678-12 0.16 t-o 135.27 t-o
rand-150-600-1159731678-14 0.16 10.36 269.31 t-o
rand-150-600-1159731678-3 0.16 54.78 t-o t-o
rand-150-600-1159731678-5 0.16 217.73 175.04 t-o
rand-200-800-1159728969-1 0.24 559.73 t-o t-o
rand-200-800-1159728969-4 0.24 345.94 t-o t-o
rand-200-800-1159728969-7 0.24 228.64 t-o t-o
rand-200-800-1159728969-8 0.24 89.11 t-o t-o

Figure 8.3: Latin Square, Weighted Latin Square, Weight Bounded Dominating
Set; runtimes of lparse, cmodels using minisat and zchaff, and smodels on
programs with choice and weight rules.

84

Chapter 9

Background: Loop Formulas

As discussed in Section 7.6, for any semi-traditional program, each answer set is a

model of the program’s completion, but the converse is in general not true unless

the program is assumed to be tight. Investigation of techniques that allow us to use

satisfiability solvers for computing answer sets of arbitrary, possibly nontight, logic

programs is the main topic of the rest of this dissertation. This chapter introduces

an important concept used in this research, the notion of a loop formula.

9.1 Loop Formula

Lin and Zhao [2002] showed that if we extend the completion of a traditional program

by ”loop formulas” then models of the resulting formula will be identical to the

answer sets of this program. Lee and Lifschitz [2003] extended their results to the

case of nested programs. In this section we review these findings for the case of

semi-traditional programs. Recall that rules of a semi-traditional program have the

form

a← D,F

where a is an atom or ⊥, D stands for

b1, . . . , bl,

85

and F stands for the expression

not bl+1, . . . , not bm, not not bm+1, . . . , not not bn,

and each bi is an atom.

A nonempty set X of atoms is called a loop1 of a semi-traditional program Π

if, for every pair a and b of atoms in X, there exists a path (possibly of length 0)

from a to b in the dependency graph of Π (see Section 7.6) such that all vertices in

this path belong to X. In other words, X is a loop of Π if and only if the subgraph

of the dependency graph of Π induced by X is strongly connected. It is clear that

any set consisting of a single atom is a loop.

For instance, consider a program

a← not d

a← c

b← c

c← a, b.

(9.1)

The dependency graph of the program is shown in Figure 9.1. The program has

seven loops: {a}, {b}, {c}, {d}, {a, c}, {b, c}, {a, b, c}. The first four loops are trivial

– they are singletons corresponding to the atoms occurring in the program.

a c b

d

Figure 9.1: Dependency graph of program (9.1)

The loop formulas of Π are determined by the rules of Π whose head is an

atom, rather than ⊥:

a← D,F (9.2)

The loop formula FL of a loop L is

∨

L→
∨

R(L) (9.3)

1Definitions of loop in [Lin and Zhao, 2002] and [Lee and Lifschitz, 2003] differ. We follow the
tradition of the latter.

86

Loop Loop Formula

{a} a→ ¬d ∨ c
{b} b→ c
{c} c→ a ∧ b
{d} d→ ⊥
{a, c} a ∨ c→ ¬d
{b, c} b ∨ c→ ⊥
{a, b, c} a ∨ b ∨ c→ ¬d

Figure 9.2: Loops and loop formulas for program (9.1).

where R(L) is the set of formulas

D ∧ F (9.4)

for all rules (9.2) in Π such that a ∈ L and D ∩ L = ∅. (By
∨

L we denote the

disjunction of all elements of L, and
∨

R(L) is understood in a similar way). By

LF (Π) we denote the set (the conjunction) of all loop formulas for Π.

For instance, the loop formulas for program (9.1) are shown in Figure 9.2.

LF (Π) is the set of formulas in the right column.

It is interesting to note that for a singleton loop, the corresponding set of

the bodies of some rules form the right hand side of the implication (4.10) in the

program’s completion. (In fact, if there is no rule of the form a ← . . . , a, . . . in

the program then the loop formula of {a} is identical to implication (4.10) of the

completion for atom a). By SLF (Π) we denote the set of loop formulas of all

singletons for Π. It is clear that Π ∪ SLF (Π) entails the program’s completion

Comp(Π). Since SLF (Π) is a subset of LF (Π), Π ∪ LF (Π) entails Comp(Π) as

well.

For instance, consider Π

a← a.

Its completion Comp(Π) is identical to Π. On the other hand, Π ∪ SLF (Π) is

a→ a

a→ ⊥

87

where the last formula is the loop formula of the singleton loop {a}.

Let Π be program (9.1). Set SLF (Π) consists of the first four loop formulas

shown in Figure 9.2. In this case, the union Π ∪ SLF (Π)

¬d→ a

c→ a

c→ b

a ∧ b→ c

a→ ¬d ∨ c

b→ c

c→ a ∧ b

d→ ⊥

(9.5)

is identical to the completion Comp(Π).

Since all loops of any tight program Π are singletons, the union of a tight

program with the set of its loop formulas Π ∪ LF (Π) is always identical to the

completion Comp(Π).

The following theorem is a special case of Theorem 1 from [Lee and Lifschitz,

2003].

Theorem 11. For any semi-traditional program Π and any set X of atoms, X is

an answer set for Π if and only if X satisfies Π ∪ LF (Π).

In a sense, Π ∪ LF (Π) is an “improved” version of Comp(Π).

For instance, let Π be again program (9.1). This program has six models {a},

{d}, {a, d}, {b, d}, {a, b, c}, {a, b, c, d}. Nevertheless, only one model {a} satisfies all

of the program’s loop formulas (see Figure 9.2). Therefore, the program has only

one answer set {a}.

On the other hand, let us consider the program’s completion (9.5). The

completion has two models {a}, {a, b, c}. The model {a, b, c} does not satisfy the

loop formula b ∨ c→ ⊥ of the program, and hence, it is not an answer set.

We call formula Π∪LF (Π) Lin-Zhao transformation of a program Π. Answer

sets of any semi-traditional logic program coincide with models of its Lin-Zhao

transformation. In other words, a set X of literals is a model of Π ∪ LF (Π) if and

only if X+ is an answer set of Π. The question that comes into mind is: How can

we use Lin-Zhao transformation for finding answer sets of a nontight program?

88

Consider a program Π. To find the answer sets of Π, one possibility is to

(1) compute the set Γ = Π ∪ LF (Π) of formulas, and then

(2) invoke a SAT solver to determine the models of Γ.

This is an “eager”approach which may work well in some cases, but in general the

resulting propositional formula Π ∪ LF (Π) may be exponentially bigger than the

input program Π.

For instance, consider a program consisting of n2 rules

ai ← aj , (1 ≤ i, j ≤ n).

Since the dependency graph of this program is complete, every nonempty

subset of atoms in the program forms a loop. Therefore there are 2n − 1 loop

formulas for this program.

More generally a result by Lifschitz and Razborov [2006] shows that —

assuming P 6⊆ NC1/poly, a conjecture from computational complexity theory widely

believed to be true — whenever we try to translate a logic program into an equivalent

set of propositional formulas, an exponential blow up may occur.

For this reason, the straightforward use of the Lin-Zhao transformation is,

generally, not feasible. Next section reviews the SAT-based method used in the

system assat [Lin and Zhao, 2002] that utilizes the concept of a loop formula

for finding answer sets of a nontight program using a ”lazy” approach. Unlike

the ”eager” approach, which involves computing all loop formulas of the program

at once, the ”lazy” methodology performs the computation of loop formulas on

demand. In many cases, this leads to avoiding the exponential blow up and makes

the SAT-based approach applicable to many large nontight programs.

9.2 SAT-based System Assat

assat [Lin and Zhao, 2002; 2004] is a SAT-based system for traditional programs

that takes a “lazy” approach to the use of the Lin-Zhao transformation. Instead

of computing all loop formulas at once, assat adds loop formulas on demand, i.e.,

assat

1. Computes Γ = Comp(Π).

89

2. Looks for a model X of Γ using a SAT solver; if no such model exists then

the input program does not have answer sets and the procedure terminates

returning False;

3. Checks if X is an answer set; if yes, then the procedure terminates returning

True; otherwise, assat

(a) finds a loop formula that is not satisfied by X, and adds it to Γ;

(b) goes back to step 2.

The method for computing loop formulas used in Step 3a is one of the important

contributions of [Lin and Zhao, 2002]. (We discuss this method extended to semi-

traditional programs in Section 11.3). The above procedure can easily be modified

for finding all answer sets of the program, rather than just one. Lin and Zhao [2002;

2004] showed that assat can often outperform specialized answer set solvers such

as, for instance, smodels. However, assat has the following two drawbacks:

1. In two successive calls to the SAT solver, the computation performed for find-

ing the first model is completely discarded, i.e., not re-used by the SAT solver

in the second call. Thus some branches of the search tree may be computed

many times.

2. assat is not guaranteed to work in polynomial space due to the fact that there

are programs for which there are exponentially many loop formulas that can-

not be derived from the program’s completion and from other loop formulas.

Consider what happens when assat is applied to such a program Π:

• If Π has an answer set, then the performance of assat on Π depends on

how lucky the system is in generating the right model early. In the best

case it generates an answer set quickly. In the worst case it blows up in

space.

• If Π has no answer set, then assat blows up in space. In fact, adding

and keeping already added loop formulas is essential to guarantee that

the SAT solver does not return an already computed model, and thus to

guarantee termination.

In the next chapter we discuss an alternative SAT-based approach that re-

solves these two problems.

90

Chapter 10

Abstract Description of

“Generate and Test” DPLL

In this chapter we will define a modification of the graph underlying dpll that

includes testing assignments found by dpll. In the next chapter we will show how

such graph can be used to extend the cmodels algorithm to nontight programs. In

Section 10.1 we present a graph gtF,G that is a modification of the dpll graph dpF

(Section 3.2) which includes the testing assignments of F found by dpll. This graph

describes a basic “generate and test” algorithm based on dpll. In Section 10.2 we

extend the graph gtF,G to gtlF,G to capture backjumping and learning for the

generate and test algorithm. Section 10.3 defines the “extended” graph gtl
↑
F,G

that adopts more detailed notion of a state. Such extended graph is better suited

for formalizing ideas behind computing backjump clauses used in conflict driven

backjumping and learning. We use gtl
↑
F,G in Sections 10.4 and 10.5 to define the

procedures BackjumpClause and BackjumpClauseFirstUIP for computing Decision

and FirstUIP backjump clauses respectively. Section 10.4 also provides proofs of

the theorems stated in earlier sections of the chapter.

10.1 Abstract Generate and Test

Recall that any answer set of a program is also a model of its completion. It

follows that dpll — an algorithm for finding the models of a propositional formula

— applied to the clausified completion of a program enumerates a set containing

91

all answer sets of the program. If we modify the dpll algorithm to allow testing

assignments, we can use the resulting algorithm to identify only those models of

completion that are also answer sets. We call such an approach generate and test.

In [Giunchiglia et al., 2006], we defined an asp-sat algorithm that utilizes

the generate and test approach for computing answer sets of a program. Given

a program Π, asp-sat generates the models of ED-Comp(Π) — the completion

converted to CNF by means of auxiliary variables (Section 6.3) — using dpll, and

tests them until an answer set is found.

In this section, we present a modification of the graph dpF (Section 3.2) that

includes testing assignments of F found by dpll. This modification of the graph

dpF is of interest because it can be used to describe the asp-sat algorithm. A new

graph gtF,G is such that if F is the completion of a program Π and G is LF (Π)

then the terminal nodes of this graph correspond to the program’s answer sets. In

Section 11.1 we use the graph gtF,G to describe the asp-sat algorithm.

Let F be a CNF formula, and let G be a formula formed from atoms occurring

in F . The terminal nodes of the graph gtF,G defined below are models of formula

F ∧G.

The nodes of the graph gtF,G are the same as the nodes of the graph dpF .

The edges of gtF,G are described by the transition rules of dpF and the additional

transition rule:

Test :

M =⇒ M l if











M is consistent,

G |= M,

l ∈M

It is easy to see that the graph dpF is a subgraph of gtF,G. The latter graph

can be used for deciding whether a formula F ∧ G has a model by constructing a

path from ∅ to a terminal node:

Theorem 12. For any CNF formula F and a formula G formed from atoms oc-

curring in F ,

(a) graph gtF,G is finite and acyclic,

(b) any terminal state of gtF,G other than FailState is a model of F ∧G,

(c) FailState is reachable from ∅ in gtF,G if and only if F ∧G is unsatisfiable.

92

Note that to verify the applicability of the new transition rule Test we need

a procedure for testing whether G entails a clause, but there is no need to explicitly

write out G. This is important because LF (Π) can be very long [Lin and Zhao,

2002].

As discussed in Section 9.1, answer sets of a program Π can be characterized

as models of its completion extended by so called loop formulas of a program. Recall

that ED-Comp(Π) is the completion converted to CNF using auxiliary variables

(Section 6.3) and LF (Π) is the conjunction of all loop formulas of Π (Section 9.1).

For a set M of literals by MΠ we denote all literals in M whose atoms occur in Π. For

instance, let Π contain two atoms a and b, and M be a ¬b c then MΠ is a ¬b. It is easy

to see that for any program Π and any assignment M of ED-Comp(Π)∧LF (Π), M

is a model of ED-Comp(Π) ∧ LF (Π) if and only if M+
Π is an answer set of Π.

Let Π be the nontight program

d← d.

Its completion is

d↔ d,

and ED-Comp(Π) is

(d ∨ ¬d).

This program has one loop formula

d→ ⊥.

Theorem 12 asserts that a terminal state ¬d of gtED-Comp(Π), d→⊥ is a model of

ED-Comp(Π) ∧ LF (Π). It follows that {¬d}+ = ∅ is an answer set of Π. To

compare gtED-Comp(Π), d→⊥ with the graph dpED-Comp(Π): state d is a terminal state

in dpED-Comp(Π) whereas d is not a terminal state in gtED-Comp(Π), d→⊥ because the

transition rule Test is applicable to this state.

In the rest of this section we give a proof of Theorem 12.

Lemma 7. For any CNF formula F , a formula G formed from atoms occurring

in F , and a path from ∅ to a state l1 . . . ln in gtF,G, any model X of F ∧ G

satisfies li if it satisfies all decision literals l∆j with j ≤ i.

93

Proof. By induction on the path from ∅ to l1 . . . ln. Similar to the proof of Lemma 1.

We will show that the property in question is preserved by the transition rule Test .

Take a model X of F ∧G and consider an edge M =⇒M ′ where M is a list

l1 . . . lk such that X satisfies li if it satisfies all decision literals l∆j with j ≤ i.

Assume that X satisfies all decision literals from M ′. We will show that the

rule justifying the transition from M to M ′ is different from Test . By contradiction.

M ′ is M l. From the assumption that X satisfies all decision literals from M ′, it

follows that X satisfies all decision literals from M . By the inductive hypothesis,

X |= M . By the definition of Test , G |= M . Since X is a model of F ∧G it follows

that X |= M . This contradicts the fact that X |= M .

Proof of Theorem 12

Part (a) and part (c) Right-to-left are proved as in the proof of Theorem 1.

(b) Let M be any terminal state other than FailState. As in the proof of The-

orem 1(b) it follows that M is a model of F . The transition rule Test is not

applicable. Hence G 6|= M . In other words M is a model of G. We conclude that M

is a model of F ∧G

(c) Left-to-right: Since FailState is reachable from ∅, there is a state M without

decision literals such that M is reachable from ∅ and the transition rule Fail is

applicable in M . Then, M is inconsistent. By Lemma 7, any model of F ∧ G

satisfies M . Since M is inconsistent we conclude F ∧G is unsatisfiable.

10.2 Abstract Generate and Test with Backjumping and

Learning

In this section we model backjumping and learning techniques for the generate

and test procedure introduced in previous section by defining a graph gtlF,G that

extends gtF,G in a similar way as dplF extends dpF (see Sections 3.2 and 3.4).

An (augmented) state relative to a CNF formula F and a formula G formed

from atoms occurring in F is either a distinguished state FailState or a pair of the

form M ||Γ, where M is a record (Section 3.2) relative to the set of atoms occurring

in F , and Γ is a (multi)set of clauses formed from atoms occurring in F that are

entailed by F ∧G.

94

The nodes of the graph gtlF,G are the augmented states relative to a CNF

formula F and a formula G formed from atoms occurring in F . The edges of gtlF,G

are described by the transition rules Unit Propagate λ, Decide, Fail of dplF , the

transition rules

Backjump GT :

P l∆ Q||Γ =⇒ P l′||Γ if

{

P l∆ Q is inconsistent and

F ∧G |= l′ ∨ P

Learn GT :

M ||Γ =⇒ M || C, Γ if

{

every atom in C occurs in F and

F ∧G |= C

and the transition rule Test of gtF,G that is extended to gtlF,G as follows: M ||Γ =⇒

M ′||Γ is an edge in gtlF,G justified by Test if and only if M =⇒ M ′ is an edge in

gtF,G justified by Test .

We refer to the transition rules Unit Propagate λ, Test, Decide, Fail , Back-

jump GT of the graph gtlF,G as Basic. We say that a node in the graph is semi-

terminal if no rule other than Learn GT is applicable to it.

The graph gtlF,G can be used for deciding whether a formula F ∧G has a

model by constructing a path from ∅||∅ to a terminal node:

Theorem 13. For any CNF formula F and a formula G formed from atoms oc-

curring in F ,

(a) every path in gtlF,G contains only finitely many edges labeled by Basic tran-

sition rules,

(b) for any semi-terminal state M ||Γ of gtlF,G reachable from ∅||∅, M is a model

of F ∧G,

(c) FailState is reachable from ∅||∅ in gtlF,G if and only if F ∧G is unsatisfiable.

Thus if we construct a path from ∅||∅ so that Basic transition rules periodi-

cally appear in it then some semi-terminal state will be eventually reached; as soon

as a semi-terminal state is reached the problem of finding a model of F ∧G is solved.

For instance, let Π be nontight program (7.4). Its completion is

(a↔ a) ∧ (b↔ ¬a)

95

and ED-Comp(Π) is

(a ∨ ¬a) ∧ (a ∨ b) ∧ (¬a ∨ ¬b).

This program has one loop formula

a→ ⊥.

Here is a path in gtlED-Comp(Π),a→⊥:

∅||∅ =⇒ (Decide)

a∆||∅ =⇒ (Unit Propagate λ)

a∆ ¬b||∅ =⇒ (Test)

a∆ ¬b ¬a||∅ =⇒ (Backjump GT)

¬a||∅ =⇒ (Unit Propagate λ)

¬a ¬b||∅

(10.1)

Since the state ¬a ¬b is semi-terminal, Theorem 13 (b) asserts that {¬a,¬b} is a

model of ED-Comp(Π) ∧ (a→ ⊥).

As in case of the graph dplF , the transition rule Backjump GT is applicable

in any inconsistent state with a decision literal that is reachable from ∅||∅. We call

such states backjump states.

Theorem 14. For any CNF formula F and a formula G formed from atoms oc-

curring in F , the transition rule Backjump GT is applicable in any backjump state

in gtlF,G.

Proofs of Theorems 13 and 14 are given in Section 10.4.

10.3 Backjumping and Extended Graph

Recall the transition rule Backjump GT of gtlF,G

Backjump GT :

P l∆ Q||Γ =⇒ P l′||Γ if

{

P l∆ Q is inconsistent and

F ∧G |= l′ ∨ P

96

A state in the graph gtlF,G is a backjump state if it is inconsistent, contains a

decision literal, and is reachable from ∅||∅. Note that it may not be clear a priori

whether Backjump GT is applicable to a backjump state and if so to which state the

edge due to the application of Backjump GT leads. These questions are important

if we want to base an algorithm on this framework. Theorem 14 (Section 10.2)

asserts that Backjump GT is always applicable to a backjump state, so that a

backjump state in gtlF,G is never semi-terminal. In the end of this section we show

how Theorem 14 can be derived from the results proved later in this dissertation.

The next question to answer is how to continue choosing a path in the graph after

reaching a backjump state. To answer this question we introduce the notions of a

reason and an extended graph.

For a formula H, we say that a clause l ∨ C is a reason for l to be in a list

P l Q of literals with respect to H if H |= l ∨ C and C ⊆ P . We can equivalently

restate the second condition of Backjump GT “F ∧G |= l′ ∨ P” as “there exists a

reason for l′ to be in P l′ with respect to F ∧G” (note that l′ ∨ P is a reason for l′

to be in P l′). We call a reason for l′ to be in P l′ a backjump clause. Note that

Theorem 14 asserts that a backjump clause always exists for a backjump state. It is

clear that we may continue choosing a path in the graph after reaching a backjump

state if we know how to compute a backjump clause for this state. We now define a

graph gtl
↑
F,G that shares many properties of gtlF,G but allows us to give a simpler

procedure for computing a backjump clause.

An (extended) record M relative to a formula H is a list of literals over the

set of atoms occurring in H where

(i) each literal l in M is annotated either by ∆ or by a reason for l to be in M

with respect to H,

(ii) M contains no repetitions,

(iii) for any inconsistent prefix of M , its last literal is annotated by a reason.

For instance, let H be a formula

(a ∨ b) ∧ (¬b ∨ ¬a) ∧ c.

97

The following lists of literals

b∆ a∆ ¬ b¬b∨¬a, b∆ ¬ a¬b∨¬a

are extended records relative to H. On the other hand, the lists of literals

a∆ ¬a∆, a∆ ¬ b¬b∨¬a b∆, b∆ a∆ ¬ b¬b∨¬a c∆

are not extended records.

An (extended) state relative to a CNF formula F , and a formula G formed

from atoms occurring in F is either the distinguished state FailState or a pair of

the form M ||Γ, where M is an extended record relative to F ∧G, and Γ is the same

as in the definition of an augmented state (i.e., Γ is a (multi)set of clauses formed

from atoms occurring in F that are entailed by F ∧ G.) It is easy to see that for

any extended state S relative to F and G, the result of removing annotations from

all nondecision literals of S is a state of gtlF,G: we will denote this state by S↓.

For instance, let formula F be a ∨ b and G be ⊤. All pairs

FailState ∅||∅ ¬a∆ bb∨a||∅ ¬b∆ aa∨b||∅

are among valid extended states relative to these formulas. The corresponding

states S↓ are

FailState ∅||∅ ¬a∆ b||∅ ¬b∆ a||∅.

We now define a graph gtl
↑
F,G for any CNF formula F and any formula G

formed from atoms occurring in F . The set of the nodes of gtl
↑
F,G consists of the

extended states relative to F and G. The transition rules of gtlF,G are extended to

gtl
↑
F,G as follows: S1 =⇒ S2 is an edge in gtl

↑
F,G justified by a transition rule T

if and only if S↓1 =⇒ S↓2 is an edge in gtlF,G justified by T .

The definitions of Basic transition rules and semi-terminal states in gtl
↑
F,G

are similar to their definitions for gtlF,G .

Theorem 13↑. For any CNF formula F and a formula G formed from atoms

occurring in F ,

(a) every path in gtl
↑
F,G contains only finitely many edges labeled by Basic tran-

sition rules,

98

(b) for any semi-terminal state M ||Γ of gtl
↑
F,G, M is a model of F ∧G,

(c) gtl
↑
F,G contains an edge leading to FailState if and only if F ∧G is unsatisfi-

able.

Note that Theorem 13↑ (b), unlike Theorem 13 (b), does not require a semi-terminal

state to be reachable from ∅||∅. As in the case of the graph gtlF,G, gtl
↑
F,G can

be used for deciding whether a formula F ∧G has a model. Furthermore, the new

graph provides the means for computing a backjump clause that permits practical

application of the transition rule Backjump GT : Sections 10.4.3 and 10.5 describe

the BackjumpClause (Algorithm 3) and BackjumpClauseFirstUIP (Algorithm 4)

procedures that compute Decision and FirstUIP backjump clauses respectively.

We say that a state in the graph gtl
↑
F,G is a backjump state if its record

is inconsistent and contains a decision literal. Unlike the definition of a backjump

state in gtlF,G, this definition does not require a backjump state to be reachable

from ∅||∅ in gtl
↑
F,G. As in case of the graph gtlF,G, any backjump state in gtl

↑
F,G

is not semi-terminal:

Theorem 14↑. For any CNF formula F and a formula G formed from atoms

occurring in F , the transition rule Backjump GT is applicable to any backjump

state in gtl
↑
F,G.

The lemma below formally states the relationship between nodes of the graphs

gtlF,G and gtl
↑
F,G:

Lemma 8. For any CNF formula F and a formula G formed from atoms occurring

in F , if S′ is a state reachable from ∅||∅ in the graph gtlF,G then there is a state S

in the graph gtl
↑
F,G such that S↓ = S′.

Theorems 13 (b), (c), and 14 easily follow from Lemma 8, Theorems 13↑ (b), (c),

and 14↑ respectively. The proof of Theorem 13 (a) is similar to the proof of Theo-

rem 13↑ (a).

Section 10.4 will present the proofs for Theorem 13↑, Lemma 8, and The-

orem 14↑. It is interesting to note that the proofs of Lemma 8 and Theorem 14↑

implicitly provide the means for following a path in the graph gtl
↑
F,G:

• given a state M ||Γ and a transition rule Unit Propagate λ, Test applicable to

M ||Γ, the proof of Lemma 8 describes a clause that may be used to construct

99

a record M ′ so that there is an edge M ||Γ =⇒ M ′||Γ due to this transition

rule,

• given a backjump state M ||Γ, the proof of Theorem 14↑ describes a backjump

clause that can be used to construct a record M ′ so that there is an edge

M ||Γ =⇒ M ′||Γ due to Backjump GT .

Furthermore, the construction of the proof of Theorem 14↑ paves the way for the

procedure BackjumpClause presented in Algorithm 3.

10.4 Proofs of Theorem 13↑, Lemma 8, and Theorem 14↑

10.4.1 Proof of Theorem 13↑

Lemma 9. For any CNF formula F , a formula G formed from atoms occurring

in F , an extended record M relative to F ∧ G, and any model X of F ∧ G, if X

satisfies all decision literals in M then X |= M .

Proof. By induction on the length of M . The property trivially holds for ∅. We

assume that the property holds for any state with n elements. Consider any state M

with n + 1 elements. Let X be a model of F ∧G such that X satisfies all decision

literals in M .

Case 1. M has the form P l∆. By the inductive hypothesis, X |= P . Since X

satisfies all decision literals in M , X |= l∆.

Case 2. M has the form P ll∨C . By the inductive hypothesis, X |= P . By

the definition of a reason (i) F ∧G entails l∨C and (ii) C ⊆ P . From (ii) it follows

that P |= ¬C. Consequently, X |= ¬C. From (i) it follows that X |= l ∨ C. We

conclude that X |= l.

The proof of Theorem 13↑ assumes the correctness of Theorem 14↑ that we

demonstrate later in Section 10.4.3.

Theorem 13↑. For any CNF formula F and a formula G formed from atoms

occurring in F ,

(a) every path in gtl
↑
F,G contains only finitely many edges labeled by Basic tran-

sition rules,

100

(b) for any semi-terminal state M ||Γ of gtl
↑
F,G, M is a model of F ∧G,

(c) gtl
↑
F,G contains an edge leading to FailState if and only if F ∧G is unsatisfi-

able.

Proof. (a) For any list N of literals by |N | we denote the length of N . Any state M ||Γ

has the form M0 l∆1 M1 . . . l∆p Mp||Γ, where l∆1 . . . l∆p are all desicion literals of M ;

we define α(M ||Γ) as the sequence of nonnegative integers |M0|, |M1|, . . . , |Mp|, and

α(FailState) =∞. For any states S and S′ of gtl
↑
F,G, we understand α(S) < α(S′)

as the lexicographical order. We first note that for any state M ||Γ, the value of α is

based only on the first component M of the state. Second, there is a finite number

of distinct values of α due to the fact that there is a finite number of distinct Ms

over F ∧ G. We derive that there is a finite number of distinct values of α for the

states of gtl
↑
F,G, even though the number of distinct states in gtl

↑
F,G is infinite.

By the definition of the transition rules of gtl
↑
F,G, if there is an edge from

M ||G to M ′||G′ in gtl
↑
F,G formed by any Basic transition rule then α(M ||G) <

α(M ′||G′). Then, due to the fact that there is a finite number of distinct values

of α, it follows that there is only a finite number of edges due to the application of

Basic rules possible in any path.

(b) Let M ||Γ be a semi-terminal state so that none of the Basic rules are applicable.

From the fact that Decide is not applicable, we conclude that M assigns all literals.

Furthermore, M is consistent. Indeed, assume that M is inconsistent. Then,

since Fail is not applicable, M contains a decision literal. Consequently, M ||Γ is a

backjump state. By Theorem 14↑, the transition rule Backjump GT is applicable in

M ||Γ. This contradicts our assumption that M ||Γ is semi-terminal.

Also, M is a model of F : since Unit Propagate λ is not applicable, it follows

that for every clause C ∨ l ∈ F ∪Γ if C ⊆M then l ∈M . Consequently, M |= C ∨ l.

Furthermore, M is a model of G: since Test is not applicable, then G 6|= M . We

conclude that M |= G. Consequently, M is a model of F ∧G.

(c) Left-to-right: There is a state M ||Γ in gtl
↑
F,G such that there is an edge between

M ||Γ and FailState. By the definition of gtl
↑
F,G, this edge is due to the transition

rule Fail . Consequently, the state M ||Γ is such that M is inconsistent and contains

no decision literals. By Lemma 9, for every X that is a model of F ∧G, X |= M .

Since M is inconsistent we conclude that F ∧G has no models.

101

Right-to-left: Consider the process of constructing a path consisting only of

edges due to Basic transition rules. By (a), it follows that this path will eventually

reach a semi-terminal state. By (b), this semi-terminal state cannot be different

from FailState, because F ∧ G has no models. We derive that there is an edge

leading to FailState.

10.4.2 Proof of Lemma 8

For a state S in the graph gtl
↑
F,G, we say that S↓ in gtlF,G is the image of S.

Lemma 8. For any CNF formula F and a formula G formed from atoms occurring

in F , if S′ is a state reachable from ∅||∅ in the graph gtlF,G then there is a state S

in the graph gtl
↑
F,G such that S↓ = S′.

Proof. Since the property trivially holds for the initial state ∅||∅, we only need to

prove that all transition rules of gtlF,G preserve it.

Consider an edge M ||Γ =⇒ M ′||Γ′ in the graph gtlF,G such that there is

a state M1||Γ in the graph gtl
↑
F,G satisfying the condition (M1||Γ)↓ = M ||Γ. We

need to show that there is a state in the graph gtl
↑
F,G such that M ′||Γ′ is its

image in gtlF,G. Consider several cases that correspond to a transition rule leading

from M ||Γ to M ′||Γ′:

Unit Propagate λ:

M ||Γ =⇒ M l||Γ if

{

C ∨ l ∈ F ∪ Γ and

C ⊆M .

M ′||Γ′ is M l||Γ. It is sufficient to prove that M1 lC∨l||Γ is a state of gtl
↑
F,G. It

is enough to show that a clause C ∨ l is a reason for l to be in M l with respect

to F ∧G, i.e., F ∧G |= C ∨ l and C ⊆ M . By the applicability conditions of Unit

Propagate λ, C ⊆M . By the definition of a state F∧G entails Γ. Since C∨l ∈ F∩Γ,

F ∧G |= C ∨ l.

Test :

M ||Γ =⇒ M l||Γ if











M is consistent,

G |= M,

l ∈M .

102

M ′||Γ′ is M l||Γ. It is sufficient to prove that M1 l
M
||Γ is a state of gtl

↑
F,G. M has

the form l ∨ C. It is enough to show that a clause l ∨ C is a reason for l to be in

M l with respect to F ∧G. It is trivial that C ⊆ M . By applicability condition of

the rule, G |= l ∨ C.

Backjump GT , Decide, Fail , and Learn GT : obvious.

The process of turning a state of gtlF,G reachable from ∅||∅ into a corre-

sponding state of gtl
↑
F,G can be illustrated by the following example: Consider a

formula F
a ∨ ¬b

¬a ∨ ¬b,
(10.2)

a formula G

¬b, (10.3)

and a path in gtlF,G

∅||∅ =⇒ (Decide)

b∆||∅ =⇒ (Unit Propagate λ)

b∆ a||∅ =⇒ (Test)

b∆ a ¬a||∅

(10.4)

The construction in the proof of Lemma 8 applied to the nodes in this path gives

following states of gtl
↑
F,G:

∅||∅

b∆||∅

b∆ aa∨¬b||∅

b∆ aa∨¬b ¬a¬a∨¬b||∅

(10.5)

It is clear that these nodes form a path in gtl
↑
F,G with every edge justified

by the same transition rule as the corresponding edge in path (10.4) in gtlF,G.

10.4.3 Proof of Theorem 14↑

In this section F is an arbitrary and fixed CNF formula and G is an arbitrary and

fixed formula formed from atoms occurring in F .

103

For a record M , by lcp(M) we denote its largest consistent prefix. We say

that a clause C is conflicting on a list M of literals if F∧G entails C, and C ⊆ lcp(M).

For example, let M be the first component of the last state in (10.5):

b∆ aa∨¬b ¬a¬a∨¬b (10.6)

Then, lcp(M) is obtained by dropping the last element ¬a¬a∨¬b of M . It is clear

that the reason ¬a ∨ ¬b for ¬a to be in M is a conflicting clause on M .

Lemma 10. The literal that immediately follows lcp(M) in an inconsistent record M ,

has the form lC where C is a conflicting clause on M .

Proof. By the requirement (iii) of the definition of an extended record, the literal

that immediately follows lcp(M) may not be annotated by ∆. Consequently, the

literal has the form lC . We now show that C is a conflicting clause on M . Since C

is a reason for l to be in lcp(M) lC , it immediately follows that F ∧G entails C, C

can be written as l ∨ C ′, and C ′ ⊆ lcp(M). Since l immediately follows the largest

consistent prefix of M , l ∈ lcp(M). Consequently, C ⊆ lcp(M). We derive that C

is indeed a conflicting clause on M .

For any inconsistent record l1 · · · ln and any conflicting clause C on this

record, by βl1···ln(C) we denote the set of numbers i such that li ∈ C. (It is clear

that every element from C equals to one of the literals in l1 · · · ln.) The relation

I < J between subsets I, J of {1 · · · n} is understood here as the lexicographical

order between I and J sorted in descending order. For instance, {2 6 7} < {6 7 8}

because 7 6 2 < 8 7 6 in lexicographical order.

Recall that the resolution rule can be applied to clauses C ∨ l and C ′ ∨ ¬l

and produces the clause C ∨ C ′, called the resolvent of C ∨ l and C ′ ∨ ¬l on l.

Lemma 11. Let M be a record and let lB be a nondecision literal from lcp(M). If

clause D is the resolvent of B and a clause C conflicting on M then

(i) D is a clause conflicting on M ,

(ii) βM (D) < βM (C).

For instance, let M be (10.6), let reason a ∨ ¬b for a in lcp(M) be B, and let

conflicting clause ¬a ∨ ¬b on M be C. Then D, the result of resolving B together

104

with C, is a clause ¬b. Lemma 11 asserts that ¬b is a conflicting clause on M and

that βM (D) < βM (C). Indeed, βM (D) = {1} and βM (C) = {2 1}.

Proof. (i) Clause D is a resolvent of B and C on some literal l′. Then, for some

literal l′ ∈ B, l′ ∈ C. The clause C can be written as l′ ∨ C ′.

In order to demonstrate that D is a conflicting clause we need to show that

D ⊆ lcp(M) and F ∧G entails D.

Since B is a reason for l to be in lcp(M), F ∧G entails B and B has the form

l ∨ B′ where B′ ⊆ lcp(M). Since C is a conflicting clause on M , C ⊆ lcp(M) and

F ∧G entails C. From the fact that lcp(M) is consistent, it follows that there is no

literal in B′ such that its complement occurs in C. Consequently, l′ 6∈ B′ so that l′

is l and D is B′ ∨C ′. We derive that D ⊆ lcp(M). From the fact that F ∧G entails

B, F ∧G entails C, and the construction of D, it follows that F ∧G entails D.

(ii) From the proof of (i) it follows that D is a resolvent of B and C on l

where B has the form l ∨ B′. Since B is a reason for l to be in lcp(M), every

literal in B′ precedes l in lcp(M). Since D is derived by replacing l in C with B′,

βM (D) < βM (B).

Let record M be l1 · · · li · · · ln, the decision level of a literal li is the number of

decision literals in l1 . . . li: we denote it by decM (li). We will also use this notation

to denote the decision level of a set of literals: For a set P ⊆M of literals, decM (P)

is the decision level of the literal in P that occurs latest in M . For record M and a

decision level j by M j we denote the prefix of M that consists of the literals in M

that belong to decision level less than j and by M j] we denote the prefix of M that

consists of the literals in M that belong to decision level less or equal to j. For

instance, let M be record (10.6) then decM (a) = 1, decM (M) = 1, M1 is empty,

and M1] is M itself.

Lemma 12. For an inconsistent record M and a conflicting clause l ∨ C on M , if

decM (l) > decM (c) for all c ∈ C then lcp(M)decM (C)] ll∨C is a record.

Proof. We need to show that (i) l 6∈ lcp(M)dec(C)] and (ii) l ∨ C is a reason for l to

be in lcp(M)dec(C)] l, i.e., F ∧G entails l ∨ C and C ⊆ lcp(M)dec(C)].

Since l ∨ C is conflicting on M , l ∨C ⊆ lcp(M). From the consistency of

lcp(M) and the fact that l ∈ lcp(M), it follows that l 6∈ lcp(M). Consequently,

l 6∈ lcp(M)dec(C)].

105

Since l ∨ C is conflicting on M , F ∧ G entails l ∨ C and l ∨ C ⊆ lcp(M).

Consequently, C ⊆ lcp(M). From the definition of decM (C), it follows that decM (C)

is the decision level of the literal in C that occurs the latest in lcp(M). By the

definition of a decision level, C ⊆ lcp(M)decM (C)].

Theorem 14↑. For any CNF formula F and a formula G formed from atoms

occurring in F , the transition rule Backjump GT is applicable to any backjump

state in gtl
↑
F,G.

Proof. Let M ||Γ be a backjump state in gtl
↑
F,G. Let R be the list of reasons that

are assigned to the nondecision literals in lcp(M).

Consider the process of building a sequence C1, C2, . . . of clauses so that

• C1 is the reason of the member of M that immediately follows lcp(M), and

• Cj (j > 1) is a resolvent of Cj−1 and some clause in R

while derivation of new clauses is possible. From Lemma 11 (i) and the choice of C1

and R, it follows that any clause in C1, C2 . . . is conflicting. By Lemma 11 (ii)

we conclude that βM (Cj) < βM (Cj−1) (j > 1). It is clear that this process will

terminate after deriving some clause Cm, since the number of conflicting clauses

on M is finite. It is clear that clause Cm cannot be resolved against any clause in R.

Case 1. Cm is the empty clause. Since M ||Γ is a backjump state, M contains

a decision literal l∆. By part (iii) of the definition of a record, l belongs to lcp(M).

Consequently, M can be represented in the form lcp(M)decM (l) l∆ Q.

By the choice of C1, C1 is a reason and must consist of at least one literal.

Consequently, m > 1. Clause Cm is derived from clauses Cm−1 and some clause

in R. Since Cm is empty, Cm−1 is a unit clause l′. We will show that

lcp(M)decM (l) l∆ Q||Γ =⇒ lcp(M)decM (l) l′l
′

||Γ

is an application of Backjump GT . It is sufficient to demonstrate that lcp(M)decM (l) l′l
′

is a record. Since lcp(M)decM (l) l∆ Q is a record, we only need to show that

l′ 6∈ lcp(M)decM (l) and clause l′ is a reason for l′ to be in lcp(M)decM (l) l′. Recall

that Cm−1, i.e., l′, is a conflicting clause. Consequently, F ∧ G entails l′ and

l′ ∈ lcp(M). Since lcp(M) is consistent, l′ 6∈ lcp(M) so that l′ 6∈ lcp(M)decM (l).

106

On the other hand, from the fact that F ∧G entails l′ it immediately follows that

clause l′ is a reason for l′ to be in lcp(M)decM (l) l′

Case 2. Cm is not empty. Since Cm is a conflicting clause on M , the comple-

ment of any literal in Cm belongs to lcp(M). Furthermore, every such complement

is a decision literal in lcp(M). Indeed, if this complement is l
l∨B
∈ lcp(M) then

l ∨B is one of the clauses Bi, and it can be resolved against Cm.

By the definition of a decision level, there is at most one decision literal

that belongs to any decision level. It follows that Cm can be written as l ∨ C ′m

so that decM (l) > decM (c) for any c ∈ C ′m. Consequently, M can be written as

lcp(M)decM (l) l
∆

Q. Note that

lcp(M)decM (l) l
∆

Q||Γ =⇒ lcp(M)decM (C′
m)] lCm ||Γ

is an application of Backjump GT . Indeed, by Lemma 12 lcp(M)decM (C
′

m)] lCm is a

record.

For a CNF formula F and a formula G formed from atoms occurring in F ,

we say that a record M is a backjump record with respect to F ∧ G if M ||Γ is a

backjump state in gtl
↑
F,G. Algorithm 3 presents procedure BackjumpClause that

computes a backjump clause for any backjump record with respect to a formula.

BackjumpClause(M)

Arguments : M is a backjump record with respect to F ∧G
Return Value : C is a backjump clause
begin

C ← the reason of the member of M that immediately follows lcp(M)
N ← the list of the nondecision literals in lcp(M)
R← the list of the reasons that are assigned to the literals in N
while C ∩N 6= ∅ do

l← a literal in C ∩N
B ← the clause in R that contains l
C′ ← the resolvent of C and B on l
if C′ = ∅ then

return C
C ← C′

return C
end
Algorithm 3: A procedure for generating a backjump clause.

107

lcp(M) b∆ aa∨¬b

C1 ¬a ∨ ¬b
N aa∨¬b

R a ∨ ¬b

C2 ¬b is the resolvent of C1 and a ∨ ¬b

Figure 10.1: Sample execution of the BackjumpClause algorithm on backjump
record (10.6) with respect to F ∧G where F is (10.2) and G is (10.3).

The algorithm follows from the construction of the proof of Theorem 14↑. It is

based on the iterative application of the resolution rule on reasons of the smallest

inconsistent prefix of a state.

The proof of Theorem 14↑ allows us to conclude the termination of Back-

jumpClause and asserts that a clause returned by the procedure is a backjump clause

on a backjump state.

For instance, let F be (10.2) and G be (10.3). Consider an execution of

BackjumpClause on backjump record (10.6) with respect to F ∧ G. Figure 10.1

illustrates what the values of lcp(M), C, N , and R are during the execution of the

BackjumpClause algorithm. By Ci we denote a value of C before the i-th iteration

of the while loop.

The algorithm will terminate with the clause ¬b. The proof of Theorem 14↑

asserts that (i) this clause is a backjump clause such that b is a decision literal in M

and (ii) the transition

b∆ aa∨¬b ¬a¬a∨¬b||∅ =⇒

¬b¬b||∅

in gtl↑F,G is an application of Backjump GT . Indeed, by Lemma 12 ¬b¬b is a record.

Note that a backjump clause may be derived in other ways than captured by

the BackjumpClause algorithm: the transition rule Backjump GT is applicable with

an arbitrary backjump clause. Usually, dpll-like procedures implement conflict-

driven backjumping and learning where a particular learning schema such as, for

instance, Decision and FirstUIP [Mitchell, 2005] is applied for computing a special

kind of a backjump clause. It turns out that the BackjumpClause algorithm captures

the Decision learning schema for the generate and test algorithm. Typically, SAT

solvers impose an order for resolving the literals during the process of Decision

108

backjump clause derivation. We can impose similar order by replacing the line

l← a literal in C ∩N

in the algorithm BackjumpClause with

l← a literal in C ∩N that occurs latest in lcp(M).

This section introduced the BackjumpClause algorithm that derives a De-

cision backjump clause for an arbitrary backjump state. In the next section we

will introduce an algorithm that will compute a generate and test counterpart of

FirstUIP backjump clause.

10.5 Generate and Test: FirstUIP Conflict-Driven Back-

jumping and Learning

Conflict-driven backjumping and learning proved to be a highly successful technique

in modern SAT solving. Furthermore, in [Zhang et al., 2001] the authors investigated

the performance of various learning schemes and established experimentally that

the FirstUIP clause is the most useful single clause to learn. In this section we will

present an algorithm for computing the FirstUIP clause for the generate and test

algorithm.

There are two common methods for describing a backjump clause construc-

tion in SAT literature. The first one employes the implication graph [Marques-Silva

and Sakallah, 1996a]. The second method used in SAT for characterizing a back-

jump clause derivation employes resolution. In the previous section we used the

graph gtl
↑
F,G to describe the BackjumpClause algorithm for computing a Decision

backjump clause that follows the second tradition. This section presents the Back-

jumpClauseFirstUIP algorithm for computing a generate and test counterpart of a

FirstUIP backjump clause by means of gtl
↑
F,G and resolution.

Algorithm 4 presents the procedure BackjumpClauseFirstUIP that computes

the FirstUIP backjump clause for any backjump record with respect to a formula

F ∧G.

We now state the correctness of the algorithm BackjumpClauseFirstUIP .

We start by showing its termination. By C1 we denote the initial value assigned

to clause C. From Lemma 11 (i) and the choice of C1 we conclude that at any

109

BackjumpClauseFirstUIP(M)

Arguments : M is a backjump record with respect to F ∧G
Return Value : C is a backjump clause
begin

C ← the reason of the member of M that immediately follows lcp(M)
l ← the literal in C that occurs latest in lcp(M)
P ← the sublist of lcp(M) that consists of the literals that belong to the
decision level dec(l)
R← the list of the reasons that are assigned to the literals in P
while |C ∩ P | > 1 do

l← the literal in C that occurs latest in P
B ← the clause in R that contains l
C ← the resolvent of C and B on l

return C
end

Algorithm 4: A procedure for generating a FirstUIP backjump clause.

point of computation clause C is conflicting on M . By Lemma 11 (ii), the value

of βM (C) decreases with each new assignment of clause C in the while loop. It

follows that the while loop will terminate since the number of conflicting clauses

on M such that |C ∩P | > 1 is finite. By Cm we will denote the clause C with which

the while loop terminates. In other words BackjumpClauseFirstUIP returns Cm.

We now show that Cm is indeed a backjump clause. We already concluded that Cm

is a conflicting clause on M . Furthermore, from the termination condition of the

while loop |Cm ∩P | ≤ 1. From the choice of C1 and P it follows that |Cm∩P | = 1.

Consequently, Cm can be written as l ∨ C ′m where l is in singleton Cm ∩ P . By

Lemma 11 (ii), β(Cm) ≤ β(C1). From the definition of β and the choice of P it

follows that decM (l) > decM (c) for all c ∈ C ′m. By Lemma 12, lcp(M)decM (C′
m)] lCm

is a record. In other words, transition

M ||Γ =⇒ lcp(M)decM (C′
m)] lCm ||Γ

is an application of Backjump GT . Consequently, Cm is a backjump clause.

110

Chapter 11

Extending Cmodels Algorithm

to Nontight Programs by Means

of “Generate and Test” DPLL

Some of the methods presented in this chapter are parts of joint work with Enrico

Giunchiglia and Marco Maratea [Giunchiglia et al., 2004a; 2006]. The main topic

of this chapter is the asp-sat with Learning algorithm for computing answer sets

of an arbitrary, possibly nontight, program. The procedure asp-sat with Learning,

unlike assat (Section 9.2), modifies the SAT solver algorithm. This allows us

• to incorporate testing of a computed model inside the solver (and hence to

avoid multiple invocations of a SAT solver),

• to utilize conflict-driven learning do guide a search of a SAT solver by means

of loop formulas by learning clauses based on loop formulas on demand.

Before introducing asp-sat with Learning we present a simpler algorithm asp-

sat [Giunchiglia et al., 2006] in Section 11.1. We use the graph gtF,G to describe

the asp-sat procedure. Section 11.2 presents asp-sat with Learning. Section 11.3

describes the theory used in the cmodels implementation of the application of

the transition rule Test of the asp-sat with Learning algorithm discussed in Sec-

tion 11.4. Section 11.5 provides details on the implementation of a variant of asp-

sat with Learning in cmodels by means of incremental SAT-solving. In this section

111

we also discuss the advantage of the asp-sat with Learning method implemented

in cmodels over the assat procedure. In Section 11.6 we present an experimental

analysis. Section 11.7 briefly describes the results of First and Second Answer Set

Programming System Competitions.

11.1 ASP-SAT Algorithm

In Section 5.3 we demonstrated a method for specifying the algorithm of an answer

set solver by means of the graph smΠ. We use this method to describe the asp-sat

algorithm [Giunchiglia et al., 2006] using the graph gtF,G. The application of the

asp-sat algorithm to a program Π can be viewed as constructing a path from ∅ to

a terminal node in the graph gtED-Comp(Π),LF(Π) where asp-sat assigns priorities

to the inference rules of gtED-Comp(Π),LF (Π) as follows:

Backtrack,Fail >>

Unit Propagate >>

Decide >>

Test.

In comparison with the procedure of assat (Section 9.2), the advantage of

asp-sat is that it is guaranteed to work in polynomial space. On the other hand,

there may be exponentially more models of the program’s completion than answer

sets. Unlike assat that prunes the search space of a SAT solver by introducing

loop formulas of the program that may eliminate unwanted models, asp-sat will

enumerate all the models of the program. This is the main drawback of the asp-

sat procedure. Section 11.2 describes the asp-sat with Learning algorithm that

implements a procedure similar to asp-sat with pruning the search space in a

manner of assat. As a step in this direction in Section 10.2 we will extend the

generate and test graph introduced in this section with backjumping and learning.

112

11.2 ASP-SAT with Learning: Cmodels Algorithm for

Nontight Programs

In Section 11.1 we described the asp-sat algorithm that utilizes the generate and

test approach for computing answer sets of a program. In [Giunchiglia et al., 2006] a

more general algorithm asp-sat with Learning was introduced that took advantage

of such sophisticated techniques as learning and backjumping. Here we use the

graph gtl
↑
F,G for specifying the asp-sat with Learning algorithm, similarly as we

used gtF,G for specifying the asp-sat algorithm in Section 11.1. In particular we

will assign priorities to the transition rules of gtl
↑
F,G.

The application of the asp-sat with Learning algorithm to a program Π can

be viewed as constructing a path from ∅||∅ to a terminal node in the graph gtl
↑
F,G,

where

• F is ED-Comp(Π) – the completion Comp(Π) converted to CNF using the

ED-transformation, and

• G is LF (Π).

The asp-sat with Learning algorithm assigns priorities to the inference rules

of gtl
↑
F,G as follows:

Backjump GT,Fail >>

Unit Propagate λ >>

Decide >>

Test.

Also, asp-sat with Learning always applies the transition rule Learn GT in

a non-semi-terminal state reached by an application of Backjump GT .

The priorities imposed on the rules by asp-sat with Learning guarantee

that the transition rule Test is applied only in states M ||F, Γ where M is a model

of F ∪ Γ (clausified completion F extended by learned clauses Γ). This allows asp-

sat with Learning to proceed with its search in case if the model is not an answer

set. Furthermore, the asp-sat with Learning strategy guarantees that in a state

reached by an application of Test , first Backjump GT will be applied and then in the

resulting state Learn GT will be applied. In Section 11.4 we describe the methods

used by cmodels (i) to decide whether Test is applicable to a state M ||Γ where M

113

is a model of Γ and (ii) to construct clauses learned due to such applications of Learn

GT . These clauses are constructed using loop formulas. In this sense asp-sat with

Learning, similarly to the assat algorithm, uses loop formulas to guide its search.

In Section 3.4 we demonstrated how the graph dplF may be extended with

the transition rules Restart and Forget that describe such techniques as restarts and

forgetting. By adding these rules to the definition of the graph gtl
↑
F,G we allow

the asp-sat with Learning algorithm to utilize corresponding techniques. In fact,

by incorporating forgetting into asp-sat with Learning we permit the algorithm

to avoid exponential blow-up in space by periodically discarding previously learned

clauses so that it is guaranteed to work in polynomial space.

The system cmodels implements an algorithm asp-sat with Learning. The

correctness of the cmodels algorithm immediately follows from Theorem 13↑.

11.3 Terminating Loops

In [Lin and Zhao, 2002], the authors defined the notion of a terminating loop for

traditional programs. In case when a computed model of completion is not an answer

set of a program, such loops can be used for finding a loop formula unsatisfied by

the model. Here we extend the notion of a terminating loop to semi-traditional

programs and state how such a loop can be computed.

Given a set X of atoms, by GΠ,X we denote a subgraph of the dependency

graph (Sections 4.5, 7.6) of a program Π induced by X.

Recall that we identify a set of atoms with the truth assignment that maps

the elements of the set to True, and all other atoms to False.

Let Π be a semi-traditional program.

A loop L is terminating under set Y of atoms if L is a strongly connected

component of GΠ,Y and there does not exist another strongly connected compo-

nent L′ of GΠ,Y such that there is a path from any vertex in L to a vertex in L′.

The following theorem states that given a program Π and a set X of atoms

such that X is a model of Comp(Π) and X is not an answer set of Π, to calculate

a loop formula of Π unsatisfied by X it is sufficient to

• find any proper subset X ′ of X such that X ′ |= ΠX (It is easy to see that

the minimal set of atoms satisfying ΠX is a proper subset of X. For semi-

114

traditional programs calculating the minimal set of atoms satisfying ΠX can

be done in linear time),

• compute a loop formula of any terminating loop in GΠ,X\X′ .

Theorem 15. For a semi-traditional program Π, and sets X, X ′ of atoms such that

X is a model of Comp(Π), X ′ ⊂ X, and X ′ is a model of ΠX , there is a terminating

loop of Π under X \X ′. Furthermore, X does not satisfy the loop formula of any

terminating loop of Π under X \X ′.

We provide a proof of this theorem in Section 13.6.

11.4 Cmodels Algorithm: Test Application

Recall that for a set M of literals by MΠ we denote all literals in M whose atoms

occur in Π.

There is an efficient procedure for deciding whether the transition rule Test

is applicable to a state M ||Γ in the graph gtl
↑
ED-Comp(Π),LF(Π) where M is a model

of ED-Comp(Π). Indeed, Test is applicable to M ||Γ if and only if M+
Π does not cor-

respond to any answer set of a program Π. For semi-traditional programs verifying

whether M+
Π is a minimal set of atoms satisfying ΠM+

Π can be done in linear time.

This fact permits an efficient execution of cmodels whose strategy is to apply Test

only to such states.

The proof of Theorem 13↑ provides a way of constructing a reason C for a

literal l given a state M ||Γ such that there is the transition M ||Γ =⇒M lC ||Γ due

to Test . This reason C is M . In practice, the shorter the reason C is the more

information it provides to a SAT solver for the future search. The system cmodels

implements two different methods for computing short reasons. Both of the methods

are based on loop formulas. We start by describing an “atomreason” method and

continue with a “loopformulareason” method.

Let M ||Γ be a state in gtl
↑
ED-Comp(Π),LF(Π) such that M is a model of

ED-Comp(Π) and Test is applicable to M ||Γ. The atomreason approach requires a

loop L such that for its loop formula FL, M 6|= FL. In Section 11.3 we discussed

how such a loop can be computed. Recall that a loop formula FL has the form (9.3)

115

(Section 9.1). This loop formula can be easily rewritten in disjunctive normal form:

∧

l∈L

l ∨
∨

R(L) (11.1)

Since M 6|= FL it follows that for any R(L) there is a literal l′ in R(L) so that

l
′
∈ M . Similarly there is l′ in

∧

l∈L l so that l
′
∈ M . We can construct a clause C

that consists of such literals l′ taken from all conjunctions of FL. It is easy to

see that for any literal c ∈ C, C is a reason for c to be in M c with respect to

ED-Comp(Π) ∧ LF (Π). The system cmodels with the option flag -atomreason will

only consider edges due to the transition rule Test of the kind M ||Γ =⇒ M cC ||Γ

where C is computed by the described procedure. This concludes the description of

the atomreason method.

Let M ||Γ be a state in gtl
↑
ED-Comp(Π),LF(Π) such that M is a model of

ED-Comp(Π) and Test is applicable to M ||Γ. The loopformulareason method, as

the atomreason method, starts by finding a loop formula FL of the form (11.1).

Recall that every conjunction R(L) stands for a body of some rule in Π whose head

is an atom. It follows that for any R(L) containing more than one atom, there is

a corresponding explicit definition atom rl in ED-Comp(Π) (see Section 6.3) that

denotes R(L). We can construct a clause C from FL by replacing

•
∧

l∈L l with l′ so that l
′
∈M (since M 6|= FL it follows that l′ exists),

• each of its conjunctions R(L) that contain more than one atom with corre-

sponding rl.

It is easy to see that for any literal c ∈ C, C is a reason for c to be in M c with re-

spect to ED-Comp(Π) ∧ LF (Π). The system cmodels with the default settings will

only consider edges due to the transition rule Test of the kind M ||Γ =⇒ M cC ||Γ

where C is computed by the loopformulareason procedure. This concludes the de-

scription of the loopformulareason method.

We note that cmodels implementing the atomreason method corresponds

to the asp-sat with Learning algorithm introduced in [Giunchiglia et al., 2004a;

2006].

116

11.5 Incremental SAT-solving for SAT-based ASP

Incremental SAT-solving allows the user to solve several SAT problems Γ1, . . . , Γn

one after another, if Γi+1 results from Γi by adding clauses, so that the solution

to Γi+1 may benefit from the knowledge obtained during solving Γ1, . . . , Γi.

Nowadays, various SAT-solvers that implement interfaces for incremental

SAT solving are available, as for instance zchaff and minisat.

We can use incremental SAT solving as means for implementing cmodels

in the following way. Given a program Π:

1. Take Γ to be ED-Comp(Π),

2. Call an incremental SAT solver with the set Γ;

(a) If it returns no model, exit with no answer set; otherwise

(b) verify whether the model is an answer set. If so, output the answer set

and exit. If not, extend Γ by a clause computed by the atomreason or

loopformulareason methods and proceed to step 2.

For simplicity of presentation, this procedure describes the mechanism for finding a

single answer set. We call this approach cmodels+.

Using incremental SAT solvers for implementing cmodels is related to the

assat system approach.

1. Like assat, cmodels+ requires only programming the interface to a SAT

solver that permits transforming the data to and from the solver.

2. Within cmodels+ it is essential for its termination that learned clauses from

verification step 2b are never deleted. Therefore, unlike cmodels that is

guaranteed to work in polynomial space, cmodels+ may require exponential

space, like assat.

Nevertheless, it has an advantage over the assat procedure. In case when a SAT

solver is invoked repeatedly, cmodels+ permits reusing some information, which

the SAT solver recalls from previous invocations. This allows the solver to disregard

some parts of the search tree. On the other hand, cmodels+ is not as good in this

sense as cmodels, which never explores the same parts of a search tree twice.

117

11.6 Experimental Analysis

As in Section 6.5.2 we describe here experiments that were conducted using the

system whose technical specifications are presented in Section 6.5. In this section,

we also compare the performance of cmodels with assat version 2.02 (Section 9.2),

smodels and smodelscc. Details on the versions of answer set solvers cmodels,

smodels, and smodelscc are provided in Section 6.5. As before, our experiments

compare the systems performance on the problem of finding only one answer set. In

all experiments reported here,

• system cmodels using zchaff implements the cmodels+ algorithm,

• system cmodels using minisat implements the cmodels+ algorithm,

• system assat uses the SAT solver chaff.

The nontight benchmarks that we used are Deterministic Automaton, Ran-

dom Nontight, Wire Routing, Bounded Model Checking, Hamiltonian Cycle. Here

are their brief descriptions:

• The Deterministic Automaton is the problem of checking requirements in a

deterministic automaton and are described in [Ştefănescu et al., 2003]

• Random Nontight is a collection of randomly generated nontight programs.

• A Wire-Routing in a n x n grid consists of finding routes for w wires given

their start and end points so that the following constraints are satisfied:

1. No grid edge is used by more than one wire,

2. Some grid points allow for two wires to cross; all other points can be used

by at most one wire,

3. Some areas of the grid are blocked and cannot be ”touched” by any wire.

• Bounded Model Checking is a the task of verification of asynchronous concur-

rent systems described in [Heljanko and Niemelä, 2003].

• A Hamiltonian cycle in an undirected graph G = (V,E), where V is the set of

vertices and E is the set of edges, is a cycle in G such that every vertex in V

occurs exactly once in the cycle. The input of the Hamiltonian Cycle problem

is an undirected graph, and the goal is to find a Hamiltonian cycle in it.

118

Instance cmodels assat smodels smodelscc

minisat zchaff

detA.IDFD.mutex3 0.02 0.02 0.21 0.04 0.12
detA.IDFD.mutex4 0.48 0.68 0.22 17.96 52.71
detA.IDFD.phi4 0.03 0.02 0.66 0.05 0.17
detA.IDFD.phi5 0.18 0.09 21.11 1.0 3.88
detA.Morin.mutex3 0.02 0.03 0.03 0.05 0.16
detA.Morin.mutex4 0.76 1.31 1.19 21.46 64.81
detA.Morin.phi4 0.04 0.04 0.71 0.07 0.22
detA.Morin.phi5 0.23 0.18 26.97 1.17 4.43

random.n40-sat-b10 0.17 0.62 0.2 1.06 6.12
random.n40-sat-b11 0.06 2.05 0.53 0.35 10.27
random.n40-sat-b12 0.03 0.05 0.71 0.6 1.16
random.n40-sat-b1 0.03 3.56 1.56 3.45 8.56
random.n40-sat-b2 0.04 0.88 0.12 0.67 1.18
random.n50-sat-b10 2.85 0.31 122.37 12.14 121.63
random.n50-sat-b11 0.72 2.86 8.6 42.6 560.22
random.n50-sat-b12 3.52 37.78 9.02 7.89 t-o
random.n50-sat-b1 2.29 0.22 16.56 1.83 13.67
random.n50-sat-b2 0.45 62.92 19.11 45.95 5.64
random.n60-sat-b10 4.57 t-o t-o 282.79 162.4
random.n60-sat-b11 0.79 t-o 142.25 389.25 t-o
random.n60-sat-b12 78.48 128.04 535.81 8.31 30.33
random.n60-sat-b1 2.76 t-o t-o t-o t-o
random.n60-sat-b2 16.81 90.28 t-o t-o t-o
random.n40-unsat-b10 0.16 0.8 0.43 1.1 4.97
random.n40-unsat-b11 0.26 0.93 0.93 2.66 11.59
random.n40-unsat-b12 0.2 1.14 0.51 1.51 7.9
random.n40-unsat-b1 0.22 1.23 0.76 1.63 10.03
random.n40-unsat-b2 0.16 0.84 0.59 1.42 6.97
random.n50-unsat-b10 12.82 135.08 170.22 88.53 t-o
random.n50-unsat-b11 7.0 81.84 81.15 40.17 552.31
random.n50-unsat-b12 3.98 33.5 75.07 57.92 t-o
random.n50-unsat-b1 2.1 20.09 14.06 30.76 241.72
random.n50-unsat-b2 14.52 139.23 354.66 80.84 t-o

Figure 11.1: Deterministic Automaton, Random; runtimes of cmodels using min-

isat, cmodels using zchaff, assat, smodels, smodelscc.

119

Instance cmodels smodels smodelscc

minisat zchaff

wire.10.x.10.b.5.a.25S 0.5 1.41 t-o 134.11
wire.10.x.10.b.5.a.35S 0.26 1.41 13.37 7.3
wire.10.x.10.b.5.a.20U 2.33 50.72 41.17 4.84
wire.12.x.12.b.5.a.15U t-o t-o t-o t-o
wire.12.x.12.b.5.a.20U 349.83 t-o t-o t-o

dp-10.fsa-D-i-O2-b10 0.11 0.1 119.14 6.43
dp-12.fsa-D-i-O2-b9 159.57 144.65 454.57 t-o
dp-6.fsa-D-i-O2-b6 0.02 0.02 0.04 0.19
dp-8.fsa-D-i-O2-b8 0.05 0.03 1.51 0.72

hc-1S 0.55 1.02 t-o 36.35
hc-2S 2.29 10.83 t-o 16.09
hc-3S 8.98 1.4 t-o t-o
hc-4S 1.66 4.36 0.82 3.78
hc-5U 0.02 0.01 0.02 0.03
hc-6U t-o t-o t-o t-o
hc-7U 0.02 0.01 0.02 0.03
hc-8U 0.01 0.02 0.02 0.03

Figure 11.2: Wire Routing, Bounded Model Checking, Hamiltonian Cycle; runtimes
of cmodels using minisat, cmodels using zchaff, smodels, smodelscc.

Figure 11.1 reports the performance of the five systems cmodels using min-

isat, cmodels using zchaff, assat, smodels, smodelscc on Deterministic Au-

tomaton and Random problems. These problems are encoded using traditional rules.

The system assat only supports traditional programs.

Figure 11.2 reports the performance of the answer set solvers cmodels

using minisat, cmodels using zchaff, smodels, and smodelscc on Wire Rout-

ing, Bounded Model Checking, Hamiltonian Cycle problems. These problems are

encoded using choice and cardinality constraints rules therefore we do not run assat

on these instances.

We do not report grounding times in Figures 11.1 and 11.2 because all answer

set solvers used the same grounded instances.

It is easy to see that cmodels using minisat or zchaff often outperforms

other systems.

120

11.7 First and Second Answer Set Programming Sys-

tem Competitions

There were two answer set programming system competitions held in recent years.

The First Answer Set Programming System Competition1 [Gebser et al.,

2007c] was held in conjunction with the Ninth International Conference on Logic

Programming and Nonmonotonic Reasoning (LPNMR’07) in 2007. There were three

tracks and ten systems in the competition for nondisjunctive programs. The System

cmodels took the third place in SCore (Solver, Core Language) track. The Systems

clasp2 and smodels took the first and the second place respectively in this track.

In Section 14.1 we describe how the answer set solver clasp can be seen as an

enhancement of the approach pioneered by cmodels.

The Second Answer Set Programming System Competition3 [Denecker et al.,

2009] was held in conjunction with the Tenth International Conference on Logic Pro-

gramming and Nonmonotonic Reasoning (LPNMR’09) in 2009. There were sixteen

participating solvers and two tracks: Decision Problems and Optimization Prob-

lems. cmodels took part in the first track. It took the second place as a single

system team. The Systems claspfolio4 and dlv took the first and the third places

respectively. It is interesting to note that claspfolio is a portfolio solver based on

clasp: it is a python-script which predicts the best options for clasp to solve a

problem in question.

1http://asparagus.cs.uni-potsdam.de/contest/index.php .
2http://potassco.sourceforge.net/ .
3http://www.cs.kuleuven.be/∼dtai/events/ASP-competition/index.shtml .
4http://www.cs.kuleuven.be/ dtai/events/ASP-competition/Teams/Claspfolio.shtml .

121

Chapter 12

Description of Abstract Answer

Set Solvers with Learning

In this chapter we will extend the graph smΠ introduced in Section 5.2 to capture

backjumping and learning for the abstract smodels algorithm in a similar manner

as we extended the graph gtF,G to gtlF,G in Section 10.2 to capture backjumping

and learning for the generate and test algorithm. As a result we will be able to model

the algorithms of such answer set solvers as sup [Lierler, 2008] and smodelscc [Ward

and Schlipf, 2004]. We note that the development of the system sup was inspired

by the work on the abstract framework for describing answer set solvers presented

in this dissertation. In Section 12.1 we present the graph smlΠ that extends the

graph smΠ with backjumping and learning. Section 12.2 introduces the graph sml
↑
Π

similar as in Section 10.3 we introduced gtl
↑
F,G for gtlF,G. Section 12.3 presents

the proofs for the theoretical findings discussed in this chapter. In Section 12.4 we

use the graph sml
↑
Π to describe the BackjumpClause and BackjumpClauseFirstUIP

algorithms for computing the Decision and FirstUIP backjump clauses. Section 12.5

first presents the sup algorithm, second describes the algorithm underlying answer

set solver smodelscc, and third illustrates their differences. Section 12.6 provides

implementation details of the system sup and reports experimental analysis on its

performance.

122

Backchain False λ:

M ||Γ =⇒ M l||Γ if







a← l, B ∈ Π ∪ Γ,
¬a ∈M or a = ⊥,
B ⊆M

Backjump LP :

P l∆ Q||Γ =⇒ P l′||Γ if

{

P l∆ Q is inconsistent and

Π entails l′ ∨ P
Learn LP :

M ||Γ =⇒ M || ← B, Γ if Π entails B

Figure 12.1: The additional transition rules of the graph smlΠ.

12.1 Graph smlΠ

An (augmented) state relative to a program Π is either a distinguished state FailState

or a pair of the form M ||Γ where M is a record relative to the set of atoms occurring

in Π, and Γ is a (multi)set of constraints formed from atoms occurring in Π that

are entailed by Π.

For any program Π, we will define a graph smlΠ. Its nodes are the augmented

states relative to Π. The transition rules Unit Propagate LP, All Rules Cancelled,

Backchain True, Unfounded, Decide and Fail of smΠ are extended to smlΠ as fol-

lows: M ||Γ =⇒ M ′||Γ (M ||Γ =⇒ FailState) is an edge in smlΠ justified by a

transition rule T if and only if M =⇒ M ′ (M =⇒ FailState) is an edge in smΠ

justified by T . Figure 12.1 presents the other transition rules of smlΠ.

We refer to the transition rules Unit Propagate LP, All Rules Cancelled,

Backchain True, Backchain False λ, Unfounded, Backjump LP, Decide, and Fail of

the graph smlΠ as Basic. We say that a node in the graph is semi-terminal if no

rule other than Learn LP is applicable to it.

The graph smlΠ can be used for deciding whether a program Π has an answer

set by constructing a path from ∅||∅ to a semi-terminal node:

Theorem 16. For any program Π,

(a) every path in smlΠ contains only finitely many edges labeled by Basic transition

rules,

123

(b) for any semi-terminal state M ||Γ of smlΠ reachable from ∅||∅, M+ is an

answer set of Π,

(c) FailState is reachable from ∅||∅ in smlΠ if and only if Π has no answer sets.

Thus if we construct a path from ∅||∅ so that Basic transition rules periodi-

cally appear in it then some semi-terminal state will be eventually reached; as soon

as a semi-terminal state is reached the problem of finding an answer set is solved.

For instance, let Π be program (4.8). Here is a path in smlΠ:

∅||∅ =⇒ (Decide)

a∆||∅ =⇒ (Unit Propagate LP)

a∆ c||∅ =⇒ (All Rules Cancelled)

a∆ c ¬b||∅ =⇒ (Decide)

a∆ c ¬b d∆||∅ =⇒ (Unfounded)

a∆ c ¬b d∆ ¬d||∅ =⇒ (Backjump LP)

a∆ c ¬b ¬d||∅ =⇒ (Learn LP)

a∆ c ¬b ¬d||¬a ∨ ¬c ∨ b ∨ ¬d

(12.1)

Since the state a∆ c ¬b ¬d is semi-terminal, Theorem 16 (b) asserts that

{a, c,¬b,¬d}+ = {a, c}

is an answer set for Π.

The proof of Theorem 16 can be found in Section 12.3.

As in case of the graphs dpF and dplF , Backjump LP is applicable in any

inconsistent state with a decision literal that is reachable from ∅||∅ (Theorem 17,

Section 12.2), and is essentially a generalization of the transition rule Backtrack of

the graph smΠ.

In Section 3.4 we demonstrated how the graph dplF may be extended with

the transition rules Restart and Forget that characterize the restarts and forgetting

techniques (Section 3.3) commonly implemented in modern SAT solvers. Similarly,

we may extend the graph smlΠ with the transition rule Restart of dplF and the

124

following transition rule

Forget LP :

M || ← B, Γ =⇒ M ||Γ.

to capture the ideas behind the restarts and forgetting techniques in answer set

programming. It is easy to prove a result similar to Theorem 16 for the graph smlΠ

with Restart and Forget LP (for such graph a state is semi-terminal if no rule other

than Learn LP , Restart , Forget LP is applicable to it.)

12.2 Extended Graph sml
↑
Π

In this section we introduce an extended graph sml
↑
Π for the abstract answer set

framework smlΠ similar as we introduced gtl
↑
F,G for gtlF,G in Section 10.3.

Recall the transition rule Backjump LP of smlΠ

Backjump LP :

P l∆ Q||Γ =⇒ P l′||Γ if

{

P l∆ Q is inconsistent and

Π entails l′ ∨ P .

A state in the graph smlΠ is a backjump state if it is inconsistent, contains a

decision literal, and is reachable from ∅||∅. It turns out that Backjump LP is always

applicable to a backjump state:

Theorem 17. For a program Π, the transition rule Backjump LP is applicable to

any backjump state in smlΠ.

Theorem 17 guarantees that a backjump state in smlΠ is never semi-terminal.

In the end of this section we show how Theorem 17 can be derived from the results

proved later in this paper.

For a program Π, we say that a clause l∨C is a reason for l to be in a list of

literals P l Q with respect to Π, if Π entails l ∨C and C ⊆ P . We can equivalently

restate the second condition of Backjump LP “Π entails l′ ∨ P” as “there exists a

reason for l′ to be in P l′ with respect to Π” (note that l′ ∨ P is a reason for l′

to be in P l′). We call a reason for l′ to be in P l′ a backjump clause. Note that

Theorem 17 asserts that a backjump clause always exists for a backjump state.

125

An (extended) record M relative to a program Π is a list of literals over the

set of atoms occurring in Π where

(i) each literal l in M is annotated either by ∆ or by a reason for l to be in M

with respect to Π,

(ii) M contains no repetitions,

(iii) for any inconsistent prefix of M , its last literal is annotated by a reason.

For instance, let Π be the program

a← not b

c.

The list of literals

b∆ a∆ ¬ b¬b∨¬a

is an extended record relative to Π. On the other hand, the lists of literals

a∆ ¬a∆ a∆ ¬ b¬b∨¬a b∆ b∆ a∆ ¬ b¬b∨¬a c∆

are not extended records.

An (extended) state relative to a program Π is either a distinguished state

FailState or a pair of the form M ||Γ where M is an extended record relative to Π,

and Γ is the same as in the definition of an augmented state (i.e., Γ is a (multi)set

of constraints formed from atoms occurring in Π that are entailed by Π.) For any

extended state S relative to a program Π, the result of removing annotations from

all nondecision literals of S is a state of smlΠ: we will denote this state by S↓.

For instance, consider program a← not b. All pairs

FailState ∅||∅ a∆ ¬ b¬b∨¬a||∅ ¬a∆ bb∨a||∅

are among valid extended states relative to this program. The corresponding states S↓

are

FailState ∅||∅ a∆ ¬ b||∅ ¬a∆ b||∅.

We now define a graph sml
↑
Π for any program Π. Its nodes are the ex-

tended states relative to Π. The transition rules of smlΠ are extended to sml
↑
Π as

126

follows: S1 =⇒ S2 is an edge in sml
↑
Π justified by a transition rule T if and only

if S↓1 =⇒ S↓2 is an edge in smlΠ justified by T .

The following lemma formally states the relationship between nodes of the

graphs smlΠ and sml
↑
Π:

Lemma 13. For any program Π, if S′ is a state reachable from ∅||∅ in the graph

smlΠ then there is a state S in the graph sml
↑
Π such that S↓ = S′.

The definitions of Basic transition rules and semi-terminal states in sml
↑
Π

are similar to their definitions for smlΠ.

Theorem 16↑. For any program Π,

(a) every path in sml
↑
Π contains only finitely many edges labeled by Basic transition

rules,

(b) for any semi-terminal state M ||Γ of sml
↑
Π, M+ is an answer set of Π,

(c) sml
↑
Π contains an edge leading to FailState if and only if Π has no answer

sets.

We say that a state in the graph sml
↑
Π is a backjump state if its record

is inconsistent and contains a decision literal. As in case of the graph smlΠ, any

backjump state in sml
↑
Π is not semi-terminal:

Theorem 17↑. For a program Π, the transition rule Backjump LP is applicable

to any backjump state in sml
↑
Π.

Theorem 16 (b), (c) and Theorem 17 easily follow from Lemma 13 and The-

orem 16↑ (b), (c) and Theorem 17↑ respectively. The proof of Theorem 16 (a) is

similar to the proof of Theorem 16↑ (a).

12.3 Proofs of Theorem 16↑, Lemma 13, Theorem 17↑

12.3.1 Proof of Theorem 16↑

Lemma 14. For any program Π, an extended record M relative to Π, and every

assignment X such that X+ is an answer set for Π, if X satisfies all decision literals

in M then X |= M .

127

Proof. By induction on the length of M . The property trivially holds for ∅. We

assume that the property holds for any state with n elements. Consider any state M

with n + 1 elements. Let X be an assignment such that X+ is an answer set for Π

and X satisfies all decision literals in M . We will now show that X |= M .

Case 1. M has the form P l∆. By the inductive hypothesis, X |= P . Since X

satisfies all decision literals in M , X |= l.

Case 2. M has the form P ll∨C . By the inductive hypothesis, X |= P . By

the definition of a reason, (i) Π entails l∨C and (ii) C ⊆ P . From (ii) it follows that

P |= ¬C. Consequently, X |= ¬C. From (i) it follows that for any assignment X

such that X+ is an answer set, X |= l ∨ C. Consequently, X |= l.

The proof of Theorem 16↑ assumes the correctness of Theorem 17↑ that we

demonstrate in Section 12.3.3.

Theorem 16↑. For any program Π,

(a) every path in sml
↑
Π contains only finitely many edges labeled by Basic transition

rules,

(b) for any semi-terminal state M ||Γ of sml
↑
Π, M+ is an answer set of Π,

(c) sml
↑
Π contains an edge leading to FailState if and only if Π has no answer

sets.

Proof. Parts (a) and (c) are proved as in the proof of Theorem 13↑, using Lemma 14.

(b) Let M ||Γ be a semi-terminal state so that none of the Basic rules are applicable.

From the fact that Decide is not applicable, we conclude that M assigns all literals.

Furthermore, M is consistent. Indeed, assume that M is inconsistent. Then,

since Fail is not applicable, M contains a decision literal. Consequently, M ||Γ is a

backjump state. By Theorem 17↑, the transition rule Backjump LP is applicable

in M ||Γ. This contradicts our assumption that M ||Γ is semi-terminal.

Also, M is a model of Π: since Unit Propagate LP is not applicable in M ||Γ,

it follows that for every rule a← B ∈ Π, if B ⊆M then a ∈M .

Assume that M+ is not an answer set. Then, by Lemma 3, there is a non-

empty unfounded set U on M with respect to Π such that U ⊆ M . It follows that

Unfounded is applicable (with an arbitrary a ∈ U) in M ||Γ. This contradicts the

assumption that M ||Γ is semi-terminal.

128

12.3.2 Proof of Lemma 13

The proof uses the notion of loop formula [Lin and Zhao, 2002] (Section 9.1). In [Lee,

2005], the authors generalized the notion of a loop formula to arbitrary sets of atoms.

We restate parts of their results here.

Given a set A of atoms by Bodies(Π, A) we denote the set that consists of

the elements of Bodies(Π, a) for all a in A. Let Π be a program. For any set Y of

atoms, the external support formula [Lee, 2005] for Y is

∨

B∈Bodies(Π,Y), B+∩Y =∅

B. (12.2)

We will denote the external support formula by ESΠ,Y . For any set Y of atoms, the

loop formula for Y is the implication

∨

a∈Y

a→ ESΠ,Y .

We can rewrite this formula as the disjunction

∧

a∈Y

¬a ∨ ESΠ,Y . (12.3)

From the Main Theorem in [Lee, 2005] we conclude:

Lemma on Loop Formulas. For any program Π, Π entails loop formulas (12.3)

for all sets Y of atoms that occur in Π.

For a state S in the graph sml
↑
Π, we say that S↓ in smlΠ is the image of S.

Lemma 13. For any program Π, if S′ is a state reachable from ∅||∅ in the graph

smlΠ then there is a state S in the graph sml
↑
Π such that S↓ = S′.

Proof. Since the property trivially holds for the initial state ∅||∅, we only need to

prove that all transition rules of smlΠ preserve it.

Consider an edge M ||Γ =⇒ M ′||Γ′ in the graph smlΠ such that there is

a state M1||Γ in the graph sml
↑
Π satisfying the condition (M1||Γ)↓ = M ||Γ. We

need to show that there is a state in the graph sml
↑
Π such that M ′||Γ′ is its image

129

in smlΠ. Consider several cases that correspond to a transition rule leading from

M ||Γ to M ′||Γ′:

Unit Propagate LP :

M ||Γ =⇒ M a||Γ if

{

a← B ∈ Π and

B ⊆M .

M ′||Γ′ is M a||Γ. It is sufficient to prove that M1 aa∨B ||Γ is a state of sml
↑
Π. It is

enough to show that a clause a∨B is a reason for a to be in M a. By applicability

conditions of Unit Propagate LP , B ⊆M . Since Π entails its rule a← B, Π entails

a ∨B.

All Rules Cancelled :

M ||Γ =⇒ M ¬a||Γ if B ∩M 6= ∅ for all B ∈ Bodies(Π, a).

M ′||Γ′ is M ¬a||Γ. Consider any B ∈ Bodies(Π, a). Since B ∩M 6= ∅, B contains

a literal from M : call it f(B). It is sufficient to show that

¬a ∨
∨

B∈Bodies(Π,a)

f(B) (12.4)

is a reason for ¬a to be in M ¬a.

First, by the choice of f(B), f(B) ∈M ; consequently,

∨

B∈Bodies(Π,a)

f(B) ⊆M .

Second, since f(B) ∈ B, the loop formula ¬a ∨ ESΠ,{a} entails (12.4). By

Lemma on Loop Formulas, it follows that Π entails (12.4).

Backchain True:

M ||Γ =⇒ M l||Γ if























a← B ∈ Π,

a ∈M,

B′ ∩M 6= ∅ for all B′ ∈ Bodies(Π, a) \ {B},

l ∈ B.

M ′||Γ′ is M l||Γ. Consider any B′ ∈ Bodies(Π, a)\B. Since B
′
∩M 6= ∅, B′ contains

130

a literal from M : call it f(B′). A clause

l ∨ ¬a ∨
∨

B′∈Bodies(Π,a)\B

f(B′). (12.5)

is a reason for l to be in M l. The proof of this statement is similar to the case of

All Rules Cancelled .

Backchain False λ:

M ||Γ =⇒ M l||Γ if











a← l, B ∈ Π ∪ Γ,

¬a ∈M or a = ⊥,

B ⊆M .

M ′||Γ′ is M l||Γ. A clause l ∨B ∨ a is a reason for l to be in M l. The proof of this

statement is similar to the case of Unit Propagate LP .

Unfounded :

M ||Γ =⇒ M ¬a||Γ if

{

M is consistent and

a ∈ U for a set U unfounded on M with respect to Π.

M ′||Γ′ is M ¬a||Γ. Consider any B ∈ Bodies(Π, U) such that U ∩B+ = ∅. By the

definition of an unfounded set, it follows that B∩M 6= ∅. Consequently, B contains

a literal from M : call it f(B). The clause

¬a ∨
∨

Bodies(Π,U), B+∩U=∅

f(B) (12.6)

is a reason for ¬a to be in M ¬a. The proof of this statement is similar to the case

of All Rules Cancelled .

Backjump LP , Decide, Fail , and Learn LP : obvious.

The process of turning a state of smlΠ reachable from ∅||∅ into a corre-

sponding state of sml
↑
Π can be illustrated by the following example: Consider a

131

program Π

a← not b

b← not a, not c

c← not f

← k, d

k ← l, not b

← m, not l, not b

m← not k, not l

(12.7)

and a path in smlΠ

∅||∅ =⇒ (Decide)

a∆||∅ =⇒ (All Rules Cancelled)

a∆ ¬b||∅ =⇒ (Decide)

a∆ ¬b c∆||∅ =⇒ (Backchain True)

a∆ ¬b c∆ ¬f ||∅ =⇒ (Decide)

a∆ ¬b c∆ ¬f d∆||∅ =⇒ (Backchain False λ)

a∆ ¬b c∆ ¬f d∆ ¬k||∅ =⇒ (Backchain False λ)

a∆ ¬b c∆ ¬f d∆ ¬k ¬l||∅ =⇒ (Backchain False λ)

a∆ ¬b c∆ ¬f d∆ ¬k ¬l ¬m||∅ =⇒ (Unit Propagate LP)

a∆ ¬b c∆ ¬f d∆ ¬k ¬l ¬m m||∅

(12.8)

The construction in the proof of Lemma 13 applied to the nodes in this path gives

the following states of sml
↑
Π:

∅||∅

a∆||∅

a∆ ¬b¬b∨¬a||∅

a∆ ¬b¬b∨¬a c∆||∅

a∆ ¬b¬b∨¬a c∆ ¬f¬f∨¬c||∅

a∆ ¬b¬b∨¬a c∆ ¬f¬f∨¬c d∆||∅

a∆ ¬b¬b∨¬a c∆ ¬f¬f∨¬c d∆ ¬k¬k∨¬d||∅

a∆ ¬b¬b∨¬a c∆ ¬f¬f∨¬c d∆ ¬k¬k∨¬d ¬l¬l∨b∨k||∅

a∆ ¬b¬b∨¬a c∆ ¬f¬f∨¬c d∆ ¬k¬k∨¬d ¬l¬l∨b∨k ¬m¬m∨l∨b||∅

a∆ ¬b¬b∨¬a c∆ ¬f¬f∨¬c d∆ ¬k¬k∨¬d ¬l¬l∨b∨k ¬m¬m∨l∨b mm∨k∨l||∅

(12.9)

132

It is clear that these nodes form a path in sml
↑
Π with every edge justified by

the same transition rule as the corresponding edge in path (12.8) in smlΠ.

12.3.3 Proof of Theorem 17↑

In this section Π is an arbitrary and fixed logic program.

We say that a clause C is conflicting on a list M of literals if Π entails C, and

C ⊆ lcp(M). For example, let M be the first component of the last state in (12.9):

a∆ ¬b¬b∨¬a c∆ ¬f¬f∨¬c d∆ ¬k¬k∨¬d ¬l¬l∨b∨k ¬m¬m∨l∨b mm∨k∨l. (12.10)

Then, lcp(M) is obtained by dropping the last element mm∨k∨l of M . It is clear

that the reason m ∨ k ∨ l for m to be in M is a conflicting clause on M .

Lemmas 10, 11, 12 hold for the case of extended record relative to a program.

The proofs of the lemmas have to be modified only by replacing F ∧ G with Π.

Theorem 17↑ is proved as Theorem 14↑.

12.4 Decision and FirstUIP Backjumping and Learning

for Answer Set Solvers

As we mentioned in Section 10.5, there are two common methods for describing

a backjump clause construction in the SAT literature. The first one employes the

implication graph [Marques-Silva and Sakallah, 1996a]. Ward and Schlipf [2004] ex-

tended the definition of an implication graph to the smodels algorithm and imple-

mented the FirstUIP learning schema in the answer set solver smodelscc. The sec-

ond method used in SAT for characterizing a backjump clause derivation employes

resolution. In Sections 10.4.3 and 10.5, we used gtl
↑
F,G formalism to describe the

BackjumpClause and BackjumpClauseFirstUIP algorithms for computing Decision

and FirstUIP backjump clauses respectively for the generate and test procedure.

These algorithms follow the second tradition. It turns out that the BackjumpClause

and BackjumpClauseFirstUIP algorithms can be also used for computing the ASP

counterparts of Decision and FirstUIP backjump clauses. In fact, the Backjump-

ClauseFirstUIP algorithm is employed by the system sup in its implementation of

a conflict-driven backjumping and learning.

133

lcp(M) a∆ ¬b¬b∨¬a c∆ ¬f¬f∨¬c d∆ ¬k¬k∨¬d ¬l¬l∨b∨k ¬m¬m∨l∨b

C1 m ∨ k ∨ l
N ¬b¬b∨¬a ¬f¬f∨¬c ¬k¬k∨¬d ¬l¬l∨b∨k ¬m¬m∨l∨b

R ¬b ∨ ¬a, ¬f ∨ ¬c, ¬k ∨ ¬d, ¬l ∨ b ∨ k, ¬m ∨ l ∨ b

C2 k ∨ l ∨ b is the resolvent of C1 and ¬m ∨ l ∨ b
C3 k ∨ b is the resolvent of C2 and ¬l ∨ b ∨ k
C4 ¬d ∨ b is the resolvent of C3 and ¬k ∨ ¬d
C5 ¬d ∨ ¬a is the resolvent of C4 and ¬b ∨ ¬a

Figure 12.2: Sample execution of the BackjumpClause algorithm on backjump
record (12.10) with respect to program (12.7).

For a program Π, we say that a record M is a backjump record with respect

to Π if M ||Γ is a backjump state in sml
↑
Π. The algorithms BackjumpClause and

BackjumpClauseFirstUIP are applicable to the backjump records with respect to a

program Π.

We first demonstrate an example of BackjumpClause application. Consider

an execution of BackjumpClause on backjump record (12.10) with respect to pro-

gram (12.7). Figure 12.2 illustrates what the values of lcp(M), C, N , and R are

during the execution of the BackjumpClause algorithm. By Ci we denote a value of

C before the i-th iteration of the while loop. The algorithm terminates with the

clause ¬d∨¬a. The proof of Theorem 17↑ asserts that (i) this clause is a backjump

clause such that d and a are decision literals in M and (ii) the transition

a∆¬b¬b∨¬a c∆¬f¬f∨¬c d∆¬k¬k∨¬d¬l¬l∨b∨k¬m¬m∨l∨b mm∨k∨l||∅ =⇒

a∆ ¬b¬b∨¬a ¬d¬d∨¬a||∅
(12.11)

in sml↑Π is an application of the transition rule Backjump LP . Indeed, by Lemma 12

lcp(M)decM (¬a)] ¬ d¬d∨¬a, in other words a∆ ¬b¬b∨¬a ¬d¬d∨¬a, is a record.

We now demonstrate an example of the BackjumpClauseFirstUIP applica-

tion.

Consider an execution of the BackjumpClauseFirstUIP algorithm on back-

jump record (12.10) with respect to program (12.7). Figure 12.3 illustrates what

the values of lcp(M), C, N , and R are during the execution of the BackjumpClause

algorithm. By Ci we denote a value of C before the i-th iteration of the while loop.

134

lcp(M) a∆ ¬b¬b∨¬a c∆ ¬f¬f∨¬c d∆¬k¬k∨¬d ¬l¬l∨b∨k ¬m¬m∨l∨b

C1 m ∨ k ∨ l
P d∆ ¬k¬k∨¬d ¬l¬l∨b∨k ¬m¬m∨l∨b

R ¬k ∨ ¬d, ¬l ∨ b ∨ k, ¬m ∨ l ∨ b

C2 k ∨ l ∨ b is the resolvent of C1 and ¬m ∨ l ∨ b
C3 k ∨ b is the resolvent of C2 and ¬l ∨ b ∨ k.

Figure 12.3: Sample execution of the BackjumpClauseFirstUIP algorithm on back-
jump record (12.10) with respect to program (12.7).

The BackjumpClauseFirstUIP algorithm terminates with the clause k∨b. The proof

of the correctness of BackjumpClauseFirstUIP asserts that (i) k ∨ b is a backjump

clause and (ii) the transition

a∆¬b¬b∨¬a c∆¬f¬f∨¬c d∆¬k¬k∨¬d¬l¬l∨b∨k¬m¬m∨l∨b mm∨k∨l =⇒

a∆ ¬b¬b∨¬a kk∨b||∅
(12.12)

in sml↑Π is an application of Backjump LP .

12.5 Sup Algorithms

The work on sml
↑
Π that extends smΠ with backjumping and learning facilitated

the development of the answer set solver sup [Lierler, 2008]. In Section 5.3 we

demonstrated a method for specifying the algorithm of an answer set solver by means

of the graph smΠ. In particular, we described the smodels algorithm by assigning

priorities to transition rules of smΠ. In this section we use this method to describe

the sup algorithm by means of sml
↑
Π. In the end of the section we will also use this

framework to describe the algorithm of the answer set solver smodelscc [Ward and

Schlipf, 2004].

The system sup assigns priorities to inference rules of sml
↑
Π as follows:

Backjump LP,Fail >>

Unit Propagate LP,All Rules Cancelled,Backchain True,Backchain False λ >>

Decide >>

Unfounded.

135

Also, sup always applies the transition rule Learn LP in a non-semi-terminal state

reached by an application of Backjump LP , because it implements conflict-driven

backjumping and learning.1

For example, let Π be program (4.8). Path (12.1) corresponds to an execution

of the system sup.

In Section 12.4 we discuss details on which clause is being learned during

the application of Learn LP . The system sup implements BackjumpClauseFirstUIP

procedure (Algorithm 4 in Section 10.5) to compute a backjump clause.

The strategy of sup of assigning the transition rule Unfounded the lowest

priority may be reasonable for many problems. For instance, it is easy to see that

the transition rule Unfounded is redundant for tight programs. The sup algorithm

is similar to SAT-based answer set solvers such as assat [Lin and Zhao, 2004] (see

Section 9.2) and cmodels [Giunchiglia et al., 2006] (see Section 11.2) in the fact

that it will first compute a supported model of a program and only then will test

whether this model is indeed an answer set, i.e., whether Unfounded is applicable

in this state.

We also note that sup accepts input with choice and weight rules. Like

cmodels it uses transformations described in Section 8.1 to eliminate choice and

weight rules in favor of semi-traditional rules. The graph sml
↑
Π can be easily gener-

alized to semi-traditional programs.

In [Ward and Schlipf, 2004], the authors introduced the system smodelscc

that enhances the smodels algorithm with conflict-driven backjumping and learn-

ing. Here we use the graph sml
↑
Π to describe the smodelscc algorithm. smodelscc

assigns priorities to inference rules of sml
↑
Π as follows2:

Backjump LP,Fail >>

Unit Propagate LP,All Rules Cancelled,Backchain True,Backchain False λ >>

Unfounded >>

Decide.

Note that the priority assignment that describes smodelscc is different from that

1The system sup (smodelscc) also implements restarts and forgetting that may be modeled by
the transition rules Restart and Forget LP . An application of these transition rules in sml

↑

Π relies
on particular heuristics implemented by the solver.

2Its strategy for choosing a path in the graph sml
↑

Π is similar to that of smodels.

136

of sup in the following: former assigns higher priority to Unfounded than Decide.

Similarly to sup, smodelscc always applies the transition rule Learn LP in a non-

semi-terminal state reached by an application of Backjump LP . Unlike sup that

computes a backjump clause using the BackjumpClauseFirstUIP procedure based

on clause resolution, smodelscc uses the extended notion of an implication graph

introduced in [Ward and Schlipf, 2004] for this purpose.

For example, let Π be program (4.8). A path in sml
↑
Π from ∅||∅ to the same

semi-terminal node

∅||∅ =⇒ (Decide)

a∆||∅ =⇒ (Unit Propagate LP)

a∆ c||∅ =⇒ (All Rules Cancelled)

a∆ c ¬b||∅ =⇒ (Unfounded)

a∆ c ¬b ¬d||∅

corresponds to an execution of smodelscc, but it does not correspond to any exe-

cution of system sup because for the latter Decide is a rule of higher priority than

Unfounded . On the other hand, path (12.1) does not correspond to any execution of

smodelscc because for the latter Unfounded is a rule of higher priority than Decide.

We also note that smodelscc implementation accepts input with choice and

cardinality constraint rules. Unlike sup that eliminates these rules in favor of semi-

traditional rules, smodelscc extends its inference mechanism directly to these rules.

These extensions are out of the scope of this dissertation.

12.6 Implementation and Experimental Analysis

The implementation of sup extends the SAT solver minisat (v1.12b). It utilizes

• the interface of the SAT solver minisat (v1.12b) that supports non-clausal

constraints described in [Een and Sörensson, 2003b] in order to introduce

additional inference possibilities, but unit propagation. In particular, sup

implements Backchain True and All Rules Cancelled by means of non-clausal

constraints and it uses the unit propagate of minisat to capture Unit Propa-

gate LP and Backchain False.

• parts of cmodels code that eliminate weight and choice rules; perform model

137

Instance sup cmodels+minisat smodels

pigeon.p9h8 1.32 0.56 4.8
pigeon.p10h9 9.24 6.28 47.19
pigeon.p11h10 113.78 85.02 509.27
pigeon.p12h11 t-o t-o t-o

15-puzzle.1 29.52 9.76 t-o
15-puzzle.2 205.78 45.55 t-o
15-puzzle.3 22.94 5.04 t-o
15-puzzle.4 367.26 93.93 t-o
15-puzzle.5 t-o 112.25 t-o
15-puzzle.6 t-o 127.45 t-o
15-puzzle.7 t-o 59.73 t-o
15-puzzle.8 24.75 3.46 374.39
15-puzzle.9 199.83 7.85 t-o

Figure 12.4: Tight Programs: Pigeon Hole, 15-Puzzle; traditional encoding; run-
times of sup, cmodels using minisat, and smodels.

verification; and compute loop formulas. In particular, sup uses the latter two

parts of cmodels code to capture Unfounded .

As in Section 6.5.2 we describe here experiments conducted using the system

whose technical specifications are presented in Section 6.5. In this section, we com-

pare the performance of sup version 0.4 with cmodels using minisat, smodels,

and smodelscc. Details on the versions of the answer set solvers cmodels, smod-

els, and smodelscc are provided in Section 6.5.

Figures 12.4 and 12.5 present the running times for sup versus cmodels

using minisat and smodels on benchmarks described in Section 6.5.1: Pigeon Hole,

15-Puzzle, Graph Coloring, Schur Numbers, Putting Numbers, n-queens, Blocked

n-queens. Programs encoding these problems are tight.

Figure 12.6 presents the running times for sup versus cmodels using minisat,

smodels, and smodelscc on nontight programs that encode benchmarks described

in Section 11.6: Deterministic Automaton, Wire Routing, Bounded Model Check-

ing, Hamiltonian Cycle. Running times for the systems cmodels using minisat,

smodels, and smodelscc were reported previously. Here we report new results for

running times of the answer set solver sup. Overall the results demonstrated by

sup place the system in the class of efficient answer set solvers. It often outperforms

138

other native answer set solvers smodels and smodelscc.

Figures 12.7 and 12.8 present the experimental results kindly provided to us

by Martin Brain (March 7, 2010). The experiments were run using a 2.8Ghz Intel

Xeon E5462 processor, running Scientific Linux 5.4. All solvers were built in 32

bit mode. Each test was limited to 3600 seconds of CPU time and 3Gb of RAM.

The figures report running times of the answer set solvers clasp (Section 14.1),

cmodels using minisat, and sup used in the music composition tool anton.3

anton is an automatic tool that composes melodic and harmonic Renaissance music

in the style of the Palestrina Rules. Its core computational engine is an answer set

solver. Figures 12.7 and 12.8 present running times for two different settings of

anton: Rhythmic and Simple. The System sup demonstrates competitive results

as a computational engine of anton.

3http://www.cs.bath.ac.uk/ mjb/anton/

139

Instance sup cmodels+minisat smodels

color.p1000.4 0.47 0.62 11.43
color.p6000.4 t-o t-o 465.12
color.p3000.4 27.85 14.1 109.88
color.p3000.3 1.03 1.4 0.92
color.p6000.3 2.19 2.93 1.85

schur.p4n45 38.94 4.53 536.86
schur.p5n100 0.7 1.1 t-o
schur.p5n110 127.02 521.08 t-o
schur.p5n120 71.42 t-o t-o

pn.gsquare-4-11-3-8 0.51 0.15 57.62
pn.gsquare-4-12-3-8 3.01 0.64 19.05
pn.gsquare-4-19-3-8 6.28 0.14 223.91
pn.gsquare-4-22-3-8 22.53 0.77 32.08
pn.gsquare-4-24-3-8 0.06 0.42 470.57
pn.gsquare-5-12-4-8 1.04 24.42 t-o

queens.q22 0.11 0.29 171.46
queens.q24 0.14 0.4 225.61
queens.q28 0.23 0.81 t-o
queens.q32 0.39 1.5 t-o
queens.q36 0.52 2.5 t-o

bqueens.50.1642398261 239.67 19.14 321.73
bqueens.50.1642399343 21.75 7.76 66.53
bqueens.50.1642399526 16.12 24.56 11.85
bqueens.50.1642400086 80.47 20.48 377.66
bqueens.50.1642401471 16.7 5.23 34.03
bqueens.50.1642402365 168.99 49.96 250.9
bqueens.50.1642402587 9.5 3.67 24.43
bqueens.50.1642403758 88.85 21.9 457.62
bqueens.50.1642404800 10.89 4.47 71.45
bqueens.50.1642405183 106.18 35.6 138.5

Figure 12.5: Tight Programs: Graph Coloring, Schur Numbers, Putting Numbers,
n-queens, Blocked n-queens; encoding with choice rules and cardinality constraints;
runtimes of sup, cmodels using minisat, and smodels.

140

Instance sup cmodels+minisat smodels smodelscc

detA.Morin.mutex4 0.47 0.76 21.46 64.81
detA.Morin.phi5 0.78 0.23 1.17 4.43
detA.IDFD.mutex4 0.72 0.48 17.96 52.71
detA.IDFD.phi5 0.22 0.18 1.0 3.88

wire.10.x.10.b.5.a.25S 4.4 0.5 t-o 134.11
wire.10.x.10.b.5.a.35S 1.53 0.26 13.37 7.3
wire.10.x.10.b.5.a.20U 12.93 2.33 41.17 4.84
wire.12.x.12.b.5.a.15U t-o t-o t-o t-o
wire.12.x.12.b.5.a.20U 201.53 349.83 t-o t-o

dp-8.fsa-D-i-O2-b8 0.02 0.05 1.51 0.72
dp-10.fsa-D-i-O2-b10 0.03 0.11 119.14 6.43
dp-12.fsa-D-i-O2-b9 114.87 159.57 454.57 t-o

hc-1S 1.11 0.55 t-o 36.35
hc-2S 31.01 2.29 t-o 16.09
hc-3S 2.94 8.98 t-o t-o
hc-4S 2.07 1.66 0.82 3.78

Figure 12.6: Nontight Programs: Deterministic Automaton, Wire Routing,
Bounded Model Checking, Hamiltonian Cycle; runtimes of sup, cmodels using
minisat, smodels, and smodelscc.

141

Style Measures Solvers
clasp 1.3.2 cmodels 3.79 sup 0.4

9*solo 2-few 0.70 0.92 1.00
2-many 1.37 1.65 1.40
3-few 1.83 1.91 3.58
3-many 6.37 3.23 6.23
4-few 3.69 4.79 6.82
4-many 37.62 8.81 9.13
6-few 96.70 8.51 24.33
6-many 1238.99 26.85 111.95
8-few 295.33 29.47 98.74
8-many 3374.40 51.95 379.28

9*duet 2-few 7.68 7.22 6.78
2-many 14.09 20.70 20.17
3-few 22.64 30.35 21.48
3-many 245.06 150.66 205.02
4-few 168.93 76.17 66.94
4-many 2264.39 902.17 276.82
6-few 3590.69 345.58 633.61
6-many m-o 2418.16 2198.27
8-few m-o 82.90 1669.23
8-many m-o m-o m-o

7*trio 2-few 25.16 13.39 39.05
2-many 127.69 28.54 166.41
3-few 283.15 48.90 264.53
3-many 1336.46 3597.66 1235.31
4-few 1794.29 397.64 766.25
4-many m-o t-o 3305.92
6-few m-o 2467.05 2890.13
6-many m-o m-o m-o

7*quartet 2-few 325.96 45.87 91.69
2-many 1192.52 141.55 859.42
3-few 1019.19 204.64 296.06
3-many t-o t-o t-o
4-few t-o 2035.46 t-o
4-many m-o m-o m-o

Figure 12.7: anton, Rhythmic: runtimes of clasp, cmodels using minisat, and
sup.

142

Style Measures Solvers
clasp 1.3.2 cmodels 3.79 sup 0.4

7.5*solo 2 0.09 0.19 0.10
4 0.58 1.05 0.47
6 1.42 2.23 1.21
8 2.22 3.73 2.44
10 4.69 5.68 3.86
12 5.04 6.82 3.24
14 10.88 8.77 5.79
16 31.07 9.46 7.41

7.5*duet 2 0.24 0.56 0.28
4 1.34 2.14 1.32
6 6.80 4.69 5.50
8 21.57 7.13 9.16
10 70.89 29.33 27.04
12 99.46 24.89 30.51
14 202.59 41.59 133.34
16 443.03 115.14 81.78

7.5*trio 2 0.44 0.96 0.57
4 1.96 3.04 2.88
6 6.17 5.48 7.56
8 3.98 9.65 18.48
10 116.60 11.67 12.60
12 542.18 31.53 66.01
14 862.54 37.66 62.94
16 3364.77 53.54 132.23

7.5*quartet 2 0.86 1.65 1.43
4 3.57 4.91 9.62
6 128.33 11.89 8.08
8 1083.83 24.07 75.78
10 2778.41 81.35 127.57
12 1784.37 201.12 75.09
14 2801.68 347.58 259.19
16 t-o 269.10 296.91

Figure 12.8: anton, Simple: runtimes of clasp, cmodels using minisat, and sup.

143

Chapter 13

Extending Cmodels Algorithm

to Disjunctive Programs

The answer set semantics for disjunctive logic programs was introduced in [Gelfond

and Lifschitz, 1991]. Recall that in traditional programs rules have the form

a← b1, . . . , bl, not bl+1, . . . , not bm

where b1, . . . , bm are atoms and a is an atom or symbol ⊥. Disjunctive programs

are composed of the rules that may contain disjunction of atoms

a1 ∨ · · · ∨ ak

in the head. This is a special class of programs with nested expressions.

Disjunctive logic programs under the answer set semantics are more expres-

sive than traditional programs. The problem of deciding whether a disjunctive

program has an answer set is ΣP
2 -complete [Eiter and Gottlob, 1993], while the

same problem for a traditional program is NP-complete.

Until recently there were only two answer set systems that allowed programs

with disjunctive rules dlv and gnt. The system dlv implements a specialized

search algorithm tailored to find solutions for disjunctive answer set programs. The

system gnt, on the other hand, implements the generate and test approach by using

the answer set solver smodels to first generate candidate set of atoms, and then

test this set whether it is indeed an answer set of a program. In this chapter we

144

introduce a SAT-based method for computing answer sets of a program. Similarly

to the answer set solver gnt, this method will adopt generate and test approach.

Unlike gnt, it will use a SAT solver for search in place of an answer set solver.

Section 13.1 starts this chapter by reviewing a class of disjunctive programs

that is intermediate between semi-traditional programs (Section 7.5) and programs

with nested expressions (Section 7.1). It also presents generalizations of completion,

loop formulas, and the theorem on loop formulas to disjunctive programs. This paves

the way to extending the SAT-based method for finding answer sets (Section 11.2) to

disjunctive programs. Section 13.2 introduces a procedure for clausifying completion

of a disjunctive program. Section 13.3 defines the cmodels algorithm for disjunctive

programs. In Section 13.4 we present a verification method for testing whether a

model of completion is an answer set of a disjunctive program. In Section 11.3 we

define the notion of a terminating loop for semi-traditional programs. Section 13.5

extends this notion to disjunctive programs and describes how such a loop can be

computed. In Section 13.6 we present a proof to a theorem stated earlier in the

chapter. Section 13.7 presents experimental analysis comparing the performance of

cmodels versus dlv and gnt.

13.1 Background: Disjunctive Programs

In this section we review the definitions of a disjunctive program and discuss the

generalizations of completion, tightness, and loop formulas to such programs.

A disjunctive rule has the form

A← B, (13.1)

where its head A is a disjunction of atoms a1 ∨ · · · ∨ ak or ⊥, and its body B is an

expression

b1, . . . , bl, not bl+1, . . . , not bm, not not bm+1, . . . , not not bn, (13.2)

where each bi is an atom. Note that this rule is a special case of a rule with nested

expressions introduced in Section 7.1. Also, Section 7.1 defines the reduct and

answer set definitions for general programs with nested expressions and hence for

programs with disjunctive rules.

145

We will write disjunctive rule (13.1) in one other form

A← D,F, (13.3)

where A is a disjunction of atoms a1 ∨ · · · ∨ ak or ⊥; D is the positive part of the

body

b1, . . . , bl

and F is the negative part

not bl+1, . . . , not bm, not not bm+1, . . . , not not bn.

We identify the body of a rule (13.1) with the conjunction

b1 ∧ · · · ∧ bl ∧ ¬bl+1 ∧ . . .¬bm ∧ ¬¬bm+1 ∧ · · · ∧ ¬¬bn,

and we identify the rule itself with the clause

a1 ∨ · · · ∨ ak ∨ ¬b1 ∨ · · · ∨ ¬bl ∨ bl+1 ∨ · · · bm ∨ ¬bm+1 ∨ · · · ∨ ¬bn. (13.4)

Lee and Lifschitz [2003] extended the notions of completion and loop for-

mulas to disjunctive programs. The completion of a disjunctive program Π [Lee

and Lifschitz, 2003], Comp(Π), is defined as the set of propositional formulas that

consists of the implication

B → A (13.5)

for every rule (13.1) in Π, and the implication

a→
∨

A←B∈Π, a∈A

(B ∧
∧

a′∈A\{a}

¬a′) (13.6)

for each atom a occurring in Π.

146

For instance, let Π be a program

a ∨ b

c

d ∨ e← a, c

d← e

e← d, not a.

(13.7)

The completion Comp(Π) follows1

a ∨ b

c

a ∧ c→ d ∨ e

e→ d

d ∧ ¬a→ e

a→ ¬b

b→ ¬a

d→ (a ∧ c ∧ ¬e) ∨ e

e→ (a ∧ c ∧ ¬d) ∨ (d ∧ ¬a)

The dependency graph of a disjunctive program Π is the directed graph G

such that

- the vertices of G are the atoms occurring in Π

- for every rule (13.3) in Π, G has an edge from each atom in A to each atom

in B .

Similarly to semi-traditional programs, a disjunctive program is tight [Lee

and Lifschitz, 2003] if its dependency graph is acyclic.

For example, program (13.7) is not tight because it contains a cycle consisting

of vertices d and e. On the other hand, if we drop the last rule from (13.7), the

resulting program is tight.

In [Lee and Lifschitz, 2003], the authors extended Fages theorem to the case

of tight disjunctive programs:

1We see a ∨ b as a shorthand for ⊤ → a ∨ b and c as a shorthand for ⊤ → c and c→ ⊤.

147

Loop Loop Formula

{a} a→ ¬b
{b} b→ ¬a
{c} c→ ⊤
{d} d→ (a ∧ c ∧ ¬e) ∨ e
{e} e→ (a ∧ c ∧ ¬d) ∨ (d ∧ ¬a)
{e, d} e ∨ d→ a ∧ c

Figure 13.1: Loops and loop formulas for program (13.7)

Theorem 18 (Theorem on Tight Disjunctive Programs). For any tight disjunctive

program Π and any set X of atoms, X is an answer set for Π if and only if X

satisfies the completion of Π.

The definition of a loop for a disjunctive program is identical to the defi-

nition of a loop for a semi-traditional program given in Section 9.1. For instance,

program (13.7) contains 6 loops: {a}, {b}, {c}, {d}, {e}, {d, e}.

A loop formula FL has the form

∨

L→
∨

R(L) (13.8)

where R(L) is the set of formulas

D ∧ F ∧
∧

a∈A\L

¬a (13.9)

for all rules (13.3) in Π such that A∩L 6= ∅ and D∩L = ∅ [Lee and Lifschitz, 2003].

As in the case of semi-traditional programs, by LF (Π) we denote the set

(conjunction) of all loop formulas for Π.

For instance, let Π be program (13.7). Its loop formulas are shown in

Figure 13.1. LF (Π) is the set of formulas in the right column. We note that as

in the case of semi-traditional programs, for a singleton loop, the corresponding set

of the bodies of some of the rules form right hand side of the implication (13.6) in

the program’s completion.

Theorem 19 (Theorem 1 from [Lee and Lifschitz, 2003]). For any disjunctive

program Π and any set X of atoms, X is an answer set for Π if and only if X

satisfies Comp(Π) ∪ LF (Π).

148

For instance, let Π be program (13.7). Its completion Comp(Π) has three

models: {b c}, {a c d}, and {b c d e}. The first two models satisfy LF (Π). Conse-

quently, they are also answer sets of Π. The model {b c d e}, on the other hand,

does not satisfy the loop formula e ∨ d → a ∧ c and therefore is not an answer set

of Π.

13.2 Completion Clausification for Disjunctive Programs

The completion Comp(Π) of a program Π converted to CNF using straightforward

equivalent transformations can be exponentially larger than Comp(Π). In this sec-

tion we define a CNF formula ED∨-Comp(Π) which will be a conservative extension

of Comp(Π) and will avoid exponential growth.

For a program Π, we construct an ED-set that consists of formulas containing

explicit definitions for each body of each rule in Π whose

• head is not ⊥, and

• body contains more than one atom.

We call such bodies explicitly defined by the ED-set.

For instance, let Π be program (13.7). The ED-set for Π consists of two

explicit definitions {aux1 ↔ a∧ c, aux2 ↔ d∧¬a} and the bodies of the fourth and

sixth rules are explicitly defined by the ED-set.

For the completion Comp(Π) of a program Π, we construct Comp′(Π) by

replacing the disjunctive terms in Comp(Π) corresponding to the explicitly defined

bodies of Π by their explicit definitions.

For example, let Π be program (13.7). Figure 13.2 presents the completion

Comp(Π) and Comp′(Π).

For a program Π, a CNF formula ED∨-Comp(Π) is a conjunction of

• Comp′(Π) converted to CNF using the ED-transformation and

• formulas in ED-set converted to CNF using straightforward equivalent trans-

formations.

149

Comp(Π) Comp′(Π)

a ∨ b a ∨ b
c c
a ∧ c→ d ∨ e aux1 → d ∨ e
e→ d e→ d
d ∧ ¬a→ e aux2 → e
a→ ¬b a→ ¬b
b→ ¬a b→ ¬a
d→ (a ∧ c ∧ ¬e) ∨ e d→ (aux1 ∧ ¬e) ∨ e
e→ (a ∧ c ∧ ¬d) ∨ (d ∧ ¬a) e→ (aux1 ∧ ¬d) ∨ aux2

Figure 13.2: The completion Comp(Π) and Comp′(Π) where program Π is (13.7).

Let Π be program (13.7). Note that the ED-transformation on Comp′(Π)

will introduce two explicit definitions:

aux3 ↔ aux1 ∧ ¬e

aux4 ↔ aux1 ∧ ¬d.

ED∨-Comp(Π) follows

clausified explicite definitions

a ∨ b ¬a ∨ ¬c ∨ aux1

c ¬aux1 ∨ a

¬aux1 ∨ d ∨ e ¬aux1 ∨ c

¬e ∨ d ¬d ∨ a ∨ aux2

¬aux2 ∨ e ¬aux2 ∨ d

¬a ∨ ¬b ¬aux2 ∨ ¬a

¬b ∨ ¬a ¬aux1 ∨ d ∨ aux4

¬d ∨ aux3 ∨ e ¬aux3 ∨ aux1

¬e ∨ aux4 ∨ aux2 ¬aux3 ∨ ¬e

¬aux1 ∨ e ∨ aux3

¬aux4 ∨ aux1

¬aux4 ∨ ¬d

150

13.3 Cmodels Algorithm for Disjunctive Programs

In this section we will define the cmodels algorithm for disjunctive programs.

We will use the graph gtl
↑
F,G for this purpose. Similarly to the case of semi-

traditional programs, given a disjunctive program Π the cmodels algorithm will

generate models of ED∨-Comp(Π) and then test these models whether they corre-

spond to answer sets of Π. Recall that in the case of semi-traditional programs there

is an efficient procedure that allows determining whether a model of the program’s

completion is an answer set. For disjunctive programs, deciding whether a model of

ED∨-Comp(Π) corresponds to some answer set of Π is co-NP-complete. This is not

surprising as in general disjunctive programs allow to express all problems in the

complexity class ΣP
2 whereas semi-traditional programs allow to express all prob-

lems in the lower complexity class NP . Section 13.4 describes one of the possible

methods for determining whether a model of the program’s completion is an answer

set.

The application of the cmodels algorithm to a program Π can be viewed

as constructing a path from ∅||∅ to a semi-terminal node in gtl
↑
ED∨-Comp(Π),LF (Π)

.

The cmodels algorithm, like in case of semi-traditional nontight programs, assigns

priorities to the inference rules of gtl
↑
F,G as follows:

Backjump GT,Fail >>

Unit Propagate λ >>

Decide >>

Test.

The correctness of the cmodels algorithm immediately follows from Theo-

rem 13↑.

In the case of semi-traditional programs there is an efficient procedure that

allows determining whether the transition rule Test is applicable to a state M ||Γ

when M is a model of the program’s completion. As we mentioned earlier, for

disjunctive programs deciding whether a model of ED∨-Comp(Π) corresponds to

some answer set of Π or, in other words, satisfies the loop formulas LF (Π) of Π is

co-NP-complete. Section 13.4 describes one of the possible methods for determining

whether the transition rule Test is applicable to M ||Γ. Section 13.5 extends the

results on terminating loops (Section 11.3) for disjunctive programs that allows

151

defining the atomreason and loopformulareason methods for constructing a short

reason C for a literal l given a state M ||Γ such that the transition rule Test is

applicable to M ||Γ and M ||Γ =⇒M lC ||Γ is the transition due to Test .

13.4 Verifying Models of Completion

In this section we discuss a verification method implemented in cmodels for testing

whether a model of completion is an answer set of a disjunctive program. Given a

state M ||Γ in gtl
↑
ED∨-Comp(Π),LF(Π)

such that M is a model of ED∨-Comp(Π), one of

the possible methods for determining whether the transition rule Test is applicable

to M ||Γ relies on the minimality requirement of the definition of an answer set, i.e.,

set X of atoms is an answer set for a program Π if and only if X is a minimal set

of atoms satisfying the reduct ΠX .

For any set M of literals, by M− we denote the set of negative literals from M

respectively. For instance, {a ¬b}− is {¬b}. Let Π be a disjunctive program Π,

and X be a model of ED∨-Comp(Π). Recall that by XΠ we denote all literals

in X whose atoms occur in Π. Note that XΠ is a model of Comp(Π). We will

denote XΠ by M . From Lemma 3i [Erdem and Lifschitz, 2003] it trivially follows

that M+ satisfies the reduct ΠM+

. Based on the definition of an answer set, if the

formula ΠM+

∧M− ∧M+ is satisfiable then M+ is not an answer set of Π. Indeed,

if ΠM+

∧M− ∧M+ is satisfiable then there is a model M ′ of ΠM+

∧M− ∧M+

such that M ′+ is a proper subset of M+ satisfying reduct ΠM+

. It follows that M

is not minimal set satisfying ΠM+

.

We may now define a minimality test procedure on a program Π and a

model of its completion M . A SAT solver is invoked on a clausified formula

ΠM+

∧M− ∧M+. If the SAT solver determines that this formula is unsatisfied

then the verified model M is indeed an answer set of Π. Otherwise, the solver re-

turns some model M ′ of ΠM+

∧M− ∧M+ so that M ′+ is a proper subset of M+

satisfying reduct ΠM+

. This minimality test procedure is similar to a procedure

introduced in [Janhunen et al., 2000] for the gnt system that encodes minimality

test as an ASP problem and uses the ASP solver smodels to verify the minimality

of a “perspective” model found by gnt.

In described minimality test procedure, a SAT solver is used for the model

verification step. The idea of using a SAT solver for the task of verifying whether

152

a model of a program is an answer set is introduced in [Koch et al., 2003]. In that

work the concept of unfounded-free models of disjunctive programs is used in place

of minimality in defining an algorithm for the model verification. Furthermore, the

model verification algorithm in Figure 6 in [Koch et al., 2003] improves the approach

by taking advantage of

• a modularity property of a program so that verification is performed on parts

of the program, and

• the fact that for the class of so called head-cycle-free programs the verification

can be performed in polynomial time.

We also exploit these ideas in our implementation of minimality test procedure in

cmodels.

13.5 Terminating Loops for Disjunctive Programs

In Section 11.3 we defined the notion of a terminating loop for semi-traditional

programs. Here we extend the notion of a terminating loop to disjunctive programs

and state how such a loop can be computed.

Recall that by GΠ,X we denote a subgraph of the dependency graph (Sec-

tions 4.5, 7.6) of a program Π induced by a set X of atoms.

Let Π be a disjunctive program, and X,X ′ be sets of atoms such that

X |= Comp(Π), X ′ ⊂ X, and X ′ |= ΠX . We understand that a loop is terminating

under a set of atoms in the same way as in the case of semi-traditional programs.

The following theorem states that given a program Π and a set X of atoms

such that X |= Comp(Π) and X is not an answer set of Π, to calculate the loop

formula of Π unsatisfied by X it is sufficient to

• find any proper subset X ′ of X such that X ′ |= ΠX (minimality test procedure

Section 13.4 finds such subset),

• compute a loop formula of any terminating loop in GΠ,X\X′ .

Theorem 15∨. For a disjunctive program Π, and sets X, X ′ of atoms such that X

is a models of Comp(Π), X ′ ⊂ X, and X ′ is a model of ΠX , there is a terminating

153

loop of Π under X \X ′. Furthermore, X does not satisfy the loop formula of any

terminating loop of Π under X \X ′.

Given a state M ||Γ in gtl
↑
ED-Comp∨(Π),LF (Π)

such that M is a model of

ED-Comp∨(Π) and Test is applicable to M ||Γ, the atomreason approach requires a

loop L such that for its loop formula FL, M 6|= FL. Theorem 15∨ and the minimality

test procedure provide us with a method for computing such L and FL. The atom-

reason method for disjunctive programs is identical to atomreason method described

in Section 11.2 for semi-traditional programs.

Given a state M ||Γ in gtl
↑
ED-Comp∨(Π),LF (Π)

such that M is a model of

ED-Comp∨(Π) and Test is applicable to M ||Γ, the loopformulareason method starts

by finding a loop formula FL of the form

∧

l∈L

l ∨
∨

R(L) (13.10)

so that M 6|= FL. Recall that R(L) denotes a formula

D ∧ F ∧
∧

¬a (13.11)

where D ∧ F stands for a body of some rule in the program and
∧

¬a stands for

the conjunction of negation of some atoms occurring in the head of this rule. From

the ED∨-Comp(Π) construction it follows that if D ∧ F contains more than one

conjunctive term then D ∧ F is explicitly defined and hence there is an auxiliary

atom in ED∨-Comp(Π) that stands for D ∧ F . By ED∨(FL) we denote FL so

that each occurrence of explicitly defined bodies of Π in FL are replaced by their

corresponding auxiliary atoms. We now apply the atomreason method on ED∨(FL)

to construct a clause C. It is easy to see that for any literal c ∈ C, C is a reason for c

to be in M c with respect to ED-Comp∨(Π) ∧ LF (Π). The system cmodels with

the default settings will only consider edges due to the transition rule Test of the

kind M ||Γ =⇒ M cC ||Γ. This concludes the description of the loopformulareason

method.

154

13.6 Proof of Theorem 15∨

We say that a rule A ← B ∈ Π is supporting atom a under set X of atoms if

A ∩X = {a}, and X |= B.

Lemma 15. For a disjunctive program Π, and a model X of Comp(Π), if a ∈ X

then there must be a supporting rule A← B in Π for a under X.

Proof. From the completion construction there must be a clause

a→
∨

A←B∈Π, a∈A

(B ∧
∧

a′∈A\{a}

¬a′)

in Comp(Π). This clause is satisfied by X and therefore there exists at least one

rule A← B such that a ∈ A, X |= B, and A ∩X = {a}. Such rule is a supporting

rule for a under X.

Recall that disjunctive rule (13.1) can be written in the form

A← D,F, (13.12)

where A is the head, D is the positive part of the body, and F is the negative part

of the body.

Lemma 16. For a disjunctive program Π, sets X, X ′ of atoms such that X is

a model of Comp(Π), X ′ ⊂ X, and X ′ is a model of ΠX , any supporting rule

A← D,F for an atom in X \X ′ under X is such that D ∩ (X \X ′) 6= ∅.

Proof. Consider any atom a ∈ X ′ \X. Suppose there exists a supporting rule A←

D,F for a under X such that D∩(X\X ′) = ∅, By the definition of a supporting rule,

X |= D,F . It follows that D ⊆ X ′. Furthermore, rule A← D,FX ∈ ΠX , where FX

is a conjunction of ⊤’s. We are given that X ′ |= ΠX , hence X ′ |= A← D,FX . Since

D ⊆ X ′, X ′ |= D,FX hence X ′ |= A and a ∈ X ′. This contradicts the assumption

that a ∈ X \X ′.

Recall that for a set X of atoms, by GΠ,X we denote a subgraph of the

dependency graph of a program Π induced by X.

155

Lemma 17. For a disjunctive program Π, sets X, X ′ of atoms such that X is a

model of Comp(Π), X ′ ⊂ X, X ′ is a model of ΠX , for any atom a ∈ X \X ′, there

is a strongly connected component L ⊆ X \X ′ in GΠ,X\X′ and for some b ∈ L, there

is a directed path from a to b in GX\X′ .

Proof. From Lemma 15 each atom a ∈ X \ X ′ has a supporting rule under X.

From Lemma 16 it follows that each supporting rule A ← D,F for a is such that

D ∩ (X \X ′) 6= ∅. Consequently, there is an atom b ∈ D so that b ∈ X \X ′. From

the construction of GΠ,X\X′ for each atom a ∈ X \X ′ there must be an arc (a, b)

where b ∈ X \ X ′. Since the atom a is any node and GΠ,X\X′ has finite number

of nodes, we derive that there is a cycle in GΠ,X\X′ and thus there is a strongly

connected component L reachable from a.

Theorem 15∨. For a disjunctive program Π, and sets X, X ′ of atoms such that X

is a model of Comp(Π), X ′ ⊂ X, and X ′ is a model of ΠX , there is a terminating

loop of Π under X \X ′. Furthermore, X does not satisfy the loop formula of any

terminating loop of Π under X \X ′.

Proof. From Lemma 17 it follows that there exists a strongly connected component

in GΠ,X\X′ . Clearly, if there exists a strongly connected component in GΠ,X\X′ then

there exists a terminating loop.

Assume L is a terminating loop of Π under X \X ′. Its loop formula is of the

form (13.8). Suppose that the model X satisfies the loop formula of L. It follows

that there there is a rule of the form (13.3) — A← D,F — where A ∩ L 6= ∅, and

D ∩ L = ∅, such that

X |= D,F ∧
∧

a∈A\L

¬a (13.13)

Consider this rule.

Case 1. (X \X ′)∩D 6= ∅. Let b be an atom such that b ∈ (X \X ′)∩D. By

the condition D ∩ L = ∅, b 6∈ L. By Lemma 17 there must be a strongly connected

component L′ such that there is a directed path from b to some atom in L′. Since

b 6∈ L, L′ 6= L. Take any atom c in A ∩ L. From GΠ,X\X′ construction, c has an

edge to b, and hence has a directed path to some atom in L′. This contradicts to

our assumption that L is terminating.

156

Case 2. (X \ X ′) ∩ D = ∅. From (13.13) we conclude that D ⊆ X ′ and

A← D,FX ∈ ΠX , where FX is the conjunction of ⊤. We are given that X ′ |= ΠX .

Consequently, X ′ |= A ← D,FX . Since D ⊆ X ′, X ′ |= A. From (13.13) and the

fact that X ′ ⊂ X it follows that X ′ |=
∧

a∈A\L

¬a. It follows that X ′ ∩ A ∩ L 6= ∅.

This contradicts to our assumption that L ⊆ X \X ′.

13.7 Experimental Analysis

As in Section 6.5.2 we describe here experiments that were conducted using the

system whose technical specifications are presented in Section 6.5. In this section, we

compare the performance of cmodels using minisat with dlv and gnt version 2.

Details on the versions of answer set solvers cmodels and dlv are provided in

Section 6.5. We note that cmodels uses the SAT solver zchaff for minimality

testing in its implementation.

The disjunctive benchmarks that we used are Strategic Companies and 2QBF.

Here are their brief descriptions2:

• In Strategic Companies a holding owns companies that produces some goods.

Several companies may have joint control over another company. Some of

these companies should be sold, under the constraint that all goods can be

still produced, and that no company is sold which would still be controlled

by the holding after the transaction. A company is *strategic*, if it belongs

to a *strategic set*, which is a minimal set of companies satisfying these con-

straints. Given two companies a and b, the problem is to compute a strategic

set containing both a and b, or determine that no such set exists.

• In 2QBF the problem is to decide whether a quantified boolean formula F

defined as

∀y∃xG

(where x and y are disjoint sets of variables and G is a CNF formula over

variables from x ∪ y) is true.

Both problems are Σp
2-hard.

2These descriptions follow http://www.cs.engr.uky.edu/ai/benchmarks.html .

157

Instance lparse cmodels dlv gnt

minisat zchaff

strategic.250.a 0.08 0.05 0.02 0.03 0.16
strategic.250.b 0.08 0.04 0.02 0.03 0.13
strategic.1000.a 0.34 0.26 0.17 0.14 2.08
strategic.1000.b 0.34 0.24 0.15 0.15 2.39
strategic.2500.a 0.89 0.73 0.7 0.72 18.03
strategic.2500.b 0.89 0.72 0.74 0.71 16.43
strategic.6500.a 2.26 2.21 6.26 4.58 111.57
strategic.6500.b 2.35 2.29 1.7 4.54 104.96
strategic.9500.a 3.37 4.0 28.96 9.8 228.23
strategic.9500.b 3.38 4.2 1.83 9.71 221.28

2qbf3dnf1 0.01 0.0 0.0 0.2 t-o
2qbf3dnf2 0.13 276.31 11.49 2.23 t-o
2qbf3dnf3 0.13 279.05 65.73 1.41 t-o
2qbf3dnf4 0.84 t-o 159.7 3.92 t-o
2qbf3dnf5 0.14 0.15 0.1 0.89 t-o
2qbf3dnf6 0.05 0.01 0.01 0.07 t-o
2qbf3dnf7 0.02 0.01 0.0 0.01 t-o
2qbf3dnf8 0.01 0.47 0.01 4.71 t-o
2qbf3dnf9 0.01 0.0 0.0 0.08 2.66

random2qbf0.8-79-1 0.02 152.5 363.7 2.86 t-o
random2qbf0.8-79-2 0.02 14.67 17.91 0.07 t-o
random2qbf0.8-79-3 0.02 277.47 416.63 2.84 t-o
random2qbf0.8-79-4 0.03 83.22 282.44 0.19 t-o
random2qbf0.8-79-5 0.02 t-o t-o 5.08 t-o
random2qbf0.8-79-6 0.02 48.67 359.49 2.33 t-o
random2qbf0.8-79-7 0.02 582.1 t-o 0.02 t-o
random2qbf0.8-79-8 0.03 35.69 125.34 0.17 t-o
random2qbf0.8-79-9 0.02 12.6 40.66 0.1 t-o
random2qbf0.8-79-10 0.02 49.92 142.05 0.74 t-o

Figure 13.3: Strategic Company, 2QBF, Random 2QBF; runtimes of lparse,
cmodels using minisat, cmodels using zchaff, dlv,gnt.

Figure 13.3 reports the performance of the grounder lparse, cmodels using

minisat, cmodels using zchaff, dlv, and gnt. We may note that on all instances

cmodels performs better than gnt. Group of 2QBF instances whose name starts

with “random” is randomly generated. On these instances dlv outperforms cmodels

158

by the order of magnitude suggesting that on such instances the “native” approach

is superior to the SAT-based approach. Nevertheless, on other instances cmodels

often demonstrates competitive results.

159

Chapter 14

Related Work

The two SAT-based answer set solvers, cmodels discussed in this dissertation and

assat designed by Lin and Zhao [2002], were developed independently and simul-

taneously on the basis of an earlier publication [Babovich et al., 2000]. After the

first publications on cmodels [Lierler and Maratea, 2004; Giunchiglia et al., 2004b],

three research groups created the other systems sag, pbmodels, and clasp, which

enhanced the approach of assat and cmodels. The new systems are in some ways

more sophisticated and efficient. In this chapter we briefly describe the ideas behind

these systems.

14.1 Sag and Clasp

The Systems sag [Lin et al., 2006] and clasp [Gebser et al., 2007b] are answer set

solvers for nondisjunctive programs that are enhancements of cmodels and they are

similar to cmodels in several ways. First, they compute and clausify the program’s

completion and then use unit propagate on resulting propositional formula as an

inference mechanism. Second, they guide their search by means of loop formulas.

Third, they implement conflict-driven backjumping and learning. Also, sag uses

SAT-solvers for search. The systems differ from cmodels in the following ways

• they maintain a data structure representing the input logic program throughout

the whole computation,

• in addition to implementing inference rules of the graph gtlF,G they also

160

implement the inference rule Unfounded of smΠ. A hybrid graph combining

the inference rule Unfounded of smΠ and the inference rules of gtlF,G may be

used to describe the sag and clasp algorithms.

The system sag assigns the same priorities to the inference rules of the hybrid

graph as cmodels. Also, sag at random decides whether to apply the inference

rule Unfounded in a state.

On the other hand, the system clasp assigns priorities to the inference rules

of the hybrid graph as follows:

Backjump GT,Fail >>

Unit Propagate λ,Unfounded >>

Decide.

Like cmodels, both sag and clasp always apply the transition rule Learn

GT in a non-semi-terminal state reached by an application of Backjump GT .

In the experimental analysis in [Lin et al., 2006], the authors demonstrated

that sag usually performs at least as well as cmodels, and on some benchmarks it

is by an order of magnitude faster.

The system clasp was originally inspired by the work in SAT-based answer

set solving that used the notion of completion, loop formulas as its base computation

means. clasp approach proved to be successful. In The First Answer Set Program-

ming System Competition, 2007 (see Section 11.7) out of ten participating answer

set solvers clasp was a winner in two out of three qualifying tracks and took the

third place in the third track. cmodels, on the other hand, took the second place

in the latter track. In The Second Answer Set Programming System Competition,

2009 (see Section 11.7) out of sixteen participating answer set solvers a portfolio

solver based on clasp was the winner in the Desicion Problems track. cmodels

took the second place in this track. In Figure 14.1, we present running times of the

system clasp version 1.3.2 versus cmodels using minisat and smodels on non-

tight programs encoding Deterministic Automaton, Wire Routing, Bounded Model

Checking, Hamiltonian Cycle benchmarks. We conducted experiments using the sys-

tem and solvers whose technical specifications are presented in Section 6.5. Details

on the versions of cmodels and smodels are provided in Section 6.5.

161

Instance clasp cmodels+minisat smodels

detA.Morin.mutex4 0.26 0.76 21.46
detA.Morin.phi5 0.05 0.23 1.17
detA.IDFD.mutex4 0.23 0.48 17.96
detA.IDFD.phi5 0.04 0.18 1.0

wire.10.x.10.b.5.a.25S 1.55 0.5 t-o
wire.10.x.10.b.5.a.35S 0.27 0.26 13.37
wire.10.x.10.b.5.a.20U 0.1 2.33 41.17
wire.12.x.12.b.5.a.15U 20.77 t-o t-o
wire.12.x.12.b.5.a.20U 29.69 349.83 t-o

dp-8.fsa-D-i-O2-b8 0.02 0.05 1.51
dp-10.fsa-D-i-O2-b10 0.32 0.11 119.14
dp-12.fsa-D-i-O2-b9 78.56 159.57 454.57

hc-1S 41.67 0.55 t-o
hc-2S 25.45 2.29 t-o
hc-3S 0.39 8.98 t-o
hc-4S 158.34 1.66 0.82

Figure 14.1: Nontight Programs: Deterministic Automaton, Wire Routing,
Bounded Model Checking, Hamiltonian Cycle; runtimes of clasp, cmodels using
minisat, and smodels.

Nevertheless, clasp misses one of the main postulates of this work where we

advocate the reusing and leveraging on already existing computational technology.

14.2 Pbmodels – Weight Rules via Pseudoboolean Solvers

Liu and Truszczyński [2005a] designed and implemented the system pbmodels

to compute answer sets of logic programs with weight rules using, in part, ideas

discussed in Sections 9.2, 10.1, and 11.2. The approach discussed in Chapter 7

involves translating programs with weight rules into propositional logic. pbmodels

investigates another possibility by proposing the translation of logic programs with

weight rules into the extended propositional logic that allows weight atoms [Liu and

Truszczyński, 2005b]. Unlike cmodels or assat that use classical SAT-solvers, pb-

models uses specialized solvers that accept extended propositional formulas such

as satzoo [Eén and Sörensson, 2003a], pbs [Aloul et al., 2003], wsatoip [Walser,

2007], and wsatcc [Liu and Truszczyński, 2003]. We call such solvers pseudo-

162

boolean.

Liu and Truszczyński [2005a] extended the results on completion and loop

formulas from [Lin and Zhao, 2004] to programs with weight rules and to extended

propositional logic. These findings allowed pbmodels to implement procedure

similar to the one of assat using pseudoboolean solvers mentioned above for search.

The approach discussed in Chapter 7 that allows compiling away weight rules

may lead to significantly larger programs and corresponding propositional theories.

pbmodels, on the other hand, avoids the growth of the resulting propositional

theory by using a more expressive target language. Afterwards, pbmodels requires

more specialized search procedures than traditional dpll.

In The First Answer Set Programming System Competition (see Section 11.7),

pbmodels proved to be a competitive participant by gaining the second place in

two out of three qualifying tracks.

163

Chapter 15

Conclusions

In this dissertation we have proposed and studied a SAT-based method for com-

puting answer sets of a program. We have developed a graph-based theoretical

framework that is well-suited for describing, proving correctness, and comparing

algorithms underlying native and SAT-based answer set solvers. We have imple-

mented and evaluated the SAT-based answer set solver cmodels and the native

answer set solver sup that rely on theoretical findings described in the dissertation.

For tight programs, a straightforward method for computing answer sets

using SAT solvers is available: it suffices to compute the program’s completion and

enumerate its models using a SAT solver. The first version of cmodels which

implemented this method was made publicly available in 2003. It used a simplifi-

cation procedure that sometimes allowed us to eliminate parts of a given program

and as a result to shorten the CNF representation of its completion.

In the next version, cmodels was extended to choice and weight rules, which

can be eliminated in favor of semi-traditional rules. The translation of an extended

program to a program with semi-traditional rules adopted by cmodels may intro-

duce a large number of new atoms and rules. Nevertheless, experimental analysis

suggests that it is still a viable approach in comparison with the native search pro-

cedure implemented in smodels.

Extending the SAT-based method to computing answer sets of nontight pro-

grams in an efficient manner was one of the main contributions of this work. The

straightforward approach of adding all loop formulas to the program’s completion

is not feasible, because the number of loop formulas of a program may be expo-

164

nentially large. The SAT-based answer set solver assat addresses this difficulty by

invoking a SAT solver multiple times, with new loop formulas added each time until

an answer set is found. The main drawback of the assat method is that all informa-

tion gained during the earlier invocations of a SAT solver is lost and hence the same

parts of the search tree may be investigated many times. Typically, modern SAT

solvers implement conflict-driven learning that is one of the most efficient techniques

developed in propositional satisfiability. In this dissertation we designed a method

of using loop formulas that takes advantage of this advanced feature. Unlike assat,

which treats the SAT solver as a black box, our system cmodels modifies the SAT

solver procedure to allow it to learn clauses based on loop formulas on demand.

On the one hand, by slightly modifying a SAT solver computation we ensure that

it is invoked only once. On the other hand, employing conflict-driven learning to

learn information based on loop formulas allows us to guide search of a SAT solver

using valuable constraints provided by loop formulas. The implementation of this

method in cmodels demonstrated competitive results, proving the effectiveness of

the SAT-based approach.

During the course of the dissertation, we proposed and implemented the sup

algorithm for finding answer sets that can be seen as a combination of computational

ideas behind cmodels and smodels. Like cmodels, the solver sup operates by

computing a sequence of supported models of the given program, but it does not

form the completion. Instead, sup runs the Atleast algorithm, one of the main

building blocks of the smodels procedure.

In this dissertation we showed how to model algorithms for computing answer

sets of a program by means of simple mathematical objects, graphs. We built

upon the abstract framework for describing dpll-like algorithms to capture the

computation performed by native and SAT-based ASP algorithms. We characterized

in this way the algorithms of the SAT-based answer set solver cmodels and the

native answer set solvers smodels, sup, and smodelscc. This approach simplifies

the analysis of the correctness of algorithms. For instance, we used it to demonstrate

the correctness of the answer set solvers designed in the course of the work on this

dissertation: cmodels and sup. Furthermore, the abstract framework method

allows us to study the relationship between various algorithms using the structure

of the corresponding graphs. For example, we used this method to establish that

applying the smodels algorithm to a tight program essentially amounts to applying

165

dpll to its completion. Also, the description of the sup and smodelscc algorithms

using the graph smlΠ reflects the differences between them in a simple manner via

distinct assignments of priorities to the edges of the graph that characterize these

systems. The work on this abstract framework helped us design the solver sup.

The abstract framework provided a convenient tool for specifying algorithms

for computing backjump clauses used in conflict-driven backjumping and learning

for both SAT-based and native answer set solvers.

The ideas presented in this dissertation have led other researchers to de-

signing several successful systems for computing answer sets: sag, pbmodels, and

clasp. This fact provides additional evidence in favor of the SAT-based approach

to answer set programming.

166

Bibliography

[Aloul et al., 2003] F. Aloul, A. Ramani, I. Markov, and K. Sakallah. PBS: a

backtrack-search pseudo-boolean solver and optimizer. In Proceedings of SAT-

2003, page 346 353, 2003.

[Armando et al., 2004] A. Armando, L. Compagna, and Yu. Lierler. Automatic

compilation of protocol insecurity problems into logic programming. In Proceed-

ings of 9th European Conference in Logics in Artificial Intelligence (JELIA-04),

Lecture Notes In Artificial Intelligence, pages 617–627. Springer, 2004.

[Aura et al., 2000] Tuomas Aura, Matt Bishop, and Dean Sniegowski. Analizing

single-server network inhibition. In Proceedings of the 13th EEEI Computer Se-

curity Foundation Workshop, pages 108–117, 2000.

[Babovich et al., 2000] Yuliya Babovich, Esra Erdem, and Vladimir Lifschitz. Fages’

theorem and answer set programming.1 In Proceedings of International Workshop

on Nonmonotonic Reasoning (NMR), 2000.

[Balduccini and Gelfond, 2003] Marcello Balduccini and Michael Gelfond. Diag-

nostic reasoning with a-prolog. Theory and Practice of Logic Programming, 3(4-

5):425–461, 2003.

[Baptista and Marques-Silva, 2000] L. Baptista and J. P. Marques-Silva. Using ran-

domization and learning to solve hard real-world instances of satisfiability. In 6th

CP, page 489494, 2000.

[Baral and Uyan, 2001] Chitta Baral and Cenk Uyan. Declarative specification and

1http://arxiv.org/abs/cs.ai/0003042 .

167

solution of combinatorial auctions using logic programming. Lecture Notes in

Computer Science, 2173:186–199, 2001.

[Baral et al., 2005] Chitta Baral, Gregory Gelfond, Michael Gelfond, and Richard

Scherl. Textual inference by combining multiple logic programming paradigms.

In AAAI Workshop on Inference for Textual Question Answering, 2005.

[Bayardo and Schrag, 1997] Roberto Bayardo and Robert Schrag. Using CSP look-

back techniques to solve real-world SAT instances. In Proceedings of International

Joint Conference on Artificial Intelligence (IJCAI), pages 203–208, 1997.

[Beame et al., 2004] Paul Beame, Henry Kautz, and Ashish Sabharwal. Towards

understanding and harnessing the potential of clause learning. Artificial Intelli-

gence Research, 22:319–351, 2004.

[Borchert et al., 2004] P. Borchert, C. Anger, T. Schaub, and M. Truszczyński. To-

wards systematic benchmarking in answer set programming: The Dagstuhl initia-

tive. In Proceedings of the Seventh International Conference on Logic Program-

ming and Nonmonotonic Reasoning (LPNMR’04), pages 3–7, 2004.

[Brain et al., 2006] Martin Brain, Tom Crick, Marina De Vos, and John Fitch.

TOAST: Applying answer set programming to superoptimisation. In Sandro

Etalle and Miros law Truszczynski, editors, Logic Programming, LNCS 4079, pages

270–284. Springer, 2006.

[Brooks et al., 2007] Daniel R. Brooks, Esra Erdem, Selim T. Erdoğan, James W.

Minett, and Donald Ringe. Inferring phylogenetic trees using answer set program-

ming. Journal of Automated Reasoning, 39:471–511, 2007.

[Buccafurri et al., 1997] Francesco Buccafurri, Nicola Leone, and Pasquale

Pasquale Rullo. Adding weak constraints to disjunctive datalog. In Joint Con-

ference on Declarative Programming APPIA-GULP-PRODE’97, 1997.

[Clark, 1978] Keith Clark. Negation as failure. In Herve Gallaire and Jack Minker,

editors, Logic and Data Bases, pages 293–322. Plenum Press, New York, 1978.

[Cormen et al., 1994] Thomas Cormen, Charles Leiserson, and Ronald Rivest. In-

troduction to Algorithms. MIT Press, 1994.

168

[Ştefănescu et al., 2003] A. Ştefănescu, J. Esparza, and A. Muscholl. Synthesis of

distributed algorithms using asynchronous automata. In In Proceedings CON-

CUR, LNCS 2761., 2003.

[Davis et al., 1962] Martin Davis, George Logemann, and Donald Loveland. A ma-

chine program for theorem proving. Communications of the ACM, 5(7):394–397,

1962.

[Dell’Armi et al., 2003] Tina Dell’Armi, Wolfgang Faber, Giuseppe Ielpa, Nicola

Leone, and Gerald Pfeifer. Aggregate functions in disjunctive logic programming:

Semantics, complexity, and implementation in dlv. In 18th International Joint

Conference on Artificial Intelligence (IJCAI) 2003, pages 847–852, 2003.

[Denecker et al., 2009] Marc Denecker, Joost Vennekens, Stephen Bond, Martin

Gebser, and Miros law Truszczynski. The second answer set programming system

competition.2 In Proceedings of the International Conference on Logic Program-

ming and Nonmonotonic Reasoning (LPNMR), 2009.

[Dimopoulos et al., 1997] Yannis Dimopoulos, Bernhard Nebel, and Jana Koehler.

Encoding planning problems in non-monotonic logic programs. In Sam Steel and

Rachid Alami, editors, Proceedings of European Conference on Planning, pages

169–181. Springer, 1997.

[Dixon et al., 2004] H. Dixon, M. Ginsberg, E. Luks, and A. Parkes. Generalizing

boolean satisfiability ii: Theory. Journal of Artificial Inteligence Research (JAIR),

2004.

[Dowling and Gallier, 1984] W. Dowling and J. Gallier. Linear-time algorithms for

testing the satisfiability of propositional Horn formulae. Journal of Logic Pro-

gramming, 1984.

[Een and Biere, 2005] Niklas Een and Armin Biere. Effective preprocessing in sat

through variable and clause elimination. In SAT, 2005.

[Eén and Sörensson, 2003a] N. Eén and N. Sörensson. An extensible sat solver. In

Proceedings of SAT-2003, pages 502–518, 2003.

2http://www.cs.kuleuven.be/∼dtai/events/asp-competition/paper.pdf .

169

[Een and Sörensson, 2003b] Niklas Een and Niklas Sörensson. An extensible sat-

solver. In SAT, 2003.

[Eiter and Gottlob, 1993] Thomas Eiter and Georg Gottlob. Complexity results

for disjunctive logic programming and application to nonmonotonic logics. In

Dale Miller, editor, Proceedings of International Logic Programming Symposium

(ILPS), pages 266–278, 1993.

[Eiter et al., 1997] Thomas Eiter, Nicola Leone, Christinel Mateis, Gerald Pfeifer,

and Francesco Scarcello. A deductive system for non-monotonic reasoning. In

Proceedings of the 4th International Conference on Logic Programming and Non-

monotonic Reasoning, pages 363–374. Springer, 1997.

[Eiter et al., 1998] Thomas Eiter, Nicola Leone, Cristinel Mateis, Gerald Pfeifer,

and Francesco Scarcello. The KR system dlv: Progress report, comparisons and

benchmarks. In Anthony Cohn, Lenhart Schubert, and Stuart Shapiro, editors,

Proceedings of International Conference on Principles of Knowledge Representa-

tion and Reasoning (KR), pages 406–417, 1998.

[Eiter et al., 1999] Thomas Eiter, Wolfgang Faber, Nicola Leone, and Gerald

Pfeifer. Diagnosis frontend of the dlv system. The European Journal of Ar-

tificial Intelligence, 12(1–2):99–111, 1999.

[Erdem and Lifschitz, 2001] Esra Erdem and Vladimir Lifschitz. Fages’ theorem for

programs with nested expressions. In Proceedings of International Conference on

Logic Programming (ICLP), pages 242–254, 2001.

[Erdem and Lifschitz, 2003] Esra Erdem and Vladimir Lifschitz. Tight logic pro-

grams. Theory and Practice of Logic Programming, 3:499–518, 2003.

[Erdem and Wong, 2004] E. Erdem and M.D.F. Wong. Rectilinear steiner tree con-

struction using answer set programming. In Proceedings of International Confer-

ence on Logic Programming (ICLP’04), pages 386–399, 2004.

[Fages, 1994] François Fages. Consistency of Clark’s completion and existence of

stable models. Journal of Methods of Logic in Computer Science, 1:51–60, 1994.

170

[Ferraris and Lifschitz, 2005] Paolo Ferraris and Vladimir Lifschitz. Weight con-

straints as nested expressions. Theory and Practice of Logic Programming, 5:45–

74, 2005.

[Gebser and Schaub, 2007] Martin Gebser and Torsten Schaub. Generic tableaux

for answer set programming. In Proceedings of 23d International Conference on

Logic Programming (ICLP’07), pages 119–133. Springer, 2007.

[Gebser et al., 2007a] M. Gebser, T. Schaub, and S. Thiele. Gringo: A new grounder

for answer set programming. In Proceedings of the Ninth International Conference

on Logic Programming and Nonmonotonic Reasoning, pages 266–271, 2007.

[Gebser et al., 2007b] Martin Gebser, Benjamin Kaufmann, Andre Neumann, and

Torsten Schaub. Conflict-driven answer set solving. In Proceedings of 20th Inter-

national Joint Conference on Artificial Intelligence (IJCAI’07), pages 386–392.

MIT Press, 2007.

[Gebser et al., 2007c] Martin Gebser, Lengning Liu, Gayathri Namasivayam, André

Neumann, Torsten Schaub, and Miros law Truszczynski. The first answer set

programming system competition. In Proceedings of the International Confer-

ence on Logic Programming and Nonmonotonic Reasoning (LPNMR), pages 3–17.

Springer, 2007.

[Gelfond and Galloway, 2001] Michael Gelfond and Joel Galloway. Diagnosing dy-

namic systems in aprolog. In Working Notes of the AAAI Spring Symposium on

Answer Set Programming, 2001.

[Gelfond and Lifschitz, 1988] Michael Gelfond and Vladimir Lifschitz. The stable

model semantics for logic programming. In Robert Kowalski and Kenneth Bowen,

editors, Proceedings of International Logic Programming Conference and Sympo-

sium, pages 1070–1080. MIT Press, 1988.

[Gelfond and Lifschitz, 1991] Michael Gelfond and Vladimir Lifschitz. Classical

negation in logic programs and disjunctive databases. New Generation Com-

puting, 9:365–385, 1991.

[Giunchiglia and Maratea, 2005] Enrico Giunchiglia and Marco Maratea. On the

relation between answer set and SAT procedures (or, between smodels and cmod-

171

els). In Proceedings of 21st International Conference on Logic Programming

(ICLP’05), pages 37–51. Springer, 2005.

[Giunchiglia et al., 2004a] Enrico Giunchiglia, Joohyung Lee, Vladimir Lifschitz,

Norman McCain, and Hudson Turner. Nonmonotonic causal theories. Artificial

Intelligence, 153(1–2):49–104, 2004.

[Giunchiglia et al., 2004b] Enrico Giunchiglia, Yuliya Lierler, and Marco Maratea.

SAT-based answer set programming. In Proceedings of National Conference on

Artificial Intelligence (AAAI), pages 61–66, 2004.

[Giunchiglia et al., 2006] Enrico Giunchiglia, Yuliya Lierler, and Marco Maratea.

Answer set programming based on propositional satisfiability. Journal of Auto-

mated Reasoning, 36:345–377, 2006.

[Gomes et al., 1998] C. P. Gomes, B. Selman, and H. Kautz. Boosting combinatorial

search through randomization. In Proceedings of 15th National Conference on

Artificial Intelligence (AAAI), page 431437, 1998.

[Gomes et al., 2008] Carla P. Gomes, Henry Kautz, Ashish Sabharwal, and Bart

Selman. Satisfiability solvers. In Frank van Harmelen, Vladimir Lifschitz, and

Bruce Porter, editors, Handbook of Knowledge Representation, pages 89–134. El-

sevier, 2008.

[Heljanko and Niemelä, 2003] Keijo Heljanko and Ilkka Niemelä. Bounded LTL

model checking with stable models. Theory and Practice of Logic Programming,

3:519–550, 2003.

[Heljanko, 1999] Keijo Heljanko. Using logic programs with stable model semantics

to solve deadlock and reachability problems for 1-safe Petri nets. In Proceed-

ings Fifth Int’l Conference on Tools and Algorithms for the Construction and

Analysis of Systems, pages 218–223, 1999.

[Hietalahti et al., 2000] Maarit Hietalahti, Fabio Massacci, and Nielelä Ilkka. a chal-

lenge problem for nonmonotonic reasoning systems. In Proceedings of the 8th

International Workshop on Non-Monotonic Reasoning, 2000.

172

[Janhunen et al., 2000] T. Janhunen, I. Niemelä, P. Simons, and J. You. Unfolding

partiality and disjunctions in stable model semantics. In Proceedings 7th Int’l

Conf. on Knowledge Representation, pages 411–419, 2000.

[Janhunen et al., 2006] Tomi Janhunen, Ilkka Niemelä, Dietmar Seipel, Patrik Si-

mons, and Jia-Huai You. Unfolding partiality and disjunctions in stable model

semantics. ACM Trans. Comput. Logic, 7(1):1–37, 2006.

[Koch et al., 2003] Christoph Koch, Nicola Leone, and Gerald Pfeifer. Enhancing

disjunctive logic programming systems by sat checkers. Artificial Intelligence,

151:177–212, 2003.

[Lee and Lifschitz, 2003] Joohyung Lee and Vladimir Lifschitz. Loop formulas for

disjunctive logic programs. In Proceedings of International Conference on Logic

Programming (ICLP), pages 451–465, 2003.

[Lee, 2005] Joohyung Lee. A model-theoretic counterpart of loop formulas. In

Proceedings of International Joint Conference on Artificial Intelligence (IJCAI),

pages 503–508. Professional Book Center, 2005.

[Leone and et al., 2005] N. Leone and et al. A disjunctive datalog system dlv (2005-

02-23). In University of Calabria, Vienna University of Technology, 2005. Avail-

able under http://www.dbai.tuwien.ac.at/proj/dlv/.

[Li and Anbulagan, 1997] Chu Min Li and Anbulagan. Heuristics based on unit

propagation for satisfiability problems. In Proceedings of the 15th International

Joint Conference on Artificial Intelligence (IJCAI-97), pages 366–371, San Fran-

cisco, August 23–29 1997. Morgan Kaufmann Publishers.

[Lierler and Maratea, 2004] Yuliya Lierler and Marco Maratea. Cmodels-2: SAT-

based answer set solver enhanced to non-tight programs. In Procedings of Inter-

national Conference on Logic Programming and Nonmonotonic Reasoning (LP-

NMR), pages 346–350, 2004.

[Lierler, 2008] Yuliya Lierler. Abstract answer set solvers. In Proceedings of Inter-

national Conference on Logic Programming (ICLP’08), pages 377–391. Springer,

2008.

173

[Lifschitz and Razborov, 2006] Vladimir Lifschitz and Alexander Razborov. Why

are there so many loop formulas? ACM Transactions on Computational Logic,

7:261–268, 2006.

[Lifschitz et al., 1999] Vladimir Lifschitz, Lappoon R. Tang, and Hudson Turner.

Nested expressions in logic programs. Annals of Mathematics and Artificial In-

telligence, 25:369–389, 1999.

[Lifschitz et al., 2001] Vladimir Lifschitz, David Pearce, and Agustin Valverde.

Strongly equivalent logic programs. ACM Transactions on Computational Logic,

2:526–541, 2001.

[Lifschitz, 1999] Vladimir Lifschitz. Action languages, answer sets and planning.

In The Logic Programming Paradigm: a 25-Year Perspective, pages 357–373.

Springer Verlag, 1999.

[Lin and Zhao, 2002] Fangzhen Lin and Yuting Zhao. ASSAT: Computing answer

sets of a logic program by SAT solvers. In Proceedings of National Conference on

Artificial Intelligence (AAAI), pages 112–117. MIT Press, 2002.

[Lin and Zhao, 2004] Fangzhen Lin and Yuting Zhao. ASSAT: Computing answer

sets of a logic program by SAT solvers. Artificial Intelligence, 157:115–137, 2004.

[Lin et al., 2006] Zhijun Lin, Yuanlin Zhang, and Hector Hernandez. Fast SAT-

based answer set solver. In Proceedings of National Conference on Artificial In-

telligence (AAAI), pages 92–97. MIT Press, 2006.

[Liu and Truszczyński, 2003] Lengning Liu and Miros law Truszczyński. Local-

search techniques in propositional logic extended with cardinality atoms. In Pro-

ceedings of CP-2003, page 495509, 2003.

[Liu and Truszczyński, 2005a] Lengning Liu and Miros law Truszczyński. Pbmodels

– software to compute stable models by pseudoboolean solvers. In Proceedings of

International Conference on Logic Programming and Nonmonotonic Reasoning

(LPNMR), 2005.

[Liu and Truszczyński, 2005b] Lengning Liu and Miros law Truszczyński. Properties

of programs with monotone and convex constraints. In Proceedings of National

Conference on Artificial Intelligence (AAAI), pages 701–706, 2005.

174

[Liu et al., 1998] Xinxin. Liu, C. R. Ramakrishnan, and Scott A. Smolka. Fully

local and efficient evaluation of alternating fixed points. In Proceedings Fourth

Int’l Conference on Tools and Algorithms for the Construction and Analysis of

Systems, pages 5–19, 1998.

[Lloyd and Topor, 1984] John Lloyd and Rodney Topor. Making Prolog more ex-

pressive. Journal of Logic Programming, 3:225–240, 1984.

[Marek and Subrahmanian, 1989] Victor Marek and V.S. Subrahmanian. The rela-

tionship between logic program semantics and non-monotonic reasoning. In Gior-

gio Levi and Maurizio Martelli, editors, Logic Programming: Proceedings Sixth

Int’l Conf., pages 600–617, 1989.

[Marek and Truszczyński, 1999] Victor Marek and Miros law Truszczyński. Stable

models and an alternative logic programming paradigm. In The Logic Program-

ming Paradigm: a 25-Year Perspective, pages 375–398. Springer Verlag, 1999.

[Marques-Silva and Sakallah, 1996a] João P. Marques-Silva and Karem A. Sakallah.

Conflict analysis in search algorithms for propositional satisfiability. In Proceed-

ings of IEEE Conference on Tools with Artificial Intelligence, 1996.

[Marques-Silva and Sakallah, 1996b] João P. Marques-Silva and Karem A. Sakallah.

GRASP - a new search algorithm for satisfiability. Technical report, University

of Michigan, 1996.

[Mitchell, 2005] David G. Mitchell. A SAT solver primer. In EATCS Bulletin (The

Logic in Computer Science Column), volume 85, pages 112–133, 2005.

[Moschovakis, 2008] Joan Moschovakis. Intuitionistic logic. In Edward N. Zalta,

editor, The Stanford Encyclopedia of Philosophy. Fall 2008 edition, 2008.

http://plato.stanford.edu/archives/fall2008/entries/logic-intuitionistic/.

[Moskewicz et al., 2001] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao,

Lintao Zhang, and Sharad Malik. Chaff: Engineering an efficient SAT solver. In

Proceedings DAC-01, 2001.

[Niemelä and Simons, 1996] Ilkka Niemelä and Patrik Simons. Efficient implemen-

tation of the well-founded and stable model semantics. In Proceedings Joint Int’l

Conf. and Symp. on Logic Programming, pages 289–303, 1996.

175

[Niemelä and Simons, 2000] Ilkka Niemelä and Patrik Simons. Extending the Smod-

els system with cardinality and weight constraints. In Jack Minker, editor, Logic-

Based Artificial Intelligence, pages 491–521. Kluwer, 2000.

[Niemelä, 1999] Ilkka Niemelä. Logic programs with stable model semantics as a

constraint programming paradigm. Annals of Mathematics and Artificial Intelli-

gence, 25:241–273, 1999.

[Nieuwenhuis et al., 2006] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli.

Solving SAT and SAT modulo theories: From an abstract Davis-Putnam-

Logemann-Loveland procedure to DPLL(T). Journal of the ACM, 53(6):937–977,

2006.

[Nogueira et al., 2001] Monica Nogueira, Marcello Balduccini, Michael Gelfond,

Richard Watson, and Matthew Barry. An A-Prolog decision support system

for the Space Shuttle. In Proceedings of International Symposium on Practical

Aspects of Declarative Languages (PADL), pages 169–183, 2001.

[Nouioua and Nicolas, 2006] Farid Nouioua and Pascal Nicolas. Using answer set

programming in an inference-based approach to natural language semantics. In

Proceedings of the Fifth Workshop on Inference in Computational Semantics

(ICoS), 2006.

[Saccá and Zaniolo, 1990] Domenico Saccá and Carlo Zaniolo. Stable models and

non-determinism in logic programs with negation. In Proceedings of ACM Sym-

posium on Principles of Database Systems (PODS), pages 205–217, 1990.

[Simons and Syrjaenen, 2007] P. Simons and T. Syrjaenen. Smodels and lparse –

a solver and a grounder for normal logic programs. In Helsinki University of

Technology, 2007. Available at http://www.tcs.hut.fi/Software/smodels/.

[Simons et al., 2002] Patrik Simons, Ilkka Niemelä, and Timo Soininen. Extending

and implementing the stable model semantics. Artificial Intelligence, 138:181–234,

2002.

[Simons, 2000] Patrik Simons. Extending and Implementing the Stable Model Se-

mantics. PhD thesis, Helsinki University of Technology, 2000. Adviser-Niemelä,

Ilkka.

176

[Son and Lobo, 2001] Tran Cao Son and Jorge Lobo. Reasoning about policies using

logic programs. In Working Notes of the AAAI Spring Symposium on Answer Set

Programming, 2001.

[Son et al., 2005] Tran Cao Son, Phan Huy Tu, Michael Gelfond, and Ricardo

Morales. Conformant planning for domains with constraints-a new approach.

In AAAI, pages 1211–1216, 2005.

[Stallman and Sussman, 1977] R. M. Stallman and G. J. Sussman. Forward reason-

ing and dependency-directed backtracking in a system for computer-aided circuit

analysis. Artificial Intelligence, 9:135196, 1977.

[Syrjanen, 2003] Tomi Syrjanen. Lparse manual3. 2003.

[Tang and Ternovska, 2005] Calvin Tang and Eugenia Ternovska. Model checking

abstract state machines with answer set programming. In 12th International

Conference on Logic for Programming, Artificial Intelligence and Reasoning. To

appear in the Lecture Notes in Computer Science, 2005.

[Tari and Baral, 2005] Luis Tari and Chitta Baral. Using AnsProlog with Link

Grammar and WordNet for QA with deep reasoning. In AAAI Workshop on

Inference for Textual Question Answering, 2005.

[Tseitin, 1968] G.S. Tseitin. On the complexity of derivation in the propositional

calculus. Studies in Constructive Mathematics and Mathematical Logic, Part II,

1968.

[Van Gelder et al., 1991] Allen Van Gelder, Kenneth Ross, and John Schlipf. The

well-founded semantics for general logic programs. Journal of ACM, 38(3):620–

650, 1991.

[Walser, 2007] J. Walser. Solving linear pseudo-boolean constraints with local

search. In Proceedings of National Conference on Artificial Intelligence (AAAI),

page 269274, 2007.

[Ward and Schlipf, 2004] J. Ward and J. Schlipf. Answer set programming with

clause learning. In Proceedings of International Conference on Logic Programming

and Nonmonotonic Reasoning (LPNMR’04), pages 302–313, 2004.

3http://www.tcs.hut.fi/software/smodels/lparse.ps.gz

177

[Ward, 2004] Jeffrey Ward. Answer Set Programming with Clause Learning. 4. PhD

thesis, 2004. Adviser-Long, Timothy J. and Adviser-Schlipf, Johns S.

[Zhang et al., 2001] Lintao Zhang, Conor F. Madigan, Matthew W. Moskewicz, and

Sharad Malik. Efficient conflict driven learning in a boolean satisfiability solver.

In Proceedings ICCAD-01, pages 279–285, 2001.

4http://www.nku.edu/∼wardj1/Research/Thesis.pdf

178

Vita

Yuliya Lierler (maiden name Babovich) was born in Minsk, Belarus, in 1979, and

lived in Minsk until moving to Austin in 1999. She attended the Belarusian State

University of Informatics and Radioelectronics from 1996 till 1999. She transferred

to the University of Texas at Austin in 1999 where she received the B.S. degree

in Computer Sciences in 2000. In 2003, she received the M.S. degree in Computer

Sciences at the University of Texas at Austin. She moved to Nuremberg, Germany in

2003 where she worked at the Friedrich-Alexander-Universität Erlangen-Nürnberg

for three years. From 2006 onwards, she has been enrolled in the doctoral program

in Computer Sciences at the University of Texas at Austin.

Permanent Address: 8111 Davis Mountain Pass

Austin, Texas 78726

This dissertation was typeset with LATEX 2ε
5 by the author.

5LATEX2ε is an extension of LATEX. LATEX is a collection of macros for TEX. TEX is a trademark of
the American Mathematical Society. The macros used in formatting this dissertation were written
by Dinesh Das, Department of Computer Sciences, The University of Texas at Austin, and extended
by Bert Kay, James A. Bednar, and Ayman El-Khashab.

179

