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This dissertation is about the design of a modular language for describing actions.

The modular action description language, MAD, is based on the action language

C+. In this new language, the possibility of “importing” a module allows us to

describe actions by referring to descriptions of related actions introduced earlier,

rather than by listing all effects and preconditions of every action explicitly. The

use of modular action descriptions eliminates the need to reinvent theories of similar

domains over and over again. Another advantage of this representation style is that

it is similar to the way humans describe actions in terms of other actions.

We first define the syntax of a fragment of MAD, called mini-MAD, and

then extend it to the full version of MAD. The semantics of mini-MAD is defined by

grounding action descriptions and translating them into C+. However, for the full
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version of MAD, it would be difficult to define grounding. Instead, we use a new

approach to the semantics of variables in action descriptions, which is based on more

complex logical machinery—first-order causal logic. Grounding is important as an

implementation method, but we argue that it should be best avoided in the definition

of the semantics of expressive action languages. We show that, in application to

mini-MAD, the two semantics are equivalent.

Furthermore, we prove that MAD action descriptions have some desirable,

intuitively expected mathematical properties.

We hope that MAD will make it possible to create a useful general-purpose

library of standard action descriptions and will contribute in this way to solving the

problem of generality in Artificial Intelligence.
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Chapter 1

Introduction

Knowledge about actions is an important part of commonsense knowledge in the

area of Artificial Intelligence. For decades, researchers tried to describe how actions

affect the states of world and to correctly and efficiently reason about actions. In

recent years, significant progress was made in the study of actions. In particular,

the frame problem [McCarthy and Hayes, 1969] has been solved using nonmono-

tonic knowledge representation formalisms [Shanahan, 1997]. This theoretical work

has led to the creation of several implemented systems with very expressive input

languages that can be used to solve computational problems related to actions, such

as prediction, postdiction and planning. Theories of causality by Geffner [1990], Lin

[1995], McCain and Turner [1997] allow us to express causal dependencies between

fluents, which is essential for solving the ramification problem [Finger, 1986].

Action description languages play a key role in the study of actions. These

languages allow us to represent knowledge about actions more concisely than other

formalisms, such as the situation calculus [McCarthy and Hayes, 1969]. Many action

description languages have been described in the literature, from the well-known
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STRIPS [Fikes and Nilsson, 1971], to more expressive ADL [Pednault, 1994], to

action languages invented in recent years, such as C+ [Giunchiglia et al., 2004].

Unfortunately, this work has not yet contributed to solving another impor-

tant problem—the problem of generality in AI [McCarthy, 1987]. As observed in

[Erdoğan and Lifschitz, 2005], it is common for humans to describe an action by

referring to another more “general” action. For instance, the dictionary explains

“walk” as “move by foot”, and “climb” as “go up or down”. These explanations of

the words “walk” and “climb” do not characterize these actions in terms of their

effects, instead, the actions are presented as special cases of some other actions that

are supposed to be already familiar to us. The most fundamental actions still need

to be described directly in terms of the changes that they cause. The action “move”,

for instance, means to “cause to change position” according to the dictionary. But

in most cases the natural way to describe an action is to relate it to more basic

actions. The action languages designed in the past do not allow us to do this.

Describing every action directly in terms of its effects is similar to using a

programming language without procedures or functions. When subroutines are not

available, the programmer is not able to “factor out” common parts of similar pro-

grams. In the same way, the action languages designed in the past force researchers

to repeatedly reinvent theories of similar physical domains.

Therefore, it is important to make descriptions of actions reusable. This

idea has led to the design of the Modular Action Description (MAD) language

in this dissertation. This new language MAD allows us to describe actions by

referring to related action descriptions introduced earlier. MAD is modular; each

module describes an action or a group of related actions. For a “basic” action, the

corresponding module lists its effects and preconditions, as in the action languages
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that were used in the past. But when we want to describe an action by referring

to other related actions, MAD provides the possibility of referring to other modules

by “importing” them. The import statement is the main new syntactic feature of

MAD. A description of an action domain in MAD is generally a list of modules

referring to each other, and some of them may belong to a general-purpose library.

We design the action description language MAD on the basis of the action

description language C+ [Giunchiglia et al., 2004]. We first present a fragment of

MAD, called mini-MAD. The syntax of mini-MAD stresses the modular structure of

an action description, but it doesn’t contain some of the more complex constructs.

The semantics of mini-MAD is defined in two steps. First we define how to turn any

action description into a single module by replacing each import statement with a

modified form of the module that is being imported. Second, we define how to turn

any single-module mini-MAD action description into a C+ action description by

grounding. These two steps together translate mini-MAD into C+. This approach

was presented in the first publication about MAD [Lifschitz and Ren, 2006].

Then we present the full version of MAD, which adds to mini-MAD several

new syntactical constructs. The semantics of MAD is defined in two steps also,

but the second step uses a totally different approach [Lifschitz and Ren, 2007], as

grounding is not feasible for full MAD with its richer syntax. This new approach

uses a translation into first-order causal logic [Lifschitz, 1997].

In [Lifschitz and Ren, 2006], we predicted that it would be possible to use

MAD to build a library of reusable standard descriptions for “basic” actions. This

was confirmed recently by Erdoğan [2008], who built a general-purpose library for

action descriptions in a dialect of MAD and developed a system for automated

reasoning about MAD action descriptions, which was used to test the library.
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In this dissertation, we first review the problem of generality in Artificial In-

telligence, difficulties in reasoning about actions, the evolution and characteristics of

action languages, and research on representing actions by logic programs in Chap-

ter 2. Chapter 3 reviews propositional causal logic defined in [Giunchiglia et al.,

2004]. Chapter 4 reviews the action language C+ and its implementation CCalc.

We begin to present our original work in Sections 5.1 and 5.2 and Chapter 6.

First we illustrate, by an example, the main features of MAD—describing actions

by modules and the capability of referring to other actions by importing modules;

then we define the syntax of mini-MAD. Chapter 7 presents the two-step semantics

of mini-MAD: eliminating import statements followed by grounding.

In Chapter 8 we define the syntax of full MAD. Chapter 10 defines the

semantics of MAD by representing action descriptions as causal theories in the

sense of first-order causal logic [Lifschitz, 1997], which is reviewed in Chapter 9.

In Chapter 11, we state and prove three propositions confirming that the

semantics of MAD has some natural, intuitively expected properties. Chapter 12

shows that the semantics of MAD based on first-order causal logic, when restricted

to mini-MAD, is equivalent to the semantics from Chapter 7 that uses grounding.

Chapter 13 reviews related work on adding modularity to existing formalisms

for describing actions and recent work on the use of MAD. Chapter 14 concludes

this dissertation and presents some directions for future work.
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Chapter 2

Background

2.1 Generality in Artificial Intelligence

The problem of “generality in AI” was described by John McCarthy in his Turing

Award lecture [McCarthy, 1987]:

It was obvious in 1971 and even in 1958 that AI programs suffered from

a lack of generality. It is still obvious, and now there are many more details.

The first gross symptom is that a small addition to the idea of a program

often involves a complete rewrite beginning with the data structures. Some

progress has been made in modularizing data structures, but small mod-

ifications of the search strategies are even less likely to be accomplished

without rewriting.

Another symptom is that no one knows how to make a general database

of common sense knowledge that could be used by any program that needed

the knowledge. Along with other information, such a database would con-

tain what a robot would need to know about the effects of moving objects
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around, what a person can be expected to know about his family, and the

facts about buying and selling. This doesn’t depend on whether the knowl-

edge is to be expressed in a logical language or in some other formalism.

When we take the logic approach to AI, lack of generality shows up in

that the axioms we devise to express common sense knowledge are too re-

stricted in their applicability for a general common sense database. In my

opinion, getting a language for expressing general common sense knowledge

for inclusion in a general database is the key problem of generality in AI.

Work on large-scale knowledge-based systems [Lenat and Guha, 1990, Knight and

Luk, 1994, Fellbaum, 1998, Barker et al., 2001] deals, among other things, with

encoding general-purpose knowledge and thus contributes to solving the problem of

generality in AI. But this work has been almost completely disjoint from work on

designing expressive action languages. Facts about moving objects around and facts

about buying and selling, mentioned by McCarthy in the quote above, belong to

the area of knowledge about actions. Solving the problem of generality with focus

on actions and their effects on fluents—features of the world that may change with

time—is the main motivation of this dissertation.

2.2 Problems in Reasoning about Actions

Reasoning about actions is an important sub-area of commonsense reasoning. It

involves describing how actions affect the states of the world. Computer systems

are supposed to derive relevant conclusions from properly axiomatized commonsense

knowledge about actions [McCarthy, 1959].

AI researchers often use “toy worlds” to illustrate and test their ideas related

to describing actions and changes before applying them to large-scale domains. The
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following domains are among the toy worlds used in this dissertation.

• The Blocks World. In this domain several blocks may be located on the table or

on the top of each other. Available actions are moving a block and sometimes

painting it to a different color. Performing these actions changes the location

of the blocks, the status of which block is on the top of which one, or the color

of the blocks.

• Monkey and Bananas. A monkey wants to get a bunch of bananas hanging

from the ceiling beyond his reach. There is a box available in the room. He

can get the bananas by first walking to the box, then pushing the box under

the bananas, then climbing on the top of the box, and finally grasping the

bananas.

• The Robot. A robot can walk or carry an object to a different location.

• The Suitcase [Lin, 1995]. A suitcase has locks, which can be at one of two

positions. The action toggle can be executed to change the position of a lock.

If all locks are up, the suitcase is opened.

Serious difficulties were recognized during attempts to describe such action

domains using formal logic. One of these problems is the frame problem [McCarthy

and Hayes, 1969]—describing what remains unchanged after executing an action.

For instance, in the Blocks World domain, if one block is moved, its location changes

but its color doesn’t, and every other block remains at the same location. In large

domains, there are usually many fluents that do not change when an action is

performed, so it would be neither feasible nor commonsensical to enumerate all of

them.
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The frame problem can be solved by formalizing what McCarthy called “the

commonsense law of inertia”: by default, properties of objects are assumed to remain

unchanged with passage of time. Defaults are nonmonotonic: when a new postulate

is added, conclusions derived from a default may need to be retracted. This makes

the logic of defaults different from classical logic, in which, when new axioms are

added we can only derive more, but never less. In particular, the commonsense law

of inertia is nonmonotonic. For instance, the conclusion that moving a block to

a new location does not affect its color will have to be retracted if we learn that

this location is a bucket with paint. Several early papers on formal nonmonotonic

reasoning were published in [Artificial Intelligence, 1980].

Another challenge, called the ramification problem [Finger, 1986], is to de-

scribe indirect effects of an action. For example, if a robot walks to another location

while holding a block, then the location of the block changes also. Even though

no action directly affects the block’s location, the change of the robot’s location

causes the block to move also, given that it is held by the robot. Another example:

when a block is immersed in paint, its color is that of the paint; when the action

of putting the block in a bucket with paint is performed, the location of the block

changes as the direct effect of the action, and its color changes as the indirect effect

(if its original color was different). The ramification problem is related to the frame

problem—the latter becomes more difficult when actions with indirect effects are

present.

The ramification problem has been solved by nonmonotonic theories of causal-

ity [Geffner, 1990, Lin, 1995, McCain and Turner, 1997, Giunchiglia et al., 2004].

The causal logic defined in the last of these papers is used in the definition of C+,

and it is reviewed in Chapter 3.
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2.3 Action Description Languages

As defined by Gelfond and Lifschitz [1998], action description languages are formal

models of parts of natural languages that are used for talking about the effects of

actions. They usually have easily understandable and concise syntax. Central to

this idea is the concept of a transition system. A transition system can be thought

of as a labeled directed graph. Every vertex corresponds to a state; every edge is

labeled by actions that lead from the state represented by the starting vertex to the

state represented by the ending vertex. Semantically, action description languages

define transitions systems.

2.3.1 STRIPS and ADL

The STRIPS language [Fikes and Nilsson, 1971] is not an action language in the

sense of [Gelfond and Lifschitz, 1998] because STRIPS operators operate on “world

models” instead of states of a transition system, but it is closely related. In STRIPS

an action is described by its preconditions, its add list and its delete list. For

instance, the STRIPS description of the action Walk(x, y) (the robot walks from x

to y) in the Robot domain may look like this:

Preconditions: At(x), x 6= y,

Add list: At(y),

Delete list: At(x).

STRIPS provides a built-in solution to the frame problem—when an action is ex-

ecuted, any fluent not included in its add list or its delete list remains unchanged.

The STRIPS system uses a resolution theorem prover to perform planning—to find

a sequence of operators that transforms the initial world model into a model that

satisfies a given goal formula.
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The expressivity of STRIPS is limited. Pednault [1987] observed that the

expressive power of STRIPS can be enhanced by allowing the effects of an operator

to be “conditional”. For instance, in the suitcase domain when the toggle action

is performed on a lock, the position of that lock changes from up to down or the

other way around. The effect of this toggle action is conditional: it depends on the

position of the lock when the action is executed. We are unable to describe it in

STRIPS. The ADL action schema for describing Toggle(y) may look like this:

Precondition PrecondToggle(y): True,

Add condition AddToggle
Up (x, y): (x = y) ∧ ¬Up(x),

Delete condition DeleteToggle
Up (x, y): (x = y) ∧ Up(x).

Thus Toggle(y) is always executable; Up(x) becomes true after executing this action

if (x = y) ∧ ¬Up(x) is true; Up(x) becomes false after executing this action if

(x = y) ∧ Up(x) is true.

Moreover, ADL is more expressive than STRIPS in that it allows non-

Boolean fluents, while in STRIPS every fluent must be Boolean. For example,

we can describe the suitcase domain using a non-Boolean fluent Position. Now the

universe consists of objects of two kinds: locks and levels; the symbols Up and Down

now become object constants representing levels. Here is the corresponding version

of the ADL action schema for Toggle(y):

Precondition PrecondToggle(y): Lock(y),
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Update condition UpdateToggle
Position(x, y, z):

Lock(x) ∧ Level(z) ∧ (x = y) ∧ ( (Position(x) = Up ∧ z = Down)

∨ (Position(x) = Down ∧ z = Up) ).

2.3.2 A, C and C+

In action language A [Gelfond and Lifschitz, 1993], an action description is a set

of propositions. Each proposition describes the effect of one action on one fluent.

This is more concise and more intuitive than the syntax of STRIPS and ADL.

For instance, the A propositions for describing the action Toggle(x) in the suitcase

domain are:

Toggle(x) caused Up(x) if ¬Up(x),

Toggle(x) caused ¬Up(x) if Up(x).
(2.1)

Language A is propositional; variables like x in this example are schematic variables

used to describe finite sets of propositions that follow the same pattern. A is as

expressive as the propositional fragment of ADL.

That work, along with the theory of nonmonotonic causal reasoning pre-

sented in [McCain and Turner, 1997], has led to the design of action language C

[Giunchiglia and Lifschitz, 1998] and its extension C+ [Giunchiglia et al., 2004].

Language C is essentially a superset of language A, and it is more expressive. In

particular, the use of static causal laws in C provides a way to describe indirect

effects of actions, which solves the ramification problem. For example, if a robot

holds a block, then there is a causal dependency between the location of the block

and the location of the robot:

caused At(Block , l) if At(Robot , l) ∧ Holds(Robot ,Block). (2.2)
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Consider an action, such as walking, that affects the location of the robot:

Walk(l) causes At(Robot , l). (2.3)

Static causal law (2.2), in combination with the dynamic causal law (2.3), implies

that a change in the location of the block may be an indirect effect of walking.

Language C+ [Giunchiglia et al., 2004] extended C by adding symbols for

non-Boolean fluents. For instance, the ADL update condition shown at the end of

Section 2.3.1 can be represented in C+ as follows:

Toggle(x) causes Position(x) = Up if Position(x) = Down,

Toggle(x) causes Position(x) = Down if Position(x) = Up.
(2.4)

C+ is also more expressive than C in some other ways. In C+ we can describe

the effects that an action has in all states that are not “abnormal”. For instance,

the C+ causal law

Toggle(x) causes Position(x) = Up if Position(x) = Down unless Ab(x)

expresses that toggling a lock normally changes its position from Down to Up, but

exceptions are possible. If no information about abnormal states is included in the

action description then this “defeasible” causal law has the same effect as the first

of the causal laws (2.4). On the other hand, we can express that a state is abnormal

(with respect to the lock x) whenever the lock x is broken by writing

caused Ab(x) if Broken(x).
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The Causal Calculator (CCalc) is a software system that solves planning

and automated reasoning problems for action domains described in C+ [McCain,

1997, Lee, 2005]. C+ and CCalc are discussed in more detail in the next chapter.

2.4 Logic Programs and Reasoning about Actions

Logic programming became a member of the family of nonmonotonic reasoning

systems after the semantics of “negation as failure” was clarified. Negation as failure

is a nonmonotonic operator. For instance, the atom p is the consequence of the one-

rule logic program

p ← not q.

If the fact q is added as the second rule, then conclusion p will be retracted.

Among the available definitions of the meaning of negation as failure, in-

fluential are the completion semantics [Clark, 1978], the well-founded semantics

[Van Gelder et al., 1991], and the answer set (stable model) semantics [Gelfond and

Lifschitz, 1988, Gelfond and Lifschitz, 1991]. Action language A was shown to be

related to logic programming under the answer set semantics [Gelfond and Lifschitz,

1993]. For instance, A propositions (2.1) can be translated into the following logic

program:

Up(x, t + 1) ← Toggle(x, t), ¬Up(x, t),

¬Up(x, t + 1) ← Toggle(x, t), Up(x, t).
(2.5)

Similar translations are available for a language that permits the concurrent execu-

tion of actions [Baral and Gelfond, 1997], and for a language with static causal laws

[Turner, 1997]. The answer set semantics is also closely related to the system of

causal logic proposed in [McCain and Turner, 1997], mentioned above in connection

13



with action language C [McCain, 1997, Section 6.3.2].

There are many implemented systems for computing answer sets available,

such as SMODELS [Niemelä and Simons, 2000] and DLV [Eiter et al., 1998]. Such

systems are called answer set solvers, and their use for solving search problems is

known as answer set programming [Lifschitz, 1999, Marek and Truszczyński, 1999,

Niemelä, 1999]. Therefore a translation from an action language to answer set pro-

gramming gives us the possibility to reason about actions using answer set solvers.

A translation from causal theories of a special kind, called definite, into the language

of answer set programming is available [McCain, 1997]. This translation has been

extended to be able to translate from causal theories of a more general kind, called

almost definite [Doğandağ et al., 2004].
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Chapter 3

Review of Causal Logic

In this chapter we review the concept of a causal theory [Giunchiglia et al., 2004,

Section 2], which is used in the definition of the semantics of C+ in the next chapter.

3.1 Causal Theories

A (multi-valued propositional) signature is a set σ of symbols called constants, along

with a nonempty finite set Dom(c) of symbols, disjoint from σ, assigned to each

constant c. We call Dom(c) the domain of c. A constant is Boolean if its domain

is {false, true}. An atom of a signature σ is an expression of the form c=v (“the

value of c is v”) where c ∈ σ and v ∈ Dom(c). For a Boolean constant p, atoms

p = false and p = true can be abbreviated as ¬p and p respectively. A formula

of σ is a propositional combination of atoms.

Begin with a multi-valued propositional signature σ. A (causal) rule is an

expression of the form F ⇐ G (“F is caused if G is true”), where F and G are

formulas of σ, called the head and the body of the rule. Rules with the head ⊥

(falsity) are called constraints. Syntactically, a (multi-valued propositional) causal
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theory is a set of causal rules.

Informally, the semantics of causal theories is based on the idea that “any-

thing is true if and only if it is caused”; the “only if” part expresses the “Principle

of Universal Causation” [McCain and Turner, 1997]. Mathematically the semantics

is defined as follows.

An interpretation of σ is a function that maps every element c of σ to an ele-

ment of Dom(c). An interpretation I satisfies an atom c=v (symbolically, I |= c=v)

if I[c] = v. We will sometimes identify an interpretation with the set of atoms that

are satisfied by it. The satisfaction relation is extended from atoms to arbitrary

formulas according to the usual truth tables for the propositional connectives.

Let T be a causal theory, and let I be an interpretation of its signature. The

reduct T I of T relative to I is the set of the heads of all rules in T whose bodies are

satisfied by I. We say that I is a model of T if I is the unique model of T I . We say

that a formula F is entailed by a causal theory T if every model of T satisfies F .

This concludes the definition of the semantics of causal theories.

Intuitively, the reduct T I is the set of formulas that are caused under in-

terpretation I according to the rules of T . Because anything that is caused must

be true, I must satisfy T I . Because of the Principle of Universal Causation, ev-

ery formula that is satisfied by I must be entailed by T I , which means that an

interpretation different from I cannot satisfy T I .
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3.2 Examples

Take σ1 = {p, q} where p and q are Boolean constants, and let the causal rules of

T1 be

p ⇐ q,

q ⇐ q,

¬q ⇐ ¬q.

(3.1)

Consider the interpretation I defined by

I[p] = I[q] = true. (3.2)

Then

T I
1 = {p, q},

so I is the unique model of T I
1 , and thus a model of T1.

If we take I to be any of the other three interpretations of the signature

σ1, we will see that either I doesn’t satisfy T I
1 , or T I

1 is satisfied by more than one

interpretations. Therefore interpretation (3.2) is the only model of T1.

Informally, causal rules (3.1) assert that, under various conditions, there is

a cause for p, q, or ¬q. But no rule in (3.1) may lead to the conclusion that there

is a cause for ¬p. Consequently,

¬p is not caused.

By the principle of universal causation, we can conclude that

¬p is not true
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or, equivalently,

p is true.

Again by the principle of universal causation,

p is caused.

The only way to use rules (3.1) to establish that p is caused is to refer to first rule

p ⇐ q,

which says: p is caused if q is true. Consequently,

q is true.

Therefore the interpretation making both p and q true is the only possible model of

T1. And it is indeed a model, because, under this interpretation, the first two rules

of (3.1) guarantee the existence of causes both for p and for q.

Consider now an example with non-Boolean constants. Let

σ2 = {c}, Dom(c) = {1, . . . , n}

for some positive integer n, and let the only rule of T2 be

c=1 ⇐ c=1. (3.3)
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The interpretation I defined by I[c] = 1 is a model of T2. Indeed,

T I
2 = {c=1},

so that I is the only model of T I
2 . Furthermore, T2 has no other models. Indeed,

for any interpretation J such that J [c] 6= 1, T J
2 is empty, and I is a model of T J

2

different from J .

It follows that causal theory T2 entails c=1.

Consider now what happens if we add the rule

c=2 ⇐ ⊤ (3.4)

to this theory. Denote the extended theory by T3. The reduct of T3 relative to any

interpretation includes the atom c=2. Consequently, the interpretation assigning 2

to c is the only possible model of T3. It is easy to see that this is indeed a model.

The causal theory T3 does not entail c = 1; it entails c = 2. This example

shows that the logic introduced above is nonmonotonic.

Intuitively, rule (3.3) expresses that 1 is “the default value” of c, and rule (3.4)

overrides this default.

3.3 Exogenous Constants

In this section we show how causal logic can be used to express an idea that plays

an important role in formalizing properties of actions and fluents.

Consider the causal theory T4 whose signature is σ2 and whose causal rules
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are

c = 1 ⇐ c = 1,

...

c = n ⇐ c = n.

(3.5)

It is easy to check that any of the n possible interpretations of σ2 is a model of T4.

Intuitively, these causal rules express that if c has any value v ∈ {1, . . . , n}, there is

a cause for that. T4 disables the principle of universal causation for c; it makes c

“exogenous”.

When action domains are represented in causal logic, rules of this kind are

often used to express that the values of fluents at time 0 are exogenous. (Values of

fluents at other time instants are not treated as exogenous: they are caused either

by the execution of actions or by inertia.) They are also often used to express that

the execution of actions is exogenous: whether or not an action is executed, there

is a cause for this.

3.4 Inertia

The following example describes a domain that involves a fluent c with values

{1, . . . , n}, two time instants 0 and 1, and an action a that may be executed between

the two time instants. Causal theory T5 has the signature

σ3 = {c0, c1, a}, Dom(c0) = Dom(c1) = {1, . . . , n}, Dom(a) = {false, true}
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for some positive integer n, and its causal rules are

c0 = 1 ⇐ c0 = 1,

...

c0 = n ⇐ c0 = n,

a ⇐ a,

¬a ⇐ ¬a,

c1 = n ⇐ a,

c1 = 1 ⇐ c0 = 1 ∧ c1 = 1,

...

c1 = n ⇐ c0 = n ∧ c1 = n.

(3.6)

The first n + 2 rules express that the initial value of c and the execution of a are

exogenous. The next rule says that the execution of a causes c to take the value n.

The last n rules express the commonsense law of inertia (Section 2.2): if the value

of c at time 1 is the same as the value of c at time 0, then there is a cause for c to

have that value at time 1. Intuitively inertia is the cause.

T5 has 2n models. In n of them a is not executed and the value of c at time 1

is the same as at time 0:

I[c0] = I[c1] = k, I[a] = f (k ∈ {1, . . . , n}).

In the other n models, a is executed and the value of c at time 1 equals n:

I[c0] = k, I[c1] = n, I[a] = true (k ∈ {1, . . . , n}).
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Chapter 4

Review of Action Language C+

and its Implementation CCalc

According to the semantics of C+, every action description represents a transition

system. The semantics is defined by translating action descriptions into nonmono-

tonic causal logic discussed above. In this chapter we review the syntax and seman-

tics of C+ [Giunchiglia et al., 2004, Section 4] and the implementation of C+, called

Causal Calculator (CCalc).1

4.1 Fluents and Actions in C+

The signature of an action description in C+ is a signature in the sense of Section 3.1,

with its constants divided into two groups—the set σfl of fluent constants and the

set σact of action constants. Fluent constants are further partitioned into simple

and statically determined.

The need to distinguish between simple fluents and statically determined

1http://www.cs.utexas.edu/users/tag/cc/ .

22



fluents is due to the fact that some fluents are directly affected by actions, and some

fluents are characterized in terms of other fluents. For example, in the Blocks World

domain, the fluent On(x, y) (block x is on top of block y) is a simple fluent; it can

be directly affected by moving block x. The statically determined fluent Clear(x)

(there are no blocks on top of block x) is defined in terms of On, and it can be only

affected by actions indirectly.

For simplicity we consider here the case when all action constants are Boolean.

Intuitively, all actions to which the value true is assigned are understood to be ex-

ecuted concurrently.

4.2 Syntax and Semantics of C+

In C+ two special kinds of formulas are distinguished: A fluent formula is a formula

such that all constants occurring in it are fluent constants; an action formula is a

formula that contains at least one action constant and no fluent constants.

According to the syntax of the action language C+ [Giunchiglia et al., 2004,

Section 4], an action description is a set of “causal laws” that are constructed from

formulas and keywords. In C+ there are causal laws of three kinds—static laws,

action dynamic laws, and fluent dynamic laws. A static law is an expression of the

form

caused F if G (4.1)

where F and G are fluent formulas. An action dynamic law is an expression of the

form (4.1) in which F is an action formula and G is a formula. A fluent dynamic

law is an expression of the form

caused F if G after H (4.2)
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where F is a fluent formula not containing statically determined constants, G is a

fluent formula, and H is a formula.

For any action description D and any nonnegative integer m, we will define

the causal theory Dm in the sense of Section 3.1. Intuitively, each model of Dm

corresponds to a path of length m in the transition system represented by D.

The signature of Dm consists of the pairs i :c such that

• i ∈ {0, . . . , m} and c is a fluent constant of D, or

• i ∈ {0, . . . , m − 1} and c is an action constant of D.

(The number i is the “time stamp” of the constant i : c.) The domain of i :c is the

same as the domain of c. By i :F we denote the result of inserting i : in front of every

occurrence of every constant in a formula F , and similarly for a set of formulas. The

rules of Dm are:

i :F ⇐ i :G (4.3)

for every static law (4.1) in D and every i ∈ {0, . . . , m}, and for every action dynamic

law (4.1) in D and every i ∈ {0, . . . , m − 1};

i+1:F ⇐ (i+1:G) ∧ (i :H) (4.4)

for every fluent dynamic law (4.2) in D and every i ∈ {0, . . . , m − 1};

0 :c=v ⇐ 0:c=v (4.5)

for every simple fluent constant c and every v ∈ Dom(c).

Note that the definition of Dm treats simple fluent constants and statically

determined fluent constants in different ways: rules (4.5), expressing that c is ex-
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ogenous at time 0, are included only when c is simple.

A state is an interpretation s of σfl such that 0 : s is a model of D0. States

are the vertices of the transition system represented by D. A transition is a triple

〈s, e, s′〉, where s and s′ are interpretations of σfl and e is an interpretation of σact,

such that 0:s ∪ 0:e ∪ 1:s′ is a model of D1. Transitions correspond to the edges of

the transition system: for every transition 〈s, e, s′〉, it contains an edge from s to s′

labeled e. These labels e will be called events.

4.3 Example

In the example below, we will use some abbreviations for causal laws. An expression

of the form

F causes G

stands for the fluent dynamic law

caused G if ⊤ after F.

An expression of the form

exogenous a,

where a is an action constant, stands for the pair of action dynamic laws

caused a if a,

caused ¬a if ¬a.
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An expression of the form

inertial c,

where c is a simple fluent constant, stands for the set of fluent dynamic laws

caused c = v if c = v after c = v

for all v ∈ Dom(c).

Now consider the following C+ action description SD :

a causes p,

exogenous a,

inertial p,

where a is an action constant and p is a Boolean simple fluent constant. Written in

full, the causal laws in SD are

caused p if ⊤ after a,

caused a if a,

caused ¬a if ¬a,

caused p if p after p,

caused ¬p if ¬p after ¬p.

The causal rules of the corresponding causal theory SD0 are

0:p ⇐ 0:p,

0:¬p ⇐ 0:¬p.

This causal theory has two models. In one of them 0 : p is false and in the other it

is true.
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{  }a

{  }a
p = false p = true

{}{}

Figure 4.1: The transition system corresponding to the action description SD.

The causal rules of the corresponding causal theory SD1 are

1:p ⇐ 0:a,

0:p ⇐ 0:p,

0:¬p ⇐ 0:¬p,

0:a ⇐ 0:a,

0:¬a ⇐ 0:¬a,

1:p ⇐ (0 :p) ∧ (1 :p),

1:¬p ⇐ (0 :¬p) ∧ (1 :¬p).

This causal theory has 4 models:

0 :p = false, 0:a = false, 1:p = false,

0:p = true, 0:a = false, 1:p = true,

0:p = false, 0:a = true, 1:p = true,

0:p = true, 0:a = true, 1:p = true.

Accordingly, action description SD represents the transition system shown

in Figure 4.1 [Giunchiglia et al., 2004, Figure 1]. Here we represent each event by

the set of actions that are being executed.
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In the following modification SD ′ of SD , p is replaced with a non-Boolean

simple fluent c with domain {1, . . . , n}, where n is a positive number. The causal

laws of SD ′ are

a causes c = n,

exogenous a,

inertial c.

It is easy to check that SD ′
1 is the causal theory (3.6), with c0, c1, and a replaced

by 0 : c, 1 : c, and 0 : a respectively.

4.4 A Simplified Monkey and Bananas Domain in C+

In the example below, we will see a few more abbreviations for causal laws.

An expression of the form

constraint F

stands for the static law

caused ⊥ if ¬F.

An expression of the form

nonexecutable a1 ∧ · · · ∧ an if F, (4.6)

where a1, . . . , an are action constants, stands for the fluent dynamic law

caused ⊥ if ⊤ after a1 ∧ · · · ∧ an ∧ F.

We will drop “if F” when F = ⊤.
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See [Giunchiglia et al., 2004, Appendix B] for the complete list of abbrevia-

tions for C+ causal laws.

A C+ action description for the Monkey and Bananas domain is shown in

[Giunchiglia et al., 2004, Figs. 2 and 3]. Here we consider a simplified version of

this domain, which includes only the monkey and the box, but no bananas. The

monkey and the box can be at one of the two locations P1 and P2. The monkey can

walk to another place and climb onto the box, but the box cannot be moved. The

action description SMB , shown in Figure 4.2, represents this simplified Monkey and

Bananas domain in C+.

According to the signature, there are three actions available to the monkey:

Walk(P1), Walk(P2) and ClimbOn. According to some of the causal laws, the

monkey’s elevation is Hi (that is, the monkey is on the box) only if he is at the

same location as the box; the monkey can’t walk to the place where he is, and can’t

climb onto the box if he is already on the box; the monkey can’t walk at the same

time as he climbs onto the box.

The transition system represented by action description SMB is shown in

Figure 4.3. Due to the two constraint axioms in the action description, there are

only 6 states in this transition system—the elevation of the box can only be Lo and

the monkey must be at the same location as the box whenever he is on the box.

The graph consists of two disjoint parts because no action changes the location of

the box.

4.5 The Causal Calculator (CCalc)

The Causal Calculator (CCalc) is a system that implements a fragment of the

action language C+. CCalc solves planning problems for action domains described
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Notation: x ranges over {Monkey ,Box}; p ranges over {P1, P2}.

Simple fluent constants: Domains:
Location(x) {P1, P2}
Elevation(x) {Hi ,Lo}

Action constants:
Walk(p), ClimbOn

Causal laws:

constraint Elevation(Box ) = Lo
constraint Elevation(Monkey) = Hi → Location(Monkey) = Location(Box )

Walk(p) causes Location(Monkey)=p

nonexecutable Walk(p) if Location(Monkey)=p

ClimbOn causes Elevation(Monkey)=Hi
nonexecutable ClimbOn if Elevation(Monkey)=Hi

nonexecutable Walk(p) ∧ ClimbOn

exogenous c for every action constant c

inertial c for every simple fluent constant c

Figure 4.2: Action description SMB written in C+.

in C+ using ideas of satisfiability planning [Kautz and Selman, 1992].

For instance, the file shown in Figure 4.4 contains the action description SMB

adapted to the syntactic requirements of CCalc and a query encoding a planning

problem. In this planning problem, initially the monkey is at p1 and the box is at

p2, and the goal is to find a plan of length 2 so that in the final state the monkey

will be on the box. The output of CCalc lists the values of fluents at each time

point and the actions executed between any two time points:
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{ClimbOn }

Walk(P1){ } { }Walk(P2)

{ClimbOn }

Walk(P1){ }Walk(P2){ }

Elevation(Monkey) = Lo
Location(Box) = P2

Location(Monkey) = P2

{ }

{ }

{ }

Elevation(Box) = Lo

Location(Monkey) = P2
Elevation(Monkey) = Hi
Location(Box) = P2

Elevation(Monkey) = Lo
Location(Box) = P2
Elevation(Box) = Lo

Location(Monkey) = P1

{ }

Elevation(Monkey) = Hi
Location(Box) = P1

Location(Monkey) = P1

Location(Box) = P1
Elevation(Box) = Lo

Location(Monkey) = P2

{ }
Elevation(Box) = Lo

Elevation(Monkey) = Lo
Location(Box) = P1

Location(Monkey) = P1

{ } Elevation(Monkey) = Lo

Elevation(Box) = Lo Elevation(Box) = Lo

Figure 4.3: The transition system corresponding to the action description SMB.

0: location(monkey)=p1 location(box)=p2

elevation(monkey)=lo elevation(box)=lo

ACTIONS: walk(p2)

1: location(monkey)=p2 location(box)=p2

elevation(monkey)=lo elevation(box)=lo

ACTIONS: climbOn

2: location(monkey)=p2 location(box)=p2

elevation(monkey)=hi elevation(box)=lo

CCalc has been applied to several challenging problems in the theory of
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:- sorts

thing;

place;

level.

:- objects

monkey,box :: thing;

p1,p2 :: place.

hi,lo :: level

:- variables

P :: place.

:- constants

location(thing) :: inertialFluent(place);

elevation(thing) :: inertialFluent(level);

walk(place),

climbOn :: exogenousAction.

constraint elevation(box)=lo.

constraint elevation(monkey)=hi ->> location(monkey)=location(box).

walk(P) causes location(monkey)=P.

nonexecutable walk(P) if location(monkey)=P.

climbOn causes elevation(monkey)=hi.

nonexecutable climbOn if elevation(monkey)=hi.

nonexecutable walk(P) & climbOn.

:- query

maxstep :: 2;

0: location(monkey)=p1,

location(box)=p2;

maxstep: elevation(monkey)=hi.

Figure 4.4: Action description SMB in CCalc input language, with queries
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commonsense knowledge. Lifschitz et al [2000] represented and solved the oldest

planning problem in AI—Getting to the Airport [McCarthy, 1959] using CCalc.

Several enhancements of the Missionaries and Cannibals domain [Amarel, 1968]

introduced in [McCarthy, 2007] were solved using CCalc in [Lifschitz, 2000]. In

[Akman et al., 2004] the language of CCalc was used to describe two commonsense

domains of non-trivial size, the Zoo World and the Traffic World. More recently,

CCalc was used for the executable specification of norm-governed computational

societies [Artikis et al., 2009] and for the automatic analysis of business processes

under authorization constraints [Armando et al., 2009].
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Chapter 5

Informal Introduction to

mini-MAD

The main feature of our new action description language MAD is describing actions

by modules. This feature is similar to the use of subroutines in programming lan-

guages, or classes in object-oriented programming. It allows us to describe actions

by referring to some related actions that were described earlier.

In this chapter, we will introduce a fragment of MAD, called mini-MAD, by

examples. The syntax and semantics of mini-MAD will be described in Chapters 6

and 7.

5.1 Basic Modules: Example

It is possible to describe an action in MAD from scratch as we do in other action

languages—by simply listing its effects and preconditions. This is how “abstract”

descriptions of actions can be written in a general purpose library.

For instance, module MOVE (Figure 5.1) is an abstract axiomatization of
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sorts

Thing ;
Place;

module MOVE;

actions

Move(Thing ,Place);

fluents

Location(Thing): Place;

variables

x: Thing ; p: Place;

axioms

inertial Location(x);
exogenous Move(x, p);
Move(x, p) causes Location(x) = p;
nonexecutable Move(x, p) if Location(x) = p;

Figure 5.1: Declaration of sorts Thing and Place, and Module MOVE

“move-like” actions. We first declare two sorts: “things” and “places”. The module

name “MOVE” is followed by action declarations and fluent declarations: moving a

thing to a place is an action, and the location of a thing is a place-valued (simple)

fluent. The four axioms1 at the end of the module are similar to causal laws of action

language C+. The location of an object is inertial: it does not change without a

cause. The move actions are exogenous: they can be executed or not executed at

will. Moving an object affects its location. An object cannot be moved to its current

location.

Many action domains involve “move-like” actions, and describing such do-

mains can be simplified by importing module MOVE. In the next section, we will

see how this idea can be applied to the actions of walking and climbing on the box

from the simplified Monkey and Bananas domain.

1These expressions, as well as the expressions after axioms in module MONKEY (Figure 5.2),
are actually abbreviations; see Section 6.15.

35



sorts

Level ;

module MONKEY;

objects

Monkey ,Box : Thing ;
P1, P2: Place;
Hi , Lo: Level ;

actions

Walk(Place);
ClimbOn;

fluents

Elevation(Thing): Level ;

variables

x: Thing ;
p: Place;

import MOVE;
Move(Monkey , p) is Walk(p);

import MOVE;
Place is Level ;
Move(Monkey ,Hi) is ClimbOn;
Location(x) is Elevation(x);

axioms

constraint Elevation(Box ) = Lo;
constraint Elevation(Monkey) = Hi → Location(Monkey) = Location(Box );
nonexecutable ClimbOn ∧ Walk(p);

Figure 5.2: Declaration of sort Level and Module MONKEY

5.2 Importing Other Modules: Example

In mini-MAD, the simplified version of the Monkey and Bananas domain from Sec-

tion 4.4 can be described by combining the sort declaration and module MOVE

from Figure 5.1 with the declaration of sort Level and module MONKEY shown in

Figure 5.2.

There are objects of three kinds: things, places and levels. Monkey is a thing;

P1 and P2 are places; Hi and Lo are levels. The Elevation of a Thing is a simple
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fluent whose value is a Level .

The variable declarations are followed by two import statements. Both of

them import the module MOVE, but in different ways. We describe the action Walk

in terms of Move by the first import statement

import MOVE;

Move(Monkey , p) is Walk(p);
(5.1)

Intuitively, this import statement says that the action Walk(p) has all properties

that are postulated for the action Move(Monkey , p) in the module MOVE. In other

words, including this import statement has the same effect as including the following

modification of the axioms of module MOVE:

inertial Location(Monkey);

exogenous Walk(p);

Walk(p) causes Location(Monkey) = p;

nonexecutable Walk(p) if Location(Monkey) = p.

In addition, including this import statement has the effect of including the

declaration

fluents

Location(Thing): Place;

from module MOVE in module MONKEY. Unlike Location, constant Move from

module MOVE is not accessible in module MONKEY, because it is “renamed”

in (5.1). The variables declared in module MOVE are not accessible in module

MONKEY either, because variables are “local” to a module.
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The second import statement

import MOVE;

Place is Level ;

Move(Monkey ,Hi) is ClimbOn;

Location(x) is Elevation(x);

(5.2)

describes moving “along the vertical axis.” The action constant Move is reinter-

preted again; the sort Place and the fluent constant Location are reinterpreted also.

Including this import statement has the same effect as including the following mod-

ification of the axioms of module MOVE:

inertial Elevation(Monkey);

exogenous ClimbOn;

ClimbOn causes Elevation(Monkey) = Hi ;

nonexecutable ClimbOn if Elevation(Monkey) = Hi .

Similarly, neither of the declaration of Move and the declaration of Location from

module MOVE is included, because both the constants are “renamed” in this import

statement.

The two import statements in Figure 5.2 show that each of the actions Walk ,

ClimbOn can be viewed as an instance of Move: walking is moving in the horizontal

plane; climbing is moving vertically.

The axioms at the end of module MONKEY express the additional properties

of the domain that have no counterparts in our general theory of move-like actions

shown in Figure 5.1.

The result of appending Figure 5.2 to Figure 5.1 forms an action description

of the simplified Monkey and Bananas domain in mini-MAD. We call this action
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description MSMB (for modular simplified Monkey and Bananas). In comparison

with the C+ description SMB (Figure 4.2), module MONKEY has few axioms:

many relevant facts come from the imported module MOVE.

5.3 Erdoğan’s Implementation

In a related project, Erdoğan [2008] implemented a dialect of MAD. His software

system, called mparse,2 can convert a MAD action description into an input file of

CCalc. For instance, Figures 5.3 and 5.4 below show how the mini-MAD code in

Figures 5.1 and 5.2 can be adapted to the input language of mparse. Note that

sorts

Thing; Place;

module MOVE;

actions

Move(Thing, Place);

fluents

Location(Thing): simple(Place);

variables

x: Thing;

p: Place;

axioms

inertial Location(x);

exogenous Move(x,p);

Move(x,p) causes Location(x)=p;

nonexecutable Move(x,p) if Location(x)=p;

Figure 5.3: mparse input file corresponding to Figure 5.1

2http://www.cs.utexas.edu/users/tag/mad
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sorts

Level;

module MONKEY;

objects

Monkey, Box: Thing;

P1, P2: Place;

Hi, Lo: Level;

actions

Walk(Place);

ClimbOn;

fluents

Elevation(Thing): simple(Level);

variables

x: Thing;

p: Place;

l: Level;

import MOVE;

Move(Monkey,p) is Walk(p);

import MOVE;

Place is Level;

Move(Monkey,Hi) is ClimbOn;

Location(x) is Elevation(x);

axioms

constraint Elevation(Box)=Lo;

constraint Elevation(Monkey)=Hi

-> Location(Monkey)=Location(Box);

nonexecutable Walk(p) & ClimbOn;

Figure 5.4: mparse input file corresponding to Figure 5.2
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the line

Location(Thing) : Place;

in Figure 5.1 turns into

Location(Thing) : simple(Place);

in Figure 5.3, and the declaration of Elevation is modified in a similar way. This is

because in mini-MAD all fluents are simple, but we distinguish between simple and

statically determined fluents (Section 4.1) both in the full MAD and in the input

language of mparse.

mparse converts these input files into equivalent CCalc code. mparse and

CCalc, jointly, can solve planning problems for action domains described in MAD.
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Chapter 6

Syntax of mini-MAD

6.1 Names: Generalized Identifiers

An identifier is a string of letters, digits and underscores that begins with a letter.

The following words are reserved and may not appear as identifiers:

actions, after, axioms, Boolean, causes, constraint, exogenous, false, fluents,

if, import, inertial, is, module, nonexecutable, objects, simple, sorts, statical-

lyDetermined, true, variables.

For technical reasons that will become clear in the following chapter, we

will use symbols that are more general than identifiers, called names. A name is

an identifier possibly preceded by several strings of the form “Im.”, where m is a

positive integer (‘I’ is the first letter of the word “import”):

<name> ::= {‘I’<positive integer>‘.’}∗ <identifier>
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6.2 Action Descriptions

An action description is a series of sort declaration sections and modules that ends

with a module:

<action description> ::= <component>∗ <module>

<component> ::= <sort declaration section> | <module>

For instance, action description MSMB (Section 5.2) has four components:

a sort declaration section for Thing and Place, module MOVE, a sort declaration

section for Level , and module MONKEY.

6.3 Sort Declaration Section

A sort declaration section has the form

sorts

s1;

...

sn;

where each si is a name. The abstract syntax1 is:

<sort declaration section> ::= <sort name>+

<sort name> ::= <name>

6.4 Modules

A MAD module has the form

1In an abstract EBNF definition, some terminal symbols are omitted, as, for instance, sorts in
the definition of <sort declaration>.
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module module-name;

module-body

The module-body may contain several sections in the following order: an object

declaration section, an action constant declaration section, a fluent constant decla-

ration section, a variable declaration section, and a section of axioms. In addition,

the module-body may contain any number of import statements before or after these

sections. The abstract syntax is:

<module> ::= <module name> <import statement>∗

[<object declaration section>] <import statement>∗

[<action declaration section>] <import statement>∗

[<fluent declaration section>] <import statement>∗

[<variable declaration section>] <import statement>∗

[<axiom section>] <import statement>∗

<module name> ::= <name>

A module-name may not be used in an action description more than once.

6.5 Object Declaration Section

An object declaration section has the form

objects

o spec1;

...

o specn;

where each o speci is an object specification, that is, an expression of the form
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o1, . . . , om : S

where each oi is a name, and S is a sort name. The abstract syntax is:

<object declaration> ::= <object specification>+

<object specification> ::= <object name>+ <sort name>

<object name> ::= <name>

6.6 Action Declaration Section

An action declaration section has the form

actions

a1;

...

an;

where each ai is a name, possibly followed by a parenthesized list of sort names

(meant to specify the domains of the arguments). The abstract syntax is:

<action declaration> ::= <action schema>+

<action schema> ::= <action name> <sort name>∗

<action name> ::= <name>

6.7 Fluent Declaration Section

A fluent declaration section has the form

fluents

f spec1;

...

f specn;
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where each f speci is a fluent constant specification. A fluent constant specification

has the form

f1, . . . , fm : range

where each fi is a name, possibly followed by a parenthesized list of sort names

(meant to specify the domains of the arguments), and range is a sort name or the

keyword Boolean (meant to specify the sort of the value). The abstract syntax is:

<fluent declaration> ::= <fluent specification>+

<fluent specification> ::= <Boolean spec> | <non-Boolean spec>

<Boolean spec> ::= <Boolean schema>+ Boolean

<Boolean schema> ::= <Boolean fluent name> <sort name>∗

<non-Boolean spec> ::= <non-Boolean schema>+ <sort name>

<non-Boolean schema> ::= <non-Boolean fluent name> <sort name>∗

<Boolean fluent name> ::= <name>

<non-Boolean fluent name> ::= <name>

6.8 Variable Declaration Section

A variable declaration section has the form

variables

v spec1;

...

v specn;

where each v speci is a variable specification, that is, an expression which has the

form

v1, . . . , vm : S
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where each vi is a name, and S is a sort name. The abstract syntax is:

<variable declaration> ::= <variable specification>+

<variable specification> ::= <variable name>+ <sort name>

<variable name> ::= <name>

Each variable name is local to the module in which its specification is.

6.9 Formulas

Axioms and import statements are constructed by formulas, with some keywords, in

certain forms. Before we show the syntax of axioms and import statements below,

first we define what we mean by a valid formula.

6.9.1 Terms

A term is an object, a variable, or a non-Boolean fluent name possibly followed by

a parenthesized list of arguments:

<term> ::= <simple term> | <non-Boolean expression>

<simple term> ::= <object name> | <variable name>

<non-Boolean expression> ::= <non-Boolean fluent name> <simple term>∗

For instance, in module MONKEY of action description MSMB , the expressions

Monkey , p, Location(x), and Elevation(Box ) are terms.

6.9.2 Boolean Expressions

A Boolean expression is an action constant or a Boolean fluent constant possibly

followed by a parenthesized list of arguments:
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<Boolean expression> ::= <Boolean constant> <simple term>∗

<Boolean constant> ::= <action name> | <Boolean fluent name>

For instance, in module MONKEY of action description MSMB , Move(Monkey , p)

is a Boolean expression.

6.9.3 Atoms

There are four kinds of atoms:

<atom> ::= ⊥ | ⊤ | <Boolean expression> | <term>‘=’<term>

For instance, in module MONKEY of action description MSMB , ClimbOn

and Elevation(Box ) = Lo are atoms.

6.9.4 Formulas

A formula is built from atoms using propositional connectives:

<formula> ::= <atom> | ¬ <formula> |

<formula> <binary connective> <formula>

<binary connective> ::= ∧ | ∨ | → | ↔

For instance, the expression

ClimbOn ∧ Walk(p)

in module MONKEY of action description MSMB is a formula, which is a conjunc-

tion of two atom formulas.

As in C+ (Section 4.2), a fluent formula is a formula such that all constants

occurring in it are fluent constants, and an action formula is a formula that contains

at least one action constant and no fluent constants. For instance, ⊥, x = Monkey ,
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Elevation(Box ) = Lo are fluent formulas; Move(Monkey , p) and ClimbOn∧Walk(p)

are action formulas; formula Location(Monkey) = p ∧ ClimbOn is neither.

6.10 Axiom Section

An axiom section has the form

axioms

axiom1;

...

axiomn;

where each axiomi is an expression that has the form similar to a causal law in C+,

with the main difference that in mini-MAD we drop the leading keyword caused:

<axiom> ::= <static law> | <action dynamic law> | <fluent dynamic law>

<static law> ::= <formula> if <formula>

<action dynamic law> ::= <formula> if <formula>

<fluent dynamic law> ::= <formula> if <formula> after <formula>

The formula in front of if is called the head of an an axiom. In a static law, both the

formulas should be fluent formulas. In an action dynamic law, the head should be

an action formula. In a fluent dynamic law, the head and and the formula following

if should be fluent formulas.

Axioms in module MOVE and module MONKEY are actually abbreviations

(see Section 6.15 below). For instance,

Move(x, p) causes Location(x) = p
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stands for the fluent dynamic law

Location(x) = p if ⊤ after Move(x, p).

6.11 Import Statements

An import statement has the form

import module-name;

sort-renaming-clause1;

...

sort-renaming-clausen;

constant-renaming-clause1;

...

constant-renaming-clausem;

where n, m ≥ 0. The abstract syntax is:

<import statement> ::= <module name>

<sort renaming clause>∗

<constant renaming clause>∗

For instance, the second import statement in module MONKEY (Figure 5.2) con-

tains one sort renaming clause and two constant renaming clauses.

The module named with module-name is called the importee module of this

import statement. The module that contains this import statement is called the

importer module. For any import statement in an action description, the importee

module must be listed in front of the importer module. Additional conditions for

an import statement will be discussed in Section 6.14.
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6.11.1 Sort Renaming Clauses

A sort renaming clause has the form

s1 is s2 (6.1)

where s1 and s2 are sort names. The abstract syntax is:

<sort renaming clause> ::= <sort name> <sort name>

A sort name may not appear as the left-hand side of more than one sort renaming

clauses in the same import statement.

6.11.2 Constant Renaming Clauses

A constant renaming clause has the form

const-renaming-lhs is const-renaming-rhs .

There are two kinds of constant renaming clauses: Boolean and non-Boolean. In

a Boolean constant renaming clause, the left-hand side const-renaming-lhs is a

Boolean constant name possibly followed by a parenthesized list of arguments and

the right-hand side const-renaming-rhs is a formula. In a non-Boolean constant re-

naming clause each of const-renaming-lhs and const-renaming-rhs is a non-Boolean

fluent constant possibly followed by a parenthesized list of arguments; the arguments

of const-renaming-lhs must be distinct variables. The abstract syntax is:

<constant renaming clause> ::= <Boolean renaming clause> |

<non-Boolean renaming clause>

<Boolean renaming clause> ::= <Boolean renaming lhs> <Boolean renaming rhs>

<Boolean renaming lhs> ::= <Boolean constant> <simple term>∗
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<Boolean renaming rhs> ::= <formula>

<non-Boolean renaming clause> ::= <non-Boolean renaming lhs>

<non-Boolean renaming rhs>

<non-Boolean renaming lhs> ::= <non-Boolean fluent name> <variable name>∗

<non-Boolean renaming rhs> ::= <non-Boolean expression>

For instance, in the first import statement in module MONKEY (Figure 5.2),

Move(Monkey , p) is Walk(p) (6.2)

is a Boolean constant renaming clause, in which Move is a Boolean constant and

Walk(p) is a formula. In the second import statement in module MONKEY, the

constant renaming clause

Location(x) is Elevation(x) (6.3)

is a non-Boolean constant renaming clause.

For a constant renaming clause, every variable occurring in the right-hand

side must be one of the variables occurring in the left-hand side. A constant name

may not appear on the left-hand side of more than one sort renaming clauses in the

same import statement. Additional conditions will be discussed in the next section.2

2Our syntax of constant renaming clauses is somewhat different from that of the input language
of mparse [Erdoğan, 2008]. The latter does not allow complex formulas in the right-hand side
of constant renaming clauses, but it includes an additional “case construct”. It also allows the
right-hand side to include variables not in the left-hand side.
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6.12 Interpreting Declarations

As in many other languages, whenever we refer to a name in a mini-MAD action

description, the name should be declared before it is used, and it should be used in

accordance with its declaration. But due to the modularity of mini-MAD, defining

the precise meaning of a declaration is not as simple as, say, in the input language

of CCalc.

A name can be declared not only “explicitly”—by a declaration section, but

also “implicitly”—by an import statement. For instance, in module MONKEY

(Figure 5.2), the name Walk is explicitly declared to be an action constant with

an argument of sort Place. The name Location is implicitly declared, by the first

import statement, to be a Place-valued fluent constant with an argument of sort

Thing . Since sorts are declared outside modules and variables are local to a module,

only objects and constants can be implicitly declared.

We define the precise meaning of declarations in mini-MAD below. First

note that an import statement has the form

import NAME ;

sort ′1 is sort1;

...

sort ′k is sortk;

const ′1 · · · is F1;

...

const ′l · · · is Fl;

(6.4)

where NAME is the name of the importee module, sort1, . . . , sortk, sort
′
1, . . . , sort

′
k

are sort names, and const ′1, . . . , const ′l are constant names. The dots after each const ′j
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represent the possible parenthesized arguments.

If IS is an import statement (6.4), and s is a sort name, we define

IS (s) =





sort i, if s = sort ′i for some i ∈ {1, . . . , k},

s, otherwise.

For instance, if IS is the second import statement in module MONKEY (Figure 5.2),

then IS (Thing) = Thing , and IS (Place) = Level .

6.12.1 Declarations of Sort Names and Variable Names

A sort declaration section declares every sort name occurring in it. As defined above,

sort declaration sections are outside modules.

The variable declaration section of a module M declares a variable name v

to be of sort s if it contains a variable specification of the form

. . . , v, . . . : s;

6.12.2 Declarations of Object Names

About an object declaration section we say that it declares an object name o to be

of sort s if it contains an object specification of the form

. . . , o, . . . : s;

The relation “an occurrence of an import statement IS in an action descrip-

tion declares an object name o to be of sort s” is defined recursively, as follows: with

IS written as (6.4), this relation holds if in module NAME the object declaration

section or an import statement declares o to be of some sort s′ such that s = IS (s′).

54



6.12.3 Declarations of Action Names

About an action declaration section we say that it declares an action name a to

have arguments of sorts s1, . . . , sn if it contains an action schema a(s1, . . . , sn).

The relation “an occurrence of an import statement IS in an action descrip-

tion declares an action name a to have arguments of sorts s1, . . . , sn” is defined

recursively, as follows: with IS written as (6.4), this relation holds if

• a is different from const ′1, . . . , const ′l, and

• in module NAME the action declaration section or an import statement de-

clares a to have arguments of some sorts s′1, . . . , s
′
n such that s1 = IS (s′1), . . . ,

sn = IS (s′n).

6.12.4 Declarations of Boolean Fluent Names

About a fluent declaration section we say that it declares a Boolean fluent name

f to have arguments of sorts s1, . . . , sn if it contains a Boolean fluent schema

f(s1, . . . , sn).

The relation “an occurrence of an import statement IS in an action descrip-

tion declares a Boolean fluent name f to have arguments of sorts s1, . . . , sn” is

defined recursively, as follows: with IS written as (6.4), this relation holds if

• f is different from const ′1, . . . , const ′l, and

• in module NAME the fluent declaration section or an import statement de-

clares f to have arguments of some sorts s′1, . . . , s
′
n such that s1 = IS (s′1), . . . ,

sn = IS (s′n).
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6.12.5 Declarations of non-Boolean Fluent Names

About a fluent declaration section we say that it declares a non-Boolean fluent

constant f to have arguments of sorts s1, . . . , sn and value of sort s if it contains a

fluent constant specification of the form

. . . , f(s1, . . . , sn), . . . : s;

The relation “an occurrence of an import statement IS in an action descrip-

tion declares a non-Boolean fluent constant f to have arguments of sorts s1, . . . , sn

and value of sort s” is defined recursively, as follows: with IS written as (6.4), this

relation holds if

• f is different from const ′1, . . . , const ′l, and

• in module NAME the fluent declaration section or an import statement de-

clares f to have arguments of some sorts s′1, . . . , s
′
n and value of some sort s′

such that s1 = IS (s′1), . . . , sn = IS (s′n) and s = IS (s′).

For instance, the first import statement in module MONKEY (Figure 5.2)

declares Location to have an argument of sort Thing and value of sort Place, but

it doesn’t declare the action name Move. The second import statement declares

neither Move nor Location.

6.12.6 The Use of Names

With the meaning of declarations defined above, when a name u is used in a module

M of a mini-MAD action description, it should be declared beforehand. More

precisely,
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• if u is a sort name that doesn’t occur as the left-hand side of a sort renaming

clause, it should be declared in a sort declaration section prior to M ;

• if u is a sort name that occurs as the left-hand side of a sort renaming clause

in an import statement IS , it should be declared in a sort declaration section

prior to the importee module of IS ;

• if u is a constant name that occurs in the left-hand side of a constant renaming

clause in an import statement IS , it should be declared in the importee module

of IS ;

• in any other case, u should be declared earlier in M .

6.13 Multiple Declarations

In an action description, a sort name may not be declared more than once, and the

same name may not be declared again by a declaration section of any module in

this action description.

In a module, a name may not be declared by more than one declaration

sections. In other words, in a module a name may not belong to more than one

of these kinds: variable names, object names, action names, and fluent names. In

addition, a declaration section may not declare the same name more than once.

Since every variable name is local to a module, each variable name v is of a

unique sort s in a module M . We denote the sort s by SORTM
v . The superscript

M may be dropped when the context is clear.

An object name or a constant name can be declared in a module several

times when import statements are present. But this is only allowed in the absence

of conflicts, in the following sense:
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• a name may not be declared to belong to more than one of these kinds: object

names, action names, Boolean fluent names and non-Boolean fluent names;

• if an object name is declared to be of sort s and of sort s′ in the same module,

then s = s′;

• if a constant name is declared to have arguments of sorts s1, . . . , sn and of sorts

s′1, . . . , s
′
m in the same module, then n = m and si = s′i for every i ∈ {1, . . . , n};

• if a non-Boolean fluent name is declared to have value of sort s and of sort s′

in the same module, then s = s′.

If u is an object name declared in module M , by SORTM
u we denote the sort

of u in M ; in view of the conditions above, this sort is uniquely defined. Similarly,

if u is a non-Boolean fluent name, by SORTM
u we denote the sort of the value of u

in M . If u is a constant name, by SORTM
u(i) we denote the sort of the ith argument

of u in M . The superscript M in these notations may be omitted if the context is

clear.

For instance, the non-Boolean fluent name Location is declared by the fluent

declaration section in module MOVE, and it is also declared by the first import

statement in module MONKEY. In each of the modules,

SORTLocation(1) = Thing , and SORTLocation = Place.

6.14 Sort Matching Conditions

For any occurrence of a term or a Boolean expression of the form

c(arg1, . . . , argn) (6.5)
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that is not the left-hand side of a constant renaming clause, SORT argi
must be the

same as SORT c(i).

When (6.5) is the left-hand side of a constant renaming clause, the sort

matching condition is more complicated. First, c is declared in the importee mod-

ule3 while arg1, . . . , argn are declared in the importer module. Second, the import

statement may include sort renaming clauses that need to be taken into account.

For any constant renaming clause with the left-hand side (6.5) in an import

statement IS with an importee module M , the sort SORT argi
must be the same as

IS (SORTM
c(i)). In addition, for any non-Boolean renaming clause

c . . . is c′ . . . ; (6.6)

the sort SORT c′ must be the same as IS (SORTM
c ).

For instance, in module MONKEY, the second import statement IS 2 with

importee module MOVE contains a Boolean constant renaming clause

Move(Monkey ,Hi) is ClimbOn;

in accordance with the condition above,

SORTMonkey = Thing , SORTHi = Level ,

and

IS 2(SORTMOVE
Move(1)) = IS 2(Thing) = Thing ,

IS 2(SORTMOVE
Move(2)) = IS 2(Place) = Level .

3As defined above, c is not declared by the import statement, thus it is generally not declared
in the importer module. Consequently SORT c(i) may be meaningless in the importer module, or
it may have a different meaning.
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As another example, IS 2 contains a non-Boolean constant renaming clause

Location(x) is Elevation(x);

in accordance with the condition above,

SORTElevation = Level ,

and

IS 2(SORTMOVE
Location) = IS 2(Place) = Level .

6.15 Abbreviations

As we can see in action description MSMB , we have a few abbreviation forms for

axioms in mini-MAD. They are similar to those in C+ [Giunchiglia et al., 2004,

Appendix B]. Below is a list of abbreviations for axioms in mini-MAD.

6.15.1 causes

The expression

F1 causes F2 if F3,

where F1 is an action formula and F2 is a fluent formula, stands for the fluent

dynamic law

F2 if ⊤ after F1 ∧ F3.
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The part if F3 may be dropped when F3 = ⊤. For instance, in the axiom section of

module MOVE the expression

Move(x, p) causes Location(x) = p

stands for the fluent dynamic law

Location(x) = p if ⊤ after Move(x, p).

6.15.2 exogenous

The expression

exogenous a,

where a is an action name possibly followed by parenthesized arguments, stands for

two action dynamic laws

a if a

and

¬a if ¬a.

For instance, in the axiom section of module MOVE the expression

exogenous Move(x, p)

stands for two action dynamic laws

Move(x, p) if Move(x, p)
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and

¬Move(x, p) if ¬Move(x, p).

6.15.3 inertial

The expression

inertial f, (6.7)

where f is a Boolean fluent name possibly followed by parenthesized arguments,

stands for two fluent dynamic laws

f if f after f

and

¬f if ¬f after ¬f.

When f in expression (6.7) is a non-Boolean fluent name, to eliminate this

abbreviation we first need to declare a new variable y by adding a variable specifi-

cation

y : SORT f

to the variable declaration section. Then expression (6.7) stands for the fluent

dynamic law

f = y if f = y after f = y.

For instance, in the axiom section of module MOVE the expression

inertial Location(x)
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stands for the fluent dynamic law

Location(x) = p1 if Location(x) = p1 after Location(x) = p1;

where p1 is a new variable of sort SORTLocation , i.e., Place. The variable specification

p1 : Place

is added to the variable declaration section of module MOVE.

6.15.4 nonexecutable

nonexecutable F1 if F2,

where F1 is an action formula, stands for the fluent dynamic law

⊥ after F1 ∧ F2.

The part if F2 may be dropped when F2 = ⊤. For instance, in the axiom section of

module MOVE the expression

nonexecutable Move(x, p) if Location(x) = p

stands for the fluent dynamic law

⊥ after Move(x, p) ∧ Location(x) = p.
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6.15.5 constraint

An expression of the form

constraint F,

where F is a fluent formula, stands for the static law

⊥ if ¬F.

For instance, in the axiom section of module MOVE the expression

constraint Elevation(Box ) = Lo

stands for the static law

⊥ if ¬(Elevation(Box ) = Lo).
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Chapter 7

Semantics of mini-MAD

The semantics of mini-MAD is based on grounding. The semantics of C+ action

descriptions is described in [Giunchiglia et al., 2004, Sections 4.2, 4.4] and is reviewed

in Chapter 4.

As a preliminary step, we define a function δ that convert an arbitrary mini-

MAD action description to a “formal form”: a series of sort declarations followed

by a single module (see Section 7.1). For instance, the single-module action descrip-

tion corresponding to action description MSMB (Figures 5.1 and 5.2) is shown in

Figure 7.5. Note the names beginning with I1 and I2 in this module. Intuitively,

I1.Move and I2.Move are the “copies” of the constant Move from module MOVE

that correspond to the two import statements in module MONKEY.

Then we show how to translate any single-module action description into C+

by grounding (see Section 7.2).
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7.1 Generating a Single-module Action Description

Given an action description D in mini-MAD that contains n modules, we want to

obtain a single-module action description δD corresponding to D.

The definition of δ uses the following auxiliary functions. Informally, the

function α turns a module that does not contain any import statements into its

“specialized form” in accordance with a given import statement. It uses “copies”

of the constants declared in the module, with names containing strings of the form

“Im.”. Its definition uses an auxiliary function ν. The function β “merges” two

modules. The function γ eliminates the first import statement from an action de-

scription.

7.1.1 Function ν: Creating an Instance of a Module Regarding to

a Renaming Clause

Sort Renaming Clause

If RC is a sort renaming clause

s is s′

and M is a module without import statements, by ν(RC , M) we denote the module

obtained from M by replacing every occurrence of sort name s with s′. For instance,

if RC is

Place is Level ; (7.1)

and M is module MOVE, then ν(RC , M) is the module shown in Figure 7.1.
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module MOVE;

actions

Move(Thing ,Level);

fluents

Location(Thing): Level ;

variables

x: Thing ; p: Level ;

axioms

inertial Location(x);
exogenous Move(x, p);
Move(x, p) causes Location(x)=p ;
nonexecutable Move(x, p) if Location(x)=p ;

Figure 7.1: The result of applying ν to sort renaming clause (7.1) and module
MOVE (Figure 5.1)

Constant Renaming Clause

To define ν(RC , M) when RC is a constant renaming clause, we first define two

auxiliary functions Equiv and Cond that will help us turn any constant renaming

clause into an axiom with an equivalence as its head.1

Any constant renaming clause RC can be written in the form

c(arg1, . . . , argn) is rhs(arg var), (7.2)

where each of arg1, . . . , argn is a variable or an object, and arg var is the list of

variables among arg1, . . . , argn. Note that, if RC is a non-Boolean renaming clause,

then arg i is a variable for all i, and arg var is the list arg1, . . . , argn.

1These equivalences are similar to rules for lifting statements to other contexts in [McCarthy,
1993], and to C+ bridge rules studied in [Erdoğan and Lifschitz, 2006].
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If RC is a Boolean renaming clause, by Equiv(RC ) we denote the formula

c(x1, . . . , xn) ↔ rhs(x var), (7.3)

where x1, . . . , xn are new identifiers, and x var is the list of xi’s for all i such that

arg i is a variable.

If RC is a non-Boolean renaming clause, by Equiv(RC ) we denote the for-

mula

c(x1, . . . , xn) = y ↔ rhs(x1, . . . , xn) = y, (7.4)

where x1, . . . , xn, y are new identifiers.

For any constant renaming clause RC , by Cond(RC ) we denote the formula

∧

i

(xi = arg i) ,

where the conjunction extends over all i such that arg i is an object. It is clear that

Cond(RC ) is ⊤ if RC is a non-Boolean renaming clause since none of these arg i is

an object.

The axiom that corresponds to RC , as we will see below, has the form

Equiv(RC ) if Cond(RC ).

For instance, if RC is

Move(Monkey , p) is Walk(p), (7.5)

then arg var is p (the only variable among Monkey and p). For new identifiers x1
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and x2, x var is x2 since only arg2 is a variable. Equiv(RC ) is

Move(x1, x2) ↔ Walk(x2),

and Cond(RC ) is

x1 = Monkey .

As another example, if RC is

Location(x) is Elevation(x),

then Equiv(RC ) is

Location(x1) = y ↔ Elevation(x1) = y.

With the above auxiliary definitions, for any constant renaming clause RC

of form (7.2) and any module M without import statements, ν(RC , M) is defined

as the module obtained from M by

• adding variable specifications

xi : SORT c(i) (1 ≤ i ≤ n)

to the variable declaration section,

• adding the variable specification

y : SORT c
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to the variable declaration section if RC is a non-Boolean renaming clause,

• inserting the axiom

Equiv(RC ) if Cond(RC ) (7.6)

at the beginning of the axiom section,

• inserting the axiom

¬c(x1, . . . , xn) if ¬Cond(RC ) (7.7)

at the beginning of the axiom section if RC is a Boolean renaming clause.2

For instance, if M is the module shown in Figure 7.1, and RC is

Move(Monkey, Hi) is ClimbOn; (7.8)

then ν(RC,M ) is the module shown in Figure 7.2. The second axiom, of form (7.6),

expresses that the action Move(Monkey ,Hi) is synonymous with ClimbOn. The

first axiom, of form (7.7), expresses that Move(x1, p1) is false if x1 or p1 is any

other value. For instance, Move(Box ,Hi) is never executable.

If we apply ν again to the non-Boolean constant renaming clause

Location(x) is Elevation(x); (7.9)

and the module in Figure 7.2, we will get Figure 7.3.

2Strictly speaking, ν(RC , M) may not be a module, in the sense that some symbols occurring
in Equiv(RC ) and Cond(RC ) come from RC and they are not declared in M .
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module MOVE;

actions

Move(Thing ,Level);

fluents

Location(Thing): Level ;

variables

x, x1: Thing ;
p, p1: Level ;

axioms

¬Move(x1, p1) if ¬((x1=Monkey) ∧ (p1=Hi));
Move(x1, p1) ↔ ClimbOn if (x1=Monkey) ∧ (p1=Hi);

inertial Location(x);
exogenous Move(x, p);
Move(x, p) causes Location(x)=p ;
nonexecutable Move(x, p) if Location(x)=p ;

Figure 7.2: The result of applying ν to Boolean constant renaming clause (7.8) and
the module shown in Figure 7.1

7.1.2 Function α: Creating an Instance of a Module Regarding to

an Import Statement

On the level of abstract syntax, an import statement has the form

NAME RC 1 · · ·RC k, (7.10)

where NAME is a module name (denoting the name of the importee module) and

each RCi is either a sort renaming clause or a constant renaming clause (see Sec-

tion 6.11).

Let M be a module without import statements, IS an import statement (7.10)

such that NAME is the name of M , and m a positive integer. For every i such that

RC i is a constant renaming clause, RC i begins with a constant name, we will denote
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module MOVE;

actions

Move(Thing ,Level);

fluents

Location(Thing): Level ;

variables

x, x1, x2: Thing ;
p, p1, p2: Level ;

axioms

Location(x2) = p2 ↔ Elevation(x2) = p2 if ⊤;
¬Move(x1, p1) if ¬((x1=Monkey) ∧ (p1=Hi));
Move(x1, p1) ↔ ClimbOn if (x1=Monkey) ∧ (p1=Hi);

inertial Location(x);
exogenous Move(x, p);
Move(x, p) causes Location(x)=p ;
nonexecutable Move(x, p) if Location(x)=p ;

Figure 7.3: The result of applying ν to non-Boolean constant renaming clause (7.9)
and the module shown in Figure 7.2

this constant name by ci.

By α(M, IS , m) we denote the module obtained from

ν(RC k, ν(RC k−1, . . . , ν(RC 1, M) · · · )

by prepending “Im.” to every occurrence of every variable name and to every oc-

currence of each constant name ci.

For instance, if M is module MOVE, IS is the second import statement (5.2)

in module MONKEY, and m = 2, then α(M, IS , m) is shown in Figure 7.4. it is

obtained from the module in Figure 7.3 by prepending “I2.” to every occurrence of

every variable name and to every occurrence of each of the constant names Move

and Location.
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module MOVE;

actions

I2.Move(Thing ,Level);

fluents

I2.Location(Thing): Level ;

variables

I2.x, I2.x1, I2.x2: Thing ;
I2.p, I2.p1, I2.p2: Level ;

axioms

I2.Location(I2.x2) = I2.p2 ↔ Elevation(I2.x2) = I2.p2 if ⊤;
¬I2.Move(I2.x1, I2.p1) if ¬((I2.x1=Monkey) ∧ (I2.p1=Hi));
I2.Move(I2.x1, I2.p1) ↔ ClimbOn if (I2.x1=Monkey) ∧ (I2.p1=Hi);

inertial I2.Location(I2.x);
exogenous I2.Move(I2.x, I2.p);
I2.Move(I2.x, I2.p) causes I2.Location(I2.x)=I2.p ;
nonexecutable I2.Move(I2.x, I2.p) if I2.Location(I2.x)=I2.p ;

Figure 7.4: The result of applying α to module MOVE (Figure 5.1) and import
statement (5.2), with m = 2

7.1.3 Function β: Merging Two Modules

For any module M and any module M ′ that does not contain any import state-

ments, β(M, M ′) is the module obtained from M by appending the contents of each

section of M ′ (object specifications, the action schemas, fluent specifications, vari-

able specifications, and axioms) to the corresponding section of M , with repetitions

removed. Note that module β(M, M ′) preserves the name of module M .

7.1.4 Function γ: Eliminating an Import Statement

For a mini-MAD action description D containing at least one import statement, we

will define an action description γ(D) that contains fewer import statements than

D.

Let M be the first module in D containing an import statement, IS be the

73



first import statement in M , and M ′ be the importee module of IS . By γ(D) we

denote the action description obtained from D by replacing M with

β(M∗, α(M ′, IS , m)),

where M∗ is the module obtained from M by dropping IS , and m is the smallest

positive integer such that the string “Im.” does not occur in D.

It is clear that applying γ to an action description decrements the number

of import statements by 1.

Recall that in a mini-MAD action description a module can only import

modules before it. This condition guarantees that M ′ does not contain any import

statements, so that it satisfies the requirement to be the first argument of α in the

definition of γ.

7.1.5 Function δ: Generating a Single-module Action Description

If D contains p import statements then γp(D) is an action description that does

not contain any import statements. By δD we denote the result of dropping all the

modules but the last one from γp(D). δD is the single-module action description

that we consider to have the same meaning as D.

For instance, δ MSMB is shown in Figure 7.5.

7.2 Grounding

For any mini-MAD action description D, we will define the corresponding C+ action

description, denoted by cplus(D).
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sorts

Thing ; Place;
sorts

Level ;

module MONKEY;

objects

Monkey , Box : Thing ;
P1, P2: Place;
Hi , Lo: Level ;

actions

Walk(Place); ClimbOn;
I1.Move(Thing ,Place); I2.Move(Thing ,Level);

fluents

Location(Thing): Place;
Elevation(Thing): Level ;
I2.Location(Thing): Level ;

variables

x: Thing ; p: Place;
I1.x, I1.x1: Thing ; I1.p, I1.p1: Place;
I2.x, I2.x1, I2.x2: Thing ; I2.p, I2.p1, I2.p2: Level ;

axioms

constraint Elevation(Box ) = Lo
constraint Elevation(Monkey) = Hi → Location(Monkey) = Location(Box )
nonexecutable ClimbOn ∧ Walk(p);

¬I1.Move(I1.x1, I1.p1) if ¬(I1.x1=Monkey);
I1.Move(I1.x1, I1.p1) ↔ Walk(I1.p1) if I1.x1=Monkey ;

inertial Location(I1.x);
exogenous I1.Move(I1.x, I1.p);
I1.Move(I1.x, I1.p) causes Location(I1.x)=I1.p;
nonexecutable I1.Move(I1.x, I1.p) if Location(I1.x)=I1.p;

I2.Location(I2.x2) = I2.p2 ↔ Elevation(I2.x2) = I2.p2 if ⊤;
¬I2.Move(I2.x1, I2.p1) if ¬((I2.x1=Monkey) ∧ (I2.p1=Hi));
I2.Move(I2.x1, I2.p1) ↔ ClimbOn if (I2.x1=Monkey) ∧ (I2.p1=Hi);

inertial I2.Location(I2.x);
exogenous I2.Move(I2.x, I2.p);
I2.Move(I2.x, I2.p) causes I2.Location(I2.x)=I2.p;
nonexecutable I2.Move(I2.x, I2.p) if I2.Location(I2.x)=I2.p;

Figure 7.5: δ MSMB : a single module action description corresponding to MSMB
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7.2.1 Universe of a Sort

Let D be a mini-MAD action description, and let s be a sort name declared in

D. The universe of s, denoted by UD(s), is the set of all objects names o such

that o is declared to be of sort s in the module of δD. For instance, if D is the

action description MSMB (Figures 5.1 and 5.2), δD is shown in Figure 7.5, and the

universes of the sorts Thing , Place and Level are

UMSMB (Thing) = {Monkey ,Box},

UMSMB (Place) = {P1, P2},

UMSMB (Level) = {Hi ,Lo}.

(7.11)

Let D be a mini-MAD action description such that each set UD(s) is non-

empty. We obtain cplus(D) by constructing its signature (Section 7.2.2) and its

causal laws (Section 7.2.3).

7.2.2 Signature of cplus(D)

The signature σ of cplus(D) is determined by the action and fluent declaration

sections of δD, as follows. If the action declaration section contains an action

schema a(s1, . . . , sk), then σ includes the symbols a(z1, . . . , zk) for all objects z1 ∈

UD(s1), . . . , zk ∈ UD(sk); they are designated as action constants. If the fluent

declaration section contains a fluent specification

. . . , c(s1, . . . , sk), · · · : s

then σ includes the symbols c(z1, . . . , zk) for all z1 ∈ UD(s1), . . . , zk ∈ UD(sk); they

are designated as simple fluent constants with the domain UD(s) if s is a sort name,
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and simple Boolean fluent constants if s is Boolean.

For instance, if D is MSMB as shown in Figures 5.1 and 5.2, then σ consists

of the action constants

Walk(P1), Walk(P2), ClimbOn,

I1.Move(Monkey , P1), I1.Move(Monkey , P2),

I1.Move(Box , P1), I1.Move(Box , P2),

I2.Move(Monkey ,Hi), I2.Move(Monkey ,Lo),

I2.Move(Box ,Hi), I2.Move(Box ,Lo),

the simple fluent constants

Location(Monkey), Location(Box )

with domain {P1, P2}, and the simple fluent constants

Elevation(Monkey), Elevation(Box ), I2.Location(Monkey), I2.Location(Box )

with domain {Hi ,Lo}.

7.2.3 Causal Laws of cplus(D)

The causal laws of cplus(D) are obtained from the axioms of δD by the following

procedure:

1. “Ground” each axiom by substituting arbitrary elements of UD(SORT δD
v ) for

every variable v in that axiom.

2. Replace each atom of the form c, where c is a Boolean fluent name possibly

followed by parenthesized arguments, by c = true.
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3. Replace each atom of the form o1 = o2, where o1 and o2 are object names, by

⊤ if o1 and o2 are the same, and by ⊥ otherwise.

4. Replace each atom of the form c1 = c2, where c1 and c2 are non-Boolean fluent

names possibly followed by parenthesized arguments, by
∨

o∈Γ (c1 = o∧c2 = o),

where Γ = UD(SORT c1) ∩ UD(SORT c2).

5. Replace each atom of the form o = c, where o is an object name and c is

a non-Boolean fluent name possibly followed by parenthesized arguments, by

c = o.

6. Replace each atom of the form c = o, where c is a non-Boolean fluent name

possibly followed by parenthesized arguments and o is an object name such

that SORT c 6= SORT o, by ⊥.

7. Prepend the keyword caused to each axiom.

For instance, in δ MSMB (Figure 7.5) the abbreviation

constraint Elevation(Monkey) = Hi → Location(Monkey) = Location(Box )

stands for the static law

⊥ if ¬(Elevation(Monkey) = Hi → Location(Monkey) = Location(Box )).

Steps 1, 2 and 3 don’t apply; in step 4 it is translated to

⊥ if ¬(Elevation(Monkey) = Hi

→
∨

o∈{P1,P2}(Location(Monkey) = o ∧ Location(Box ) = o)).
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Steps 5 and 6 don’t apply; finally after step 7, we get the corresponding causal law

in cplus(MSMB):

caused ⊥ if ¬(Elevation(Monkey) = Hi

→
∨

o∈{P1,P2}(Location(Monkey) = o ∧ Location(Box ) = o)).

As another example, the axiom

I2.Move(I2.x1, I2.p1) ↔ ClimbOn if (I2.x1=Monkey) ∧ (I2.p1=Hi)

in δ MSMB is turned into four axioms by step 1:

I2.Move(Monkey ,Hi) ↔ ClimbOn if (Monkey =Monkey) ∧ (Hi =Hi),

I2.Move(Monkey ,Lo) ↔ ClimbOn if (Monkey =Monkey) ∧ (Lo =Hi),

I2.Move(Box ,Hi) ↔ ClimbOn if (Box =Monkey) ∧ (Hi =Hi),

I2.Move(Box ,Lo) ↔ ClimbOn if (Box =Monkey) ∧ (Lo =Hi).

Steps 2 and 3 turn these axioms into

I2.Move(Monkey ,Hi) ↔ (ClimbOn = true) if ⊤ ∧⊤,

I2.Move(Monkey ,Lo) ↔ (ClimbOn = true) if ⊤ ∧⊥,

I2.Move(Box ,Hi) ↔ (ClimbOn = true) if ⊥ ∧⊤,

I2.Move(Box ,Lo) ↔ (ClimbOn = true) if ⊥ ∧⊥.

Steps 4, 5 and 6 don’t apply, and step 7 prepends caused to each of these expres-

sions.
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Location(Monkey) = P1

Location(Box) = P1
Elevation(Box) = Lo
I2.Location(Box) = Lo

{ }

Elevation(Monkey) = Lo
Location(Monkey) = P1

I2.Location(Monkey) = Lo
Location(Box) = P1
Elevation(Box) = Lo
I2.Location(Box) = Lo

{ }

I2.Location(Monkey) = Hi
Elevation(Monkey) = Hi

{ClimbOn, I2.Move(Monkey,Hi)}

Figure 7.6: A part of the transition system represented by action description δ SMB .

7.2.4 States and Transitions

According to the semantics of mini-MAD, the transition system represented by a

mini-MAD action description D is the transition system represented by the C+

action description cplus(D).

For instance, the transition system represented by action description MSMB

is the directed graph shown in Figure 4.3, but with different labels, in view of the

presence of the constants beginning with I1 and I2. Figure 7.6 shows the counterpart

of the edge in the North-West corner of Figure 4.3. As discussed in Section 4.1, an

event that includes more than one actions is usually understood as the concurrent

execution of these actions. The intuitive meaning of the event in Figure 7.6 is

different: ClimbOn and I2.Move(Monkey ,Hi) are not concurrently executed actions;

these expressions describe the same action in two different ways.
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Chapter 8

Syntax of MAD

8.1 Additional Features of the Full Language

In this chapter we extend the syntax of mini-MAD (Chapter 6) by a few useful

constructs.

First, statically determined fluents will be now added.

Second, we will be able to say that one sort is a subsort of another. For

example, in a MAD description of the Logistics domain [Veloso, 1992], we will be

able to state that the sorts Truck and Plane are subsorts of the sort Vehicle.

Third, quantifiers will be available in formulas, not only propositional con-

nectives. For instance, we will be able to express that a vehicle cannot be driven if

no one is inside by writing

nonexecutable Drive(v) if ¬∃x In(x, v).

Fourth, the syntax of MAD will allow us to use nested constants—a constant

as an argument of another constant. For instance, we will be able to express that
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the Monkey is walking to the current location of the Box by the formula

Walk(Location(Box )). (8.1)

This is more concise and intuitive than the equivalent formula

∃p(Location(Box ) = p ∧ Walk(p)). (8.2)

Finally, sort names may be used in MAD as unary predicates.

The semantics of MAD does not use grounding, because some of the exten-

sions mentioned above would make the definition of grounding significantly more

complicated.

The definition of the universe of a sort (Section 7.2.1) would become more

complex in the presence of subsorts. For instance, the universe of the sort Vehicle

should include all objects of sorts Truck and Plane, and all objects of subsorts of

these sorts. (See the definition of |s| in Section 11.1.)

In addition to substituting objects for free variables (Section 7.2.3), we would

have to eliminate quantifiers in favor of multiple conjunctions and disjunctions.

Prior to grounding, formulas containing nested constants would have to be

eliminated by a syntactic transformation that would turn, say, (8.1) to (8.2).

For all these reasons, and also because future extensions of MAD are likely

to lead to similar complications, we chose not to use grounding in the semantics of

the full language. Instead, its semantics is based on first-order causal logic, reviewed

in Chapter 9.
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8.2 Extending the Syntax of mini-MAD

An action description in MAD has the same structure as in mini-MAD (Section 6.2):

it is a series of sort declaration sections and modules that ends with a module.

The syntax of sort declaration sections and modules is as defined in Sections

6.3 and 6.4. A module still is an ordered series of sections: an object declaration

section, an action declaration section, a fluent declaration section, a variable decla-

ration section and an axiom section, with any number of import statements before

or after any section mentioned above.

The syntax of object declaration sections, action declaration sections, vari-

able declaration sections and import statements is as defined in Sections 6.5, 6.6,

6.8, and 6.11.

The syntax of fluent declaration sections and axiom sections, as well as the

syntax of formulas, will be generalized.

8.2.1 Fluent Declaration Section

The syntax of fluent declaration sections is changed to include statically deter-

mined fluents. In the abstract syntax shown in Section 6.7, the definitions of

<Boolean spec> and <non-Boolean spec> are replaced by the following rules:

<Boolean spec> ::= <Boolean schema>+<fluent kind>

<non-Boolean spec> ::= <non-Boolean schema>+<fluent kind>‘(’<sort name>‘)’

<fluent kind> ::= simple | staticallyDetermined

For instance, in the syntax of MAD, the declaration of non-Boolean simple

fluent Location in module MOVE would be
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fluents

Location(Thing): simple(Place);

as in the input language of mparse (Section 5.3).

Otherwise, the syntax of MAD is compatible with the syntax of mini-MAD:

any mini-MAD action description D will become a MAD action description if we

replace every fluent specification

f1, . . . , fm : range

by

f1, . . . , fm : simple(range),

and drop “(range)” when range is Boolean. In the future, we will disregard this

difference and identify any mini-MAD action description with the corresponding

MAD action description.

8.2.2 Formulas

The syntax of formulas in mini-MAD (Section 6.9.4) is generalized to allow the use

of quantifiers:

<formula> ::= <atom> | ¬ <formula> |

<formula> <binary connective> <formula> |

<quantifier> <variable name> <formula>

<quantifier> ::= ∀ | ∃

The syntax of atoms is defined as in Section 6.9.3, while the definition of

Boolean expressions in mini-MAD is generalized to include nested constants and
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sort predicates. In the abstract syntax shown in Section 6.9.2, the definition of

<Boolean expression> is replaced by

<Boolean expression> ::= <Boolean constant> <term>∗ |

<sort name> ‘(’ <term> ‘)’

The definition of terms is generalized to include nested constants: in the

abstract syntax shown in Section 6.9.1, the definition of <non-Boolean expression>

is replaced by

<non-Boolean expression> ::= <non-Boolean fluent name> <term>∗

8.2.3 Axiom Section

The syntax of axiom sections is generalized to include sort inclusion expressions. In

the abstract syntax shown in Section 6.10, the definition of <axiom> is replaced by

the following rules:

<axiom> ::= <static law> | <action dynamic law> | <fluent dynamic law>

| <sort inclusion expression>

<sort inclusion expression> ::= < sort name > “<<” <sort name>

For instance,

Truck << Vehicle;

is an axiom.

No sort name is allowed in the head of any axiom of the first three kinds;

no statically determined fluent name is allowed in the head of a fluent dynamic law

(this is similar to the requirement in C+, see Section 4.2). Without either of these

restrictions, the theorems in Chapter 11 would become incorrect.
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8.3 Interpreting Declarations

Declarations in MAD are interpreted in the same way as in mini-MAD (Section 6.12).

The condition on multiple declarations of a name and the definitions of SORTM
u and

SORTM
u(i) (Section 6.13) remain the same.

8.4 Sort Matching Conditions

As in mini-MAD, for any non-Boolean renaming clause

c(arg1, . . . , argn) is · · ·

in an import statement IS with importee module M , we require that SORT argi
be

equal to IS (SORTM
c(i)).

Otherwise, the sort matching conditions from Section 6.14 do not apply to

the full language. Requiring the sort of an argument of a constant c always match

the declaration of c would be too restrictive in the presence of subsorts. For instance,

in the example from Section 8.1 we would not be able to use a term of the subsort

Truck of Vehicle as the argument of Drive. Even the (intuitively meaningless)

expression

Location(Hi) (8.3)

in the context of the module MONKEY would be considered a syntactically correct

MAD formula. The semantics of mini-MAD, based on a translation into C+ (Sec-

tion 7.2), would not be applicable to expression (8.3), because (8.3) is not among the

contants of the signature of cplus(MSMB). In MAD, on the other hand, the idea

that an argument of an expression should be of appropriate sort will be expressed
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semantically (Section 10.2.2).

8.5 Example

Consider the action description RDB shown in Figure 8.1. This action description

contains two modules: CARRY and DELIVER. Module CARRY describes general

“carry-like” actions. Prior to this module, we declare three sorts. In this module

the action Carry is declared to have three arguments of sorts Agent , Thing and

Place respectively, and the fluent Location is declared in the same way as in module

MOVE. The first axiom is a sort inclusion expression, and it states that sort Agent

is a subsort of sort Thing . The next four axioms are similar to those in module

MOVE. The last axiom says that action Carry cannot be executed if the agent and

the thing are not at the same location. After module CARRY and the declaration

of a new sort Block , there is the module DELIVER. In this module, another sort

inclusion expression is present, stating that sort Block is a subsort of Thing also. The

import statement at the end of module DELIVER says, intuitively, action Deliver

has all the properties of action Carry if we limit the first argument of Carry to

be the specific object Robot and limit the second argument to be of sort Block—

a subsort of SORTCarry(2), i.e., Thing . Note that in the import statement, the

expression Carry(Robot , b, p) would not be allowed in mini-MAD according to the

sort matching conditions.
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sorts

Agent ; Thing ; Place;

module CARRY;

actions

Carry(Agent ,Thing ,Place);

fluents

Location(Thing): simple(Place);

variables

g: Agent ; x: Thing ; p: Place;

axioms

Agent << Thing ;

exogenous Carry(g, x, p);
inertial Location(x);

Carry(g, x, p) causes Location(x) = p ∧ Location(g) = p;

nonexecutable Carry(g, x, p) if Location(x) = p;
nonexecutable Carry(g, x, p) if ¬(Location(g) = Location(x));

sorts

Block ;

module DELIVER;

objects

Robot : Agent ;
B1, B2: Block ;
P1, P2: Place;

actions

Deliver(Block ,Place);

variables

b: Block ; p: Place;

axioms

Block << Thing ;

import CARRY;
Carry(Robot , b, p) is Deliver(b, p);

Figure 8.1: Action description RDB
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Chapter 9

Review of First-order Causal

Logic

9.1 Syntax and Semantics of First-order Causal Theo-

ries

First-order causal logic is the basis of our semantics of MAD (Chapter 10). The

review of the syntax and semantics of first-order causal theories in this section follows

[Lifschitz, 1997, Section 2]. As in the propositional version of causal logic reviewed

in Section 3.1, the main idea of nonmonotonic causal logic [McCain and Turner,

1997] is to distinguish between the claim that a proposition is true and the stronger

claim that there is a cause for it to be true. Causal dependencies are described by

causal rules—expressions of the form

F ⇐ G, (9.1)
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where F and G are first-order formulas. Rule (9.1) expresses that there is a cause

for the head formula F to hold if the body formula G holds, or, in other words,

that G provides a “causal explanation” for F .

A (first-order) causal theory is defined by

• a finite subset of the signature1 of the underlying language, called the explain-

able symbols of the theory, and

• a finite set of causal rules.

In the definition of the semantics of causal theories below, we use the sub-

stitution of variables for the explainable symbols in a formula. In connection with

this, it is convenient to denote formulas by expressions like F (E), where E is the list

of all explainable symbols. Then, for any tuple e of variables that is similar2 to E,

the result of replacing all occurrences of the constants E in F (E) by the variables e

can be denoted by F (e).

Consider a causal theory T with the explainable symbols E and the causal

rules

Fi(E, xi) ⇐ Gi(E, xi) (i = 1, . . . ),

where xi is the list of all free variables of the i-th rule. Take a tuple e of new

variables similar to E. By T ∗(e) we denote the formula

∧

i

∀xi(Gi(E, xi) → Fi(e, x
i)).

1The signature of a first-order language is the set of its function constants and predicate constants
(other than equality). This includes, in particular, object constants (function constants of arity 0)
and propositional constants (predicate constants of arity 0).

2The similarity condition means that (i) e has the same length as E, (ii) if the k-th member of
E is a function constant then the k-th member of e is a function variable of the same arity, and (iii)
if the k-th member of E is a predicate constant then the k-th member of e is a predicate variable
of the same arity.
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Note that the occurrences of explainable symbols in the heads are replaced here by

variables, and the occurrences in the bodies are not. We will view T as shorthand

for the sentence

∀e(T ∗(e) ↔ e = E). (9.2)

(The expression e = E stands for the conjunction of the equalities between the

members of e and the corresponding members of E.) For instance, by a model

of T we mean a model of (9.2); a formula is entailed by T if it is entailed by (9.2).

Note that the tuple e may contain function and predicate variables, so that (9.2) is,

generally, a second-order formula.

Intuitively, the condition T ∗(e) expresses that the possible values e of the

explainable symbols E are “causally explained” by the rules of T . Sentence (9.2)

says that the actual values of these symbols are the only ones that are explained by

the rules of T .

9.2 Example

Let T be the causal theory with the rules

Block(B1) ⇐ ⊤,

Block(B2) ⇐ ⊤,

¬Block(x) ⇐ ¬Block(x),

(9.3)

where the predicate constant Block is explainable, and the object constants B1,

B2 are not explainable. Intuitively, the last line of (9.3) expresses the closed-world

assumption: if x is not a block then there is a cause for this. In this case, E is
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Block , e is a unary predicate variable, and T ∗(e) is

e(B1) ∧ e(B2) ∧ ∀x(¬Block(x) → ¬e(x)).

The second-order sentence (9.2) is equivalent in this case to the first-order sentence

∀x(Block(x) ↔ x = B1 ∨ x = B2). (9.4)
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Chapter 10

Semantics of MAD

In this chapter, we talk about the semantics of MAD based on the first-order causal

logic which is reviewed in Chapter 9. As in Chapter 7, we first turn an action

description D into its “normal form” δD. Then we translate this single-module

MAD action description into a causal theory in the sense of first-order causal logic.

10.1 Generating a Single-module Description

The definition of δ for MAD, as the corresponding definition for mini-MAD, uses

auxiliary functions ν, α, β and γ. It differs from the definition given in Chapter 7

in that the construction of the formula Cond(RC ), used to define ν (Section 7.1.1),

is a little different: it is modified in connection with the relaxation of sort matching

conditions (Section 8.4). Let RC be a Boolean constant renaming clause of form

(7.2). In MAD the formula Cond(RC ) is

G1 ∧ · · · ∧ Gn, (10.1)
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where Gi stands for

• xi = arg i if arg i is an object,

• SORT argi
(xi) if arg i is a variable,

where x1, . . . , xn are new identifiers. For instance, if RC is (7.5), then Cond(RC ) is

(x1 = Monkey) ∧ Place(x2),

where x1, x2 are new identifiers.

On the other hand, Cond(RC ) = ⊤ for non-Boolean renaming clause RC ,

same as in mini-MAD.

The definitions of functions ν, α, β, γ and δ are the same as those in mini-

MAD (see Sections 7.1.1 to 7.1.5). Finally, δD generates a single-module MAD

action description that is considered equivalent to D.

For instance, if IS is the import statement in action description RDB (Fig-

ure 8.1), RC is the constant renaming clause

Carry(Robot , b, p) is Deliver(b, p); (10.2)

in IS , and M is module CARRY, then in the axiom

Equiv(RC ) if Cond(RC )

corresponding to (10.2), the formula Cond(RC ) will be

(g1=Robot) ∧ SORT b(x1) ∧ SORT p(p1),
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module CARRY;

actions

Carry(Agent ,Thing ,Place);

fluents

Location(Thing): simple(Place);

variables

g: Agent ; x: Thing ; p: Place;
g1: Agent ; x1: Thing ; p1: Place;

axioms

¬Carry(g1, x1, p1) if ¬((g1=Robot) ∧ Block(x1) ∧ Place(p1));
Carry(g1, x1, p1) ↔ Deliver(x1, p1) if (g1=Robot) ∧ Block(x1) ∧ Place(p1);

Agent << Thing ;

exogenous Carry(g, x, p);
inertial Location(x);

Carry(g, x, p) causes Location(x) = p ∧ Location(g) = p;

nonexecutable Carry(g, x, p) if Location(x) = p;
nonexecutable Carry(g, x, p) if ¬(Location(g) = Location(x));

Figure 10.1: ν(RC , M) where RC is (10.2) and M is module CARRY

that is,

(g1=Robot) ∧ Block(x1) ∧ Place(p1),

and the formula Equiv(RC ) will be

Carry(g1, x1, p1) ↔ Deliver(x1, p1),

where g1, x1, p1 are new identifiers. The module ν(RC , M) is shown in Figure 10.1.

The module α(M, IS , 1) can be obtained from Figure 10.1 by prepending “I1.” to

each occurrence of every variable name and each occurrence of action name Carry .

The “normal form” action description δRDB is shown in Figure 10.2.
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sorts

Agent ; Thing ; Place;

sorts

Block ;

module DELIVER;

objects

Robot : Agent ;
B1, B2: Block ;
P1, P2: Place;

actions

Deliver(Block ,Place);
I1.Carry(Agent ,Thing ,Place);

fluents

Location(Thing): simple(Place);

variables

b: Block ; p: Place;
I1.g: Agent ; I1.x: Thing ; I1.p: Place;
I1.g1: Agent ; I1.x1: Thing ; I1.p1: Place;

axioms

Block << Thing ;

¬ I1.Carry(I1.g1, I1.x1, I1.p1) if ¬ ((I1.g1=Robot) ∧ Block(I1.x1) ∧ Place(I1.p1));
I1.Carry(I1.g1, I1.x1, I1.p1) ↔ Deliver(I1.x1, I1.p1)

if (I1.g1=Robot) ∧ Block(I1.x1) ∧ Place(I1.p1);

Agent << Thing ;

exogenous I1.Carry(I1.g, I1.x, I1.p);
inertial Location(I1.x);

I1.Carry(I1.g, I1.x, I1.p) causes Location(I1.x) = I1.p ∧ Location(I1.g) = I1.p;

nonexecutable I1.Carry(I1.g, I1.x, I1.p) if Location(I1.x) = I1.p;
nonexecutable I1.Carry(I1.g, I1.x, I1.p) if ¬(Location(I1.g) = Location(I1.x));

Figure 10.2: Action description δRDB

10.2 Translating a Single-module MAD Action Descrip-

tion to a First-order Causal Theory

Since any action description in MAD can be turned into a single-module action

description by applying function δ, it is sufficient that we describe the translation to

a first-order causal theory only for MAD action descriptions in this “normal” form.
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Given such an action description D and a nonnegative integer m (the length of the

behaviors that we are interested in), the causal theory Dm is defined below.

10.2.1 The Signature of Dm

The signature σDm consists of

• an explainable unary predicate constant s for each sort name s;

• a non-explainable object constant o for each object name o;

• the non-explainable object constant None;

• an explainable predicate constant i : c for each action name c and every i ∈

{0, . . . , m − 1}; the arity of i :c is the same as the arity of c;

• a predicate constant i : c for each Boolean fluent name c and every i ∈

{0, . . . , m}; the arity of i : c is the same as the arity of c; this constant is

explainable except for the case when c is simple and i = 0;

• a function constant i : c for each non-Boolean fluent name c and every i ∈

{0, . . . , m}; the arity of i : c is the same as the arity of c; this constant is

explainable except for the case when c is simple and i = 0.

For instance, let D be the single-module MAD action description δRDB

shown in Figure 10.2. The signature σDm consists of the non-explainable object

constants

Robot , B1, B2, P1, P2, None,

the explainable predicate constants

Agent , Thing , Place, Block , i :Deliver , i : I1.Carry (0 ≤ i < m),
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and the unary function constants

i : Location (0 ≤ i ≤ m)

that are explainable when i > 0.

The prefixes i : are “time stamps”, as in Section 4.2. For instance, the value

of

5 : Location(Robot)

is the location of Robot at time 5; the truth value of

3 : Deliver(B2, P1)

shows whether the robot delivers the block B2 to place P1 between times 3 and 4.

10.2.2 The Causal Rules of Dm

In the list of the causal rules of Dm below, the following notation is used: by i we

denote all integers in {0, . . . , m}; by j we denote all integers in {0, . . . , m − 1}; for

any formula F , i :F stands for the result of prepending “i :” to all fluent names and

action names in F ; by x1, . . . , xn, y we denote distinct object variables.

The set of causal rules of Dm consists of two groups. The first group is

determined by the signature δDm , as follows:

(i) ¬s(x) ⇐ ¬s(x) for each sort name s (the closed-world assumption for

sorts);

(ii) SORTo(o) ⇐ ⊤ for each object name o;
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(iii) o 6= None ⇐ ⊤ for each object name o;1

(iv) o1 6= o2 ⇐ ⊤ for each pair of distinct object names o1, o2 (the unique

names assumption for objects);

(v) the rules

¬ j : c(x1, . . . , xn) ⇐ ¬SORT c(1)(x1) ∨ · · · ∨ ¬SORT c(n)(xn)

for each action name c of arity n (all arguments should be of appropriate

sorts);

(vi) the rules

¬ i : c(x1, . . . , xn) ⇐ ¬SORT c(1)(x1) ∨ · · · ∨ ¬SORT c(n)(xn)

for each Boolean fluent name c of arity n, and the rules

i : c(x1, . . . , xn) = None ⇐ ¬SORT c(1)(x1) ∨ · · · ∨ ¬SORT c(n)(xn)

for each non-Boolean fluent name c of arity n (all arguments should be of

appropriate sorts);

(vii) the rules

i : c(x1, . . . , xn) 6= y ⇐ ¬SORT c(y) ∧ SORT c(1)(x1) ∧ · · · ∧ SORT c(n)(xn)

for each non-Boolean fluent name c of arity n (the value should be of the

appropriate sort).

1An expression of the form a 6= b is shorthand for the expression ¬(a = b).
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The second group of causal rules is determined by the axioms in D. It is similar to

the process of translating causal laws of C+ into propositional causal logic described

in [Giunchiglia et al., 2004, Section 4.2] and reviewed in Section 4.2. This group of

causal rules includes:

(viii) i : F ⇐ i : G ∧
∧

x SORT x(x), where the conjunction extends over all

variables x occurring in F or G, for each static law

F if G

in the list of axioms;

(ix) j : F ⇐ j : G ∧
∧

x SORT x(x), where the conjunction extends over all

variables x occurring in F or G, for each action dynamic law

F if G

in the list of axioms;

(x) j + 1:F ⇐ j + 1:G ∧ j :H ∧
∧

x SORT x(x), where the conjunction extends

over all variables x occurring in F , G or H, for each fluent dynamic law

F if G after H

in the list of axioms;

(xi) s1(x) → s2(x) ⇐ ⊤ for each sort inclusion expression s1 << s2 in the

list of axioms.

This concludes the definition of our translation from the language of action
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descriptions into the language of causal theories.

For instance, the causal theory (δRDB)m, corresponding to the single-module

MAD action description δRDB (Figure 10.2), is shown in Figure 10.3.

10.3 States and Transitions

For any MAD action description D, each model of the causal theory (δD)m rep-

resents a possible “history” of the state-transition system described by D over the

time instants 0, . . . , m. In particular, the models of (δD)0 are the states of D, and

the models of (δD)1 are the transitions of D.

For instance, consider the MAD action description RDB (Figure 8.1) and

the corresponding causal theory (δRDB)m (Figure 10.3). The signature σ(δRDB)0 is

{Agent , Thing , Place, Block , Robot , B1, B2, P1, P2, None, 0:Location},

where the first four symbols are explainable; the signature σ(δRDB)1 is

σ(δRDB)0 ∪ {0:Deliver , 0:I1.Carry , 1:Location},

where all the three added symbols are explainable.

We will give a few examples of models of causal theories (δRDB)0 and

(δRDB)1. In these examples, the universe U is the set

{Robot , B1, B2, P1, P2, None}. (10.3)

Or, more generally, U can be any subset of (10.3).
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Notation: o, o′ ∈ {Robot , B1, B2, P1, P2}, i ∈ {0, . . . ,m}, j ∈ {0, . . . ,m − 1}.

¬Agent(x) ⇐ ¬Agent(x),
¬Thing(x) ⇐ ¬Thing(x),
¬Place(x) ⇐ ¬Place(x),
¬Block(x) ⇐ ¬Block(x),

Agent(Robot) ⇐ ⊤,

Block(B1) ⇐ ⊤,

Block(B2) ⇐ ⊤,

Place(P1) ⇐ ⊤,

Place(P2) ⇐ ⊤,

o 6= None ⇐ ⊤,

o 6= o′ ⇐ ⊤ (o 6= o′),

¬ j :Deliver(x1, x2) ⇐ ¬Block(x1) ∨ ¬Place(x2),
¬ j : I1.Carry(x1, x2, x3) ⇐ ¬Agent(x1) ∨ ¬Thing(x2) ∨ ¬Place(x3),
i :Location(x1) = None ⇐ ¬Thing(x1),

i :Location(x1) 6= y ⇐ ¬Place(y) ∧ Thing(x1),

Block(x) → Thing(x) ⇐ ⊤,

Agent(x) → Thing(x) ⇐ ⊤,

¬ j : I1.Carry(I1.g1, I1.x1, I1.p1) ⇐ ¬ ((I1.g1 = Robot) ∧ Block(I1.x1) ∧ Place(I1.p1))
∧Agent(I1.g1) ∧ Thing(I1.x1) ∧ Place(I1.p1),

j : I1.Carry(I1.g1, I1.x1, I1.p1) ↔ j :Deliver(I1.x1, I1.p1)
⇐ (I1.g1 = Robot) ∧ Block(I1.x1) ∧ Place(I1.p1)

∧Agent(I1.g1) ∧ Thing(I1.x1) ∧ Place(I1.p1),

j : I1.Carry(I1.g, I1.x, I1.p) ⇐ j : I1.Carry(I1.g, I1.x, I1.p)
∧Agent(I1.g) ∧ Thing(I1.x) ∧ Place(I1.p),

¬ j : I1.Carry(I1.g, I1.x, I1.p) ⇐ ¬ j : I1.Carry(I1.g, I1.x, I1.p)
∧Agent(I1.g) ∧ Thing(I1.x) ∧ Place(I1.p),

j + 1:Location(I1.x) = I1.p ⇐ j + 1:Location(I1.x) = I1.p ∧ j :Location(I1.x) = I1.p
∧Place(I1.p) ∧ Thing(I1.x),

j + 1:Location(I1.x) = I1.p ∧ j + 1:Location(I1.g) = I1.p
⇐ j : I1.Carry(I1.g, I1.x, I1.p) ∧ Agent(I1.g1) ∧ Place(I1.p) ∧ Thing(I1.x),

⊥ ⇐ j : I1.Carry(I1.g, I1.x, I1.p) ∧ j :Location(I1.x) = I1.p
∧Agent(I1.g) ∧ Thing(I1.x) ∧ Place(I1.p),

⊥ ⇐ j : I1.Carry(I1.g, I1.x, I1.p) ∧ ¬(j :Location(I1.g) = j :Location(I1.x))
∧Agent(I1.g) ∧ Thing(I1.x) ∧ Place(I1.p).

Figure 10.3: Rules of causal theory (δRDB)m
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Consider two interpretations s0 and s1 of σ(δRDB)0 that are defined by

s0[Agent ](x) = s1[Agent ](x) =





true if x = Robot ,

false otherwise,

s0[Thing ](x) = s1[Thing ](x) =





true if x ∈ {Robot , B1, B2},

false otherwise,

s0[Place](x) = s1[Place](x) =





true if x ∈ {P1, P2},

false otherwise,

s0[Block ](x) = s1[Block ](x) =





true if x ∈ {B1, B2},

false otherwise,

s0[o] = s1[o] = o o ∈ {Robot , B1, B2, P1, P2,None},

s0[0 :Location](x) =





P1 if x ∈ {Robot , B1, B2},

None otherwise,

s1[0 :Location](x) =





P2 if x ∈ {Robot , B1},

P1 if x = B2,

None otherwise.

Interpretations s0 and s1 are two models of (δRDB)0, that is, states of RDB .
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Consider the interpretation tr of σ(δRDB)1 that is defined by

tr [c] = s0[c], c ∈ {Agent ,Thing ,Place,Block ,Robot , B1, B2, P1, P2,None},

tr [0 :Location] = s0[0 :Location],

tr [1 :Location] = s1[0 :Location],

tr [0 :Deliver ](x, p) =





true if x = B1 ∧ p = P2,

false otherwise,

tr [0 : I1.Carry ](g, x, p) =





true if g = Robot ∧ x = B1 ∧ p = P2,

false otherwise.

This interpretation tr is a model of (δRDB)1 and consequently a transition of RDB .

Intuitively, transition tr starts at state s0 and ends at state s1: at time 0,

both the robot and the block B1 are at Place P1; between time 0 and 1, the robot

delivers the B1 from P1 to P2; consequently at time 1 both the robot and B1 are

at P2. The extent of every sort remain unchanged during the transition.
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Chapter 11

Properties of MAD

In this chapter we argue that the new approach to the semantics of MAD action

descriptions with variables has some desirable, intuitively expected mathematical

properties. Since the semantics of MAD uses the function δ that turns an arbitrary

action description into a single-module action description, we can limit our attention,

without loss of generality, to action descriptions in this normal form.

11.1 Extent of a Sort

Let D be a single-module MAD action description. Proposition 1 below shows

that in any model of Dm the extent of any sort S corresponds to the set of the

object names that one would expect to belong to S in accordance with the object

declarations and sort inclusion expressions of D.

To make this claim precise, we will use the following notation. First we define

the sort graph of D as follows: its vertices are the sort names s1, . . . , sn declared in

D; its edges are the pairs (si, sj) such that the sort inclusion expression si << sj is

an axiom of D. This graph is usually acyclic. For any sort name s, by |s| we denote

105



the set of object names o such that s is reachable from SORT o in the sort graph

of D.

In the special case when D is a mini-MAD action description, the sort graph

of D has no edges, and |s| is the same as UD(s).

Proposition 1 Assume that D is a single-module MAD action description. For

any sort name s declared in D, the causal theory Dm entails

∀x


s(x) ↔

∨

o:o∈|s|

x = o


 .

For instance, assume that the sort declaration section of D is

sorts

Vehicle;Plane;Truck ;

the object declaration section is

objects

Car1,Boat1 : Vehicle;

Plane1 : Plane;

Truck1,Truck2 : Truck ;

and the sort inclusion expressions in the axiom section are

Plane << Vehicle;

Truck << Vehicle;

It is clear that |Vehicle| = {Car1, Boat1, Plane1, Truck1, Truck2}. By Proposi-
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tion 1, Dm entails

∀x(Vehicle(x) ↔ x = Car1 ∨ x = Boat1 ∨ x = Plane1 ∨ x = Truck1 ∨ x = Truck2).

(11.1)

The assumption that the heads of axioms of D don’t contain sort names

in Section 8.2.3 is essential. For instance, if the above sort declaration section also

contains another sort name Thing , the above object declaration section also contains

the object specification

Helicopter1 : Thing

and the axiom section contains the axiom

Vehicle(Helicopter1 ) if ⊤,

then (11.1) is not entailed by Dm although |Vehicle| remains the same.

11.2 States and Transitions

In the theory of C+, the view that histories of length m can be thought of as

paths in a transition system is justified by two theorems, Propositions 7 and 8 from

[Giunchiglia et al., 2004]. The first of them shows that any transition “starts” in a

state and “ends” in a state. According to the second theorem, an interpretation of

the signature of Dm is a model of Dm if and only if it “consists of m transitions.”

Propositions 2 and 3 below are similar to these theorems.

Let D be a single-module MAD action description. For any interpretation I

of σD1 , by I0 and I1 we denote the interpretations of σD0 defined as follows. (Here
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|I| stands for the universe of I.)

|Ii| = |I|,

Ii[s] = I[s] for every sort name s,

Ii[o] = I[o] for every object name o,

Ii[0 : c] = I[i : c] for every fluent name c,

Ii[None] = I[None].

Proposition 2 For any transition I of D, the interpretations I0 and I1 are states

of D.

Intuitively, if I is a transition, then I0 is the state at which I starts and I1 is the

state at which I ends. For instance, in the example in Section 10.3, tr0 = s0 and

tr1 = s1.

For any interpretation I of σDm , by I(i) (0 ≤ i < m) we denote the interpre-

tations of σD1 defined as follows:

|I(i)| = |I|,

I(i)[s] = I[s] for every sort name s,

I(i)[o] = I[o] for every object name o,

I(i)[0 :c] = I[i :c] for every fluent or action name c,

I(i)[1 :c] = I[i + 1:c] for every fluent name c,

I(i)[None] = I[None].

Proposition 3 For any positive integer m and any interpretation I of σDm, I is a

model of Dm iff every I(i) (0 ≤ i < m) is a transition of D.

Intuitively, for any “history” I of length m, I(i) is the i-th transition of that history.
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11.3 Proofs

The proofs of these propositions refer to properties of circumscription [McCarthy,

1980, McCarthy, 1986], and we will begin with the review of this concept.

11.3.1 Review of Circumscription

The review of circumscription follows [Lifschitz, 1994].

First some notation is introduced. For any predicate symbols P, Q of the

same arity,

P = Q stands for ∀x(P (x) ↔ Q(x)),

P ≤ Q stands for ∀x(P (x) → Q(x)),

where x is a tuple of distinct variables. Furthermore,

P < Q stands for (P ≤ Q) ∧ ¬(P = Q).

Let A(P ) be a sentence containing a predicate constant P . The circumscrip-

tion of P in A(P ) (denoted by CIRC[A(P ); P ]) is the second-order sentence

A(P ) ∧ ¬∃p[A(p) ∧ p < P ],

where p is a predicate variable.

Let P and Q be tuples P1, . . . , Pn and Q1, . . . , Qn of predicate symbols such

that, for each i = 1, . . . , n, Qi has the same arity as Pi. Then P = Q stands for

P1 = Q1 ∧ · · · ∧ Pn = Qn,
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P ≤ Q stands for

P1 ≤ Q1 ∧ · · · ∧ Pn ≤ Qn,

and P < Q is

(P ≤ Q) ∧ ¬(P = Q).

Then the parallel circumscription of the tuple P in A(P), CIRC[A(P);P], is defined

as shorthand for the expression

A(P) ∧ ¬∃p[A(p) ∧ p < P],

where p is the tuple p1, . . . , pn of distinct predicate variables with appropriate arities.

A formula is definite in the predicates P (that is, P1, . . . , Pn) if it is the

conjunction of implications of the form

F (P) → Pi(t1, . . . , tk),

where t1, . . . , tk are terms and F (P) is a formula such that every occurrence of each

Pi in it is positive. (An occurrence of an atom in a formula is positive if it is in the

antecedent of an even number of implications.)

A predicate expression is of the form

λx1 · · · , xnF (x1, . . . , xn). (11.2)

Predicate expressions are convenient for describing formulas obtained by substi-

tution. If E is (11.2), and t1, . . . , tn are terms, then E(t1, . . . , tn) stands for the

formula F (t1, . . . , tn). If A(P ) is a formula containing a predicate constant P , and

E is a predicate expression of the same arity as P , then A(E) stands for the result
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of replacing each atomic part P (t1, . . . , tn) in A(P ) by E(t1, . . . , tn) (after renaming

the bound variables in A in the usual way, if necessary). For instance, if A(P ) is

P (a) ∧ P (b), then A(λx(x = y)) is a = y ∧ b = y. For a tuple E of predicate

expressions, A(E) is defined in a similar way corresponding to A(P).

In the statement of Lemma 1 [Lifschitz, 1994, Section 3.5], A(P) is the

universal closure of a formula that is definite in P, and E is the tuple E1, . . . , En,

where Ei denotes the predicate expression

λx∀p(A(p) → pi(x)) (i = 1, . . . , n).

Lemma 1 The sentence A(E) is universally valid.

11.3.2 Lemmas

Besides Lemma 1, the following lemmas are used in the proofs of Propositions 1

to 3. In the statement of Lemma 2, the symbols P, A(P) and E have the same

meaning as in the statement of Lemma 1, described in Section 11.3.1 above.

Lemma 2 The circumscription CIRC[A(P);P] entails E = P.

Proof

CIRC[A(P);P] = A(P) ∧ ¬∃p(A(p) ∧ p < P)

⇔ A(P) ∧ ∀p(¬A(p) ∨ ¬(p < P))

⇔ A(P) ∧ ∀p(¬A(p) ∨ ¬(p ≤ P) ∨ p = P).

The second conjunctive term entails

¬A(E) ∨ ¬(E ≤ P) ∨ (E = P).
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By Lemma 1, A(E) is universally valid. Consequently

CIRC[A(P);P] |= ¬(E ≤ P) ∨ (E = P).

To complete the proof of this lemma, we will show that CIRC[A(P);P] |= E ≤ P,

in other words, for any i, CIRC[A(P);P] |= Ei ≤ Pi.

Since Ei(x) = ∀p(A(p) → pi(x)), the formula

∀x[Ei(x) → (A(P) → Pi(x))]

is logically valid. Since CIRC[A(P);P] |= A(P), it follows that

CIRC[A(P);P] |= ∀x[Ei(x) → Pi(x)].

The last formula is Ei ≤ Pi.

Lemma 3 is a generalization of Proposition 1 from [Lifschitz, 1997]:

Lemma 3 A causal theory of the form

Fi ⇐ (1 ≤ i ≤ m),

¬Pj(x) ⇐ ¬Pj(x) (1 ≤ j ≤ n),

where predicate constants P1, . . . , Pn are the only explainable symbols of this theory

and each x is a tuple of distinct variables, is equivalent to the parallel circumscription

of P1, . . . , Pn in
∧m

i=1 ∀̃Fi.
1

Proof Denote the given causal theory by T , and let F (P) stand for
∧m

i=1 ∀̃Fi, where

1By e∀F we denote the universal closure of F .
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P denotes the tuple of P1, . . . , Pn. Then

T ∗(p) ⇔ F (p) ∧
∧n

j=1 ∀x(¬Pj(x) → ¬pj(x))

⇔ F (p) ∧ (p ≤ P),

and consequently

T = T ∗(P) ∧ ∀p(T ∗(p) → p = P)

⇔ F (P) ∧ ∀p(F (p) ∧ (p ≤ P) → p = P)

⇔ F (P) ∧ ∀p(p < P → ¬F (p))

⇔ F (P) ∧ ¬∃p(F (p) ∧ p < P)

= CIRC[F (P);P].

Lemma 4 below is the reproduction of Lemma 3 in [Lifschitz, 1997].

About causal theories T1, T2 with sets E1, E2 of explainable symbols we say

that they are disjoint if

• E1 and E2 are disjoint sets,

• the symbols in E1 do not occur in the heads of the rules of T2, and the symbols

in E2 do not occur in the heads of the rules of T1.

For any pairwise disjoint causal theories T1, . . . , Tm, define their union to be

the causal theory obtained by combining their rules and their explainable symbols.

Lemma 4 The union of pairwise disjoint causal theories T1, . . . , Tm is equivalent

to the conjunction T1 ∧ · · · ∧ Tm.

Lemma 5 Let T be a causal theory with the set E of explainable symbols. If T ′ is

a causal theory such that
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• its set E′ of explainable symbols is a subset of E,

• its set of causal rules is a subset of T ,

• every causal rule of T containing a symbol from E′ in the head belongs to T ′,

then T |= T ′.

Proof Denote E \E′ by E′′, Let T ′′ be the causal theory consisting of causal rules

of T \ T ′ and with the set of explainable symbols E′′. Then

T = T ∗(E) ∧ ∀e[T ∗(e) → e = E]

= T ′∗(E) ∧ T ′′∗(E) ∧ ∀e′e′′[T ∗(e′, e′′) → (e′ = E′ ∧ e′′ = E′′)].

The last conjunctive term entails

∀e′[T ∗(e′, E′′) → (e′ = E′ ∧ E′′ = E′′)],

which is equivalent to

∀e′[T ′∗(e′, E′′) ∧ T ′′∗(e′, E′′) → e′ = E′]. (11.3)

Since the causal rules from T ′′ do not contain symbols from E′ in the head, (11.3)

can be written as

∀e′[T ′∗(e′, E′′) ∧ T ′′∗(E) → e′ = E′].

Thus T entails this formula. Since T ′∗(E) and T ′′∗(E) are both present in T as

conjunctive terms, it follows that T entails

T ′∗(E) ∧ ∀e′[T ′∗(e′, E′′) → e′ = E′].
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This formula is exactly T ′.

11.3.3 Proof of Proposition 1

Proposition 1 Assume that D is a single-module MAD action description. For

any sort name s declared in D, the causal theory Dm entails

∀x


s(x) ↔

∨

o:o∈|s|

x = o


 .

Proof It is easy to see that the rules of Dm containing sort names in the head are:

• ¬s(x) ⇐ ¬s(x) for each sort name s,

• SORT o(o) ⇐ ⊤ for each object name o,

• s(x) → s′(x) ⇐ ⊤ for each element (s, s′) of the set E of edges in the sort

graph of D.

Let D1
m be the causal theory consisting of these rules, such that its set s of explain-

able symbols consists of all sort names in D. It is clear that no explainable symbols

of D1
m occur in the head of any other rules in Dm. By Lemma 5, Dm |= D1

m.

The causal theory D1
m satisfies the condition of Lemma 3, so that D1

m is

equivalent to the parallel circumscription CIRC [F (s); s], where F (s) is

∧

o

SORT o(o) ∧
∧

s,s′ : (s,s′)∈E

∀x (s(x) → s′(x))

(the first conjunction extends over all object names o declared in D). F (s) can be
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equivalently rewritten as the universal closure of the formula

∧

o

(⊤ → SORT o(o)) ∧
∧

s,s′ : (s,s′)∈E

(s(x) → s′(x)),

which is definite in s. By Lemma 2, CIRC [F (s); s] |= E = s, where E is the tuple of

predicate expressions λx∀es(F (es) → s(x)) for all sort names s (here es is a tuple

of predicate variables es for each sort name s).

Since D1
m is equivalent to CIRC [F (s); s], D1

m |= E = s, that is,

D1
m |=

∧

s

∀x{ ∀es[F (es) → es(x)] ↔ s(x) }.

Therefore, to prove Proposition 1, it is sufficient to prove that, for any sort

name s in D, the formula

∀x


 ∀es (F (es) → es(x)) ↔

∨

o:o∈|s|

x = o


 (11.4)

is logically valid.

(i) Left to right: assume

∀es (F (es) → es(x)). (11.5)

According to the definition of F (s), F (es) is

∧

o

eSORTo
(o) ∧

∧

(s,s′) ∈E

∀x (es(x) → es′(x)). (11.6)
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Then we can rewrite (11.5) as

∀es








∧

o

eSORTo
(o) ∧

∧

(s,s′) ∈E

∀x (es(x) → es′(x))


 → es(x)



 .

By substituting λx(
∨

o∈|s| x = o) for every es, we conclude




∧

o

∨

o′∈|SORTo|

o = o′ ∧
∧

(s,s′) ∈E

∀x




∨

o∈|s|

x = o →
∨

o∈|s′|

x = o





 →

∨

o∈|s|

x = o.

(11.7)

The first conjunctive term in the antecedent of (11.7)

∧

o

∨

o′∈|SORTo|

o = o′

is logically valid because one of the disjunctive terms o = o′ is o = o for any object

name o.

The second conjunctive term in the antecedent of (11.7)

∧

(s,s′) ∈E

∀x




∨

o∈|s|

x = o →
∨

o∈|s′|

x = o




is also logically valid: it is equivalent to

∧

(s,s′) ∈E

∀x




∧

o∈|s|


x = o →

∨

o∈|s′|

x = o





 ,

which is equivalent to
∧

(s,s′) ∈E

∧

o∈|s|

∨

o′∈|s′|

o = o′.

By the definition of |s|, for every o ∈ |s|, s is reachable from SORT o in the sort
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graph of D. If (s, s′) ∈ E , then s′ is reachable from SORT o also. Thus o ∈ |s′|, and

one of the disjunctive terms o = o′ is o = o.

Therefore, the antecedent of (11.7) is logically valid, and we conclude the

consequent

∨
o:o∈|s| x = o,

which is the right-hand side of (11.4).

(ii) Right to left: it is sufficient to prove that, for any o, s such that o ∈ |s|,

∀x[ x = o → ∀es(F (es) → es(x)) ]

is logically valid. This formula is equivalent to

∀es(F (es) → es(o)). (11.8)

Since o ∈ |s|, s is reachable from SORT o in the sort graph of D. So there

exists a path from SORT o to s in this graph. We will prove (11.8) by induction on

the length l of that path.

Base case (l = 0): s = SORT o. The consequent es(o) is one of the conjunctive

terms of the antecedent (11.6).

Induction step: Assume that there exists a path of length l + 1 from SORT o

to s, then there exists a path of length l from SORT o to some sort s′ such that

(s′, s) ∈ E . By induction hypothesis, the formula

∀es(F (es) → es′(o))
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is logically valid. On the other hand, the formula

∀es{F (es) → ∀x[es′(x) → es(x)]}.

is logically valid because the consequent is one of the conjunctive terms of the

antecedent (11.6). Thus the formula

∀es{ F (es) → [es′(o) ∧ ∀x(es′(x) → es(x))] } (11.9)

is logically valid also, so is (11.8) since it is entailed by (11.9).

11.3.4 Proof of Proposition 2

Proposition 2 For any transition I of D, the interpretations I0 and I1 are states

of D.

Proof It is clear that all causal rules of D0 are causal rules of D1, and that the

explainable symbols of D0 (sort names and 0:c for each statically determined fluent

name c) are explainable symbols of D1. Because the explainable symbols in D0

don’t occur in the heads of the other rules of D1, by Lemma 5, D1 |= D0. Since I is

a transition, I is a model of D1, so I is a model of D0 also. Since I0 is I restricted

to the signature σD0 , it follows that I0 is a model of D0, that is, a state.

Now let us prove that I1 is a state. Let D+
0 denote the causal theory obtained

from D0 by replacing every occurrence of “0 :” with “1 :” in the signature and in

the causal rules. The set of explainable symbols of D+
0 consists of every sort name

and 1 : c for every statically determined fluent name c. It is easy to see that it is a

subset of the set of explainable symbols of D1, and that the causal rules of D+
0 is a

subset of D1. Because the explainable symbols of D+
0 don’t occur in the heads of
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the other rules of D1, by Lemma 5, D1 |= D+
0 .

Recall that I1 is defined by

|I1| = |I|,

I1[s] = I[s] for every sort name s,

I1[o] = I[o] for every object name o,

I1[0 : c] = I[1 : c] for every fluent name c,

I1[None] = I[None].

Let (I1)+ be the interpretation of the signature σD+
0 such that

|(I1)+| = |I|,

(I1)+[s] = I[s] for every sort name s,

(I1)+[o] = I[o] for every object name o,

(I1)+[1 : c] = I[1 : c] for every fluent name c,

(I1)+[None] = I[None].

It is easy to see that

(I1)+ |= D+
0 iff I1 |= D0. (11.10)

On the other hand, (I1)+ is I restricted to σD+
0 .

Since I is a model of D1, I is a model of D+
0 , which means that (I1)+ is a

model of D+
0 . By (11.10), I1 is a model of D0.

11.3.5 Proof of Proposition 3

Proposition 3 For any positive integer m and any interpretation I of σDm, I is

a model of Dm iff every I(i) (0 ≤ i < m) is a transition of D.
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Proof Proof by induction on m.

Base case (m = 1): it is trivial since I(0) = I.

Induction step: assuming that the assertion of Proposition 3 holds for a

positive integer m, we will prove that it holds for m + 1 also.

(i) Assume that an interpretation I of σDm+1 is a model of Dm+1. It is clear

that every causal rule of Dm is a causal rule of Dm+1, and every explainable symbol

of is Dm is an explainable symbol of Dm+1. Since the explainable symbols of Dm

do not occur in the heads of any other rules of Dm+1, by Lemma 5, Dm+1 |= Dm.

Thus I restricted to σDm is a model of Dm. By the induction hypothesis, it follows

that I(i) is a transition of D for every i such that 0 ≤ i < m. It remains to prove

that I(m) is a transition of D.

Let T be the causal theory defined as follows. It consists of the following

causal rules of Dm+1 (see Section 10.2.2):

• rules (i), (ii), (iii), (iv) and (xi);

• rules (vi), (vii), and (viii) with time stamp i = m;

• rules (vi), (vii), and (viii) with time stamp i = m + 1;

• rules (v), (ix), and (x) with time stamp j = m.

Its set of explainable symbols includes every sort name, m :c for each action name c,

m : c and (m + 1) : c for each statically determined fluent name c, and (m + 1) : c

for each simple fluent name c. Its set of non-explainable symbols includes every

object name, the object constant None, and m : c for each simple fluent name c.

According to the restrictions in the syntax of MAD (Section 8.2.3), every rule of

Dm+1 containing explainable symbols of T in the head belongs to T . By Lemma 5,

Dm+1 |= T . Thus I restricted to σT is a model of T .
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On the other hand, T is exactly the causal theory obtained from D1 by

increasing every time stamp by m in the causal rules and in the signature (replacing

every occurrence of “i :” with “(i + m) :”), and I restricted to σT is exactly the

interpretation obtained from I(m) by increasing every time stamp by m. Therefore

I(m) is a model of D1, that is, a transition of D.

(ii) Assume that for an interpretation I of σDm+1 , I(i) is a transition of D

for every i such that 0 ≤ i < m + 1. By the induction hypothesis, I restricted to

σDm is model of Dm.

Let D′
1 be the causal theory defined as follows. It consists of the following

causal rules of D1 (see Section 10.2.2):

• rules (vi), (vii), and (viii) with time stamp i = 1;

• rules (v), (ix), and (x) with time stamp j = 0.

Its signature includes the same symbols in the signature of D1, and its set of ex-

plainable symbols includes 0 : c for each action name c, and 1 : c for each fluent

name c. By Lemma 5, D1 |= D′
1. Since I(m) is a transition of D, I(m) is model of

D′
1 also. Let T ′ be the causal theory obtained from D′

1 by increasing every time

stamp by m in the causal rules and in the signature, and let I ′ be the interpretation

of σT ′

obtained from I(m) by increasing every time stamp by m. It follows that I ′

is model of T ′.

On the other hand, I ′ is exactly I restricted to the signature of T ′. Since I

restricted to σDm is model of Dm, it follows that I is model of Dm∧T ′. Furthermore,

it is easy to see that Dm+1 = Dm∪T ′, and that T ′ and Dm are disjoint. By Lemma 4,

it follows that I is model of Dm+1.
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Chapter 12

Relationship Between the Two

Semantics

In Sections 7.2 and 10.2, we presented two approaches to defining the semantics of

modular action description languages. In the semantics of mini-MAD, grounding

was used to turn every action description containing a single module into a set of

causal laws in C+. In the semantics of MAD, every action description containing a

single module was translated into first-order causal logic. To relate these two views

to each other, we will show that the second approach, when restricted to mini-MAD,

is equivalent to the first, under the assumption that the universe of every sort is

non-empty. (This assumption corresponds to the requirement, in the semantics

of C+, that the domain of every constant be a non-empty set.) In this chapter,

D is an arbitrary mini-MAD action description with this property. Propositions 4

and 5 below show how models of (cplus(D))m in the sense of propositional causal

logic (Section 3.1) and models of (δD)m in the sense of first-order causal logic

(Section 9.1) can be characterized in terms of each other.

123



12.1 From First-order to Propositional Causal Logic

In the construction of interpretations of (cplus(D))m, we refer to the following two

conditions on an interpretation I of σ(δD)m :

(a) I |= o1 6= o2 for any pair of distinct object names o1, o2, and I |= o 6= None

for any object name o;

(b) I |= ∀x [SORT c(1)(x1) ∧ · · · ∧ SORT c(n)(xn) →
∨

o∈UD(SORT c)
i : c(x) = o], for

any non-Boolean fluent name c of arity n and any i ∈ {0, . . . , m}, where x

stands for x1, . . . , xn.

For any interpretation I of σ(δD)m satisfying these conditions, by Iprop we

denote the interpretation (in the sense of propositional causal logic) of the signa-

ture σ(cplus(D))m such that

• for each Boolean constant i :c(o1, . . . , on),

Iprop [i :c(o1, . . . , on)] = I[i :c](I[o1], . . . , I[on]);

• for each non-Boolean fluent constant i : c(o1, . . . , on), Iprop [i : c(o1, . . . , on)] is

the object o of SORT c such that I[i :c](I[o1], . . . , I[on]) = I[o]. (Conditions (a)

and (b) guarantee the uniqueness and existence of such o.)

Any model I of (δD)m satisfies conditions (a) and (b) above because (δD)m contains

the causal rules

o1 6= o2 ⇐ ⊤

for all pairs of distinct object names o1, o2, and

o 6= None ⇐ ⊤
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for all object names o, and

i :c(x1, . . . , xn) 6= y ⇐ ¬SORT c(y) ∧ SORT c(1)(x1) ∧ · · · ∧ SORT c(n)(xn)

for all non-Boolean fluent names c.

Proposition 4 For any model I of (δD)m in the sense of first-order causal logic,

Iprop is a model of (cplus(D))m in the sense of propositional causal logic.

12.2 From Propositional to First-order Causal Logic

For any interpretation J of σ(cplus(D))m , by J fo we denote the interpretation (in the

sense of first-order logic) of the signature σ(δD)m such that

• |J fo | consists of all object names and the symbol None,

• J fo [s](x) =





true if x ∈ UD(s),

false otherwise,

for every sort name s,

• J fo [o] = o for every object name o,

• J fo [None] = None,

• J fo [i : c](x1, . . . , xn)

=





J [i : c(x1, . . . , xn)] if xk ∈ UD(SORT c(k)) for all k,

f otherwise,

for every action name or Boolean fluent name c,

• J fo [i : c](x1, . . . , xn)
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=





J [i : c(x1, . . . , xn)] if xk ∈ UD(SORT c(k)) for all k,

None otherwise,

for every non-Boolean fluent name c.

Note that (Jfo) satisfies conditions (a) and (b) from Section 12.1, and (Jfo)prop = J .

Proposition 5 For any model J of (cplus(D))m in the sense of propositional causal

logic, J fo is a model of (δD)m in the sense of first-order causal logic.

12.3 Proofs

12.3.1 Lemmas

The definition of Cond(RC ) in Section 10.1, restricted to constant renaming clauses

of mini-MAD, is somewhat different from the definition of Cond(RC ) in Section 7.1.

In the proofs of Propositions 4 and 5, this difference is essential, and we will write

Condmini when we refer to Cond as defined in Section 7.1. The symbols νmini and

δmini are understood in a similar way.

Lemma 6 describes the relationship between the functions δ and δmini in

application to mini-MAD action descriptions.

Lemma 6 For any positive integer m, the first-order causal theory (δminiD)m is

equivalent to (δD)m.

Proof Take any Boolean constant renaming clause (7.2) in D. It is clear that

Cond(RC ) = Condmini(RC ) ∧
∧

i

SORT argi
(xi), (12.1)

where the big conjunction extends over all i such that arg i is a variable. According to

the sort matching conditions (Section 6.14), SORT argi
= SORT c(i). For any module
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M from D, xi is declared in the module ν(RC , M) to be of SORT c(i), so that (12.1)

can be written as

Cond(RC ) = Condmini(RC ) ∧
∧

i

SORT xi
(xi).

Consequently, module ν(RC , M) can be obtained from module νmini(RC , M) by

replacing Condmini(RC ) with Condmini(RC )∧
∧

i SORT xi
(xi) in the bodies of some

axioms of the forms

c(x1, . . . , xn) ↔ rhs(x var) if Condmini(RC )

and

¬c(x1, . . . , xn) if ¬Condmini(RC ).

It follows that δD can be obtained from δminiD by replacing G with G ∧ H

in the bodies of some axioms

F if G (12.2)

F if ¬G, (12.3)

where H is the conjunction of the formulas SORT x(x) for some variables x occurring

in F . The causal rules of (δminiD)m corresponding to (12.2) and (12.3) are

i :F ⇐ i :G ∧
∧

x

SORT x(x) (12.4)

i :F ⇐ i :¬G ∧
∧

x

SORT x(x) (12.5)

where the conjunction extends over all variables x occurring in F or G. The causal
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rules of (δD)m corresponding to (12.2) and (12.3) are

i :F ⇐ i :G ∧ H ∧
∧

x

SORT x(x) (12.6)

i :F ⇐ ¬((i :G) ∧ H) ∧
∧

x

SORT x(x) (12.7)

The body of (12.4) is equivalent to the body of (12.6), and the body of (12.5) is

equivalent to the body of (12.7), because each conjunctive term of H is a conjunctive

term of
∧

x SORT x(x).

Therefore, (δminiD)m and (δD)m are equivalent to each other.

In the signature (δD)m (Section 10.2.1), the symbol 0 : c is non-explainable

when c is a simple fluent name, and in mini-MAD all fluents are simple. Lemma 7

below shows that (δD)m is equivalent to a first-order causal theory obtained from

(δD)m by making 0 : c explainable and adding some causal rules. It is similar to

Proposition 2 in [Lifschitz, 1997].

Lemma 7 For any positive integer m, let T denote the corresponding first-order

causal theory (δD)m. Let T1 be the first-order causal theory obtained from T by

making 0 :c explainable for some (possibly all) fluent names c and adding, for each

of these fluent names, the causal rules

0:c(x1, . . . , xn) ⇐ 0:c(x1, . . . , xn) ∧ SORT c(1)(x1) ∧ · · · ∧ SORT c(n)(xn),

¬ 0:c(x1, . . . , xn) ⇐ ¬ 0:c(x1, . . . , xn) ∧ SORT c(1)(x1) ∧ · · · ∧ SORT c(n)(xn),

if c is a Boolean fluent name of arity n, and the causal rule

0:c(x1, . . . , xn) = y ⇐ 0:c(x1, . . . , xn) = y

∧SORT c(y) ∧ SORT c(1)(x1) ∧ · · · ∧ SORT c(n)(xn),
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if c is a non-Boolean fluent name of arity n. Then T is equivalent to T1.

Proof Clearly it is sufficient to prove this lemma when 0:c is made explainable for

only one fluent name c.

According to the semantics of first-order causal theories (Section 9.1), T1 is

understood as the sentence

T ∗
1 (u, v) ∧ ∀euev(T

∗
1 (eu, ev) → (eu = u ∧ ev = v)), (12.8)

where v denotes 0 :c, u denotes the list of all other explainable symbols in T1 (that

is, all explainable symbols in T ), and ev and eu denote the corresponding variables.

The first conjunctive term in (12.8), T ∗
1 (u, v), is equivalent to T ∗(u, v). On

the other hand, the second conjunctive term in (12.8) can be written as

∀euev(T
∗(eu, ev) ∧ R(ev) → (eu = u ∧ ev = v)),

where R(ev) denote the conjunctive term in T ∗
1 (eu, ev) that corresponds to the ad-

ditional causal rules as specified in the statement of Lemma 7.

It follows that (12.8) is equivalent to

T ∗(u, v) ∧ ∀euev(T
∗(eu, ev) ∧ R(ev) → (eu = u ∧ ev = v)). (12.9)

We consider two cases: when c is Boolean or non-Boolean.

(i) If c is Boolean, then R(ev) is

∀x(v(x) ∧ SORT c()(x) → ev(x)) ∧ ∀x(¬v(x) ∧ SORT c()(x) → ¬ev(x)),

where x stands for x1, . . . , xn, and SORT c()(x) stands for
∧n

i=1 SORT c(i)(xi). This
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formula can be equivalently written as

∀x(SORT c()(x) → (ev(x) ↔ v(x))). (12.10)

Because (δD)m contains the causal rule (see Section 10.2.2)

¬0:c(x1, . . . , xn) ⇐ ¬SORT c(1)(x1) ∨ · · · ∨ ¬SORT c(n)(xn),

that is,

¬v(x) ⇐ ¬SORT c()(x),

the formula

T ∗(u, v) → ∀x(¬SORT c()(x) → ¬v(x))

is logically valid, and so is

T ∗(eu, ev) → ∀x(¬SORT c()(x) → ¬ev(x)).

Consequently, the formula

T ∗(u, v) ∧ T ∗(eu, ev) → ∀x(¬SORT c()(x) → (ev(x) ↔ v(x)))

is logically valid too. It follows that, in the presence of T ∗(u, v) and T ∗(eu, ev),

(12.10) can be rewritten as

∀x(ev(x) ↔ v(x)),

that is, ev = v. From this fact we can conclude that (12.9) is equivalent to

T ∗(u, v) ∧ ∀euev(T
∗(eu, ev) ∧ (ev = v) → (eu = u ∧ ev = v)).
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This formula is equivalent to

T ∗(u, v) ∧ ∀eu(T ∗(eu, v) → (eu = u)),

that is, to T .

(ii) If c is non-Boolean, R(ev) is

∀xy(v(x) = y ∧ SORT c(y) ∧ SORT c()(x) → ev(x) = y). (12.11)

Because (δD)m contains the causal rule (see Section 10.2.2)

0 :c(x) 6= y ⇐ ¬SORT c(y) ∧ SORT c(1)(x1) ∧ · · · ∧ SORT c(n)(xn),

that is,

v(x) 6= y ⇐ ¬SORT c(y) ∧ SORT c()(x),

the formulas

T ∗(u, v) → ∀xy(¬SORT c(y) ∧ SORT c()(x) → v(x) 6= y),

T ∗(eu, ev) → ∀xy(¬SORT c(y) ∧ SORT c()(x) → ev(x) 6= y)

are logically valid. Thus, in the presence of T ∗(u, v) and T ∗(eu, ev), (12.11) can be

equivalently rewritten as

∀x(SORT c()(x) → (ev(x) = v(x))). (12.12)

On the other hand, because (δD)m contains the causal rule (see Section 10.2.2)

0 :c(x) = None ⇐ ¬SORT c(1)(x1) ∨ · · · ∨ ¬SORT c(n)(xn),
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that is,

v(x) = None ⇐ ¬SORT c()(x),

the formulas

T ∗(u, v) → ∀x(¬SORT c()(x) → v(x) = None),

T ∗(eu, ev) → ∀x(¬SORT c()(x) → ev(x) = None)

are logically valid. Consequently,

T ∗(u, v) ∧ T ∗(eu, ev) → ∀x(¬SORT c()(x) → (ev(x) = v(x)))

is logically valid too. It follows that, in the presence of T ∗(u, v) and T ∗(eu, ev),

(12.12) is equivalent to

∀x(ev(x) = v(x)),

that is, ev = v. Similarly to the case when c is Boolean, from this fact we can

conclude that (12.9) is equivalent to T .

Therefore, T1 is equivalent to T .

Lemma 8 below generalizes Proposition 5 in [Lifschitz, 1997] from proposi-

tional constants to multi-valued constants.

Recall that a multi-valued signature is a set of constants, with a domain

assigned to each of them (Section 3.1). Any such signature σ can be extended

to a signature fo(σ) in the sense of first-order causal logic as follows: non-Boolean

constants from σ are explainable object constants; elements of their domains are non-

explainable object constants; Boolean constants from σ are explainable propositional

constants. Any formula of a multi-valued signature σ can be viewed as a quantifier-

free formula of fo(σ) in the sense of first-order logic if we identify c = true with c
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and c = false with ¬c for all Boolean constants c.

Any interpretation I of σ in the sense of Section 3.1 can be extended to an

interpretation of fo(σ) in the sense of first-order logic as follows:

• |I| is the union of the domains of all non-Boolean constants of σ,

• I[v] = v for each non-explainable object constant v.

An interpretation of fo(σ) is called regular if it satisfies the two conditions above. We

will identify an interpretation of σ in the sense of Section 3.1 with the corresponding

regular interpretation of fo(σ) in the sense of first-order logic.

Let T be a finite multi-valued propositional causal theory of a signature σ.

By fo(T ) we denote the first-order causal theory whose signature is fo(σ) and whose

causal rules are those of T and the causal rules

∨

v∈Dom(c)

c = v ⇐ ⊤

for all non-Boolean constants c from σ.

Lemma 8 Let T be a finite multi-valued propositional causal theory of a signature

σ, and let I be a regular interpretation of fo(σ). Then I is a model of fo(T ) iff I is

an interpretation of σ and is a model of T .

Proof Let

Fi(p, c) ⇐ Gi(p, c) (i = 1, . . . )

be the rules of T , where p is the list of all Boolean constants pj and c is the list

of all non-Boolean constants cj of σ. Let T1 be the corresponding first-order causal
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theory fo(T ). Then T1 is understood as the sentence

∀epec(T
∗
1 (ep, ec) ↔ (ep = p ∧ ec = c)),

where T ∗
1 (ep, ec) stands for

∧

i

(Gi(p, c) → Fi(ep, ec)) ∧
∧

cj∈c




∨

v∈Dom(cj)

ecj
= v


 .

Take a regular interpretation I, and let Î(p, c) be the formula

∧

j:I|=pj

pj ∧
∧

j:I 6|=pj

¬pj ∧
∧

j

(cj = I[cj ]).

It is clear that I is the only regular interpretation of fo(σ) that satisfies Î(p, c).

Consequently I is a model of T1 iff the formula

Î(p, c) ∧ ∀epec(T
∗
1 (ep, ec) ↔ (ep = p ∧ ec = c))

is satisfied by some regular interpretation of fo(σ). Consider the reduct T I
1 of T

relative to I (Section 3.1), we will write the conjunction of the formulas from T I
1 as

T I
1 (p, c). In the presence of Î(p, c), T ∗

1 (ep, ec) can be replaced by T I
1 (ep, ec), and

ep = p ∧ ec = c can be replaced by Î(ep, ec). Consequently, I is a model of T1 iff

the formula

Î(p, c) ∧ ∀epec(T
I
1 (ep, ec) ↔ Î(ep, ec))

is satisfied by some regular interpretation of fo(σ). Since I is the only regular

interpretation satisfying the first conjunctive term Î(p, c), it follows that I is a
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model of T1 iff I satisfies the second conjunctive term

∀epec(T
I
1 (ep, ec) ↔ Î(ep, ec)). (12.13)

But (12.13) contains no nonlogical constants except for the constants v such that

J [v] = v for every regular interpretation J . Consequently if I satisfies (12.13) then

so does every regular interpretation. Thus I is a model of T1 iff (12.13) is satisfied

by all regular interpretations, and consequently iff the formula

T I
1 (p, c) ↔ Î(p, c) (12.14)

is satisfied by all regular interpretations of fo(σ).

The condition “every regular interpretation satisfies the right-to-left impli-

cation in (12.14)” means that I satisfies T I
1 (p, c). Since T I

1 (p, c) is the conjunction

of T I(p, c) and
∧

cj∈c

(∨
v∈Dom(cj)

cj = v
)
, this can be expressed by saying that I

satisfies T I(p, c) and is an interpretation of σ.

The condition “every regular interpretation satisfies the left-to-right impli-

cation in (12.14)” means that every interpretation of σ satisfying T I(p, c) equals I.

Consequently, I is a model of T1 iff I is an interpretation of σ and a model

of T .

12.3.2 Proof of Propositions 4 and 5

Proposition 4 (Section 12.1) and Proposition 5 (Section 12.2) easily follow from

Lemma 9 below. In the statement of Lemma 9, we refer to conditions (a) and (b)

in Section 12.1, and to the following condition (c) on an interpretation I of σ(δD)m :

135



(c) I[s](x) =





true if x = I[o] for some o ∈ UD(s),

false otherwise.

Lemma 9 For any interpretation I of σ(δD)m such that I satisfies conditions (a),

(b) and (c), I is a model of (δD)m in the sense of first-order causal logic iff Iprop

is a model of (cplus(D))m in the sense of propositional causal logic.

To derive Proposition 4, observe that any model of (δD)m satisfies conditions

(a), (b) and (c) (Section 12.1 and Proposition 1 from Section 11.1).

To derive Proposition 5, observe that for any model J of (cplus(D))m, J fo

satisfies conditions (a), (b) and (c), and (J fo)prop = J .

Proof of Lemma 9 Let T denote the causal theory (δD)m, T1 denote (δminiD)m,

and T2 denote the causal theory obtained from T1 by making the symbols 0 : c

explainable for each fluent name c in D and adding the causal rules shown in the

statement of Lemma 7. By Lemmas 6 and 7, T is equivalent to T1 and T1 is

equivalent to T2. Thus T is equivalent to T2. Divide T2 into two parts T2s and T2c,

as follows. T2s consists of rules (i), (ii), (iii), and (iv) described in Section 10.2.2,

with only sort names treated as explainable. T2c consists of all other rules of T2, with

only the symbols i :c treated as explainable. It is clear that T2s and T2c are disjoint

(there are no rules of form (xi) in mini-MAD since no sort inclusion expressions

are allowed). By Lemma 4 (Section 11.3.2), T2 is equivalent to T2s ∧ T2c. Since I

satisfies conditions (a) and (c), I satisfies T2s. Therefore, I satisfies T2 iff I satisfies

T2c.

Recall that causal theory T2c stands for

∀e(T ∗
2c(e) ↔ e = E),
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which is equivalent to

T ∗
2c(E) ∧ ∀e(T ∗

2c(e) → e = E), (12.15)

where E is the list of all explainable symbols in T2c (that is, i :c for all action names

and fluent names c), and e is a list of variables corresponding to E.

Let u denote an arbitrary symbol in E. Let eu denote an arbitrary function

that maps elements of |I|ku to truth values if u is predicate constant, and to elements

of |I| if u is function constant, where ku is the arity of u. Add (a symbol for) each

eu to the signature as a predicate constant of the same arity as u if u is a predicate

constant, and as a function constant of the same arity as u if u is a function constant.

Extend the definition of I to eu so that I[eu](x) = eu(x). Then I satisfies (12.15)

iff I satisfies T ∗
2c(E) and I satisfies

T ∗
2c(eu1 , . . . , eun) → ((eu1 = u1) ∧ · · · ∧ (eun = un)) (12.16)

for all tuples (eu1 , . . . , eun), where u1, . . . , un are all symbols in E.

About a predicate constant eu we say that it is good if

eu(I[x1], . . . , I[xku
]) = true

whenever xi ∈ UD(SORTu(i)) for all i. About a function constant eu we say that it

is good if

• eu(I[x1], . . . , I[xku
]) = I[o] for some o in UD(SORTu) whenever, for all i,

xi ∈ UD(SORTu(i)), and

• eu(I[x1], . . . , I[xku
]) = I[None] if some xi 6∈ UD(SORTu(i)).
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Since T2c contains the rules

¬ i : c(x1, . . . , xn) ⇐ ¬SORT c(1)(x1) ∨ · · · ∨ ¬SORT c(n)(xn) (12.17)

for every Boolean fluent name c of arity n in D, and the rules

i : c(x1, . . . , xn) = None ⇐ ¬SORT c(1)(x1) ∨ · · · ∨ ¬SORT c(n)(xn)

i : c(x1, . . . , xn) 6= y ⇐ ¬SORT c(y) ∧ SORT c(1)(x1) ∧ · · · ∧ ¬SORT c(n)(xn)

(12.18)

for every non-Boolean fluent name c of arity n in D, T ∗
2c(eu1 , . . . , eun) contains

conjunctive terms that are implications corresponding to these rules. Since I satisfies

condition (c), it follows that, if any of these eu’s is not good, then I doesn’t satisfy

these terms. Consequently I doesn’t satisfy the formula T ∗
2c(eu1 , . . . , eun). Thus it

is enough to consider only good eu’s in (12.16).

Furthermore, T ∗
2c(eu1 , . . . , eun) is a conjunction of formulas

∀xFl(eu1 , . . . , eun ,x) (12.19)

corresponding to the causal rules l of T2c. I satisfies (12.19) iff I satisfies

Fl(eu1 , . . . , eun ,y) (12.20)

for all tuples y of elements of |I|. For every variable x from x and every y ∈ |I|, we

say that y is a good value (for x) if y ∈ UD(SORT x). Since I satisfies condition (c),

it follows that I[SORT x](y) = true iff y is good.

Since each eu is good, and I satisfies condition (c), I also satisfies all conjunc-

tive terms (12.19) of T ∗
2c(eu1 , . . . , eun) corresponding to the rules l of the forms (12.17)
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and (12.18). Consequently these terms can be dropped from T ∗
2c(eu1 , . . . , eun).

Every causal rule of T2c other than (12.17) and (12.18) contains the con-

junctive term SORT x(x) in the body for every variable x occurring in that rule.

Consequently (12.20) can be limited to the tuples y whose members are good val-

ues, and the conjunctive terms SORT x(y) can be dropped from the antecedents

of the implications (12.20). We will denote the formula obtained in this way from

(12.20) by F ′
l (eu1 , . . . , eun ,y).

In the presence of T ∗
2c(E), I satisfies the conjunctive terms ∀xFl(E,x) of

T ∗
2c(E) corresponding to rules l of the forms (12.17) and (12.18) since I satisfies

condition (c). Thus I[u] is good for each u of E. Similarly to the reasoning above,

I satisfies T ∗
2c(E) iff it satisfies

∧
l F

′
l (E,y) for all tuples y of good values, where the

conjunction extends over all causal rules in T2c except (12.17) and (12.18).

On the other hand, e = E stands for a conjunction of formulas

∀x(eu(x) = u(x))

corresponding to all members u of E. I satisfies such a conjunctive term iff I satisfies

eu(y) = u(y) (12.21)

for all tuples y of elements of |I|. Since each eu is good and each I[u] is good in

the presence of T ∗
2c(E), it follows that (12.21) can be limited to the tuples y whose

members are good values.
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Therefore, I satisfies T2 is iff I satisfies

∧

l

∧

y

F ′
l (E,y) ∧

∧

(eu1 ,...,eun )

[
∧

l

∧

y

F ′
l (eu1 , . . . , eun ,y)

→

n∧

i=1

∧

y

(eui
(y) = ui(y))

]
,

(12.22)

where the conjunction over (eu1 , . . . , eun) extends over all good predicate or function

constants, the conjunction over y extends over all tuples of good values, and the

conjunction over l extends over all causal rules in T2c except (12.17) and (12.18).

Let Tcp denote the multi-valued propositional causal theory (cplus(D))m,

and let Tcp1 denote the first-order causal theory fo(Tcp) (see the discussion before

Lemma 8 for the definition of fo and of extending Iprop to an interpretation of the

signature of Tcp1). So I satisfies (12.22) iff Iprop satisfies

T ∗
cp1(E

′) ∧
∧

e′

(T ∗
cp1(e

′) → e′ = E′) , (12.23)

where E′ is the list of constants defined in the signature of Tcp, and the conjunction

extends over all interpretations e′ of E′.

Furthermore, Iprop satisfies (12.23) iff it satisfies

T ∗
cp1(E

′) ∧ ∀e′(T ∗
cp1(e

′) → e′ = E′) , (12.24)

where e′ is a tuple of variables corresponding to E′, that is, iff Iprop is a model of

Tcp1 in the sense of first-order causal logic. Since Iprop is defined as an interpretation

of the signature of Tcp, it is regular. By Lemma 8, Iprop satisfies (12.24) iff Iprop

is a model of Tcp in the sense of propositional causal logic. Therefore, any I that

satisfies (a), (b) and (c) is a model of T iff Iprop is a model of Tcp.
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Chapter 13

Related Work

13.1 Modularity in Knowledge Representation

Our work on developing MAD from language C+ is one of several efforts directed

towards enhancing existing knowledge representation formalisms, including action

languages, by adding modularity.

An attempt to add modularity to a planning formalism is outlined in [Clark

et al., 1996], where STRIPS operators are formed from “components”, similar to

modules in this dissertation. STRIPS is less expressive than the language C+ that

we begin with, and the “composition” of components is not as flexible as “import”

in MAD.

The applicability of the object-oriented paradigm to modeling dynamic do-

mains was investigated by Gustafsson and Kvarnström [2004]. Their system is based

on Temporal Action Logic [Doherty and Kvarnström, 2008]. That work deals with

a single domain (Missionaries and Cannibals) with many variations, and their focus

is on showing how the object-oriented paradigm can bring structure to formalizing

a domain, making it more understandable and easier to extend. The modularity in
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[Gustafsson and Kvarnström, 2004] comes from classes, associating a set of fluents

and axioms with each object of that class (sort), which can then be used to create

new subclasses. In contrast, modules in MAD are more general: they are essentially

action descriptions, not focused on a particular sort, though it is possible, in prin-

ciple, to make MAD modules which mirror the notion of a class. Moreover, MAD

allows us to rename sorts and constants when a module is imported, which seems

to have no counterpart in their framework of [Gustafsson and Kvarnström, 2004].

The object-oriented paradigm has been applied also to first-order logic [Amir,

1999].

Research on modular logic programming is described in [Bugliesi et al., 1994].

It is not directly related to the area of reasoning about actions. The idea of adding

modularity to answer set programming has been explored in [Ianni et al., 2004] and

[Calimeri et al., 2004]. These authors introduce “templates” as generic subprograms

with some predicates used to parameterize the program. Their examples are focused

on “aggregates” in logic programming, rather than on commonsense reasoning or

describing actions.

In [Baral et al., 2006], the authors added modularity to answer set program-

ming by using macros and “ensembles” (groups of macros). In a macro call, terms

can be added, removed, or replaced by other terms. The goal of that research is to

enable the creation of a library of knowledge modules in Answer Set Programming

(ASP) languages, which is similar to the goal of the MAD project. According to

that paper, a module in an ASP language contains a name, a list of parameters, and

a list of rules. Call-macro statements can be written to use a module, possibly in

many different ways. Call-macro statements specify how a module is used, in par-

ticular, how to substitute variables or predicates, how to add or remove arguments
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to predicates, and how to add or remove negation-as-failure literals from the bodies

of rules. This is similar to importing a module with renaming clauses in MAD. For

instance, a module that describes transitive closure is given in [Baral et al., 2006]

as follows:

Module_name: Transitive_closure.

Parameters(Input: p(X,Y); Output: q(X,Y);). Types: Z = type X.

Body: q(X,Y) :- p(X,Y).

q(X,Y) :- p(X,Z), q(Z,Y).

Then the macro call

CallMacro Transitive closure(Replace : p by parent , q by ancestor ,X by U, Y by V ; )

will be expanded to

ancestor(U,V) :- parent(U,V).

ancestor(U,V) :- parent(U,Z), ancestor(Z,V).

The authors of the paper point out that their parameter matching mechanism is

inspired by our work on MAD [Lifschitz and Ren, 2006].

Gelfond [2006] outlined a language M for defining knowledge modules and for

assembling them into a coherent knowledge base in the logic programming language

CR-Prolog [Balduccini and Gelfond, 2003, Balduccini, 2007]. It is directed towards

“the development and implementation of a library of knowledge modules needed

for axiomatization of journey—a movement of a group of objects from one place

(the origin) to another (the destination).” The enhanced formalization emphasizes

the possibility of interruption of a sequence of intended actions by unexpected and

unplanned events (in other words, unexpected stops in the middle of a journey).
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Adding modularity to CR-Prolog is similar to adding modular structure to C+ in

[Lifschitz and Ren, 2006].

Recently, Gelfond and Inclezan [2009] designed another modular action lan-

guage similar to MAD, called ALM. It extends action language AL [Baral and

Gelfond, 2000] by allowing definitions of new actions or fluents in terms of other,

previously defined, actions or fluents. A system description D in ALM consists

of declarations and structures. Sort names and inclusion relations, actions and

fluent are declared in declarations part. Objects of every sort, “instances” of ac-

tions (actions whose arguments are specified with objects or variables), and values

(and/or relations) of static fluents are specified in structures. An action can be

declared “from scratch” by specifying its attributes (essentially arguments) and list-

ing axioms about it, or it can be declared in terms of other actions. ALM has no

counterpart for MAD sort renaming clauses, and a new action in ALM must have

at least as many arguments as the one previously declared. Thus the mechanism

of describing actions in terms of previously defined actions in ALM is somewhat

less flexible than importing modules in MAD. In ALM all fluents are Boolean, and

there are no variable declarations. Language ALM seems to be somewhat less ex-

pressive than MAD, but it is more closer to answer set programming languages. The

authors are currently working on proving some mathematical properties of ALM

and implementing a transition of its theories into logic programs.

13.2 A Library of General-Purpose Action Descriptions

in MAD

Erdoğan [2008] built a database of action description modules using the action

language MAD. The core library contains modules of two kinds: one describing
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general properties of actions (such as the need for the actor and the theme of an

action to be at the same place); the other describing some basic actions which are

likely to be imported in many applications, such as Move and Mount .

The core library includes the following modules:

• ACTOR and THEME introduce the concepts of actor and theme of an action.

• ORDER introduces the transitive, irreflexive relation Less among objects.

• ASSIGN describes how the action Assign affects the fluent constant Value.

• MOVE imports module ASSIGN to describe the effect of the action Move on

the fluent Location.

• MOUNT imports modules ASSIGN, ORDER and THEME to describe support

relations between things, and how the action Mount affects them.

• TOWER imports module MOUNT to describe a special kind of support struc-

tures.

• TOP postulates that, when a thing is held up by another thing, both of them

are usually at the same location.

• NOCONCURRENCY states the condition that no two actions can be executed

concurrently.

• LOCAL postulates that in general all actors and themes must be at the same

location when an action is executed.

Several action domains from the knowledge representation literature are for-

malized in [Erdoğan, 2008] using the library of basic action descriptions. The avail-

ability of the library led to more concise representations and also allows the author
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numeric symbol MaxBlocks = 3;

module BW SIMPLE;

import TOWER;

objects

Table: Supporter ;
B(1..MaxBlocks): Thing ;

import NOCONCURRENCY;

axioms

Wide(Table);

Figure 13.1: Formalizing the Blocks World domain

to recognize structural similarities of seemingly quite domains. This fact illustrates

some advantages of using MAD to describe actions.

For instance, the Blocks World domain and the Towers of Hanoi domain are

described by importing modules TOWER and NOCONCURRENCY, because both

domains describe “tower structures” and putting things on top of each other—blocks

in the Blocks World, and discs in the Towers of Hanoi, see Figures 13.1 and 13.2

([Erdoğan, 2008, Sections 8.1 and 8.2]).
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numeric symbol NumDisks = 3;

module TOWER OF HANOI;

import TOWER;

objects

Peg(1..3): Supporter ;
D(1..NumDisks): Thing ;

variables

i, j: 1..NumDisks;

import NOCONCURRENCY;

axioms

constraint Support(Di) = Dj → i < j;

Figure 13.2: Formalizing the Towers of Hanoi domain
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Chapter 14

Conclusion and Future Work

14.1 Conclusion

In this dissertation we designed MAD—a modular language for describing actions.

The possibility to import a module allows us to describe actions in this language in

terms of other actions. This is often more natural and convenient than describing

every action independently.

We started by defining the syntax of a fragment of MAD, called mini-MAD.

An action description in mini-MAD is a list of sort declarations and modules. The

semantics of mini-MAD is defined in two steps. First, a function δ turns an arbitrary

mini-MAD description into a single-module description by eliminating all import

statements. Second, grounding is used to translate the result of the first step into

C+.

Then we described the syntax of full MAD. It includes a few additional con-

structs that are useful for knowledge representation purposes: sort inclusion expres-

sions, constants as arguments of other constants, sort names as unary predicates,

and quantifiers. The definition of δ can be easily extended to MAD, but extending
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the grounding process to MAD is difficult. For this reason, we developed an alter-

native approach to the semantics of variables, which is based on first-order causal

logic

We stated three theorems on properties of MAD. They show that, for any

MAD action description D,

• in any model of (δD)m, the extent of any sort S corresponds to the set of the

object names that one would expect to belong to S in accordance with the

object declarations and sort inclusions of D;

• any transition “starts” in a state and “ends” in a state;

• an interpretation of the signature of (δD)m is a model of (δD)m if and only if

it “consists of m transitions.”

Moreover, we proved that in application to mini-MAD action descriptions

the two semantics are equivalent to each other.

To sum up, MAD is an action description language with powerful expressive

possibilities and well-defined semantics. In Selim Erdoğan’s dissertation, a dialect of

this language has been implemented and used for representing several action domains

in a concise and elegant way. We expect that research on MAD will contribute to

solving the problem of generality in AI.

14.2 Future work

The syntax presented in Chapter 8 can be extended by several useful features. It

would be useful, for instance, to allow the right-hand sides of non-Boolean constant

renaming clauses to be more general than in the current version. It would be useful
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also to allow renaming objects, in addition to renaming sorts and constants. At-

tributes of actions and defeasible causal laws, familiar from C+ [Giunchiglia et al.,

2004]), need to be extended to MAD.

The implementation of MAD in [Erdoğan, 2008] operates by generating a

CCalc input file and invoking CCalc for search. We would like to develop an

implementation of a different kind—a procedure that translates from MAD into into

an implemented language of answer set programming and performs search using an

ASP solver. Such a procedure may handle equivalences in the heads of causal rules

(Section 7.1.1) using a new approach described in [Lee et al., 2009]. That paper

shows that the familiar transformation converting definite causal theories into logic

programs [McCain, 1997] can be extended to causal theories containing nondefinite

rules of the form

p ↔ q ⇐ .

This extension turns this rule into a group of 4 logic programming rules if that rule

is turned into a group of logic programming rules with strong negation:

p ← q,

q ← p,

¬p ← ¬q,

¬q ← ¬p.

Future work in this direction will require proving the correctness of translations of

this kind, and thus will have a significant theoretical component.
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