
An Experiment with Anthem:

Semantic Equivalence of Tiling Programs

Vladimir Lifschitz

University of Texas at Austin

Abstract. anthem is a proof assistant designed for verifying several
conditions that play an important role in answer set programming. In
this note we show that anthem can help us verify equivalence of logic
programming solutions to the same problem that have been indepen-
dently developed by di�erent programmers.

1 Introduction

anthem (https://potassco.org/anthem/) is a proof assistant designed for
verifying a number of conditions that play an important role in answer set
programming (ASP). One of these conditions is external equivalence of ASP
programs. External equivalence means, informally speaking, that the programs
exhibit the same external behavior for all permissible inputs. The word �exter-
nal� refers to the idea that two programs with the same output predicates may
be equivalent even if their auxiliary (�private�) predicates are di�erent. This can
be made precise by de�ning equivalence with respect to a �user guide,� which is
a formal expression specifying the set of permissible inputs and the set of output
predicates [2].

The article mentioned above motivates studying the external equivalence re-
lation by the fact that improving a correct but ine�cient ASP encoding amounts
to replacing a program by another program that is equivalent to it with respect
to a user guide. anthem does not tell us how to improve a program, but it can
help us verify that two versions of a program have the same functionality as far
as their output predicates are concerned.

Michael Gelfond has observed (personal communication) that verifying ex-
ternal equivalence can be used also for another purpose: for investigating the
relationship between independently developed ASP encodings of the same do-
main. As an experiment, we investigate here the relationship between two en-
codings written by students for a class taught at the University of Texas in
2005. The assignment was to solve a tiling puzzle: covering the 8 × 8 square
by twenty�one 3 × 1 tiles and a single 1 × 1 tile [1]. The puzzle has 1424
solutions, as can be demonstrated by running the answer set solver clingo

(https://potassco.org/clingo/) on either encoding.
To make the question more interesting, we generalize the problem as follows:

Given a positive integer n, �nd all covers of the n × n square by 3 × 1
tiles and a single 1× 1 tile.

2 Vladimir Lifschitz

Such a cover exists whenever n is di�erent from 2 and is not a multiple of 3
(Krzysztof Apt, personal communication).

The programs written by students have been generalized accordingly. (That
was straightforward: it was enough to replace 8 in the programs by n, and 6

by n-2.) The programs have been also edited to make them more concise, and
adapted to the syntactic restrictions required by anthem.

Listing 1.1. Program A

1 % T = 1 : a 1x1 t i l e .
2 % T = 2 : a ho r i z on t a l 3x1 t i l e with the
3 % l e f tmos t square at (X,Y) .
4 % T = 3 : a v e r t i c a l 3x1 t i l e with the
5 % topmost square at (X,Y) .
6
7 { p lace (X,Y,T)} :− X = 1 . . n , Y = 1 . . n , T = 1 . . 3 .
8
9 :− p lace (X,Y,T1) , p lace (X,Y,T2) , T1 != T2 .

10 :− p lace (X,Y, 1) , p l ace (X1 ,Y1 , 1) , X != X1 .
11 :− p lace (X,Y, 1) , p l ace (X1 ,Y1 , 1) , Y != Y1 .
12
13 % f i l l e d (X,Y) means that (X,Y) i s covered by
14 % one o f the t i l e s .
15 f i l l e d (X,Y) :− p lace (X,Y, 1) .
16 f i l l e d (X+I ,Y) :− p lace (X,Y, 2) , I = 0 . . 2 .
17 f i l l e d (X,Y+I) :− p lace (X,Y, 3) , I = 0 . . 2 .
18
19 :− not f i l l e d (X,Y) , X = 1 . . n , Y = 1 . . n .
20 :− p lace (X,Y, 2) , X > n−2.
21 :− p lace (X,Y, 3) , Y > n−2.
22 :− p lace (X,Y, 2) , p l ace (X+I ,Y,T) , I = 1 . . 2 .
23 :− p lace (X,Y, 3) , p l ace (X,Y+I ,T) , I = 1 . . 2 .
24 :− p lace (X,Y, 2) , p l ace (X+I ,Y−J , 3) ,
25 I = 1 . . 2 , J = 1 . . 2 .
26 :− p lace (X,Y, 3) , p l ace (X−I ,Y+J , 2) ,
27 I = 1 . . 2 , J = 1 . . 2 .

2 Two encodings

The programs, shown in Listings 1.1 and 1.2, are designed in accordance with the
same general principles, common in applications of ASP to search problems. A
solution is represented by a set of ground atoms that are formed using �output
predicates� of the program. Both programs include choice rules that describe
�potential solutions.� They include also constraints, which weed out potential

An Experiment with Anthem: Semantic Equivalence of Tiling Programs 3

solutions that are not fully satisfactory, and de�ne auxiliary predicates, which
are used to express the constraints.1

Listing 1.2. Program B

1 % h(R,C) means that the re i s a t i l e
2 % at (R,C) , (R,C+1) , (R,C+2).
3 % v(R,C) means that the re i s a t i l e
4 % at (R,C) , (R+1,C) , (R+2,C) .
5
6 {h (1 . . n , 1 . . n−2)}.
7 {v (1 . . n−2 ,1 . . n) } .
8
9 square (1 . . n , 1 . . n) .

10
11 % covered (R,C) means that (R,C) i s covered
12 % by a 3x1 t i l e .
13 covered (R,C+I) :− h(R,C) , I = 0 . . 2 .
14 covered (R+I ,C) :− v (R,C) , I = 0 . . 2 .
15
16 :− square (R1 ,C1) , square (R2 ,C2) ,
17 not covered (R1 ,C1) , not covered (R2 ,C2) ,
18 R1 != R2 .
19
20 :− square (R1 ,C1) , square (R2 ,C2) ,
21 not covered (R1 ,C1) , not covered (R2 ,C2) ,
22 C1 != C2 .
23
24 :− h(R,C) , h(R,C+ (1 . . 2)) .
25 :− v (R,C) , v (R+(1 . . 2) ,C) .
26 :− h(R,C) , v (R− (0 . . 2) ,C+ (0 . . 2)) .

But the two programs have di�erent output predicates.
In Program A, the output predicate is place/3. Its last argument shows

whether the tile is 1 × 1 or 3 × 1, and, in the latter case, whether it is placed
horizontally or vertically. The other two arguments are the coordinates of the
�head� of the tile. The choice rule in Line 7 allows us to choose the number of
tiles and their positions arbitrarily, as long as the head of every tile is within
the n× n square. The constraint in Line 19, expressing that the entire square is
covered, uses the auxiliary predicate filled/2, which is de�ned in Lines 15�17.

In Program B, on the other hand, two output predicates describe the posi-
tions of 3×1 tiles placed horizontally (h/2) and vertically (v/2), and there is no
symbol for the position of the 1×1 tile. Instead of the constraint expressing that

1 This perspective on the structure of search programs is useful for writing them, but
the search algorithms implemented in answer set solvers do not involve generating all
potential solutions�their number can be astronomical. These algorithms are similar
to those used in the design of satis�ability solvers [3].

4 Vladimir Lifschitz

the entire square is covered, in Listing 1.2 we see a pair of constraints requiring
that 3×1 tiles miss at most one position in the n×n square (Lines 16�22). 2 The
auxiliary predicate covered/2, de�ned in Lines 13 and 14, is slightly di�erent
from filled/2 from Program A: filled(R,C) means that the position in row R

and column C is covered by one of the 3× 1 tiles.
The programs di�er also by the way they order the arguments denoting the

coordinates of a position: the row number R in Program B corresponds to the
Y-coordinate in Program A, and the column number C corresponds to the X-
coordinate. Thus the atom h(5,6) in the output of Program B corresponds to
place(6,5,2) in the output of Program A.

3 Combining output predicates

Because of the di�erence between their output predicates, Programs A and B are
not externally equivalent in the sense of the theory behind anthem. They are
only equivalent in the weaker sense discussed by Pearce and Valverde [5], who
observe that two knowledge descriptions can be semantically equivalent even if
they are expressed in di�erent languages or vocabularies.

But we can make these programs externally equivalent if we extend Pro-
gram A by de�nitions of h/2 and v/2 (Listing 1.3), and extend Program B by
a de�nition of place/3 (Listing 1.4). Adding these rules makes the programs
equivalent with respect to the user guide that classi�es n as a placeholder for an
integer, and the symbols h/2, v/2, place/3 as output predicates (Listing 1.5).

This claim can be veri�ed by anthem as described in the next section.

Listing 1.3. Rules to be added to Program A

1 h(R,C) :− p lace (C,R, 2) .
2 v (R,C) :− p lace (C,R, 3) .

Listing 1.4. Rules to be added to Program B

1 p lace (X,Y, 1) :− square (Y,X) , not covered (Y,X) .
2 p lace (X,Y, 2) :− h(Y,X) .
3 p lace (X,Y, 3) :− v (Y,X) .

Listing 1.5. User guide for the extended programs

1 input : n −> in t e g e r .
2 output : h /2 .
3 output : v /2 .
4 output : p lace /3 .

2 The original program employed the #count aggregate to express this condition more
concisely. The versions of anthem available at the time of this writing are not
applicable to aggregate expressions.

An Experiment with Anthem: Semantic Equivalence of Tiling Programs 5

4 Operation of anthem

anthem has been designed and implemented by researchers at the University
of Potsdam, the University of Nebraska Omaha, and the University of Texas at
Austin. It veri�es a claim about external equivalence of programs by reducing
it to proving certain formulas in a �rst-order theory and invoking the theorem
prover vampire [4] to �nd a proof. Formulas are written in a language with
terms of two sorts, general and its subsort integer. General variables are similar
to variables in ASP programs; their domain includes both integers and symbolic
constants. Integer variables are distinguished from general variables by the sym-
bol $ as their last character. The syntax of the language does not allow general
variables in the scope of an arithmetic operation.

The user can help vampire organize search by providing a proof outline�a
list of �rst-order sentences (�lemmas�) to be proved consecutively before attempt-
ing to prove the main goal. Some lemmas are used in only one half of the proof
of equivalence, �forward� (left-to-right) or �backward� (right-to-left).

The output of anthem describes each reasoning task given to vampire by
listing the axioms and the conjecture that vampire is instructed to derive from
them. The user of anthem usually approaches a veri�cation task by checking
�rst whether vampire can succeed within reasonable time�say, 5 minutes�
without help. For nontrivial tasks, this �rst attempt usually fails. The next step
is to �nd a lemma that can be derived by vampire from the axioms without
help and that is likely to facilitate achieving the goal when added to the list of
axioms. Several steps of this kind may be required. Some lemmas can be stated
more concisely using explicitly de�ned predicates, and such de�nitions can be
included in the proof outlines along with the statements of lemmas.

The proof outline used in the veri�cation of the equivalence claim from Sec-
tion 3 is shown in Listing 1.6. Given this proof outline, the anthem-vampire
team, invoked with 6 cores on a machine running Ubuntu 20.04.6, 8 Intel(R)
Xeon(R) E3-1271 CPUs, 16 GB RAM, terminated within 326 seconds.

Listing 1.6. Proof outline

1 d e f i n i t i o n : f o r a l l I$ J$ (f i l l e d 2 (I$, J$) <−>
2 place (I$, J$, 2) or p lace (I$−1,J$, 2)
3 or p lace (I$−2,J$, 2)) .
4
5 d e f i n i t i o n : f o r a l l I$ J$ (f i l l e d 3 (I$, J$) <−>
6 place (I$, J$, 3) or p lace (I$, J$−1 ,3)
7 or p lace (I$, J$−2 ,3)) .
8
9 lemma(forward) :

10 f i l l e d 2 (I$, J$) −>
11 h(J$, I$) or h(J$, I$−1) or h(J$, I$ −2).
12
13 lemma(forward) : f i l l e d 2 (I$, J$) −> covered (J$, I$) .
14

6 Vladimir Lifschitz

15 lemma(forward) :
16 f i l l e d 3 (I$, J$) −>
17 v (J$, I$) or v (J$−1, I$) or v (J$−2, I$) .
18
19 lemma(forward) : f i l l e d 3 (I$, J$) −> covered (J$, I$) .
20
21 lemma(forward) :
22 f i l l e d (I$, J$) −>
23 p lace (I$, J$, 1)
24 or f i l l e d 2 (I$, J$) or f i l l e d 3 (I$, J$) .
25
26 lemma(forward) :
27 square (I$, J$) −>
28 p lace (I$, J$, 1)
29 or f i l l e d 2 (I$, J$) or f i l l e d 3 (I$, J$) .
30
31 lemma(forward) :
32 square (I$, J$) −> place (I$, J$, 1) or covered (J$, I$) .
33
34 lemma(backward) : not (h(R,C) and v (R,C)) .
35
36 lemma(backward) :
37 not (h(R$,C$) and h(R$,C$+I$) and 1 <= I$ <= 2) .
38
39 lemma(backward) :
40 not (h(R$,C$) and v (R$,C$+I$) and 0 <= I$ <= 2) .
41
42 lemma(backward) :
43 not (v (R$,C$) and h(R$+I$,C$) and 0 <= I$ <= 2) .
44
45 lemma(backward) :
46 not (v (R$,C$) and h(R$+I$,C$−J$)
47 and 0 <= J$ <= 2 and 1 <= I$ <= 2) .
48
49 lemma(backward) :
50 square (I$, J$) −>
51 p lace (I$, J$, 1)
52 or f i l l e d 2 (I$, J$) or f i l l e d 3 (I$, J$) .
53
54 lemma(backward) : f i l l e d 2 (I$, J$) −> f i l l e d (I$, J$) .
55
56 lemma(backward) : f i l l e d 3 (I$, J$) −> f i l l e d (I$, J$) .

An Experiment with Anthem: Semantic Equivalence of Tiling Programs 7

5 Conclusion

Programs A and B describe the same domain in the same dialect of answer set
programming, and they represent the input in the same way. But the output is
represented in them by di�erent predicates. After extending each encoding by
rules de�ning the output predicates of the other we obtained a pair of programs
that are equivalent with respect to the user guide in which the output predicates
of A and B are combined.

The proof outline required for completing veri�cation in the example above
includes a large number of lemmas. Inventing these lemmas in the process of
interaction with anthem involved a long series of experiments; it was challenging
and time consuming. This example can serve as a benchmark for evaluating
future versions of anthem and vampire. Making the number of lemmas smaller
without increase in runtime will be a sign of progress.

Acknowledgements

Many thanks to Michael Gelfond, who suggested to me the possibility of using
anthem for comparing alternative encodings of the same domain, to Zachary
Hansen for sharing with me the best available version of anthem, to Pedro Ca-
balar, Jorge Fandinno, Martin Gebser, Roland Kaminski and anonymous referees
for comments on drafts of this note, and to Krzysztof Apt and Tobias Stolzmann
for useful discussions related to its topic.

References

1. Dijkstra, E.W.: Seemingly on a problem transmitted by Bengt Jonsson (1989),
https://www.cs.utexas.edu/~EWD/ewd10xx/EWD1039.PDF

2. Fandinno, J., Hansen, Z., Lierler, Y., Lifschitz, V., Temple, N.: External behavior
of a logic program and veri�cation of refactoring. Theory and Practice of Logic
Programming (2023)

3. Gomes, C., Kautz, H., Sabharwal, A., Selman, B.: Satis�ability solvers. In: van
Harmelen, F., Lifschitz, V., Porter, B. (eds.) Handbook of Knowledge Representa-
tion, pp. 89�134. Elsevier (2008)

4. Kova¢s, L., Voronkov, A.: First-order theorem proving and Vampire. In: Interna-
tional Conference on Computer Aided Veri�cation. pp. 1��35 (2013)

5. Pearce, D., Valverde, A.: Synonymous theories and knowledge representations in
answer set programming. Journal of Computer and System Sciences 78, 86�104
(2012)

