
Deductive Systems for Logic Programs

with Counting: Preliminary Report

Jorge Fandinno1[0000−0002−3917−8717] and
Vladimir Lifschitz2[0000−0001−6051−7907]

1 University of Nebraska Omaha, Omaha, NE, USA jfandinno@unomaha.edu
2 University of Texas at Austin, Austin, TX, USA lifschitzv@gmail.com

Abstract. In answer set programming, two groups of rules are consid-
ered strongly equivalent if they have the same meaning in any context.
Strong equivalence of two programs can be sometimes established by de-
riving rules of each program from rules of the other in an appropriate
deductive system. This paper shows how to extend this method of prov-
ing strong equivalence to programs containing the counting aggregate.

Keywords: Answer Set Programming · Strong Equivalence · Deductive
Systems · Aggregates.

1 Introduction

In answer set programming (ASP), two groups of rules are considered strongly
equivalent if, informally speaking, they have the same meaning in any con-
text [14]. If programs Π1 and Π2 are strongly equivalent then Π1∪Π and Π2∪Π
have the same stable models for any program Π. Properties of this equivalence
relation are important because they can help us simplify parts of an ASP pro-
gram without examining its other parts. More generally, they can guide us in
the process of developing correct and e�cient code.

Strong equivalence of two programs can be sometimes established by deriving
rules of each program from rules of the other in an appropriate deductive system.
Deriving rules involves rewriting them in the syntax of �rst-order logic. The pos-
sibility of such proofs has been demonstrated for the ASP language mini-gringo
[4, 11, 13], and it was used in the design of a proof assistant for verifying strong
equivalence [5, 9].

We are interested in extending this method of proving strong equivalence
to ASP programs with aggregates, such as counting and summation [7, Sec-
tion 3.1.12]. Procedures for representing rules with aggregates in the syntax of
�rst-order logic have been proposed in several recent publications [1, 2, 12].

The last of these papers describes a deductive system that can be used to
prove strong equivalence of programs in the language called mini-gringo with
counting (mgc). But that system is too weak for reasoning about mgc rules
that contain variables on the right-hand side of an aggregate atom. For instance,

2 Fandinno and Lifschitz

let A be the pair of rules

p(a),
q(Y)← count{X : p(X) ∧X 6= a} = Y,

and let B stand for

p(a),
q(Y − 1)← count{X : p(X)} = Y.

These pairs of rules are strongly equivalent to each other, but the deductive
system mentioned above would not allow us to justify this claim.

We propose here a set of axioms for proving strong equivalence of programs
with counting that is stronger than the axiom set from the previous publica-
tion [12]. After reviewing in Section 2 the language mgc and the translation τ∗

that transforms mgc rules into �rst-order sentences, we de�ne in Section 3 a
deductive system of here-and-there with counting (HTC). Any two mgc pro-
grams Π1 and Π2 such that τ∗Π1 and τ∗Π2 can be derived from each other in
this deductive system are strongly equivalent. Furthermore, the sentences τ∗A
and τ∗B, corresponding to the programs A and B above, are equivalent in HTC
(Section 4).

The system HTC is not a �rst-order theory in the sense of classical logic,
because some instances of the law of excluded middle F ∨¬F are not provable in
it. This fact makes it di�cult to automate reasoning in HTC , because existing
work on automated reasoning deals for the most part with classical logic and
its extensions. Lin [16] showed how to modify the straightforward representation
of propositional rules by formulas in such a way that strong equivalence will
correspond to equivalence of formulas in classical logic. In Section 5 we show
that this method is applicable to programs with counting as well. To this end,
we de�ne a classical �rst-order theory HTC ′ and an additional syntactic trans-
formation γ such that two sentences F1, F2 are equivalent in HTC if and only if
γF1 is equivalent to γF2 in HTC ′. It follows that if the formula γτ∗Π1 ↔ γτ∗Π2

can be derived from the axioms of HTC ′ in classical �rst-order logic then Π1 is
strongly equivalent to Π2.

2 Background

2.1 Programs

The syntax of mini-gringo with counting is de�ned as follows.3 We assume
that three countably in�nite sets of symbols are selected: numerals, symbolic
constants, and variables. We assume that a 1-1 correspondence between numerals
and integers is chosen; the numeral corresponding to an integer n is denoted by n.
(In examples of programs, we sometimes drop overlines in numerals.)

3 The description below di�ers slightly from the original publication on mgc [12]: the
absolute value symbol | | is allowed in the de�nition of a term, and the symbols inf

and sup are not included.

Deductive Systems for Logic Programs with Counting: Preliminary Report 3

Precomputed terms are numerals and symbolic constants. We assume that
a total order on the set of precomputed terms is selected such that numerals
are contiguous (no symbolic constants between numerals) and are ordered in
the standard way. mgc terms are formed from precomputed terms and variables
using the unary operation symbol | | and the binary operation symbols

+ − × / \ ..

An mgc atom is a symbolic constant optionally followed by a tuple of terms
in parentheses. A literal is an mgc atom possibly preceded by one or two occur-
rences of not. A comparison is an expression of the form t1 ≺ t2, where t1, t2
are mini-gringo terms, and ≺ is = or one of the comparison symbols

6= < > ≤ ≥ (1)

An aggregate element is a pair X : L, where X is a tuple of distinct variables,
and L is a conjunction of literals and comparisons such that every member of X
occurs in L. An aggregate atom is an expression of one of the forms

count{E} ≥ t, count{E} ≤ t, (2)

where E is an aggregate element, and t is a term that does not contain the
interval symbol (..). The conjunction of aggregate atoms (2) can be written as
count{E} = t.

A rule is an expression of the form

Head ← Body , (3)

where

� Body is a conjunction (possibly empty) of literals, comparisons, and aggre-
gate atoms, and

� Head is either an atom (then (3) is a basic rule), or an atom in braces
(then (3) is a choice rule), or empty (then (3) is a constraint).

A variable that occurs in a rule R is local in R if each of its occurrences is
within an aggregate element, and global otherwise. A rule is pure if, for every
aggregate element X : L in its body, all variables in the tuple X are local. For
example, the rule

q(Y)← count{X : p(X)} = Y ∧X > 0

is not pure, because X is global.
In mini-gringo with counting, a program is a �nite set of pure rules.

2.2 Stable models and strong equivalence

An atom p(t) is precomputed if all members of the tuple t are precomputed terms.
The semantics of mgc is based on an operator, called τ , which transforms pure

4 Fandinno and Lifschitz

rules into in�nitary propositional formulas formed from precomputed atoms [12,
Section 5]. For example, the rule

q ← count{X : p(X)} ≤ 5

is transformed by τ into the formula ∧
∆ : |∆|>5

¬
∧
x∈∆

p(x)

→ q,

where ∆ ranges over �nite sets of precomputed terms, and |∆| stands for the
cardinality of ∆. The result of applying τ to a program Π is de�ned as the
conjunction of formulas τR for all rules R of Π.

Stable models of an mgc program Π are de�ned as stable models of τΠ
in the sense of Truszczynski [17]. Thus stable models of programs are sets of
precomputed atoms.

About programs Π1 and Π2 we say that they are strongly equivalent to each
other if τΠ1 is strongly equivalent to τΠ2; in other words, if for every set Φ of
in�nitary propositional formulas formed from precomputed atoms, {τΠ1} ∪ Φ
and {τΠ2} ∪ Φ have the same stable models. It is clear that if Π1 is strongly
equivalent to Π2 then, for any program Π, Π1 ∪Π has the same stable models
as Π2 ∪Π (take Φ to be {τΠ}).

2.3 Representing MGC terms and atoms by formulas

In �rst-order formulas that represent programs we distinguish between terms of
two sorts: the sort general and its subsort integer . General variables are meant
to range over arbitrary precomputed terms, and we assume them to be the
same as variables used in mgc programs. Integer variables are meant to range
over numerals (or, equivalently, integers). In this paper, integer variables are
represented by letters from the middle of the alphabet (I, . . . , N).

The two-sorted signature σ0 includes

� all numerals as object constants of the sort integer ;
� all symbolic constants as object constants of the sort general ;
� the symbol | | as a unary function constant; its argument and value have the

sort integer ;
� the symbols +, − and × as binary function constants; their arguments and

values have the sort integer ;
� pairs p/n, where p is a symbolic constant and n is a nonnegative integer, as
n-ary predicate constants; their arguments have the sort general ;

� symbols (1) as binary predicate constants; their arguments have the sort
general.

Note that the de�nition of σ0 does not allow general variables in the scope of an
arithmetic operation. For example, the mgc term Y − 1 is not a term over σ0.

Deductive Systems for Logic Programs with Counting: Preliminary Report 5

A formula of the form (p/n)(t), where t is a tuple of terms, can be written
also as p(t). Thus precomputed atoms can be viewed as sentences over σ0.

The set of values of an mgc term4 t can be described by a formula over the
signature σ0 that contains a variable Z that does not occur in t [4, 13]. This
formula, �Z is a value of t,� is denoted by val t(Z). Its de�nition is recursive, and
we reproduce here two of its clauses:

� if t is a precomputed term or a variable then val t(Z) is Z = t,
� if t is t1 op t2, where op is +, −, or × then val t(Z) is

∃IJ(val t1(I) ∧ val t2(J) ∧ Z = I op J),

where I and J are integer variables that do not occur in t.

For example, val Y−1(Z) is

∃IJ(I = Y ∧ J = 1 ∧ Z = I − J).

The translation τB transforms mgc atoms, literals and comparisons into for-
mulas over the signature σ0. (The superscript B conveys the idea that this trans-
lation expresses the meaning of expressions in bodies of rules.) For example, τB

transforms p(t) into the formula ∃Z(val t(Z) ∧ p(Z)). The complete de�nition
of τB can be found in other papers on strong equivalence [4, 13].

2.4 Representing aggregate expressions and rules

To represent aggregate expressions by �rst-order formulas, we need to extend
the signature σ0 [12, Section 7]. The signature σ1 is obtained from σ0 by adding
all predicate constants of the forms

AtleastX;V
F and AtmostX;V

F (4)

where X and V are disjoint lists of distinct general variables, and F is a formula
over σ0 such that each of its free variables belongs to X or to V. The number
of arguments of each of constants (4) is greater by 1 than the length of V; all
arguments are of the sort general. If n is a positive integer then the formula
AtleastX,VF (V, n) is meant to express that F holds for at least n values of X.

The meaning of AtmostX,VF (V, n) is similar: F holds for at most n values of X.
For an aggregate atom of the form count{X : L} ≥ t in the body of a rule,

the corresponding formula over σ1 is

∃Z
(
val t(Z) ∧AtleastX;V

∃WτB(L)
(V, Z)

)
,

where

4 We talk about a set of values because an mgc term may contain the interval symbol.
For instance, the values of the mgc term 1..3 are 1, 2, and 3. On the other hand,
the set of values of the term a− 1, where a is a symbolic constant, is empty.

6 Fandinno and Lifschitz

� V is the list of global variables that occur in L, and
� W is the list of local variables that occur in L and are di�erent from the

members of X.

For example, the aggregate atom count{X : p(X)} ≥ Y is represented by the
formula

∃Z
(
Z = Y ∧AtleastX;

∃Z(Z=X∧p(Z))(Z)
)

(V and W are empty).
The formula representing count{X : L} ≤ t is formed in a similar way,

with Atmost in place of Atleast .
Now we are ready to de�ne the translation τ∗, which transforms pure rules

into sentences over σ1. It converts a basic rule

p(t)← B1 ∧ · · · ∧Bn

into the universal closure of the formula

B∗1 ∧ · · · ∧B∗n ∧ val t(Z)→ p(Z),

where B∗i is τB(Bi) if Bi is a literal or comparison, and the formula representa-
tion of Bi formed as described above if Bi is an aggregate atom.

The de�nition of τ∗ for pure rules of other forms can be found in the original
paper on mini-gringo with counting [12, Sections 6 and 8]. For any program Π,
τ∗Π stands for the conjunction of the sentences τ∗R for all rules R of Π.

2.5 Logic of here-and-there and standard interpretations

We are interested in deductive systems S with the following property:

for any programs Π1 and Π2,
if τ∗Π1 and τ∗Π2 can be derived from each other in S

then Π1 is strongly equivalent to Π2.
(5)

Systems with property (5) cannot possibly sanction unlimited use of classical
propositional logic. Consider, for instance, the one-rule programs

p← not q and q ← not p.

They have di�erent stable models, although the corresponding formulas ¬q → p,
¬p→ q have the same truth table.

This observation suggests that the study of subsystems of classical logic may
be relevant. One such subsystem is �rst-order intuitionistic logic (with equal-
ity) adapted to the two-sorted signature σ1. Intuitionistic logic does have prop-
erty (5). Furthermore, this property is preserved if we add the axiom schema

F ∨ (F → G) ∨ ¬G, (6)

which characterizes the propositional logic of here-and-there [10].

Deductive Systems for Logic Programs with Counting: Preliminary Report 7

The axiom schema

∃X(F → ∀X F) (7)

(for a variable X of either sort) can be included without losing property (5) as
well. It was introduced to extend the logic of here-and-there to a language with
variables and quanti�ers [15].

The axioms and inference rules discussed so far are abstract, in the sense
that they are not related to any properties of the domains of variables (except
that one is a subset of the other). To describe more speci�c axioms, we need the
following de�nition. An interpretation of the signature σ0 is standard if

� its domain of the sort general is the set of precomputed terms;

� its domain of the sort integer is the set of numerals;

� every object constant represents itself;

� the absolute value symbol and the binary function constants are interpreted
as usual in arithmetic;

� predicate constants (1) are interpreted in accordance with the total order on
precomputed terms chosen in the de�nition of mgc (Section 2.1).

Two standard interpretations of σ0 can di�er only by how they interpret the
symbols p/n. If a sentence over σ0 does not contain these symbols then it is
either satis�ed by all standard interpretations or is not satis�ed by any of them.

Let Std be the set of all sentences over σ0 that do not contain predicate sym-
bols of the form p/n and are satis�ed by standard interpretations. Property (5)
will be preserved if we add any members of Std to the set of axioms. The set Std
includes, for instance, the law of excluded middle F ∨ ¬F for every sentence F
over σ0 that does not contain symbols p/n. Other examples of formulas from
Std are

2× 2 = 4, ∀N(N ∗N ≥ 0), t1 6= t2,

where t1, t2 are distinct precomputed terms.

To reason about mgc programs, we need also axioms for Atleast and Atmost .
A possible choice of such additional axioms is described in the next section.

3 Deductive system HTC

The deductive system HTC (�here-and-there with counting�) operates with for-
mulas of the signature σ2, which is obtained from σ1 (Section 2.4) by adding

the predicate constants StartX;V
F , where X and V are disjoint lists of distinct

general variables, and F is a formula over σ0 such that each of its free variables
belongs to X or to V. The number of arguments of each of these constants is the
combined length of X and V plus 1. The last argument is of the sort integer, and
the other arguments are of the sort general. For any integer n, StartX;V

F (X,V, n)
is meant to express that if n > 0 then there exists a lexicographically increasing
sequence X1, . . .Xn of values satisfying F such that the �rst of them is X.

8 Fandinno and Lifschitz

3.1 Axioms of HTC

The axioms for Start de�ne these predicates recursively:

∀XVN(N ≤ 0→ StartX;V
F (X,V, N)),

∀XV(StartX;V
F (X,V, 1)↔ F),

∀XVN(N > 0→
(StartX;V

F (X,V, N + 1)↔ F ∧ ∃U(X < U ∧ StartX;V
F (U,V, N)))).

Here N is an integer variable, and U is a list of distinct general variables of the
same length as X that is disjoint from both X and V. The symbol < in the last
line denotes lexicographic order: (X1, . . . , Xm) < (U1, . . . , Um) stands for

m∨
l=1

(
(Xl < Ul) ∧

l−1∧
k=1

(Xk = Uk)

)
.

This set of axioms for Start will be denoted by D0.

The set of axioms for Atleast and Atmost , denoted by D1, de�nes these
predicates in terms of Start :

∀VY (AtleastX;V
F (V, Y)↔ ∃XN(StartX;V

F (X,V, N) ∧N ≥ Y)), (8)

∀VY (AtmostX;V
F (V, Y)↔ ∀XN(StartX;V

F (X,V, N)→ N ≤ Y)). (9)

In addition to the axioms listed above, we need the induction schema

FN
0
∧ ∀N

(
N ≥ 0 ∧ F → FN

N+1

)
→ ∀N(N ≥ 0→ F)

for all formulas F over σ2. The set of the universal closures of its instances will
be denoted by Ind .

The deductive system HTC is de�ned as �rst-order intuitionistic logic for
the signature σ2 extended by

� axiom schemas (6) and (7) for all formulas F , G, H over σ2, and

� axioms Std , Ind , D0 and D1.

This deductive system has property (5):

Theorem 1. For programs Π1 and Π2, if formula τ∗Π1 ↔ τ∗Π2 is provable in
HTC then Π1 and Π2 are strongly equivalent.

If the claim that Π1 is strongly equivalent to Π2 can be justi�ed by the
method from the previous publication [12, Theorem 3] then it can be justi�ed
by the theorem above as well. Furthermore, in Section 4 we show that HTC
is su�ciently strong for proving the equivalence between τ∗A and τ∗B for the
programs A and B from the introduction.

Deductive Systems for Logic Programs with Counting: Preliminary Report 9

3.2 Some theorems of HTC

The characterization of Atleast and Atmost given by the axioms D1 can be
simpli�ed, if we replace the variable Y by an integer variable:

Proposition 1. The formulas

∀VN(AtleastX;V
F (V, N)↔ ∃XStartX;V

F (X,V, N)) (10)

and

∀VN(AtmostX;V
F (V, N)↔ ¬AtleastX;V

F (V, N + 1)) (11)

are provable in HTC.

Proposition 2. The formulas

∀VN(N ≤ 0→ AtleastX;V
F (V, N)), (12)

∀V(AtleastX;V
F (V, 1)↔ ∃XF), (13)

∀X(F → G)→ ∀XVN(StartX;V
F (X,V, N)→ StartX;V

G (X,V, N)), (14)

∀ZVN(StartX;V
F (Z,V, N) ∧N > 0→ FX

Z) (15)

are provable in HTC.

An expression of the form ExactlyX;V
F (t, t) is shorthand for the conjunction

AtleastX;V
F (t, t) ∧AtmostX;V

F (t, t)

(t is a tuple of terms; t is a term). By (11), ExactlyX;V
F (X, N) is equivalent to

AtleastX;V
F (X, N) ∧ ¬AtleastX;V

F (X, N + 1).

Proposition 3. The formulas

∀XY (ExactlyX;V
F (X, Y)→ ∃N(Y = N ∧N ≥ 0)) (16)

and

∀X(F ↔ G)→ ∀XY (ExactlyX;V
F (X, Y)↔ ExactlyX;V

G (X, Y)) (17)

are provable in HTC.

10 Fandinno and Lifschitz

4 An example of reasoning about programs

We outline here a proof of the equivalence τ∗A ↔ τ∗B, for the programs A
and B from the introduction, in the deductive system HTC .

The translation τ∗ transforms program A into the conjunction of the formulas

∀Z(Z = a→ p(Z)) (18)

and
∀Y Z(∃Z1(Z1 = Y ∧AtleastX;

F (Z1))∧
∃Z2(Z2 = Y ∧AtmostX;

F (Z2)) ∧ Z = Y → q(Z)),
(19)

where F stands for τB(p(a)∧X 6= a). Formula (18) is equivalent to p(a), and (19)
is equivalent to

∀Y (AtleastX;
F (Y) ∧AtmostX;

F (Y)→ q(Y)). (20)

The antecedent of this implication can be written as ExactlyX;
F (Y). By (16), it

follows that the variable Y can be replaced by the integer variable N . Further-
more, by (17), formula (20) can be further rewritten as

∀N(ExactlyX;
p(a)∧X 6=a(N)→ q(N)), (21)

because F is equivalent to p(a) ∧X 6= a.
The result of applying τ∗ to B is the conjunction of (18) and

∀Y Z(∃Z1(Z1 = Y ∧AtleastX;
G (Z1)) ∧ ∃Z2(Z2 = Y ∧AtmostX;

G (Z2))∧
∃IJ(I = Y ∧ J = 1 ∧ Z = I + J)→ q(Z)),

where G stands for τB(p(X)). This formula can be equivalently rewritten as

∀I(ExactlyX;
G (I + 1)→ q(I))

and further as
∀I(ExactlyX;

p(X)(I + 1)→ q(I)), (22)

because G is equivalent to p(X).
Thus the claim that τ∗A is equivalent to τ∗B will be proved if we prove

p(a)→ ∀N(ExactlyX;
p(X)∧X 6=a(N + 1)↔ ExactlyX;

p(X)(N)).

This formula is clearly a consequence of

p(a)→∀N(AtleastX;
p(X)∧X 6=a(N + 1)↔AtleastX;

p(X)(N)). (23)

We will show now that (23) can be derived from three lemmas:

N > 0 ∧X > a ∧ StartX;
p(X)(X,N)→ StartX;

p(X)∧X 6=a(X,N), (24)

N > 0 ∧X 6= a ∧ StartX;
p(X)(X,N + 1)→ StartX;

p(X)∧X 6=a(X,N), (25)

N > 0 ∧X < a ∧ p(a) ∧ StartX;
p(X)∧X 6=a(X,N)→ StartX;

p(X)(X,N + 1). (26)

Deductive Systems for Logic Programs with Counting: Preliminary Report 11

Assume p(a); our goal is to show that

AtleastX;
p(X)∧X 6=a(N + 1)↔ AtleastX;

p(X)(N).

We consider three cases, given by the Std axiom ∀N(N < 0 ∨N = 0 ∨N > 0).
If N < 0 then both sides of the equivalence are true by (12). If N = 0 then the

right-hand side is true by (12), and the left-hand side follows from p(a) by (13).
Assume that N > 0.

Left-to-right: assume AtleastX;
p(X)(N + 1). By (10), there exists X such that

StartX;
p(X)(X,N + 1). (27)

Case 1: X = a, so that StartX;
p(X)(a,N + 1). By D0,

p(a) ∧ ∃U(a < U ∧ StartX;
p(X)(U,N)).

Take U such that a < U and StartX;
p(X)(U,N). By (24), it follows that

StartX;
p(X)∧X 6=a(U,N).

Then AtleastX;
p(X)∧X 6=a(N) by (10). Case 2: X 6= a. By (27) and (25),

StartX;
p(X)∧X 6=a(X,N).

By (10), it follows that AtleastX;
p(X)∧X 6=a(N).

Right-to-left: assume AtleastX;
p(X)∧X 6=a(N). Then, for some X,

StartX;
p(X)∧X 6=a(X,N) (28)

by (10), and consequently StartX;
p(X)(X,N) by (14). Case 1: X > a. Then

p(a) ∧ ∃U(a < U ∧ StartX;
p(X)(U,N))

(take U to beX). ByD0, we conclude that Start
X;
p(X)(a,N+1). ThenAtleastX;

p(X)(N+

1) follows by (10). Case 2: X ≤ a. From (28) and (15), X 6= a, so that X < a.

From (28) and (26), StartX;
p(X)(X,N + 1); AtleastX;

p(X)(N + 1) follows by (10).

Proofs of lemmas (24)�(26) use induction Ind , and they are not included here
because of the limit on the length of conference submissions.

5 Deductive system HTC
′

In this section, we show how an additional syntactic transformation γ allows us
to replace HTC by a classical �rst-order theory.

12 Fandinno and Lifschitz

The signature σ′2 is obtained from the signature σ2 (Section 3.1) by adding,
for every predicate symbol p other than comparison symbols (1), a new predicate
symbol p′ of the same arity. The formula ∀X(p(X)→ p′(X)), where X is a tuple
of distinct general variables, is denoted by A(p). The set of all formulas A(p) is
denoted by A.

For any formula F over the signature σ2, by F
′ we denote the formula over σ′2

obtained from F by replacing every occurrence of every predicate symbol p other
than comparison symbols by p′. The translation γ, which relates the logic of
here-and-there to classical logic, maps formulas over σ2 to formulas over σ′2. It
is de�ned recursively:

� γF = F if F is atomic,
� γ(¬F) = ¬F ′,
� γ(F ∧G) = γF ∧ γG,
� γ(F ∨G) = γF ∨ γG,
� γ(F → G) = (γF → γG) ∧ (F ′ → G′),
� γ(∀X F) = ∀X γF ,
� γ(∃X F) = ∃X γF .

To apply γ to a set of formulas means to apply γ to each of its members.
By HTC ′ we denote the classical �rst-order theory over the signature σ′2 with

the axioms A, γ(Ind), Std , γD0 and γD1.

Theorem 2. A sentence F ↔ G over the signature σ2 is provable in HTC i�
γF ↔ γG is provable in HTC ′.

From Theorems 1 and 2 we conclude that mgc programs Π1 and Π2 are
strongly equivalent if the formula γτ∗Π1 ↔ γτ∗Π2 is provable in HTC ′.

6 Conclusion

In this paper we described the deductive system HTC and argued that strong
equivalence of two programs with counting can be established in many cases
by proving the equivalence of the corresponding �rst-order sentences in that
system. The question whether HTC is complete for strong equivalence, that is
to say, whether τ∗Π1 ↔ τ∗Π2 is provable in HTC for all pairs Π1, Π2 of strongly
equivalent mgc programs, is an open problem.

We described also a modi�cation HTC ′ of HTC , which is a �rst-order theory
in the sense of classical logic such that sentences F1, F2 are equivalent in HTC
if and only if the sentences γF1, γF2 are equivalent in HTC ′. This fact suggests
that it may be possible to use theorem provers for classical theories to verify
strong equivalence of mgc programs.

A translation closely related to τ∗ is used in anthem [6] to verify another
kind of equivalence of mini-gringo programs�equivalence with respect to a user
guide [3, 8]. We plan to extend work on user guides to programs with counting.

Finally, we would like to investigate the possibility of extending the deductive
systems described in this paper to aggregates other than counting.

Deductive Systems for Logic Programs with Counting: Preliminary Report 13

References

1. Fandinno, J., Hansen, Z., Lierler, Y.: Axiomatization of aggregates in answer set
programming. In: Proceedings of the AAAI Conference on Arti�cial Intelligence
(2022)

2. Fandinno, J., Hansen, Z.: Recursive aggregates as intensional functions. In: Pro-
ceedings of the Workshops co-located with the 39th International Conference on
Logic Programming (2023)

3. Fandinno, J., Hansen, Z., Lierler, Y., Lifschitz, V., Temple, N.: External behavior
of a logic program and veri�cation of refactoring. Theory and Practice of Logic
Programming (2023)

4. Fandinno, J., Lifschitz, V.: Omega-completeness of the logic of here-and-there and
strong equivalence of logic programs. In: Proceedings of International Conference
on Principles of Knowledge Representation and Reasoning (2023)

5. Fandinno, J., Lifschitz, V.: On Heuer's procedure for verifying strong equivalence.
In: Proceedings of European Conference on Logics in Arti�cial Intelligence (2023)

6. Fandinno, J., Lifschitz, V., Lühne, P., Schaub, T.: Verifying tight logic programs
with Anthem and Vampire. Theory and Practice of Logic Programming 20 (2020)

7. Gebser, M., Kaminski, R., Kaufmann, B., Lindauer, M., Ostrowski, M.,
Romero, J., Schaub, T., Thiele, S.: Potassco User Guide (2019), available at
https://github.com/potassco/guide/releases/

8. Hansen, Z.: Anthem-p2p: Automatically verifying the equivalent external behavior
of ASP programs. In: Electronic Proceedings in Theoretical Computer Science.
vol. 385 (2023)

9. Heuer, J.: Automated veri�cation of equivalence properties in advanced logic pro-
grams (2020), Bachelor Thesis, University of Potsdam

10. Hosoi, T.: The axiomatization of the intermediate propositional systems Sn of
Gödel. Journal of the Faculty of Science of the University of Tokyo 13, 183�187
(1966)

11. Lifschitz, V.: Here and there with arithmetic. Theory and Practice of Logic Pro-
gramming (2021)

12. Lifschitz, V.: Strong equivalence of logic programs with counting. Theory and Prac-
tice of Logic Programming 22 (2022)

13. Lifschitz, V., Lühne, P., Schaub, T.: Verifying strong equivalence of programs in
the input language of gringo. In: Proceedings of the 15th International Conference
on Logic Programming and Non-monotonic Reasoning (2019)

14. Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM
Transactions on Computational Logic 2, 526�541 (2001)

15. Lifschitz, V., Pearce, D., Valverde, A.: A characterization of strong equivalence for
logic programs with variables. In: Procedings of International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR). pp. 188�200 (2007)

16. Lin, F.: Reducing strong equivalence of logic programs to entailment in classical
propositional logic. In: Proceedings of International Conference on Principles of
Knowledge Representation and Reasoning (KR). pp. 170�176 (2002)

17. Truszczynski, M.: Connecting �rst-order ASP and the logic FO(ID) through
reducts. In: Erdem, E., Lee, J., Lierler, Y., Pearce, D. (eds.) Correct Reasoning:
Essays on Logic-Based AI in Honor of Vladimir Lifschitz, pp. 543�559. Springer
(2012)

