
From Felicitous Models
to Answer Set Programming

Vladimir Lifschitz

University of Texas at Austin, USA

Abstract. Felicitous models were defined by Kit Fine in 1987 for the
purpose of describing the semantics of negation in the programming lan-
guage Prolog. This is an expository article about that invention, and
about the events in the area of computer science that followed. Sophis-
ticated software systems for generating felicitous models have been de-
signed, and they became the basis of a new knowledge representation
paradigm, called answer set programming. That methodology is used to-
day for encoding and solving computational problems in many areas of
science and technology.

1 Introduction

Felicitous models were defined by Kit Fine [11] for the purpose of describing the
semantics of negation in the programming language Prolog. As often happens
with good ideas in science, this idea was developed independently, in somewhat
different forms, by several other researchers. Fine’s paper was presented at the
Eighth International Congress of Logic, Methodology and Philosophy of Science,
held in 1987; Nicole Bidoit and Christine Froidevaix [4] described their work at
the Second Annual IEEE Symposium on Logic in Computer Science the same
year; Michael Gelfond’s paper [15] was given at the AAAI National Conference
on Artificial Intelligence, in 1987 as well. A paper by Gelfond and Lifschitz,
initially submitted to the Seventh ACM Symposium on Principles of Database
Systems, became “one of the papers which time considerations prevented from
being presented at the Symposium”; it was contributed in 1988 to the Interna-
tional Logic Programming Conference and Symposium [17]. The last of these
papers became a standard reference, and felicitous models are often called “sta-
ble models”—the term introduced in that paper. They are also referred to as
answer sets.

In this expository article we discuss the invention of felicitous models (Sec-
tions 2–9) and tell the story of surprising developments in the area of computer
science that followed (Sections 10–13). Sophisticated software systems for gener-
ating felicitous models have been designed, and they became the basis of a new
knowledge representation paradigm, called answer set programming [25, 27]. This
methodology has been used for encoding and solving computational problems in
a variety of areas—from historical linguistics [5] to spacecraft design [29].



2 Prolog

Propositional formulas of the form

A1 ∧ · · · ∧An → An+1 (n ≥ 0), (1)

where each Ai is an atom, can be rewritten as Prolog rules, and by running a
Prolog interpreter we can learn which atoms are entailed by a set of formulas of
this form. For instance, the set of formulas

p1,
p1 → p2,
p2 ∧ p3 → p4

(2)

can be represented by the Prolog program

p(1).

p(2) :- p(1).

p(4) :- p(2), p(3).

Most Prolog rules, like the last two in this example, contain the “if” symbol :-
and are similar to implications written backwards. The part of a rule to the left
of this symbol is called the head of the rule and corresponds to the consequent
of the implication; the part to the right, called the body, corresponds to the
antecedent. A Prolog system will tell us that the atoms p1 and p2 are entailed
by formulas (2), and the atoms p3 and p4 are not.

The answers given by Prolog in this example can be interpreted also in a dif-
ferent way. In logic programming, it is customary to identify a truth assignment
with the set of atoms that get the value true. For example, we can represent
assigning the value true to p1 and p2, and the value false to all other atoms, by
the set {p1, p2}. This set is a model of formulas (2), in the sense that these for-
mulas are satisfied by the corresponding truth assignment. The sets {p1, p2, p4}
and {p1, p2, p3, p4} are models of (2) as well. The model {p1, p2} differs from the
others in that it is minimal—its proper subsets are not models of (2).

We can say that in application to a set of formulas of form (1) Prolog cal-
culates the minimal model of that set [8]. To be precise, Prolog calculates that
model if it terminates; sometimes it goes to an infinite loop. That will happen,
for example, if we try to use Prolog to find the minimal model of the formulas

p1 → p2,
p2 → p1.

(3)

The minimal model of a set Π of formulas of form (1) can be described as the
result of accumulating the atoms that are necessary for satisfying all formulas
in Π. For instance, the empty set (all atoms are false) does not satisfy the first
of formulas (2); include p1. The set {p1} does not satisfy the second formula;
add p2. The set {p1, p2} satisfies all formulas (2); this is the minimal model.
Formulas (3) are satisfied by the empty set, so that the process of accumulating
atoms stops at the very beginning.



3 Negation as Failure

The observations in Section 2 apply to Prolog rules that correspond to formulas
of form (1). How can we extend them to propositional formulas of the form

L1 ∧ · · · ∧ Ln → H (n ≥ 0), (4)

where each Li is a literal (atom or negated atom), and H is an atom? (We denote
this atom by H because it corresponds to the head of a Prolog rule.) This is the
question that led Kit Fine to the idea of a felicitous model.

Consider, for instance, the formulas

p1,
p1 → p2,
p2 ∧ ¬p3 → p4

(5)

and the corresponding program, in which the Prolog negation symbol \+ is used
to represent ¬ in the last line:

p(1).

p(2) :- p(1).

p(4) :- p(2), \+ p(3).

Formulas (5) have two minimal models:

M1 = {p1, p2, p3}, M2 = {p1, p2, p4}.

The answers to queries given by Prolog correspond to M2. How can this choice
be justified? In what sense is this model better than M1?

The difference between M1 and M2 can be informally explained if we look
at formulas (5) as rules for generating atoms. The first line allows us to gener-
ate p1. The implication in the second line allows us to generate p2 if p1 has been
generated. The last of formulas (5) allows us to generate p4 if two conditions are
satisfied: p2 has been generated, and any attempt to use all these formulas to
generate p3 would fail. Then we can say: there is no way to use formulas (5) to
generate p3, because the only atoms that these formulas allow us to generate,
under various assumptions, are p1, p2, and p4. Consequently generating p4 using
the last of these formulas is justified. The set of atoms that have been gener-
ated is what we denoted by M2. In this sense, M2 is the “preferred” model of
formulas (5).

Explanations in terms of rules for generating atoms, and of the failure of an
attempt to use rules, comports with the way Prolog programmers think: they say
that their programs consist of rules, and that the symbol \+ represents “negation
as failure” [6]. (And in this article we will sometimes refer to formulas as rules,
and to sets of formulas as programs.) But how can we turn such an informal
explanation into a mathematical definition?

Digression on intuitionistic logic. If we replace the last of formulas (5) by the
equivalent formula

p2 ∧ ¬p4 → p3



then model M1 will be considered preferred. Thus it appears that the property
of being preferred is not invariant with respect to equivalent transformations of
formulas. It is interesting that the two formulas in this example are equivalent
classically, but not intuitionistically. In Section 9 we will say more about the
relationship between logic programs and intuitionistic logic.

4 Stratified Programs

Before presenting his own approach to identifying preferred models, Fine dis-
cussed other proposals described in the literature and argued that they are not
entirely satisfactory. There is, however, a special case—not mentioned in Fine’s
paper—for which a noncontroversial definition of the preferred model was avail-
able: the case of logic programs that are “stratified,” or “free from recursive
negation” [2, 34].

To stratify a finite set Π of rules of form (4) means to partition it into subsets
Π1, . . . ,Πk so that if a rule (4) belongs to Πi (1 ≤ i ≤ k) then

(a) whenever a literal Lj in the antecedent of (4) is an atom, every rule in Π
with that atom in the consequent belongs to Π1 ∪ · · · ∪Πi, and

(b) whenever a literal Lj in the antecedent of (4) is a negative literal ¬A, every
rule in Π with the consequent A belongs to Π1 ∪ · · · ∪Πi−1.

For example, every set of rules of form (1) is stratified: include the entire set
in one stratum Π1. Program (5) is stratified using a single stratum as well. The
program consisting of the rules

¬pi → pi+1 (1 ≤ i ≤ k), (6)

where k is a positive integer, is also stratified: take Πi = {¬pi → pi+1}. On the
other hand, if Π contains the rule

¬p→ p (7)

then Π is not stratified, because that rule would have to belong to each of the
two disjoint sets Πi, Π1 ∪ · · · ∪Πi−1. Similarly, a program is not stratified if it
contains the rules

¬p1 → p2,
¬p2 → p1.

(8)

Constructing the preferred model of a stratified program Π starts with in-
cluding the consequents of the implications in Π1 that must be included to
satisfy all those implications, as in the example at the end of Section 2. Then
the consequents of the implications in Π2 are added when this is necessary to
satisfy the implications in Π2, and so on. If an atom does not occur in any of
the consequents, as p4 in (5), then it is never included.

For example, constructing the preferred model of program (6) starts with
including p2, to satisfy the formula ¬p1 → p2 from the first stratum. Since {p2}



satisfies the formula ¬p2 → p3 from the second stratum, p3 is not included. To
satisfy ¬p3 → p4, we add p4, and so on, until the stratum Πk is reached. Thus
the preferred model of (6) is {p2, p4, . . .}.

This process is known as the iterated fixpoint construction. To use it as the
definition of the preferred model of a stratified program, one has to show that if
this construction is applied to different stratifications of the same program then
the preferred model obtained at the end will be the same [2, Theorem 11].

5 Felicitous Models

To characterize preferred models in the general case, Fine writes, “suppose that
we make a hypothesis as to which statements are false. Then this hypothesis can
be used . . . to detach negative statements” from the antecedents of the given
implications [11, page 285].

Take, for example, program (5), and consider the hypothesis that p3 is false.
Then the conjunctive term ¬p3 in the last line of (5) is true, and “detaching” it
turns (5) into the program

p1,
p1 → p2,
p2 → p4.

(9)

This is a set of rules of form (1), and its minimal model is

{p1, p2, p4}. (10)

In this example, the atom p3, which we assumed initially to be false, happens
to be the only atom that does not belong to the minimal model (10) that we
arrived at. In this sense, the hypothesis that p3 is false (and that all other atoms
occurring in the program are true) was a “happy” hypothesis.

Instead of thinking in terms of posited falsehoods, we can think in terms
of posited truths. A happy hypothesis is then one under which the posited
truths coincide with the generated truths. Thus a happy hypothesis is,
in a certain sense, self-verifying. It is verifying, since what one takes to
be the truth turns out to be the truth; and it is self -verifying, since it is
partly because what one takes the truth to be what it is that it is what
it is [11, page 286].

A model is felicitous if it “embodies a happy hypothesis” and thus “leads to the
whole truth and nothing but the truth.”

Let us go back to example (5) and consider now the hypothesis that p3 is
not among the false atoms. Then the antecedent in last line of (5) is false, and
that rule can be disregarded. The minimal model of the remaining two rules is
{p1, p2}. A situation when “some statement is neither a posited falsehood nor a
generated truth,” as p3 in this example, indicates a “gap”; a hypothesis leading
to a gap is not happy. In other cases, we may find that “some statement is both
a posited falsehood and a generated truth”; this is a “glut”—another kind of



evidence that the hypothesis is not happy. A happy hypothesis “leads to neither
gaps not gluts.”

In the case of program (5), set (10) is the only felicitous model—the only set
of atoms that leads to neither gaps not gluts. Rule (7) has no felicitous models,
and program (8) has two: {p1} and {p2}.

The concept of a felicitous model describes the behavior of Prolog in the
following sense: if Π is a program consisting of rules of form (4) that has a
unique stable model, and Prolog terminates when applied to Π, then its output
describes the felicitous model of Π. In application to a program that has no
felicitous models, such as (7), or several felicitous models, such as (8), Prolog
usually goes to an infinite loop.

6 Prolog Rules as Defaults

The idea of a self-verifying hypothesis is older than the definition of a felicitous
model: Raymond Reiter [31] used it to define the semantics of his nonmonotonic
logic for default reasoning.

To specify a default theory in the sense of Reiter, we choose

– a set of first-order sentences (similar to axioms in a first-order theory), and
– a set of defaults—expressions of the form

F : MG1, . . . ,MGm

H
, (11)

where F,G1, . . . , Gm, H are first-order formulas.

Reiter explains the intuition behind the notation for defaults by saying that M
is to be read as “it is consistent to assume”, and that default (11) says: if F
is believed, and if each of G1, . . . Gm can be consistently believed, then H is
believed.

After giving an informal explanation, Reiter says in the introduction to his
paper, a question remains:

exactly what is meant by the consistency requirement associated with
a default? Consistent with what? Providing an appropriate formal def-
inition of this consistency requirement is perhaps the thorniest issue in
defining a logic for default reasoning . . . For the time being a good intu-
itive interpretation is to view this consistency requirement with respect
to all of the first order facts about the world, together with all of the
other beliefs sanctioned by all of the other default rules in force.

The definition of an extension for a default theory, given in the main part of the
paper, says essentially than an extension is a self-verifying set of beliefs, to use
Fine’s expression.

Nicole Bidoit and Christine Froidevaux [4] proposed to represent a rule of
form (4) by the default (11) in which



– F is the conjunction of the positive literals in the antecedent of (4),
– G1, . . . , Gm are all negative literals in the antecedent of (4),
– H is the consequent of (4).

For example, this transformation turns the last rule of program (5) into the
default

p2 : M¬p3
p4

.

For any set Π of rules of form (4), the extensions for the default theory
obtained in this way from Π correspond to the felicitous models of Π. In this
sense, the reduction of logic programs to default theories invented by Bidoit
and Froidevaix justifies negation as failure in the same way as the definition of
a felicitous model. But the characterization of preferred models based on that
reduction is more complicated than Fine’s because it is indirect: to understand
it, one needs to be familiar with Reiter’s default logic.

7 Prolog Rules as Formulas of Autoepistemic Logic

Autoepistemic logic is a nonmonotonic logic invented by Robert Moore [26] for
the purpose of

modeling the beliefs of ideally rational agents who reflect on their own
beliefs . . . The language of autoepistemic logic is that of ordinary propo-
sitional logic, augmented by a modal operator L. We want formulas of
the form LP to receive the intuitive interpretation of “P is believed” or
“I believe P .” For example, P → LP could be interpreted as saying “If P
is true, then I believe that P is true.”

About sets A and E of formulas in this language Moore says that E as a sta-
ble expansion of A if E is the set of all consequences (in the sense of classical
propositional logic) of

A ∪ {LP : P ∈ E} ∪ {¬LP : P 6∈ E}.

This condition can be viewed as saying that stable expansions are self-justifying,
to use Fine’s expression again.

Moore relates this use of the word “stable” to an unpublished manuscript
by Robert Stalnaker, who talked about a state of belief in which “no further
conclusions could be drawn by an ideally rational agent.”

Michael Gelfond [15] proposed to translate rules of form (4) into the language
of autoepistemic logic by replacing every negative literal ¬A with the formula
¬LA. For example, this translation turns the last rule of program (5) into the
formula

p2 ∧ ¬Lp3 → p4.

Combined with the definition of a stable expansion quoted above, this translation
leads to the same choice of preferred models as the definition of a felicitous model.

The results of Gelfond’s paper show that for any stratified program his trans-
lation gives the same preferred model as the iterated fixpoint construction.



8 Stable Models

Gelfond’s translation produces formulas of a very simple syntactic form, and in
application to such formulas the definition of a stable expansion can be replaced
by a simpler definition, which does not refer to the consequence relation of
propositional logic. This is the idea that has led to the definition of a stable
model [17].

Stable models are usually characterized in terms of reducts. The reduct of a
set Π of rules of form (4) with respect to a set M of atoms is obtained from Π
by deleting

– every rule that has a negative literal ¬A in the antecedent such that A ∈M ,
and

– all negative literals in the antecedents of the remaining rules.

For example, the reduct of program (5) with respect to M is

p1,
p1 → p2

if p3 belongs to M . If p3 does not belong to M then the reduct is (9).
The reduct is obviously a set of rules of form (1). If M is the minimal model

of the reduct of Π with respect to M then we say that M is a stable model of Π.
This is clearly equivalent to Fine’s description of felicitous models.

9 Simple Implications

The literature on stable models describes many ways to extend the definition
of the reduct to formulas that are syntactically more general than (4). Some of
these proposals are motivated by practical needs of answer set programming;
others by the desire to look at stable models in a more abstract way and clarify
the essential features of this concept. In this section we discuss one of these
generalizations [24], which may be of interest from both points of view.

A simple implication is a propositional formula of the form F → G, where F
and G are formed from atoms and the logical constants > (true) and ⊥ (false)
using conjunctions, disjunctions, and negations. A subformula of a simple im-
plication is critical if it begins with negation and is not in the scope of another
negation. For instance, a rule of form (4) is a simple implication, and its critical
parts are the negative literals in its antecedent.

The reduct of a set Π of simple implications with respect to a set M of atoms
is obtained from Π by replacing each critical subformula C of each implication
with > if M satisfies C, and with ⊥ otherwise. If M is a minimal model of the
reduct of Π with respect to M then we say that M is a stable model of Π.

In application to sets of formulas of form (4), this is equivalent to the defini-
tion of a stable model given in Section 8. If a set Π of simple implications does
not contain negation then its reduct with respect to any set M of atoms is Π



itself, so that the word “stable” in this case has the same meaning as “minimal.”
For instance, the stable models of the set

p ∨ q,
q → r

(12)

are its minimal models {p} and {q, r}. (We identify p∨ q with the simple impli-
cation > → p ∨ q.)

Each of the formulas
p ∨ ¬p (13)

and
¬¬p→ p (14)

has two stable models, ∅ and {p}.

Second digression on intuitionistic logic. If two sets of simple implications are
intuitionistically equivalent then they have the same stable models. Intuitionistic
logic is not, however, the strongest propositional logic with this property; this
assertion holds also for the 3-valued logic introduced by Arend Heyting [18] as
a technical device for the purpose of demonstrating that intuitionistic logic is
weaker than classical. Heyting remarks that the truth values of this superintu-
itionistic logic “can be interpreted as follows: 0 denotes a correct proposition,
1 denotes a false proposition, and 2 denotes a proposition that cannot be false
but whose correctness is not proved.” That logic is known by many names; it is
often called the logic of here-and-there, because it can be described by Kripke
models with two worlds.

Unlike intuitionistic logic, the logic of here-and-there satisfies De Morgan’s
law: ¬(p∧q) is equivalent to ¬p∨¬q. The law of excluded middle (13) is equivalent
to the law of double negation (14) in the logic of here-and-there; intuitionistically,
it is equivalent to the conjunction of (14) with the weak law of excluded middle
¬p ∨ ¬¬p.

The relationship between stable models, intuitionistic logic, and the logic of
here-and-there was studied by David Pearce and his co-authors [30, 23].

10 Answer Set Solvers

Answer set solvers are software systems that calculate stable models of logic
programs. The first such system, Smodels [28], was followed by dlv [20], clingo
[13], and several others.

When applied to a program consisting of rules of form (4), an answer set
solver never goes to an infinite loop. If a program has several stable models then
a solver can be expected to find all of them. For instance, program (8) can be
written in the input language of a typical answer set solver as

p(1) :- not p(2).

p(2) :- not p(1).



The output produced in response to this input may look like this:

Answer: 1

p(1)

Answer: 2

p(2)

When Smodels was first presented to the computer science community, the
reaction was mixed. The fact that program (8) has two stable models seemed
irrelevant, because it does not tell us anyting about the functionality of Pro-
log. Who would need software that calculates stable models of programs like
this? The attitude changed when answer set programming was invented; we will
talk about uses of answer set solvers in Sections 12 and 13. Twenty years after
the publication of the Smodels paper, the Association for Logic Programming
honored its authors with the prestigious test-of-time award.

Most answer set solvers can handle rules that are syntactically more general
than (4). The head of a rule in the input language of clingo can be a disjunction
of atoms and negated atoms; for instance, the formula

p1 ∧ p2 ∧ ¬p3 → q1 ∨ q2 ∨ ¬q3

can be written in this language as

q(1), q(2), not q(3) :- p(1), p(2), not p(3).

As this example shows, the comma in this language represents conjunction when
it is used in the body of a rule, and disjunction in the head. The empty head
represents the consequent ⊥; for instance, the formula

p ∧ ¬q → ⊥

can be written as

:- p, not q.

Furthermore, an atom in a clingo rule can be preceded by two negations; for
instance, formula (14) can be written as

p :- not not p.

Equivalent transformations of the logic of here-and-there allow us to convert
any simple implication into a set of clingo rules. It follows that clingo can
be used, in principle, to calculate the stable models of any finite set of simple
implications. For example, the simple implication

¬(p1 ∧ ¬p2 ∧ ¬¬p3) ∧ q → r (15)

is equivalent in the logic of here-and-there to the set consisting of three implica-
tions:

¬p1 ∧ q → r,
¬¬p2 ∧ q → r,
¬p3 ∧ q → r.



Consequently formula (15) can be represented in the input language of clingo
by the rules

r :- not p(1), q.

r :- not not p(2), q.

r :- not p(3), q.

11 Rules with Variables

Input languages of most answer set solvers allow programs to use variables. In the
tradition of Prolog, variables in answer set programming are denoted by capital
letters or, more generally, by character strings that begin with a capital letter.
A rule containing variables can be understood as a schematic expression that
represents all its “ground instances”—the rules obtained from it by substituting
constants (such as integers or symbolic constants) for all variables. For example,
the last rule of the program

p(1). p(2).

q(X) :- p(X).

stands for the set of rules of the form

q(c) :- p(c).

for all constants c. Thus the program above represents an infinite set of rules of
form (1), and its minimal model

p(1) p(2) q(1) q(2)

is the output that will be produced in response to it by an answer set solver.
As another example, consider the clingo program

p(1). p(2).

q(X), not q(X) :- p(X).

The head of its last rule is syntactically similar to the excluded middle for-
mula (13). This rule says, informally speaking: for every element X of set p,
decide arbitrarily whether or not to include X in set q. The program has 4
stable models:

Answer: 1

p(1) p(2)

Answer: 2

p(1) p(2) q(2)

Answer: 3

p(1) p(2) q(1)

Answer: 4

p(1) p(2) q(1) q(2)



12 Combinatorial Search

Answer set solvers are often used to solve combinatorial search problems. In
such a problem, the goal is to find a solution among a large but finite number of
possibilites. Looking for a satisfying truth assignment for a given propositional
formula is a standard example of combinatorial search. The set of truth assign-
ments is finite but large: its size is exponential in the size of the input. Solving
Sudoku is another example of combinatorial search.

The answer set programming approach to combinatorial search is to encode
the problem as a logic program so that the stable models of the program corre-
spond to the objects that we want to find. Then we run an answer set solver on
this encoding to find a solution.

Consider, for instance, the exact cover problem: given a collection C of sub-
sets of a finite set U , find a subcollection C∗ of C such that each element in U
is contained in exactly one subset in C∗. If, for example, U is {1, . . . , 4}, and C
consists of the sets

P = {1, 2, 3}, Q = {2, 3, 4}, R = {1, 3}, S = {2, 3}, T = {2, 4},

then {R, T} is an exact cover. Deciding whether an exact cover exists is one of
Richard Karp’s twenty-one NP-complete decision problems [19].

The exact cover problem can be encoded in the language of clingo by four
rules:

c_star(S), not c_star(S) :- in(X,S).

covered(X) :- in(X,S), c_star(S).

:- in(X,S), not covered(X).

:- in(X,S1), in(X,S2), c_star(S1), c_star(S2), S1!=S2.

This encoding assumes that the collection C is described by a group of atoms
formed using the binary predicate symbol in:

in(1,p). in(2,p). in(3,p). in(2,q). in(3,q). in(4,q).

in(1,r). in(3,r). in(2,s). in(3,s). in(2,t). in(4,t).
(16)

It assumes also that every element of U belongs to at least one element of the
collection C (otherwise the problem is not solvable).

The four rules above encode the exact cover problem in the sense that ex-
act covers are in a 1-1 correspondence with the stable models of the program
obtained by adding these rules to the atoms describing C. For example, the pro-
gram obtained by adding these rules to atoms (16) has a unique stable model,
and that model includes the atoms c_star(r), c_star(t).

The first rule of the program says, informally speaking, that for every set S

from the collection C, we may decide arbitrarilty whether or not to include it in
the set c_star. The second rule defines covered as the set of all objects X that
belong to at least one set S from c_star. Adding the third rule to the emerging
program eliminates the stable models in which some object X from one of the



members S of C is not covered. Finally, the last rule eliminates the stable models
in which some object X belongs to two distinct members S1, S2 of c_star. (The
condition S1!=S2 in the body of the rule indicates that the constants substituted
for the variables S1 and S2 in the process of forming ground instances of the rule
should not be equal.)

13 Answer Set Programming

Theory of knowledge representation is a subfield of artificial intelligence that
studies representing declarative knowledge in a form that can be used by com-
puters. Answer set programming is the approach to knowledge representation
based on the language of logic programs under the stable model semantics. En-
coding the definition of an exact cover by clingo rules in Section 12 is an ex-
ample of this style of knowledge representation, and thus an example of answer
set programming. The concept of a stable model helped researchers in the area
of knowledge representation solve the frame problem [32, 21] and other difficult
problems in artificial intelligence.

The earliest publication on the use of Smodels for solving an important
computational problem is a paper about planning [7]. Numerous applications of
answer set programming and answer set solvers are discussed in recent surveys
[9, 10].

The input languages of modern answer set solvers include many constructs
that facilitate their use for solving practical problems, and defining the seman-
tics of these constructs sometimes involves extending the concept of a stable
model beyond the class of simple implications discussed in Section 9. For in-
stance, the description of some syntactic features of the language of clingo [12]
refers to stable models of propositional formulas with infinite conjunctions and
disjunctions, defined by Miroslaw Truszczynski [33].

The mathematics of stable models has been the subject of many publica-
tions, and results in this area are used to prove the correctness of encodings.
For example, the informal discussion in the last paragraph of Section 12 can be
turned into a proof of the fact that the stable models of the program under con-
sideration are in a 1-to-1 correspondence with exact covers. Extensive research
has been done also on the methodology of answer set programming and on the
design of solvers. Biannual answer set programming competitions are organized
to assess the state of the art [14]. Several textbooks on answer set programming
are available today [3, 13, 16, 22], and the AI Magazine has published a special
issue on answer set programming [1].

The theory of stable models is an example of how “pure” research, motivated
by the desire to understand, clarify, and justify, can contribute to the creation
of “industrial strength” software.

14 Acknowledgements

Thanks to Michael Gelfond for comments on a draft of this paper.



References

1. AI Magazine, 37(3) (2016). Special Issue on Answer Set Programming
2. Apt, K., Blair, H., Walker, A.: Towards a theory of declarative knowledge. In:

J. Minker (ed.) Foundations of Deductive Databases and Logic Programming, pp.
89–148. Morgan Kaufmann, San Mateo, CA (1988)

3. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press (2003)

4. Bidoit, N., Froidevaux, C.: Minimalism subsumes default logic and circumscrip-
tion in stratified logic programming. In: Proceedings of the Second Annual IEEE
Symposium on Logic in Computer Science, pp. 89–97 (1987)

5. Brooks, D.R., Erdem, E., Erdoğan, S.T., Minett, J.W., Ringe, D.: Inferring phylo-
genetic trees using answer set programming. Journal of Automated Reasoning 39,
471–511 (2007)

6. Clark, K.: Negation as failure. In: H. Gallaire, J. Minker (eds.) Logic and Data
Bases, pp. 293–322. Plenum Press, New York (1978)

7. Dimopoulos, Y., Nebel, B., Koehler, J.: Encoding planning problems in non-
monotonic logic programs. In: S. Steel, R. Alami (eds.) Proceedings of European
Conference on Planning, pp. 169–181. Springer (1997)

8. van Emden, M., Kowalski, R.: The semantics of predicate logic as a programming
language. Journal of ACM 23(4), 733–742 (1976)

9. Erdem, E., Gelfond, M., Leone, N.: Applications of Answer Set Programming. AI
Magazine 37, 53–68 (2016)

10. Falkner, A., Friedrich, G., Schekotihin, K., Taupe, R., Teppan, E.: Industrial ap-
plications of Answer Set Programming. Künstliche Intelligenz 32, 165–176 (2018)

11. Fine, K.: The justification of negation as failure. In: Proceedings of the Eighth
International Congress of Logic, Methodology and Philosophy of Science, pp. 263–
301. North Holland (1989)

12. Gebser, M., Harrison, A., Kaminski, R., Lifschitz, V., Schaub, T.: Abstract Gringo.
Theory and Practice of Logic Programming 15, 449–463 (2015)

13. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Prac-
tice. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan
and Claypool Publishers (2012)

14. Gebser, M., Maratea, M., Ricca, F.: The design of the seventh answer set program-
ming competition. In: Proceedings of the Fourteenth International Conference on
Logic Programming and Nonmonotonic Reasoning, pp. 3–9. Springer (2017)

15. Gelfond, M.: On stratified autoepistemic theories. In: Proceedings of National
Conference on Artificial Intelligence (AAAI), pp. 207–211 (1987)

16. Gelfond, M., Kahl, Y.: Knowledge Representation, Reasoning, and the Design of
Intelligent Agents: The Answer-Set Programming Approach. Cambridge University
Press (2014)

17. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
R. Kowalski, K. Bowen (eds.) Proceedings of International Logic Programming
Conference and Symposium, pp. 1070–1080. MIT Press (1988)

18. Heyting, A.: Die formalen Regeln der intuitionistischen Logik. Sitzungsberichte der
Preussischen Akademie von Wissenschaften. Physikalisch-mathematische Klasse
pp. 42–56 (1930)

19. Karp, R.: Reducibility among combinatorial problems. In: R.E. Miller, J.W.
Thatcher (eds.) Complexity of Computer Computations, pp. 85–103. Plenum
(1972)



20. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.:
The DLV system for knowledge representation and reasoning. ACM Transactions
on Computational Logic 7(3), 499–562 (2006)

21. Lifschitz, V.: The dramatic true story of the frame default. Journal of Philosophical
Logic 44(2), 163–176 (2015)

22. Lifschitz, V.: Answer Set Programming. Springer (2019)
23. Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM

Transactions on Computational Logic 2, 526–541 (2001)
24. Lifschitz, V., Tang, L.R., Turner, H.: Nested expressions in logic programs. Annals

of Mathematics and Artificial Intelligence 25, 369–389 (1999)
25. Marek, V., Truszczynski, M.: Stable models and an alternative logic programming

paradigm. In: The Logic Programming Paradigm: a 25-Year Perspective, pp. 375–
398. Springer Verlag (1999)

26. Moore, R.: Possible-world semantics for autoepistemic logic. In: Proceedings 1984
Non-monotonic Reasoning Workshop (1984)

27. Niemelä, I.: Logic programs with stable model semantics as a constraint program-
ming paradigm. Annals of Mathematics and Artificial Intelligence 25, 241–273
(1999)

28. Niemelä, I., Simons, P.: Efficient implementation of the well-founded and stable
model semantics. In: Proceedings Joint International Conference and Symposium
on Logic Programming, pp. 289–303 (1996)

29. Nogueira, M., Balduccini, M., Gelfond, M., Watson, R., Barry, M.: An A-Prolog
decision support system for the Space Shuttle. In: Proceedings of International
Symposium on Practical Aspects of Declarative Languages (PADL), pp. 169–183
(2001)

30. Pearce, D.: A new logical characterization of stable models and answer sets. In:
J. Dix, L. Pereira, T. Przymusinski (eds.) Non-Monotonic Extensions of Logic
Programming (Lecture Notes in Artificial Intelligence 1216), pp. 57–70. Springer
(1997)

31. Reiter, R.: A logic for default reasoning. Artificial Intelligence 13, 81–132 (1980)
32. Shanahan, M.: Solving the Frame Problem: A Mathematical Investigation of the

Common Sense Law of Inertia. MIT Press (1997)
33. Truszczynski, M.: Connecting first-order ASP and the logic FO(ID) through

reducts. In: E. Erdem, J. Lee, Y. Lierler, D. Pearce (eds.) Correct Reasoning:
Essays on Logic-Based AI in Honor of Vladimir Lifschitz, pp. 543–559. Springer
(2012)

34. Van Gelder, A.: Negation as failure using tight derivations for general logic pro-
grams. In: J. Minker (ed.) Foundations of Deductive Databases and Logic Pro-
gramming, pp. 149–176. Morgan Kaufmann, San Mateo, CA (1988)


