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1 Introduction

Felicitous models were defined by Kit Fine [1989] for the purpose of describing the
semantics of negation in the programming language Prolog. As often happens with
good ideas in science, this idea was developed independently, in somewhat different
forms, by several other researchers [Bidoit and Froidevaux, 1987, Gelfond, 1987,
Gelfond and Lifschitz, 1988].1 The last of these publications became a standard ref-
erence, and felicitous models are often called “stable models”—the term introduced
in that paper. They are also referred to as answer sets.

Years later, sophisticated software systems for generating answer sets were de-
signed, and they became the basis of a new programming paradigm, called an-
swer set programming [Marek and Truszczynski, 1999, Niemelä, 1999]. That pro-
gramming method has been used for solving computational problems in a variety
of areas—from spacecraft design [Nogueira et al., 2001] to historical linguistics
[Brooks et al., 2007].
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1 Fine’s paper was presented at the Eighth International Congress of Logic, Methodology and
Philosophy of Science, held in 1987. Bidoit and Froidevaix described their work at the Second
Annual IEEE Symposium on Logic in Computer Science the same year. Gelfond’s paper was
given at the AAAI National Conference on Artificial Intelligence, in 1987 as well. The paper by
Gelfond and Lifschitz was initially submitted to the Seventh ACM Symposium on Principles of
Database Systems and became “one of the papers which time considerations prevented from being
presented at the Symposium”; in 1988 it was contributed to the International Logic Programming
Conference and Symposium.
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In this chapter, after a brief introduction to Prolog (Section 2), we trace the early
history of felicitous models (Sections 3–10) and then talk about contributions of that
idea to computer science (Sections 11–14). This is a piece of intellectual history, and
there are no new technical results here. Parts of the chapter are written in an informal
style, but in several places we give precise definitions and precise statements of
important theorems, or tell the reader where details can be found.

2 A Prolog Program

A Prolog program consists of rules—syntactic objects that are closely related to
formulas of a first-order language.

As an example, consider a Prolog solution to a simple computational problem
[Lifschitz, 2019, Section 1.2]. We are given a table showing the population sizes of
several countries, for instance:

Country France Germany Italy United Kingdom
Population (million) 65 83 61 64

Table 1 Population of European countries in 2015.

The goal is to make the list of all countries inhabited by more people than the United
Kingdom. We will call such countries “large.”

The list of large countries can be generated by the Prolog program consisting of
a single rule:

large(C) :- size(C,S1), size(uk,S2), S1 > S2. (1)

This rule has two parts—the head large(C) and the body

size(C,S1), size(uk,S2), S1 > S2

—separated by the “colon-dash” symbol, which reads “if.” The end of a rule is
indicated by a period. Character strings that begin with a capital letter (in this case,
C, S1, and S2) are variables. Since uk is the name of a specific object and not a
variable, it is not capitalized. The symbol size in the body represents the binary
relation that holds between a country and its population size. Thus rule (1) can be
translated into English as follows:

A country C is large
if the population size of C is S1, the population size of the UK is S2, and S1 > S2.

To generate the list of large countries using rule (1), we encode the input—
Table 1—as a collection of additional rules:
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size(france,65). size(germany,83).
size(italy,61). size(uk,64).

(2)

Each of these additional rules is “a head without a body.”
A Prolog system will load a file consisting of rules (1) and (2), in any order, and

display the prompt ?- that invites the user to submit “queries”—questions that can
be answered on the basis of the given information. The query large(C) would be
understood as the request to find a value of C that has the property large, and the
system would respond:

C = france.

If the user requests another value of C with this property, the answer will be

C = germany.

To a request for a third solution the system will reply no (no more large countries).
The first Prolog system was developed in 1972 by Alain Colmerauer and Phillipe

Roussel at Aix-Marseille University. It was used originally for natural language
processing. Its name is an abbreviation for programmation en logique (programming
in logic).

3 Minimal Models

Propositional formulas of the form

A1∧·· ·∧An→ An+1 (n≥ 0), (3)

where each Ai is an atom, can be rewritten as Prolog rules in such a way that by
running a Prolog system we can learn which atoms are entailed by a set of formulas
of this form. For instance, the set of formulas

p1,
p1→ p2,
p2∧ p3→ p4

(4)

can be represented by the Prolog program

p(1).
p(2) :- p(1).
p(4) :- p(2), p(3).

A Prolog system will tell us that p1 and p2 are the only atoms entailed by formu-
las (4).

The answers given by Prolog in examples like this can be interpreted also in
terms of minimal models [van Emden and Kowalski, 1976]. In the theory of Prolog
programming, it is customary to identify a truth assignment with the set of atoms
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that get the value true. For example, we can represent assigning the value true to p1
and p2, and the value false to all other atoms, by the set {p1, p2}. This set is a model
of formulas (4), in the sense that these formulas are satisfied by the corresponding
truth assignment. The sets {p1, p2, p4} and {p1, p2, p3, p4} are models of (4) as well.
The model {p1, p2} differs from the others in that it is minimal with respect to set
inclusion: its proper subsets are not models of (4).

We can say that in application to a set of formulas of form (3) a Prolog system
calculates the minimal model of that set. To be precise, it calculates that model if it
terminates; sometimes it goes to an infinite loop. That will happen, for example, if
we try to use Prolog to find the minimal model of the formulas

p1→ p2,
p2→ p1.

(5)

The minimal model of a set Π of formulas of form (3) can be described as the
result of accumulating the atoms that are necessary for satisfying all formulas in Π .
For instance, the empty set (all atoms are false) does not satisfy the first of formu-
las (4); include p1. The set {p1} does not satisfy the second formula; add p2. The
set {p1, p2} satisfies all formulas (4); this is the minimal model.

Formulas (5) are satisfied by the empty set, so that the process of accumulating
atoms stops in this case at the very beginning.

4 Negation as Failure

The observations in Section 3 apply to Prolog rules that correspond to formulas of
form (3). How can we extend them to propositional formulas of the form

L1∧·· ·∧Ln→ H (n≥ 0), (6)

where each Li is a literal (atom or negated atom), and H is an atom? (We denote this
atom by H because it corresponds to the head of a Prolog rule.) This is the ques-
tion that led Kit Fine to the discovery (or should we say “invention”?) of felicitous
models.

Consider, for instance, the formulas

p1,
p1→ p2,
p2∧¬p3→ p4

(7)

and the corresponding program, in which the Prolog negation symbol \+ is used to
represent ¬ in the last line:

p(1).
p(2) :- p(1).
p(4) :- p(2), \+ p(3).
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Formulas (7) have two minimal models:

M1 = {p1, p2, p3}, M2 = {p1, p2, p4}.

The answers to queries given by a Prolog system correspond to M2. How can this
choice be justified? In what sense is this model better than M1?

The difference between M1 and M2 can be informally explained if we look at
formulas (7) as rules for generating atoms. The first line allows us to generate p1.
The implication in the second line allows us to generate p2 if p1 has been generated.
The last of formulas (7) allows us to generate p4 if two conditions are satisfied: p2
has been generated, and any attempt to use all these formulas to generate p3 would
fail. Then we can say: there is no way to use formulas (7) to generate p3, because
the only atoms that these formulas allow us to generate, under various assumptions,
are p1, p2, and p4. Consequently generating p4 using the last of these formulas is
justified. The set of atoms that have been generated is what we denoted by M2. In
this sense, M2 is the “preferred” model of formulas (7).

Explanations in terms of failure of an attempt to use rules comports with the
way Prolog programmers think; they say that the symbol \+ represents “negation
as failure” [Clark, 1978]. But how can we turn such an informal explanation into a
mathematical definition?

Digression on intuitionistic logic. If we replace the last of formulas (7) by the equiv-
alent formula

p2∧¬p4→ p3

then model M1 will be considered preferred. Thus it appears that the property of be-
ing preferred is not invariant with respect to equivalent transformations of formulas.
It is interesting that the two formulas in this example are equivalent classically, but
not intuitionistically. In Section 10 we will say more about the relationship between
preferred models and intuitionistic logic.

5 Stratified Programs

Before presenting his own approach to identifying preferred models, Fine discussed
other proposals described in the literature and argued that they are not entirely sat-
isfactory. There is, however, a special case—not mentioned in Fine’s paper—for
which a noncontroversial definition of the preferred model was available: the case
of programs that are “stratified,” or “free from recursive negation” [Apt et al., 1988,
Van Gelder, 1988].

We will sometimes identify a Prolog rule with the corresponding propositional
formula. To stratify a finite set Π of rules of form (6) means to partition it into
subsets Π1, . . . ,Πk so that if a rule (6) belongs to Πi (1≤ i≤ k) then

(a)whenever a literal L j in the antecedent of (6) is an atom, every rule in Π with
that atom in the consequent belongs to Π1∪·· ·∪Πi, and
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(b)whenever a literal L j in the antecedent of (6) is a negative literal ¬A, every rule
in Π with the consequent A belongs to Π1∪·· ·∪Πi−1.

For example, every set of rules of form (3) is stratified: include the entire set in
one stratum Π1. Program (7) is stratified using a single stratum as well. The program
consisting of the rules

¬pi→ pi+1 (1≤ i≤ k), (8)

where k is a positive integer, is also stratified: take Πi = {¬pi→ pi+1}. On the other
hand, if Π contains the rule

¬p→ p (9)

then Π is not stratified, because that rule would have to belong to each of the two
disjoint sets Πi, Π1 ∪ ·· · ∪Πi−1. Similarly, a program is not stratified if it contains
the rules

¬p1→ p2,
¬p2→ p1.

(10)

Constructing the preferred model of a stratified program Π starts with including
the consequents of the implications in Π1 that must be included to satisfy all those
implications, as in the example at the end of Section 3. Then the consequents of
the implications in Π2 are added when this is necessary to satisfy the implications
in Π2, and so on. If an atom does not occur in any of the consequents, as p4 in (7),
then it is never included.

For example, constructing the preferred model of program (8) starts with includ-
ing p2, to satisfy the formula ¬p1 → p2 from the first stratum. Since {p2} satis-
fies the formula ¬p2 → p3 from the second stratum, p3 is not included. To satisfy
¬p3→ p4, we add p4, and so on, until the stratum Πk is reached. Thus the preferred
model of (8) is {p2, p4, . . .}.

This process is known as the iterated fixpoint construction. To use it as the def-
inition of the preferred model of a stratified program, one has to show that if this
construction is applied to different stratifications of the same program then the pre-
ferred model obtained at the end will be the same [Apt et al., 1988, Theorem 11].

6 Felicitous Models

To characterize preferred models in the general case, “suppose that we make a hy-
pothesis as to which statements are false. Then this hypothesis can be used . . . to
detach negative statements” from the antecedents of the given implications [Fine,
1989, page 285].

Take, for example, program (7), and consider the hypothesis that p3 is false. Then
the conjunctive term ¬p3 in the last line of (7) is true, and “detaching” it turns (7)
into the program

p1,
p1→ p2,
p2→ p4.

(11)
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This is a set of rules of form (3), and its minimal model is

{p1, p2, p4}. (12)

In this example, the atom p3, which we assumed initially to be false, happens to
be the only atom that does not belong to the minimal model (12) that we arrived at.
In this sense, the hypothesis that p3 is false (and that all other atoms occurring in
the program are true) was a “happy” hypothesis.

Instead of thinking in terms of posited falsehoods, we can think in terms of posited truths.
A happy hypothesis is then one under which the posited truths coincide with the generated
truths. Thus a happy hypothesis is, in a certain sense, self-verifying. It is verifying, since
what one takes to be the truth turns out to be the truth; and it is self -verifying, since it is
partly because what one takes the truth to be what it is that it is what it is [Fine, 1989,
page 286].

A model is felicitous if it “embodies a happy hypothesis” and thus “leads to the
whole truth and nothing but the truth.”

Let us go back to example (7) and consider now the hypothesis that p3 is not
among the false atoms. Then the antecedent in last line of (7) is false, and that rule
can be disregarded. The minimal model of the remaining two rules is {p1, p2}. A
situation when “some statement is neither a posited falsehood nor a generated truth,”
as p3 in this example, indicates a “gap”; a hypothesis leading to a gap is not happy.
In other cases, we may find that “some statement is both a posited falsehood and
a generated truth”; this is a “glut”—another kind of evidence that the hypothesis is
not happy. A happy hypothesis “leads to neither gaps not gluts.”

In the case of program (7), set (12) is the only felicitous model—the only set of
atoms that leads to neither gaps not gluts. Rule (9) has no felicitous models, and
program (10) has two: {p1} and {p2}.

The concept of a felicitous model describes the behavior of Prolog systems in
the following sense: if Π is a program consisting of rules of form (6) that has a
unique stable model, and the system terminates when applied to Π , then its output
describes the felicitous model of Π . In application to a program that has no felicitous
models, such as (9), or several felicitous models, such as (10), Prolog usually goes
to an infinite loop.

Fine’s exposition is somewhat informal—he was interested in motivating his
idea, explaining the intuition behind it, and comparing it with other approaches to
the problem, rather than in converting it into a concise definition of the kind found
in mathematically oriented publications. But in Section 6, which begins with the
words “I shall now present my own proposal,” mathematical precision lurks behind
the veil of informality.

Fine’s proposal can be defined more formally using the following auxiliary defi-
nition. The reduct of a set Π of rules of form (6) with respect to a set M of atoms is
obtained from Π by deleting

• every rule that has a negative literal ¬A in the antecedent such that A ∈M, and
• all negative literals in the antecedents of the remaining rules.
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For example, the reduct of program (7) with respect to M is

p1,
p1→ p2

if p3 belongs to M. If p3 does not belong to M then the reduct is (11).
The reduct is obviously a set of rules of form (3). If M is the minimal model of

the reduct of Π with respect to M then, according to Fine, M is a felicitous model
of Π .

7 Prolog Rules as Defaults

The idea of a self-verifying hypothesis is older than the definition of a felicitous
model: Raymond Reiter [1980] used it to define the semantics of his nonmonotonic
logic for default reasoning.

To specify a default theory in the sense of Reiter, we choose

• a set of first-order sentences (similar to axioms in a first-order theory), and
• a set of defaults—expressions of the form

F : MG1, . . . ,MGm

H
, (13)

where F,G1, . . . ,Gm,H are first-order formulas.

Reiter explains the intuition behind the notation for defaults by saying that M is to
be read as “it is consistent to assume”, and that default (13) says: if F is believed,
and if each of G1, . . .Gm can be consistently believed, then H is believed.

After giving an informal explanation, Reiter says in the introduction to his paper,
a question remains:

exactly what is meant by the consistency requirement associated with a default? Consistent
with what? Providing an appropriate formal definition of this consistency requirement is
perhaps the thorniest issue in defining a logic for default reasoning . . . For the time being
a good intuitive interpretation is to view this consistency requirement with respect to all of
the first order facts about the world, together with all of the other beliefs sanctioned by all
of the other default rules in force.

The definition of an extension for a default theory, given in the main part of the
paper [Reiter, 1980, Sections 2.2 and 7.1], says essentially than an extension is a
self-verifying set of beliefs, to use Fine’s expression.

Nicole Bidoit and Christine Froidevaux [1987] proposed to represent a rule of
form (6) by the default (13) in which

• F is the conjunction of the positive literals in the antecedent of (6),
• G1, . . . ,Gm are all negative literals in the antecedent of (6),
• H is the consequent of (6).
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For example, this transformation turns the last rule of program (7) into the default

p2 : M¬p3

p4
.

For any set Π of rules of form (6), the extensions for the default theory obtained
in this way from Π correspond to the felicitous models of Π . In this sense, the
reduction of logic programs to default theories invented by Bidoit and Froidevaux
justifies negation as failure in the same way as the definition of a felicitous model.
But the characterization of preferred models based on that reduction is more com-
plicated than Fine’s because it is indirect: to understand it, one needs to be familiar
with Reiter’s default logic.

8 Prolog Rules as Formulas of Autoepistemic Logic

Autoepistemic logic is a nonmonotonic logic invented by Robert Moore [1984] for
the purpose of

modeling the beliefs of ideally rational agents who reflect on their own beliefs . . . The
language of autoepistemic logic is that of ordinary propositional logic, augmented by a
modal operator L. We want formulas of the form LP to receive the intuitive interpretation of
“P is believed” or “I believe P.” For example, P→ LP could be interpreted as saying “If P
is true, then I believe that P is true.”

About sets A and E of formulas in this language Moore says that E as a stable expan-
sion of A if E is the set of all consequences (in the sense of classical propositional
logic) of

A∪{LP : P ∈ E}∪{¬LP : P 6∈ E}.

This condition can be viewed as saying that stable expansions are self-justifying, to
use Fine’s expression again.

Moore relates this use of the word “stable” to an unpublished manuscript by
Robert Stalnaker, who talked about a state of belief in which “no further conclusions
could be drawn by an ideally rational agent.”

Michael Gelfond [1987] proposed to translate rules of form (6) into the language
of autoepistemic logic by replacing every negative literal ¬A with the formula ¬LA.
For example, this translation turns the last rule of program (7) into the formula

p2∧¬Lp3→ p4.

Combined with the definition of a stable expansion quoted above, this translation
leads to the same choice of preferred models as the definition of a felicitous model.

The results of Gelfond’s paper show that for any stratified program his translation
gives the same preferred model as the iterated fixpoint construction.
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9 Stable Models

Gelfond’s translation produces formulas of a very simple syntactic form, and in
application to such formulas the definition of a stable expansion can be replaced by a
simpler definition, which does not refer to the consequence relation of propositional
logic. This is the idea that has led to the definition of a stable model [Gelfond and
Lifschitz, 1988].

Stable models are usually characterized in terms of reducts, as at the end of Sec-
tion 6 above. In fact, the description of the reduct there is a quote, almost verbatim,
from the stable model paper.

10 Simple Implications

The literature on stable models describes many ways to extend the definition of
the reduct to formulas that are syntactically more general than (6). Some of these
proposals are motivated by practical needs of answer set programming; others by
the desire to look at stable models in a more abstract way and clarify the essen-
tial features of this concept. In this section we discuss one of these generalizations
[Lifschitz et al., 1999], which may be of interest from both points of view.

A simple implication is a propositional formula of the form F → G, where F
and G are formed from atoms and the logical constants > (true) and ⊥ (false) using
conjunctions, disjunctions, and negations. A subformula of a simple implication is
critical if it begins with negation and is not in the scope of another negation. For
instance, a rule of form (6) is a simple implication, and its critical parts are the
negative literals in its antecedent.

The reduct of a set Π of simple implications with respect to a set M of atoms is
obtained from Π by replacing each critical subformula C of each implication with>
if M satisfies C, and with ⊥ otherwise. If M is a minimal model of the reduct of Π

with respect to M then we say that M is a stable model of Π .
In application to sets of formulas of form (6), this is equivalent to the definition

of a stable model given in Section 9. If a set Π of simple implications does not
contain negation then its reduct with respect to any set M of atoms is Π itself, so
that the word “stable” in this case has the same meaning as “minimal.” For instance,
the stable models of the set

p∨q,
q→ r (14)

are its minimal models {p} and {q,r}. (We identify p∨q with the simple implica-
tion >→ p∨q.)

Each of the formulas
p∨¬p (15)

and
¬¬p→ p (16)
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has two stable models, /0 and {p}.

Second digression on intuitionistic logic. If two sets of simple implications are in-
tuitionistically equivalent then they have the same stable models [Lifschitz et al.,
2001]. Intuitionistic logic is not, however, the strongest propositional logic with this
property; this assertion holds also for the 3-valued logic introduced by Arend Heyt-
ing [1930] as a technical device for the purpose of demonstrating that intuitionistic
logic is weaker than classical. Heyting remarks that the truth values of this superin-
tuitionistic logic “can be interpreted as follows: 0 denotes a correct proposition, 1
denotes a false proposition, and 2 denotes a proposition that cannot be false but
whose correctness is not proved.” That logic is known by many names; it is often
called the logic of here-and-there, because it can be described by Kripke models
with two worlds.

Unlike intuitionistic logic, the logic of here-and-there satisfies De Morgan’s law:
¬(p∧ q) is equivalent to ¬p∨¬q. The law of excluded middle (15) is equivalent
to the law of double negation (16) in the logic of here-and-there; intuitionistically,
it is equivalent to the conjunction of (16) with the weak law of excluded middle
¬p∨¬¬p.

The relationship between stable models and the logic of here-and-there was dis-
covered by David Pearce [1997].

11 Answer Set Solvers

Answer set solvers are software systems that calculate stable models of logic pro-
grams. The first such system, SMODELS [Niemelä and Simons, 1996], was followed
by DLV [Leone et al., 2006], CLINGO [Gebser et al., 2012], and several others.

When applied to a program consisting of rules of form (6), an answer set solver
never goes to an infinite loop. If a program has several stable models then a solver
can be expected to find all of them. For instance, program (10) can be written in the
input language of a typical answer set solver as

p(1) :- not p(2).
p(2) :- not p(1).

The output produced in response to this input may look like this:

Answer: 1
p(1)
Answer: 2
p(2)

When SMODELS was first presented to the computer science community, the
reaction was mixed. The fact that program (10) has two stable models seemed irrel-
evant, because it does not tell us anything about the functionality of Prolog systems.
Who would need software that calculates stable models of programs like this? The
attitude changed when answer set programming was invented; we will talk about
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uses of answer set solvers in Sections 13 and 14. Twenty years after the publication
of the SMODELS paper, the Association for Logic Programming honored its authors
with the prestigious test-of-time award.

Most answer set solvers can handle rules that are syntactically more general
than (6). The head of a rule in the input language of CLINGO can be a disjunction of
atoms and negated atoms; for instance, the formula

p1∧ p2∧¬p3→ q1∨q2∨¬q3

can be written in this language as

q(1), q(2), not q(3) :- p(1), p(2), not p(3).

As this example shows, the comma in this language represents conjunction when it
is used in the body of a rule, and disjunction in the head. The empty head represents
the consequent ⊥; for instance, the formula

p∧¬q→⊥

can be written as

:- p, not q.

Furthermore, an atom in a CLINGO rule can be preceded by two negations; for in-
stance, formula (16) can be written as

p :- not not p.

Equivalent transformations of the logic of here-and-there allow us to convert any
simple implication into a set of CLINGO rules. It follows that CLINGO can be used,
in principle, to calculate the stable models of any finite set of simple implications.
For example, the simple implication

¬(p1∧¬p2∧¬¬p3)∧q→ r (17)

is equivalent in the logic of here-and-there to the set consisting of three implications:

¬p1∧q→ r,
¬¬p2∧q→ r,
¬p3∧q→ r.

Consequently formula (17) can be represented in the input language of CLINGO by
the rules

r :- not p(1), q.
r :- not not p(2), q.
r :- not p(3), q.
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12 Rules with Variables

Input languages of most answer set solvers allow programs to use variables. In the
tradition of Prolog, variables in answer set programming are denoted by character
strings that begin with a capital letter. A rule containing variables can be understood
as a schematic expression that represents all its “ground instances”—the rules ob-
tained from it by substituting constants (such as integers or symbolic constants) for
all variables. For example, the last rule of the program

p(1). p(2).
q(X) :- p(X).

stands for the set of rules of the form

q(c) :- p(c).

for all constants c. Thus the program above represents an infinite set of rules of
form (3), and its minimal model

p(1) p(2) q(1) q(2)

is the output that will be produced in response to it by an answer set solver.
As another example, consider the CLINGO program

p(1). p(2).
q(X), not q(X) :- p(X).

The head of its last rule is syntactically similar to the excluded middle formula (15).
This rule says, informally speaking: for every element X of set p, decide arbitrarily
whether or not to include X in set q. The program has 4 stable models:

Answer: 1
p(1) p(2)
Answer: 2
p(1) p(2) q(2)
Answer: 3
p(1) p(2) q(1)
Answer: 4
p(1) p(2) q(1) q(2)

13 Combinatorial Search

Answer set solvers are often used to solve combinatorial search problems. In such a
problem, the goal is to find a solution among a large but finite number of possibilites.
Looking for a satisfying truth assignment for a given propositional formula is a
standard example of combinatorial search. The set of truth assignments is finite but
large: its size is exponential in the size of the input. Solving Sudoku puzzles is
another example of combinatorial search.
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The answer set programming approach to combinatorial search is to encode the
problem as a set of rules so that its stable models correspond to the objects that we
want to find. Then we run an answer set solver on this encoding to find a solution.

Consider, for instance, the exact cover problem: given a collection C of subsets of
a finite set U , find a subcollection C∗ of C such that each element of U is contained
in exactly one subset in C∗. If, for example, U is {1, . . . ,4}, and C consists of the
sets

P = {1,2,3}, Q = {2,3,4}, R = {1,3}, S = {2,3}, T = {2,4},

then {R,T} is an exact cover. Deciding whether an exact cover exists is one of the
examples of difficult (“NP-complete”) decision problems from the classical paper
by Richard Karp [1972].

The exact cover problem can be encoded in the language of CLINGO by four
rules:

1 c_star(S), not c_star(S) :- in(X,S).
2 covered(X) :- in(X,S), c_star(S).
3 :- in(X,S), not covered(X).
4 :- in(X,S1), in(X,S2), c_star(S1), c_star(S2), S1!=S2.

This encoding assumes that the collection C is described by a group of atoms formed
using the binary predicate symbol in:

in(1,p). in(2,p). in(3,p). in(2,q). in(q.3). in(q,4).
in(1,r). in(3,r). in(2,s). in(3,s). in(2,t). in(4,t).

(18)
It assumes also that every element of U belongs to at least one element of the col-
lection C (otherwise the problem is not solvable).

The four rules in the listing above encode the exact cover problem in the sense
that exact covers are in a 1-1 correspondence with the stable models of the program
obtained by adding these rules to the atoms describing C. For example, the program
obtained by adding these rules to atoms (18) has a unique stable model, and that
model includes the atoms c_star(r), c_star(t).

The rule in Line 1 of the listing says, informally speaking, that for every set S
from the collection C, we may decide arbitrarilty whether or not to include it in the
set c_star. Line 2 defines covered as the set of all objects X that belong to at
least one set S from c_star. Adding Line 3 to the emerging program eliminates
the stable models in which some object X from one of the members S of C is not
covered. Finally, adding Line 4 eliminates the stable models in which some object X
belongs to two distinct members S1, S2 of c_star. (The condition S1!=S2 in the
body of the rule indicates that the constants substituted for the variables S1 and S2
in the process of forming ground instances of the rule should not be equal.)
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14 Answer Set Programming

Theory of knowledge representation is a subfield of artificial intelligence that studies
representing declarative knowledge in a form that can be used by computers. Answer
set programming is the approach to knowledge representation based on the stable
model semantics. Encoding the definition of an exact cover by CLINGO rules in
Section 13 is an example of this style of knowledge representation, and thus an
example of answer set programming.

The earliest publication on the use of SMODELS for solving an important compu-
tational problem is a paper about plan generation [Dimopoulos et al., 1997]. Numer-
ous applications of answer set programming and answer set solvers are discussed in
recent surveys [Erdem et al., 2016, Falkner et al., 2018].

The input languages of modern answer set solvers include many constructs that
facilitate their use for solving practical problems, and defining the semantics of these
constructs sometimes involves extending the concept of a stable model beyond the
class of simple implications discussed in Section 10. For instance, the description
of some syntactic features of the language of CLINGO [Gebser et al., 2015] refers
to stable model models of propositional formulas with infinite conjunctions and
disjunctions, defined by Miroslaw Truszczynski [2012].

The mathematics of stable models has been the subject of many publications, and
results in this area can be used to prove the correctness of encodings. For example,
the informal discussion in the last paragraph of Section 13 can be turned into a
proof of the fact that the stable models of the program under consideration are in a
1-to-1 correspondence with exact covers. In some cases, such proofs can be verified
using an automated proof assistant [Fandinno et al., 2020]. Extensive research has
been done also on the methodology of answer set programming and on the design
of solvers. Biannual answer set programming competitions are organized to assess
the state of the art [Gebser et al., 2017].

The theory of stable models is an example of how “pure” research, motivated
by the desire to understand, clarify, and justify, can contribute to the creation of
“industrial strength” software.
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