
The Semantics of Variables in Action Descriptions

Vladimir Lifschitz and Wanwan Ren
The University of Texas at Austin, USA

{vl,rww6}@cs.utexas.edu

Abstract

Action description language C+ is more expressive than
ADL in many ways; for instance, it addresses the ram-
ification problem. On the other hand, ADL is based
on first-order logic, while C+ is only propositional;
expressions with variables, which are frequently used
when action domains are described in C+, are merely
schemas describing finite sets of causal laws that are
formed according to the same pattern. In this paper
we propose a new approach to the semantics of ac-
tion descriptions with variables that combines attrac-
tive features of ADL and C+.

Introduction

The problem of describing changes caused by the exe-
cution of actions plays an important rule in knowledge
representation. Some of the best known approaches
to representing actions are the situation calculus (Mc-
Carthy & Hayes 1969), the STRIPS language (Fikes &
Nilsson 1971) and the event calculus (Kowalski & Ser-
got 1986).

Current research on the design of action description
languages (Gelfond & Lifschitz 1998) continues the line
of work that started with the invention of ADL (Ped-
nault 1994). Action description languages are attrac-
tive because they are concise, and because their seman-
tics is based on the simple idea of a transition system
(“state-transition model,” in Pednault’s terminology).
A transition system is a directed graph with vertices
corresponding to states of the world, and edges cor-
responding to transitions that may be caused by the
execution of actions.

Modern action description languages, such as C+
(Giunchiglia et al. 2004), are more expressive than ADL
in many ways. In particular, they solve the ramification
problem, that is, allow the user to characterize effects
of actions indirectly. But in one sense ADL is more
expressive than C+: the former is based on first-order
logic, and the latter is only propositional. In (Pednault
1994), state-transition models for a first-order language
are defined (Definition 2.3); their states are semantic

Copyright c© 2007, Association for the Advancement of Ar-
tificial Intelligence (www.aaai.org). All rights reserved.

structures, or interpretations, in the sense of first-order
logic. In C+, on the other hand, a state is an interpreta-
tion of a (multi-valued) propositional signature (Giun-
chiglia et al. 2004, Section 4.4). There are no variables
in C+, strictly speaking. Expressions with variables,
which are frequently used when action domains are de-
scribed in C+, are merely schemas describing finite sets
of causal laws that are formed according to the same
pattern.

For example, the description of the blocks world ac-
tion Put(b, l) in (Pednault 1994, Figure 2) has the for-
mula On(b, l) on its add list. In this formula, b and l are
object variables in the sense of first-order logic, and On
is a binary predicate constant. In C+ we can express
the same idea by writing

Put(b, l) causes On(b, l). (1)

But here b and l are metavariables, and we need to
specify their possible values when we say that (1) is
part of an action description. We can say, for instance,
that b stands for any of the symbols Block1 , Block2 ,
Block3 , and that l stands for Block1 , Block2 , Block3 or
Table. Expression (1) will denote then a set of 12 causal
laws, obtained from (1) by grounding. The expression
On(Block2 ,Table), occurring in one of them, is a fluent
constant, according to the syntax of C+, but the three
parts that this expression is built from — On, Block2
and Table — have no syntactic status in the definition
of the language.

In this paper we show how to define a semantics of ac-
tion descriptions that is similar to the semantics of C+
and, at the same time, allows us to use genuine object
variables. Like the semantics of ADL, it is based on
state-transition models for first-order languages.

The tool that helps us achieve this is the first-order
causal logic proposed in (Lifschitz 1997). Recall that
the semantics of C+ is characterized in (Giunchiglia et
al. 2004, Section 4.2) by a translation that turns any
action description D into a sequence of propositional
causal theories D0,D1, Models of Dm correspond
to the possible behaviors of the state-transition system
described by D over successive time instants 0, 1, . . . ,m.
In particular, models of D0 are the states of the system,
and models of D1 are its transitions. In our modifica-
tion of this approach, Dm becomes a first-order causal

sorts
Robot ; Box ; Thing ; Place;

inclusions
Robot ≪ Thing ;
Box ≪ Thing ;

objects
R1, R2: Robot ;
B1, B2: Box ;
P1, P2: Place;

constants
Location(Thing): fluent(Place);
Go(Robot ,Place),Carry(Robot ,Box ,Place): action;

variables
r: Robot ; b: Box ; x: Thing ; p: Place;

axioms
inertial Location(x);
exogenous Go(r, p);
exogenous Carry(r, b, p);

Go(r, p) causes Location(r) = p;
Carry(r, b, p) causes Location(r) = p;
Carry(r, b, p) causes Location(b) = p;

nonexecutable Carry(r, b, p) ∧ Go(r, p);
nonexecutable Carry(r, b, p)

if ¬(Location(r) = Location(b));

Figure 1: Action description RBP

theory. As a result, the new semantics of causal laws
with variables avoids any references to grounding. We
argue that it has significant conceptual advantages in
comparison with the grounding approach.

The central part of this paper is the section on the
semantics, which describes a new way to represent ac-
tion descriptions by causal theories. It is preceded by
the discussion of the syntax of action descriptions with
variables adopted in this paper and a review of first-
order causal logic, and followed by the investigation of
mathematical properties of the new semantics.

Syntax of Action Descriptions

The action description language defined in this section
is a simplified version of the input language of the im-
plementation of C+ called the Causal Calculator, or
CCalc.1 In the example shown in Figure 1 we talk
about robots R1, R2; boxes B1, B2; places P1, P2; fi-
nally, things, which include both robots and boxes. The
location of a thing is a place-valued fluent. There are
actions of two kinds: a robot can go to a place or carry a
box to a place. The axioms are syntactically similar to
causal laws in the sense of C+ (Giunchiglia et al. 2004,
Section 4.2), except that they contain variables. Loca-
tions are inertial: they don’t change without a cause.
The actions are exogenous: they can be executed or
not executed at will. The last five axioms describe the
effects and preconditions of the actions.

1http://www.cs.utexas.edu/users/tag/ccalc/ .

Generally, an action description consists of six parts,
as in Figure 1. The sort declaration part is a list of
sort names. The sort inclusion part is a list of sub-
sort expressions, such as Robot ≪ Thing . The object
declaration part is a list of object specifications, such
as

R1, R2: Robot .

Each object specification is a list of object names fol-
lowed by a sort name.

The constant declaration part is a list of constant
specifications, such as

Location(Thing): fluent(Place).

Each constant specification begins with a list of con-
stant schemas. A constant schema is a constant name
(in this case, Location) followed by a list of sort names
describing its arguments (Thing). The expression after
the colon shows whether the symbol that is being de-
clared is a fluent constant or an action constant. The
sort name after the reserved word fluent shows the sort
of values of the fluent; it is dropped if the fluent is
Boolean.

The variable declaration part is syntactically similar
to the object declaration part.

The axiom part is a list of causal laws. As in C+
(Giunchiglia et al. 2004, Section 4.2), we distinguish
between three kinds of causal laws: static, action dy-
namic, and fluent dynamic.

In a syntactically correct action description, each
name is declared exactly once. In declarations and in
axioms, a name can only be used in accordance with its
declaration.

Review of Causal Logic

The review of the syntax and semantics of causal the-
ories in this section follows (Lifschitz 1997, Section 2).
The main idea of nonmonotonic causal logic (McCain
& Turner 1997) is to distinguish between the claim that
a proposition is true and the stronger claim that there
is a cause for it to be true. Causal dependencies are
described by causal rules—expressions of the form

F ⇐ G, (2)

where F and G are first-order formulas. Rule (2) ex-
presses that there is a cause for the head formula F to
hold if the body formula G holds, or, in other words,
that G provides a “causal explanation” for F .

A causal theory is defined by

• a finite subset of the signature2 of the underlying lan-
guage, called the explainable symbols of the theory,
and

• a finite set of causal rules.

2The signature of a (nonsorted) first-order language is
the set of its function constants and predicate constants
(other than equality). This includes, in particular, object
constants (function constants of arity 0) and propositional
constants (predicate constants of arity 0).

In the definition of the semantics of causal theories
below, we use the substitution of variables for the ex-
plainable symbols in a formula. In connection with this,
it is convenient to denote formulas by expressions like
F (E), where E is the list of all explainable symbols.
Then, for any tuple e of variables that is similar3 to E,
the result of replacing all occurrences of the constants
E in F (E) by the variables e can be denoted by F (e).

Consider a causal theory T with the explainable sym-
bols E and the causal rules

Fi(E, xi) ⇐ Gi(E, xi) (i = 1, . . .),

where xi is the list of all free variables of the i-th rule.
Take a tuple e of new variables similar to E. By T ∗(e)
we denote the formula

∧

i

∀xi(Gi(E, xi) → Fi(e, x
i)).

Note that the occurrences of explainable symbols in the
heads are replaced here by variables, and the occur-
rences in the bodies are not. As suggested in (Lifschitz
1997), we view T as shorthand for the sentence

∀e(T ∗(e) ↔ e = E). (3)

(The expression e = E stands for the conjunction of
the equalities between the members of e and the corre-
sponding members of E.) For instance, by a model of T
we mean a model of (3); a formula is entailed by T if
it is entailed by (3). Note that the tuple e may contain
function and predicate variables, so that (3) is, gener-
ally, a second-order formula.

Intuitively, the condition T ∗(e) expresses that the
possible values e of the explainable symbols E are
“causally explained” by the rules of T . Sentence (3)
says that the actual values of these symbols are the
only ones that are explained by the rules of T .

For instance, let T be the causal theory with the rules

Robot(R1) ⇐ ⊤,
Robot(R2) ⇐ ⊤,
¬Robot(x) ⇐ ¬Robot(x),

(4)

where the predicate constant Robot is explainable, and
the object constants R1, R2 are not explainable. In-
tuitively, the last line of (4) expresses the closed-world
assumption: if x is not a robot then there is a cause
for this. In this case, E is Robot , e is a unary predicate
variable, and T ∗(e) is

e(R1) ∧ e(R2) ∧ ∀x(¬Robot(x) → ¬e(x)).

The second-order sentence (3) is equivalent in this case
to the first-order sentence

∀x(Robot(x) ↔ x = R1 ∨ x = R2). (5)

3The similarity condition means that (i) e has the same
length as E, (ii) if the k-th member of E is a function con-
stant then the k-th member of e is a function variable of the
same arity, and (iii) if the k-th member of E is a predicate
constant then the k-th member of e is a predicate variable
of the same arity.

Semantics of Action Descriptions

Given an action description D and a nonnegative inte-
ger m (the length of the behaviors that we are interested
in), the causal theory Dm is formed as follows.

Its signature σDm consists of

• an explainable unary predicate constant S for each
sort name S;4

• a non-explainable object constant V for each object
name V ;

• a predicate constant i : P for each Boolean fluent
name P and every i ∈ {0, . . . ,m}; the arity of i :P is
the same as the arity of P ; this constant is explainable
if i > 0;

• a function constant i :P for each non-Boolean fluent
name P and every i ∈ {0, . . . ,m}; the arity of i :P is
the same as the arity of P ; this constant is explainable
if i > 0;

• an explainable predicate constant i :P for each action
name P and every i ∈ {0, . . . ,m−1}; the arity of i :P
is the same as the arity of P ;

• a new non-explainable object constant None.

For instance, the signature σRBP m , corresponding to
the action description RBP shown in Figure 1, consists
of the non-explainable object constants

R1, R2, B1, B2, P1, P2,None;

the explainable predicate constants

Robot ,Box ,Thing ,Place, i :Go, i :Carry (0 ≤ i < m);

the function constants

i :Location (0 ≤ i ≤ m)

that are explainable when i > 0.
The prefixes i : are “time stamps.” For instance, the

value of
5 :Location(R1)

is the location of robot R1 at time 5; the truth value of

5 :Go(R1, P2)

shows whether R1 goes to place P2 between times 5
and 6.

In the list of the causal rules of Dm below, the follow-
ing notation is used. For any object name V , SORTV

stands for the sort name assigned to V in the object
declaration part of D, and similarly for variable names
and for non-Boolean fluent names. For any formula F ,
i : F stands for the result of prepending i : to all flu-
ent names and action names in F . By x, x1, . . . , xn we
denote distinct object variables.

The causal rules of Dm are

• ¬S(x) ⇐ ¬S(x) for each sort name S (the closed-
world assumption for sorts);

4These predicate constants are needed because the tar-
get language of our translation—the language of causal
theories—is non-sorted.

• S1(x) → S2(x) ⇐ ⊤ for each subsort expression
S1 ≪ S2 in the sort inclusion part of D;

• SORTV (V) ⇐ ⊤ for each object name V ;

• ¬(V = None) ⇐ ⊤ for each object name V ;

• ¬(V1 = V2) ⇐ ⊤ for each pair of distinct ob-
ject names V1, V2 (the unique name assumption for
objects);

• ¬ i :P (x1, . . . , xn) ⇐ ¬Sj(xj) (1 ≤ j ≤ n)
for all Boolean fluent schemas and action schemas
P (S1, . . . , Sn) in the constant declaration part of D,
and the rules

i :P (x1, . . . , xn) = None ⇐ ¬Sj(xj) (1 ≤ j ≤ n)

for each non-Boolean fluent schema P (S1, . . . , Sn) in
the constant declaration part of D (all arguments
should be of appropriate sorts);

• the rules

¬(i :P (x1, . . . , xn) = x)
⇐ ¬SORTP (x) ∧ S1(x1) ∧ · · · ∧ Sn(xn)

for each non-Boolean fluent schema P (S1, . . . , Sn) in
the constant declaration part of D (the value should
be of the appropriate sort);

• i :F ⇐ i :G ∧
∧

x SORTx(x), where the conjunc-
tion extends over all variables of F and G, for each
static law and each action dynamic law of the form

caused F if G

in D (this clause and all following clauses general-
ize the process of translating causal laws of C+ into
propositional causal logic described in (Giunchiglia
et al. 2004, Section 4.2));

• the rules

i :F ⇐ i :F ∧
∧

x SORTx(x),

i :¬F ⇐ i :¬F ∧
∧

x SORTx(x),

where the conjunction extends over all variables of
F , for each action dynamic law in D of the form

exogenous F ;

• i + 1:F ⇐ i + 1:G ∧ i :H ∧
∧

x SORTx(x),
where the conjunction extends over all variables of
F , G and H, for each fluent dynamic law in D of the
form

caused F if G after H;

• i + 1 : F ⇐ i : G ∧
∧

x SORTx(x), where the
conjunction extends over all variables of F and G,
for each fluent dynamic law in D of the form

G causes F ;

• i + 1:F ⇐ i + 1:F ∧ i :F ∧
∧

x SORTx(x),
where the conjunction extends over all variables of
F , for each fluent dynamic law of the form

inertial F

in D such that F begins with a Boolean fluent name;

• i + 1:(t = y) ⇐ i + 1:(t = y) ∧ i : (t = y)

∧ S(y) ∧
∧

x SORTx(x),

where the conjunction extends over all variables oc-
curring in t, and y is a variable that doesn’t occur
in t, for each fluent dynamic law of the form

inertial t

in D such that t begins with a non-Boolean fluent
name of a sort S;

• ⊥ ⇐ i : (F ∧ G) ∧
∧

x SORTx(x), where the
conjunction extends over all variables of F and G,
for each fluent dynamic law of the form

nonexecutable F if G

in D (if the part if G is missing, drop the conjunctive
term G).

This concludes the definition of our translation from
the language of action descriptions into the language of
causal theories, and thus the definition of the seman-
tics of action descriptions. Each model of the causal
theory Dm represents a possible “history” of the state-
transition system described by D over the time instants
0, . . . ,m. In particular, the models of D0 are the states
of D, and the models of D1 are the transitions of D.

The causal theory RBPm, corresponding to the ac-
tion description RBP from Figure 1, is shown in Fig-
ure 2.

In the rest of the paper we argue in favor of the new
approach to the semantics of action descriptions with
variables by showing, first, that it has some desirable,
intuitively expected mathematical properties, and sec-
ond, that it has essential advantages in comparison with
the approach based on grounding.

Three Theorems

Proposition 1 below shows that in any model of Dm the
extent of any sort S corresponds to the set of the object
names that one would expect to belong to S according
to the object declarations and sort inclusions of D.

To make this claim precise, we will use the follow-
ing notation. For any action description D, by ED we
denote the smallest set such that

• (V, S) ∈ ED if V is declared in D as an object name
of sort S;

• (V, S) ∈ ED if (V, S′) ∈ ED and the sort inclusion
part of D contains the subsort expression S′ ≪ S.

Proposition 1 For any sort name S, Dm entails

∀x (S(x) ↔
∨

(V,S)∈ED
x = V).

For instance, any model of RBPm satisfies (5).
The proof of Proposition 1 is based on the possibility

of breaking Dm into disjoint parts in the sense of (Lif-
schitz 1997, Section 6) and on the relationship between
causal logic and circumscription discussed in (Lifschitz
1997, Section 3).

Notation: V, V ′ ∈ {R1, R2, B1, B2, P1, P2}, k ∈ {1, 2},
i ∈ {0, . . . ,m − 1}, j ∈ {0, . . . ,m}.

¬Robot(x) ⇐ ¬Robot(x),
¬Box(x) ⇐ ¬Box(x),

¬Thing(x) ⇐ ¬Thing(x),
¬Place(x) ⇐ ¬Place(x),

Robot(x) → Thing(x) ⇐ ⊤,
Box (x) → Thing(x) ⇐ ⊤,

Robot(Rk) ⇐ ⊤,
Box (Bk) ⇐ ⊤,

Place(Pk) ⇐ ⊤,

¬(V = None) ⇐ ⊤,
¬(V = V ′) ⇐ ⊤ (V 6= V ′),

¬ i :Go(x, y) ⇐ ¬Robot(x),
¬ i :Go(x, y) ⇐ ¬Place(y),

¬ i :Carry(x, y, z) ⇐ ¬Robot(x),
¬ i :Carry(x, y, z) ⇐ ¬Box (y),
¬ i :Carry(x, y, z) ⇐ ¬Place(z),

j :Location(x) = None ⇐ ¬Thing(x),
¬ (j :Location(x) = y) ⇐ ¬Place(y) ∧ Thing(x),

i + 1:Location(x) = y ⇐ i + 1:Location(x) = y
∧ i :Location(x) = y
∧Place(y) ∧ Thing(x),

i :Go(r, p) ⇐ i :Go(r, p)
∧Robot(r) ∧ Place(p),

¬ i :Go(r, p) ⇐ ¬ i :Go(r, p)
∧Robot(r) ∧ Place(p),

i :Carry(r, b, p) ⇐ i :Carry(r, b, p) ∧ Box (b)
∧Robot(r) ∧ Place(p),

¬ i :Carry(r, b, p) ⇐ ¬ i :Carry(r, b, p)
∧Box (b) ∧ Robot(r)
∧Place(p),

i + 1:Location(r) = p ⇐ i :Go(r, p)
∧Robot(r) ∧ Place(p),

i + 1:Location(r) = p ⇐ i :Carry(r, b, p) ∧ Box (b)
∧Robot(r) ∧ Place(p),

i + 1:Location(b) = p ⇐ i :Carry(r, b, p) ∧ Box (b)
∧Robot(r) ∧ Place(p),

⊥ ⇐ i :Carry(r, b, p)
∧ i :Go(r, p) ∧ Box (b)
∧Robot(r) ∧ Place(p),

⊥ ⇐ i :Carry(r, b, p)
∧¬(i :Location(r)

= i :Location(b))
∧Box (b) ∧ Robot(r)
∧Place(p).

Figure 2: Rules of causal theory RBPm

In the theory of C+, the view that histories of
length m can be thought of as paths in a transition sys-

tem is justified by two theorems, Propositions 7 and 8
from (Giunchiglia et al. 2004). The first of them shows
that any transition “starts” in a state and “ends” in a
state. According to the second theorem, an interpreta-
tion of the signature of Dm is a model of Dm if and only
if it “consists of m transitions.” Propositions 2 and 3
below are similar to these theorems.

Let D be an action description. For any interpreta-
tion I of σD1 , by I0 and I1 we denote the interpreta-
tions of σD0 defined as follows. (Here |I| stands for the
universe of I.)

|Ii| = |I|,
Ii[S] = I[S] for every sort name S,

Ii[V] = I[V] for every object name V,

Ii[0 :C] = I[i :C] for every fluent name C,

Ii[None] = I[None].

Intuitively, I0 and I1 are the “endpoints” of transi-
tion I.

Proposition 2 For any transition I, the interpreta-
tions I0 and I1 are states.

For any interpretation I of σDm , by I(i) (0 ≤ i < m)
we denote the interpretations of σD1 defined as follows:

|I(i)| = |I|,
I(i)[S] = I[S] for every sort name S,

I(i)[V] = I[V] for every object name V,

I(i)[0 :C] = I[i :C] for every fluent or action name C,

I(i)[1 :C] = I[i + 1:C] for every fluent name C,

I(i)[None] = I[None].

Intuitively, I(i) is the i-th “component transition” of
“history” I.

Proposition 3 For any positive integer m and any in-
terpretation I of σDm , I is a model of Dm iff every I(i)

(0 ≤ i < m) is a transition.

Proofs of Propositions 2 and 3 use Lemma 3 from
(Lifschitz 1997).

Comparison with Grounding

Traditionally, the meaning of action descriptions with
variables is defined in terms of a procedure based on
grounding. In particular, such a procedure can be used
to translate action descriptions discussed in this note
into C+. But this approach would lead to several com-
plications that we have avoided.

First, to ground an expression with variables, we need
to calculate, for each variable, the set of values that can
be substituted for it. In our case, this would require
that the definition of ED above, or a similar definition,
be made part of the semantics. The simple modular
translation of object declarations and sort inclusions
into causal logic that we have used is more attractive.

The syntax of C+ treats an equality c1 = c2 as an
atom only in the case when c1 is a constant name and c2

is an object name (“value”). If both c1 and c2 are object

names, or both are constant names, additional postpro-
cessing steps are required. In our approach, there is no
need to distinguish between these cases.

Atoms in which a constant serves as an argument
of another constant are particularly unpleasant for the
grounding method. For instance, if the result of ground-
ing contains the atom Go(R1,Location(R2)), expressing
that robot R1 goes to the place where robot R2 is, then
a postprocessing step will have to turn it into a long
C+ formula, such as

∨

i∈{1,2}

(Location(R2) = Pi ∧ Go(R1, Pi)).

Our semantics does not require such “expansion steps.”
We expect that the advantages of the new approach

to the semantics of action descriptions will become even
more essential when we extend it to other syntactic con-
structs. Grounding is important as an implementation
method, but it should be best avoided in the definition
of semantics.

Conclusion

The semantics of action descriptions proposed in this
paper combines attractive features of ADL and C+.
Like the former, it is based on state-transition mod-
els for languages with variables and does not refer to
grounding; like the latter, it uses a nonmonotonic causal
logic to solve the ramification problem.

Our semantics of action descriptions is somewhat
similar to the semantics of logic programming proposed
in (Ferraris, Lee, & Lifschitz 2007): both refer to non-
monotonic translations into classical second-order logic
and are, in this sense, similar to circumscription (Mc-
Carthy 1986). We expect that these parallel approaches
to action descriptions and to stable models will help us
extend the results on representing actions by logic pro-
grams from (Lifschitz & Turner 1999) to action descrip-
tions with variables, and thus justify the use of answer
set programming for the implementation of the new se-
mantics. Our plans for the future include also extending
the semantics to a modular action description language
(Lifschitz & Ren 2006).

Acknowledgements

We are grateful to Selim Erdoğan, Paolo Ferraris,
Joohyung Lee and Hudson Turner for comments on a
draft of this paper. This work was partially supported
by the National Science Foundation under Grant IIS-
0412907.

References

Ferraris, P.; Lee, J.; and Lifschitz, V. 2007. A new
perspective on stable models. In Proceedings of In-
ternational Joint Conference on Artificial Intelligence
(IJCAI), 372–379.

Fikes, R., and Nilsson, N. 1971. STRIPS: A new ap-
proach to the application of theorem proving to prob-
lem solving. Artificial Intelligence 2(3–4):189–208.

Gelfond, M., and Lifschitz, V. 1998. Action lan-
guages.5 Electronic Transactions on Artificial Intel-
ligence 3:195–210.

Giunchiglia, E.; Lee, J.; Lifschitz, V.; McCain, N.;
and Turner, H. 2004. Nonmonotonic causal theories.
Artificial Intelligence 153(1–2):49–104.

Kowalski, R., and Sergot, M. 1986. A logic-based
calculus of events. New Generation Computing 4:67–
95.

Lifschitz, V., and Ren, W. 2006. A modular action
description language. In Proceedings of National Con-
ference on Artificial Intelligence (AAAI), 853–859.

Lifschitz, V., and Turner, H. 1999. Representing tran-
sition systems by logic programs. In Proceedings of
International Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR), 92–106.

Lifschitz, V. 1997. On the logic of causal explanation.
Artificial Intelligence 96:451–465.

McCain, N., and Turner, H. 1997. Causal theories of
action and change. In Proceedings of National Confer-
ence on Artificial Intelligence (AAAI), 460–465.

McCarthy, J., and Hayes, P. 1969. Some philosophical
problems from the standpoint of artificial intelligence.
In Meltzer, B., and Michie, D., eds., Machine Intel-
ligence, volume 4. Edinburgh: Edinburgh University
Press. 463–502.

McCarthy, J. 1986. Applications of circumscription to
formalizing common sense knowledge. Artificial Intel-
ligence 26(3):89–116.

Pednault, E. 1994. ADL and the state-transition
model of action. Journal of Logic and Computation
4:467–512.

5http://www.ep.liu.se/ea/cis/1998/016/ .

